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Unbounded strongly irreducible operators
and transitive representations of quivers
on infinite-dimensional Hilbert spaces

Masatoshi Enomoto and Yasuo Watatani

ABSTRACT. We introduce unbounded strongly irreducible operators and
transitive operators. These operators are related to a certain class of in-
decomposable Hilbert representations of quivers on infinite-dimensional
Hilbert spaces. We regard the theory of Hilbert representations of quiv-
ers as a generalization of the theory of unbounded operators. A non-zero
Hilbert representation of a quiver is said to be transitive if the endo-
morphism algebra is trivial. If a Hilbert representation of a quiver is
transitive, then it is indecomposable. But the converse is not true. Let
I" be a quiver whose underlying undirected graph is an extended Dynkin
diagram. Then there exists an infinite-dimensional transitive Hilbert
representation of I' if and only if ' is not an oriented cyclic quiver.
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1. Introduction

A bounded linear operator T" on a Hilbert space H is called strongly irre-
ducible if T' cannot be decomposed to a non-trivial (not necessarily orthogo-
nal) direct sum of two operators, that is, if there exist no non-trivial invariant
closed subspaces M and N of T such that M "N =0and M + N = H.
A strongly irreducible operator is an infinite-dimensional generalization of
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a Jordan block. F. Gilfeather [Gi] introduced the notion of strongly irre-
ducible operators. We refer to excellent books [JiW1] and [JiW2] by Jiang
and Wang on strongly irreducible operators.

In [EW1, EW2] we studied the relative positions of subspaces in a sepa-
rable infinite-dimensional Hilbert space after Nazarova [Nal], Gelfand and
Ponomarev [GeP]. We think that relative positions of subspaces have a close
relation with subfactor theory [Jo, GoHJ].

Let H be a Hilbert space and F1,...FE, be n subspaces in H. Then
it is said that S = (H; Eq,...,E,) is a system of n subspaces in H or
an n-subspace system in H. Two systems S = (H; Eq,...,E,) and T =
(K; Fy,...,F,) are isomorphic if there exists an invertible operator ¢ :
H — K such that ¢(F;) = F; for i = 1,2,--- ,n. A non-zero system
S = (H;Eq,...,E,) is said to be indecomposable if it cannot be decom-
posed to a non-trivial direct sum of two systems up to isomorphism. We
recall that strongly irreducible operators contribute an important role to
construct indecomposable systems of four subspaces [EW1].

On the other hand, Gabriel [Ga] introduced a finite-dimensional (lin-
ear) representation of quivers by attaching vector spaces and linear maps
for vertices and edges of quivers respectively. A finite-dimensional inde-
composable representation of a quiver is a direct graph generalization of a
Jordan block. Historically, Kronecker [Kro] solved the indecomposable rep-
resentations of Ay, the so called matrix pencils in 1890. Nazarova [Nal] and
Gelfand-Ponomarev [GeP] treated the four-subspace situation Dy. Donovan-
Freislich [DoF] and Nazarova [Na2] classified the indecomposable represen-
tations of the tame quivers. About these topics we also refer to Bernstein-
Gelfand-Ponomarev [BGP], V. Dlab-Ringel [DIR], Ringel [Ri2], Gabriel-
Roiter [GaR], Kac [Ka], and so on.

We recall infinite-dimensional representations in purely algebraic setting.
In [Au] Auslander found that if a finite-dimensional algebra is not of finite
representation type, then there exist indecomposable modules which are not
of finite length. These are trivially infinite-dimensional. Several works about
infinite-dimensional Kronecker modules have been done by N. Aronszjan, A.
Dean, U. Fixman, F. Okoh and F. Zorzitto in [Ar, DeZ1, Fi, FiO, FiZ, Ok].
A. Dean and F. Zorzitto [DeZ2] constructed a family of infinite-dimensional
indecomposable representations of Dy. K.Ringel [Ril] founded a general
theory of infinite-dimensional representations of tame, hereditary algebra
(see also [Ri3, KrR]).

In [EW3, E] we started to investigate the representation theory of quivers
on Hilbert spaces. We asked the existence of an indecomposable infinite-
dimensional Hilbert representation for any quiver whose underlying undi-
rected graph is one of extended Dynkin diagrams. And we solved it affirma-
tively using the unilateral shift S. The argument works even if we replace
the unilateral shift S with any strongly irreducible operator. From this,
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it is suggested that strongly irreducible operators are useful to construct
indecomposable Hilbert representations of quivers [EW4].

From the analogy of a transitive lattice (see P.R. Halmos [H] and K.J.
Harrison, H. Radjavi and P. Rosenthal [HRR]), we called an indecompos-
able Hilbert representation (H, f) of a quiver such that End(H, f) = CI
transitive. If a Hilbert representation of a quiver is transitive, then it is
indecomposable. But the converse is not true. Therefore, it is important
to investigate the existence problem of an transitive infinite-dimensional
Hilbert representation for any quiver whose underlying undirected graph is
one of extended Dynkin diagrams. In this direction, we [EW4] showed two
kinds of constructions of quite non-trivial transitive Hilbert representations
(H, f) of the Kronecker quiver.

In the purely algebraic setting, a representation of a quiver is called a brick
if its endomorphism ring is a division ring. But for a Hilbert representation
(H,f), End(H, f) is a Banach algebra and not isomorphic to its purely
algebraic endomorphism ring in general, because we only consider bounded
endomorphisms. By the Gelfand-Mazur theorem, any Banach algebra over
C which is a division ring must be isomorphic to C.

We remark that locally scalar representations of quivers were introduced
by Kruglyak and Roiter [KrRo]. But their subject is different from ours. We
also refer to S. Kruglyak, V. Rabanovich, and Y. Samoilenko [KrRS] and Y.
P. Moskaleva and Y. S. Samoilenko [MS].

We consider finite-dimensional indecomposable representations of quiv-
ers whose underlying graph is a Dynkin diagram. They are transitive
(cf.[As]). But it is extremely difficult to solve the existence problem for
infinite-dimensional indecomposable (also transitive) Hilbert representations
of quivers whose underlying undirected graph is a Dynkin diagram. The ex-
istence is not known even for quivers whose underlying undirected graph is
Dy.

In this paper we introduce unbounded strongly irreducible operators and
transitive operators. It is known that any unbounded closed operator 1" on
a Hilbert space can be realized as a quotient BA~! of bounded operators
A and B on H. This fact is related with operator ranges and intersections
of domains of unbounded operators. See, for example, P. Fillmore and
J. Williams [FiW], W.E. Kaufman [Kau] and H. Kosaki [Ko|]. We point
out that the study of an unbounded closed operator T = BA~! can be
translated to the study of a Hilbert representation given by A and B of the
Kronecker quiver. We show that some transitive operators are constructed
by a certain transitive Hilbert representation of the Kronecker quiver. We
regard the theory of Hilbert representations of quivers as a generalization of
the theory of unbounded operators. We also solve completely the existence
problem of infinite-dimensional transitive Hilbert representations of quivers
whose underlying undirected graphs are the extended Dynkin diagrams.
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Let T' be a quiver whose underlying undirected graph is an extended
Dynkin diagram. If the underlying undirected graph of I' is not A,, then
there exists an infinite-dimensional transitive Hilbert representation of I'. If
the underlying undirected graph of I' is A,, then there exists an infinite-
dimensional transitive Hilbert representation of I' if and only if I" is not an
oriented cyclic quiver. We used unbounded transitive operators based on an
idea of a transitive lattice by K.J. Harrison, H. Radjavi and P. Rosenthal
([HRRJ,[RR)).

2. Hilbert representations of quivers

A quiver I' = (V| E, s,7) is a quadruple consisting of the set V of vertices,
the set E of arrows, and two maps s, : E — V which associate with each
arrow « € FE its support s(a) and range r(«). In this paper we assume that
I' is a finite quiver.

We denote by o : © — y an arrow with z = s(a) and y = r(«). Thus a
quiver is a directed graph. We denote by |I'| the underlying undirected graph
of a quiver I'. We say that a quiver I is connected if |I'| is a connected graph.
A quiver I is called finite if both V and E are finite sets. A path of length m
is a finite sequence & = (a1, - - - , auy, ) of arrows such that r(ay) = s(ag4q) for
E=1,---,m—1. Its support is s(a) = s(c) and its range is 7(a) = r(auy).
A path of length m > 1 is called a cycle if its support and range coincide.
A cycle of length one is called a loop. A quiver which is a loop is also called
the Jordan quiver L. A quiver which is a cycle of length m > 1 is also called
the oriented cyclic quiver C,, with length m > 1. A quiver is said to be
acyclic if it contains no cycles.

Definition. Let I' = (V, E, s,7) be a finite quiver. It is said that (H, f)
is a Hilbert representation of I' if H = (H,),cy is a family of Hilbert spaces
and f = (fa)ack is a family of bounded linear operators with fo, : Hyq) —
H”"(OC)'

Definition. Let I' = (V, E, s,7) be a finite quiver. Let (H, f) and (K, g)
be Hilbert representations of I A homomorphism 7' : (H, f) — (K,g)
is a family T" = (T} )yey of bounded operators T, : H, — K, satisfying
Tr(a)fa = 9gaT(q) for any arrow o € E.

The composition T'0.S of homomorphisms 7" and S is defined by (70S5), =
T, o S, for v € V. In this way we have obtained a category HRep (I')
of Hilbert representations of I'. " We denote by Hom ((H, f), (K, g)) the
set of homomorphisms T : (H, f) — (K,g). We denote by End(H, f) :
Hom((H, f),(H, f)) the set of endomorphisms. We can regard End(H, f)
as a subalgebra of @,cy B(Hy).

In the paper we distinguish the following two classes of operators.
bounded operator A is said to be a projection(resp. an idempotent) if A2

[y

I
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= resp. = . € daenote
A = A* (resp. A2 = A). We denote by

Idem(H, f):={T € End(H,f) | T?> =T}
—{T = (T},)vev € End(H, f) | T? = T,(for any v € V)}

the set of all idempotents of End(H, f).

Let 0=(0,)yev be a family of zero endomorphisms and I = (I,)yecy be
a family of identity endomorphisms. It is said that (H, f) and (K,g) are
isomorphic, denoted by (H, f) = (K, g), if there exists an isomorphism ¢ :
(H,f) — (K,g), that is, there exists a family ¢ = (¢y)yev of bounded
invertible operators ¢, € B(Hy, Ky) such that ¢, fa = gaps(a) for any
arrow « € E. We say that (H, f) is a finite-dimensional representation if
H, is finite-dimensional for all v € V. And (H, f) is an infinite-dimensional
representation if H, is infinite-dimensional for some v € V.

We recall a notion of indecomposable representation in [EW3], that is,
a representation which cannot be decomposed into a direct sum of smaller
representations anymore.

Definition. Let T' = (V, E, s, r) be a finite quiver. Let (K, g) and (K, g')
be Hilbert representations of I'. We define the direct sum (H, f) = (K, g) ®
(K’,g/) by H, = K, @K;} for v € V and f, = ga eBgla for o € E. Tt is said
that a Hilbert representation (H, f) is zero, denoted by (H, f) = 0if H, =0
for any v € V.

Definition. A Hilbert representation (H, f) of I is said to be decompos-
able if (H, f) is isomorphic to a direct sum of two non-zero Hilbert repre-
sentations. A non-zero Hilbert representation (H, f) of I" is called indecom-
posable if it is not decomposable, that is, if (H, f) = (K,g) & (K’,¢') then
(K.,g) =0 or (K',g') = 0.

The following proposition is useful to show the indecomposability in con-
crete examples.

Proposition 2.1. [EW3, Proposition 3.1.] Let (H, f) be a Hilbert represen-
tation of a quiver I'. Then the following conditions are equivalent:

(1) (H, f) is indecomposable.
(2) Idem(H, f) ={0,1}.

Remark. The indecomposability of Hilbert representations of a quiver is
an isomorphic invariant, but it is not a unitary invariant. Hence we cannot
replace the set Idem(H, f) of idempotents of endomorphisms by the subset
of idempotents of endomorphisms which consists of projections to show the
indecomposability.

Definition.([EW4, page 569]) A Hilbert representation (H, f) of a quiver
I is said to be transitive if End(H, f) = CI.

If a Hilbert representation (H, f) of I" is transitive, then (H, f) is inde-
composable. In fact, since End(H, f) = CI, any idempotent endomorphism
T is 0 or I. In purely algebraic setting, a representation of a quiver is said
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to be a brick if its endomorphism ring is a division ring (see for example, cf.
[As]).

Let H be a Hilbert space and F1,...E, be n subspaces in H. Then
it is said that S = (H; E4,..., E,) is a system of n subspaces in H. Let
T = (K; Fi,...,F,) be another system of n subspaces in a Hilbert space K.
Then we say that ¢ : § — T is a homomorphism if ¢ : H — K is a bounded
linear operator satisfying that ¢(E;) C F; for ¢ = 1,...,n. We say that
¢ : S = T is an isomorphism if ¢ : H — K is an invertible (i.e., bounded
bijective) linear operator satisfying that ¢(E;) = F; for i = 1,...,n. It is
said that systems S and T are isomorphic if there is an isomorphism ¢ :
S — T. This means that the relative positions of n subspaces (E1, ..., Ey)
in H and (F},...,F,) in K are same under disregarding angles. Let us
denote by Hom(S,T) the set of homomorphisms of S to 7 and End(S) :=
Hom(S,S) the set of endomorphisms on S. Let S = (H; Ey,...,E,) and
S’ = (H';E, -, E]) be systems of n subspaces in Hilbert spaces H and
H’. Then their direct sum S @ &' is defined by

SeS'  =HOH;E,®E,...,E, ®E)).

A system S = (H; Ey, ..., E,) of n subspaces is said to be decomposable if
the system § is isomorphic to a direct sum of two non-zero systems. A non-
zero system S = (H; E1,--- , E,) of n subspaces is called indecomposable if
it is not decomposable.

We recall that strongly irreducible operators A play an extremely impor-
tant role to construct indecomposable systems of four subspaces. Moreover
the commutant {A}’ corresponds to the endomorphism ring.

For any single operator A € B(K) on a Hilbert space K, let Sy =
(H; E1, B9, E3, E4) be the associated operator system such that H = K ® K
and

Eit=K®0,E2=00K,E3 ={(z,Az);z € K}, Ey = {(y,y);y € K}.
It follows that
End(Sa) = {T ®T € B(H);T € B(K), AT = TA}

is isomorphic to the commutant {A}’. The associated system Sy of four
subspaces is indecomposable if and only if A is strongly irreducible. More-
over for any operators A, B € B(K) on a Hilbert space K, the associated
systems S4 and Sp are isomorphic if and only if A and B are similar.

Following [H] and [HRR], we [EW1, page 272] introduced a transitive
system of subspaces. A system S = (H; E, Ea, --- , Ey,) of n subspaces in a
Hilbert space is called transitive if the endomorphism algebra is trivial, that
is,

End(S)={A e B(H); A(E;) C E; forany i =1,2,--- ,n} =CI.
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3. Unbounded strongly irreducible operators

In this section we shall introduce unbounded strongly irreducible opera-
tors and transitive operators. These operators are related to a certain class
of indecomposable Hilbert representations of quivers on infinite-dimensional
Hilbert spaces and four- subspace systems. Let H be a Hilbert space and A
a bounded linear operator on H. We denote the image of A by Im(A) and
the graph of A by G(A), that is, G(A) = {(z, Az);x € H}. For elements
x,y € H, we define a rank-one operator 6, , by 0, ,(z) = (z|y)z for z € H.

P.R. Halmos [H] initiated the study of transitive lattices. A lattice £ of
subspaces of a Hilbert space H containing 0 and H is called a transitive
lattice if

{Ae B(H); AM C M for any M € L} =CI.

K.J. Harrison, H. Radjavi and P. Rosenthal ([HRR]) constructed a transitive
subspace lattice using an unbounded weighted shift as follows: Let K =
(%(Z) be a Hilbert space with an orthogonal basis {e;};7° . Let

wp,=1 (n<0), w,=-exp((—1)"n!) (n>0).

Let T be the bilateral weighted shift defined by Te,, = wpen41, with the
domain

“+o0o +oo
D(T)={x =Y aie;; Y |ogwi|* <+oo}.
1=—00 1=—00
Put By = K®0,Ey =00 K,E3 = G(T),Ey = {(z,z);z € K}. Their
transitive lattice is £ = {0,H = K ® K, E1, Eo, E3, E4}. See also the book
of Radjavi-Rosenthal [RR, 4.7. page 78].

We [EW{] considered a finite subspace lattice as a Hilbert representation
of a quiver I' as follows. Let £ = {0, My, Mo, ..., M,, H} be a finite lattice.
Consider an n subspace quiver R,, = (V, E, s,r), thatis, V.= {1,2,... ,n,n+
1} and E = {ag; k = 1,...,n} with s(ax) = k and r(ag) = n + 1 for
k =1,...,n. Then there exists a Hilbert representation (K, f) of R,, such
that K, = My, Kp41 = H and f,, : M — H is an inclusion for k =
1,...,n. The lattice L is transitive if and only if the corresponding Hilbert
representation (K, f) is transitive. By this fact we may use the terminology
“transitive” in the Hilbert representation case.

We recall some facts on strongly irreducible operators for convenience.

Lemma 3.1. Let A be a bounded operator on a Hilbert space H. Then the
following three conditions are equivalent:

(0) For any closed subspaces M and N of H with H = M + N and
MNN=0,if AM C M and AN C N, then M =0 or N =0.

(1) If T € B(H) is an idempotent in the commutant {A} of A, then
T'=0o0rT=1.

(2) If T € B(H) is an idempotent such that (T © T)(G(A)) C G(A) ,
thenT =0 orT = 1.
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Proof. Let M and N be closed subspaces of H such that H = M + N and
M N N = 0. Then there exists an idempotent E such that M = F(H) and
N = (I — E)H. Hence (0) is equivalent to (1).

We shall show that (1) is equivalent to (2). Assume that (1) holds. Let
T € B(H) be an idempotent such that (T'® T)(G(A)) C G(A). Then for
any = € H, there exists y € H such that (T ® T')((z, Az)) = (y, Ay). Hence
Tx =y and TAx = Ay. Thus TA = AT. Hence T € {A}. Since T is an
idempotent, 7' = 0 or T' = I. Hence (2) holds. Next we assume that (2)
holds. Take an idempotent T' € {A} N B(H). Then

TeTl)((x,Ax)) = (Tz,TAz) = (Tz, ATx).
Thus (T@®T)(G(A)) € G(A). Wehave T'=0or T = I. Hence (1) holds. O

Definition. A bounded operator A € B(H) is said to be strongly irre-
ducible if A satisfies one of the three conditions of the above lemma.

Inspired by the example of K.J. Harrison, H. Radjavi and P. Rosenthal,
we introduce unbounded strongly irreducible operators and unbounded tran-
sitive operators.

Definition. Let A be an unbounded closed operator on a Hilbert space
H with the domain D(A) C H. We define the (bounded) commutant { A}’ of
Aby {A}Y ={S € B(H);S(D(A)) C D(A) and, for any x € D(A), ASz =
SAzx}. See for example [Ak, §17].

Let A and B be unbounded closed operators on H. We say that A and
B are similar if there exists a bounded invertible operator T' € B(H) such
that T(D(A)) = D(B) and B = TAT~!. We say that A is an orthog-
onal direct sum A; @ Ay of operators A; and Ay, on H = Hy & Hy if
D(A) = {(z1,m2);21 € D(A1),z2 € D(A2)} and Az = (Ajz1, Agxe) for
x = (x1,m2) € D(A).

Lemma 3.2. Let A be an unbounded closed operator on a Hilbert space
H with the domain D(A) C H. Then the following three conditions are
equivalent:

(0) If A is similar to Ay & Ay on H = Hy & Hy for some unbounded
closed operators A1 and Ao, then Hy =0 or Hy = 0.

(1) For any idempotent E € B(H), if E is in the commutant { A}, then
E=0o0orFE=1.

(2) For any idempotent E € B(H), if (E ® E)(G(A)) C G(A), then
E=0o0orFE=1.

Proof. We shall show that (0)=(1). Let £ € {A} be an idempotent.
We have E(D(A)) C D(A) and AEx = EAx for x € D(A). There exists
an invertible operator T' € B(H) such that T(E(H)) = H; and T((I —
E)H) = Hy and H = Hy ® Hy. We define Ajx = TAT 2 = TAET 2 for
x € T(E(D(A))) C Hy. Since E(D(A)) C D(A), A; is well defined. And A;
is an operator from T(E(D(A))) to H; by AEx = EAx for x € D(A). We
define Agx = TAT 'o = TA(I — E)T 'z for x € T((I — E)(D(A))) C Ha.
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Since E(D(A)) € D(A), Ay is well defined. And Aj is an operator from
T((I — E)(D(A))) to Hy by AEx = EAx for x € D(A). Hence we have

TAT ' =TAET '+ TA(I - E)YT™' = A ® As.
Hence A = Ay @ Ay on Hy & Hy. Since (0) holds, we have Hy = 0 or Hy = 0.
Hence TE(H)=0o0r T(I — E)(H) =0. So E =0 or E = I. Thus we have
(0)=(1).

Conversely we shall show that (1)=(0). Assume that A = A; & Az on
H, & H, for some unbounded closed operators Ay and A,. There exists an
invertible operator T € B(H) such that TAT 'z = (A; @ Ag)z for x €
D(A; @ Ag) = T(D(A)). There exists an idempotent E € B(H) such that
T-'H, = E(H) and T"'Hy = (I — E)H. We shall show that E(D(A)) C
D(A) and AE = FA on D(A). We have T-'D(A;) C T-'H; = EH and
T ID(A)) CT 'Hy= (I - E)H. D(A) =T"'D(A; @ Ay) =T 'D(A;) +
T_lD(AQ).

B(D(4)) = B(T™'D(A1) + T~ D(43)) = T~ D(A1)
C T 'D(A)+T7'D(Ay) = D(A).

For z € D(A), we can write * = x1 + 29 with 21 € T"'D(A;) and x5 €
T~1D(A3). We have
AEz = (T (A1 @ A2)T)E(z1 + x2)
= (T YA ® ATz, =T ATy
and
EAx = E(T"Y(A; @ A9)T) (21 + x2)
= B(T ' ATz + T ' AyTxs)
=T "ATa;.

Thus we have AE = FA on D(A). Therefore £ = 0 or E = I. Hence
H1 =0or HQ =0.

Next, we shall show that (1)=(2). Let F € B(H) be an idempotent such
that (E® E)(G(A)) C G(A). Then for any = € D(A), there exists y € D(A)
such that (E & E)(z, Az) = (y, Ay). Hence

(Ez, EAx) = (y, Ay) = (Ez, AEx).
Thus E € {A}'. By (1), then E=0or E = I.
Conversely, we shall show that (2)=(1). Let E € {A}’ be an idempotent.
Then E(D(A)) C D(A), EAxz = AEz for x € D(A), and
(E® E)((z,Ax)) = (Ez, EAx) = (Ez, AEx).
Hence (E ¢ E)(G(A)) C G(A),and E=0or E=1. O
Definition. An unbounded closed operator A is said to be strongly

irreducible if A satisfies one of the three conditions of the above lemma.
The next lemma is proved similarly.
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Lemma 3.3. Let A be an unbounded closed operator on a Hilbert space
H with the domain D(A) C H. Then the following two conditions are
equivalent:

(1) ForanyT € B(H), if T is in the commutant { A}, then T is a scalar
operator.
(2) For any T € B(H), if (T & T)(G(A)) C G(A), then T is a scalar

operator.

Definition. An unbounded closed operator A is said to be transitive if
A satisfies one of the two conditions of the above lemma.

If an unbounded closed operator A is transitive, then A is strongly irre-
ducible. Any bounded strongly irreducible operator A on a Hilbert space H
with dim H > 2 is not transitive, because A € {A}'.

By the same argument we have the following lemma.

Lemma 3.4. Let A be an unbounded closed operator on a Hilbert space K
with the domain D(A). Let Sx = (H; E1, Es, E3, E4) be a four-subspace
system such that H=K & K, Ey = K®0, E; =08 K, E5 = {(z, Az);z €
D(A)}, and Ey = {(z,x);x € K}. Then Sa is transitive if and only if A is
transitive.

We shall construct transitive operators using transitive Hilbert represen-
tations and quotients of operators.

Definition. Let A and B be bounded linear operators on a Hilbert
space H. We say that B(A\Ker(A)L)*l is a quotient of B by A. We denote
(Alker( A)L)_l briefly by A~!. If we have an additional condition such that
ker A C ker B, then the quotient is the mapping Az + Bz,z € H. In [Kau],
Kaufman showed the following useful result about quotient operators.

Theorem 3.5. [Kau, Theorem 1, page 531] Let T be an unbounded operator
on a Hilbert space H. Then T is a closed operator if and only if T =
B(A|Ker(A)J_)_1 for some A, B € B(H) such that Im(A*) 4+ Im(B*) is closed
in H

We show that there is a non-zero surjective algebra homomorphism of the
endomorphism algebra of a Hilbert representation of the Kronecker quiver to
the endomorphism algebra of a four-subspace system. The Kronecker quiver
@ is a quiver with two vertices {1,2} and two paralleled arrows {«, 5}:

Q:122
s
A Hilbert representation (H, f) of the Kronecker quiver is given by two
Hilbert spaces Hy, Hy and two bounded operators fo, fg : H1 — Ha.

Proposition 3.6. Let K # 0 be a Hilbert space and A,B € B(K). Let
(H, f) be a Hilbert representation of the Kronecker quiver Q such that Hy =
Hy, = K, f, = A and fﬁ =B. Let § = (E();El,EQ,Eg,E4) be a four-
subspace system such that By = Ko K, F1 = K& 0, Fr, = 06 K,
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E3 = {(Az,Bzx);z € K}, and Ey = {(z,x);x € K}. Assume that E3 is
closed. Then there exists a non-zero surjective algebra homomorphism ® of
End(H, f) to End(S). Moreover, if ker ANker B = 0, then ® is one to one.

Proof. Let (S,T) be in End(H, f). We have AS = TA and BS = TB.
Since
(T®T)(Az,Bx) = (TAx,TBx) = (ASz, BSx),

we have (T @& T)(E3) C Es. Clearly (T & T)(E;) C E; for i = 1,2,4. Thus
we have that T'® T is in End(S). We define a mapping ® of End(H, f) to
End(S) by ®(S,T) =T & T. The map & is an algebra homomorphism. We
shall show that the map & is onto.

Take C' € End(S). Then there exists T € B(K) such that C = (T'& T).
We have that

(TeT){(Az,Bx);x € K} C {(Ay, By);y € K}.

Hence, for any = € K, there exists y € K such that TAz = Ay and T Bz =
By. We put Ly = ker ANker B and L1 = L(J]- N K. By a decomposition of
y such that y = yo + y1,%0 € Lo, y1 € L1, we have TAx = Ay, TBx = By.
We define an operator S by Sz = y;. We shall show that .S is well defined.
If there exists another y' = y; + vy} € K for y; € Lo and y; € L; such
that TAx = Ay’ = Ay} and TBx = By’ = By;. We have Ay; = Ay| and
By; = By). Hence y; —y € (ker Anker B) = Ly. We also have y; —y} € L;.
Hence y1 —y} € LoN L1 = (0). So y1 = y;. Thus S is well defined.

Clearly S is linear. We shall show that S is a closed operator. Assume
that x, — = and Sz, = yn,1 — Y1, for x,, 2 € K and y,1,y1 € L1. Since
Sy, = yn,1, we have that T'Azx,, = Ay, 1 — Ay, and T'Bx,, = By,1 — By.
If n - oo, then TAx = Ay; and TBx = By;. It follows that Sz = y;.
Therefore S is closed. Hence S is bounded.

Since TAx = Ay = ASx and TBx = By; = BSx forx € K and y; € L,
we have that TA = AS and TB = BS. Hence (S,T) € End(H,g). And
®(S,T) = T®T. Hence ® is surjective. We shall show that if ker A N
ker B = 0, then ® is one-to-one. Suppose that ®(S,T7) =T & T = 0 for
(S,T) € End(H, f). Then T = 0. We have that for any x € K,

ASx =TAzxz =0, BSx =TBxz =0.

Hence Sx € ker ANker B = 0. Since Sx = 0 for any z € K, we have § = 0.
Thus (S,T) = 0. Therefore ® is one-to-one. 0

Remark. Let K be a Hilbert space and A, B € B(K). We consider
Z = (é) K - Ko K and Zz = (Azx, Bz) for z € K.

We have
Z*=(A*,B*) : K& K — K and Z* (5) = A*z + B*y for 2,y € K.
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Since Im(Z) is closed if and only if Im(Z*) is closed, we have that {(Axz, Bx);z €
K} is closed if and only if Im(A*) + Im(B*) is closed.

Remark. The map ® is not one-one in general. We shall give an example
® which is not one to one. Let K be a Hilbert space and A, B be operators

on K ® K such that A = B = é 8 . Let S1,T1,.52,T> be operators on
00 0 0 00 00
K @ K such that 7 = L 0]7T1: [O 1] and S = [0 1]7]’2: [O 1]

Then (S1,T1) and (S2,T3) are in End(H, f). And (S1,T1) and (S2,T5) give
the same endomorphism 77 @ T7 of S. Thus @ is not one to one.

Under a certain condition we have a correspondence between transitive
Hilbert representations of the Kronecker quiver and transitive operators.

Proposition 3.7. Let K be a Hilbert space and A,B € B(K). Assume
that ker A = 0 and ImA* + ImB* is closed in K. Let (H,f) be a Hilbert
representation of the Kronecker quiver Q such that Hi = Hy =K, fo, = A
and fz = B. Then BA™! is transitive if and only if (H, f) is transitive.

Proof. At first we note that the graph G(BA™!) = {(Ax, Bx);z € K},
because ker(A4) = 0. Since ImA* 4+ ImB* is closed, the operator BA™! is
closed by the remark after Proposition 3.6 (or Theorem 3.5). Let Sps-1 =
(Eo; Ev, Ey, E3, Ey) be a four-subspace system such that By = K@ K, Fy =
K®0, By = 00 K, B3 = {(Ar,Bx);z € K} = G(BA™'), and E; =
{(z,z);x € K}. Since ker(A) = 0, there exists an algebra isomomorphism
® of End(H, f) onto End(Sga-1) by Proposition 3.6. Therefore (H, f) is
transitive if and only if Sg4-1 is transitive. Moreover Sg4-1 is transitive if

and only if BA™! is transitive by Lemma 3.4. This implies the conclusion.
O

In the following we shall give some examples of transitive operators.

Proposition 3.8. Let QQ be the Kronecker quiver. Let S be the unilateral
shift on H = (2(N) with a canonical basis {e1,ea,...}. For a bounded weight
vector A = (A1, A, ...) € £°(N) we associate with a diagonal operator Dy =
diag(A1, Ae, ...), so that SD) is a weighted shift operator. We assume that
N # N\jif i # j. Take a vector W = (Wy), € (*(N) such that w, #
0 for any n € N. Put A = SDy + 0., and B = S. Define a Hilbert
representation (H*, f*) of the Kronecker quiver Q by H{\ = HQ)‘ =H, f)=
A and fé‘ = B. Then ker A = 0 and the quotient BA™' is a transitive
operator. Furthermore, the operator BA™! is densely defined if and only if

Ak # 0 for each k € N and (%)k ¢ (*(N).
k

Proof. By [EW4, Theorem 3.7.], the Hilbert representation (H*, f*) is
transitive.
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For z = (z,)n € (?(N), assume that

Ax = (SDy + 0, w)x = (Z TpWpy A1T1, AaZo, -+ ) = 0.
n=1

If A\x # 0 for any k € N, then x; = 0 for any k& € N. If there exists a k € N
such that Ay = 0, then \; # 0 for ¢ # k. Hence x; = 0 for i # k. Since
oo Tpwy = zpwy = 0, 2 = 0 by wy, # 0. Thus we have that z = 0 and
ker A = 0. We note that ImB* = ImS* = H and ImA* + ImB* = H is
closed in H. Hence BA™! is a closed operator.

Next we shall consider the condition such that BA™! is densely defined.
We note that D(BA~1) = ImA = (ker A*)*. We shall show that ker A* # 0
if and only if (1) Ay = 0 for some k € N or (2) \; # 0 for any k¥ € N and

(%)k € /?(N). We see that A* = D5S* + g, and © = (2,), is in ker A*

if and only if

()\71332))\721:37 o ) = (_xlwilv _55111)72, e )
Assume that (1) Ay = 0 for some k € N. We put x = (z;) by
o 0 (i#k+1),
Ul (i=k41).

We have that = € ker A* and ker A* # 0.

Assume that (2) Ay # 0 for any £ € N and (%)k € (*(N). Take an
k

element z = (1, —<§)1> ,— <I;\)2>, -+). We have = € ker A* and ker A* # 0.
1 2
Conversely, assume that there exists x(# 0) € ker A*. Assume that z; # 0.
Since o
()\11.27 )\21.37 o ) - (_$1m7 _Qfl'll)iQ, e )7

and wg # 0 for any k € N, we have \; # 0 for any k£ € N.

Since <—$k+1) € (*(N) and (—$k+1> = (wk) , we have that
X k I k )\k k

(?) € (?(N). Hence we have (2). Assume that z; = 0. Since z # 0,
k/k
there exists k € N such that xxy; # 0. Hence A\ = 0. Therefore we have

(1). O

Remark. The operator BA~! is densely defined for \,, = 1/n,w, = 1/n
(n € N). The operator BA™! is not densely defined for (\,),, defined by

An = {1/n (n#1).

The operator BA~! is not densely defined for \,, = 1—(1/2"),w,, = 1/n (n €
N)

We refer to [Sh] for weighted shifts.
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Proposition 3.9. Let Q be the Kronecker quiver and H = (*(Z). Let
a = (a(n))nez,b = (b(n))nez € €>°(Z) such that a(n) # 0,b(n) # 0 for any
n € Z. We put wy, = M,mEZ. We put

a(m)

Wy W e Wk
Mi(m,n) := — mtl mtk 1f0rm,n€Z,k:21.

WnWn+1 * - Wn4-k—1

Assume that for any m # n,(Mg(m,n)); is an unbounded sequence. Let
D, be a diagonal operator with a = (a(n)), as diagonal coefficients and D,
be a diagonal operator with b = (b(n)), as diagonal coefficients. Let U be
the bilateral forward shift. Put A = D, and B = UDy. Define a Hilbert
representation (H, f) of the Kronecker quiver Q by Hi = Hy = H, f, = A
and fz = B. Then the Hilbert representation (H, f) is transitive. We also
have ker A = 0 and ker B = 0. And the operator BA™! is a densely defined
transitive operator.

Proof. Asin [EW4, Theorem 3.8.], we can similarly prove that the Hilbert
representation (H, f) is transitive. By Proposition 3.7, the operator BA™!
is transitive. U

Example. [EW4, Theorem 3.8.] Fix a positive constant A > 1. Consider
two sequences a = (a(n))nez and b = (b(n))nez by

{ex” (n>1,n1is even ), b(n) — {e/\n (n>1,nis odd ),

a(n) = 1 (otherwise), 1 (otherwise).

These two sequences a and b satisfy the condition of the proposition above.

The concept of transitive operators are useful because certain transitive
Hilbert representations of a quiver are given in terms of transitive operators
in the next section.

4. Extended Dynkin diagrams and transitive Hilbert
representations

We consider transitive Hilbert representations of quivers whose underlying
undirected graph is an extended Dynkin diagra A, (n > 0). In the Ay case,
the oriented cyclic quiver is also called Jordan quiver. Trivially we have
no infinite-dimensional transitive Hilbert representations of quivers whose
underlying undirected graph is an extended Dynkin diagram Ay.

Next we consider transitive Hilbert representations of quivers whose un-
derlying undirected graph is an extended Dynkin diagram A, (n > 1). The
quiver (), with n/g/Q whose underlying undirected graph is an extended
Dynkin diagram A, is called the oriented cyclic quiver if the quiver has
cyclic orientation. The set V' of the vertices of C, is {1,2,--- ,n} and the
set E of the arrows of C,, is {«a1, a9, - ,a,} such that s(a;) = i,7(a;) =
i+1(i=1,---n—1)and s(a,) = n, r(ay) = 1. For the A; case, the quivers
are the oriented cyclic quiver Cy and the Kronecker quiver Q.
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Theorem 4.1. Let I be a_quiver whose underlying undirected graph is an
extended Dynkin diagram A,, n > 1. IfT" is not an oriented cyclic quiver,

then there exists an infinite-dimensional transitive Hilbert representation of
T.

Proof. Assume that I' is not an oriented cyclic quiver. Then there exist
vertices i and j and arrows « and [ such that s(a) = 4, r(a) = i + 1
and s(8) = j+ 1, r(B) = j ( mod n). There exists a transitive Hilbert
representation (H, f) of the Kronecker quiver @ given by A, B € B(H)
in [EW4, Theorem 3.8.]. We construct a Hilbert representation (H’, f’) of
I' = (V,E) such that H;, = H (k € V), f, = Iy for v # a,8 (v € E),
fo = A, and f; = B. Then the representation (H', f') of I' = (V, E) is
transitive. ]

By Theorem 4.1, the remaining case of the problem for A, (n>1)is an
oriented cyclic quiver. It is enough to consider the case that H; # 0 for any
1 by the following lemma.

Lemma 4.2. Let (H, f) be a Hilbert representation of the oriented cyclic
quiver C,. Assume that there exists a vertex k such that Hp = 0 (1 <
k <n). Let (K,g) be a Hilbert representation of the oriented cyclic quiver
Cn—l such thatKZ- = Hi (1 S ) S k—l), Ki = Hz‘_;,_l (]{7 S ) § n—l),
Ga; = fa, 1 <i<k—=2), 90, , =0, go; = fasy, (k<1< n—1). Then
End(H, f) is isomorphic to End(K,g).

Proof. Take T' = (T;); € End(H, f) for i = 1,---,n. Since Hy = 0,
B(Hy) = 0. Hence we can associate T' = (T;); € End(H, f) with T =
(T!); € End(K,g), by putting T; =T/ for 1 <i <k —1 and T;1; = T/ for
k <1 < n—1. By this correspondence we have that End(H, f) is isomorphic
to End(K, g). O

For the case that H; = C or 0, we introduce a concept of an equivalence
relation for vertices in terms of a Hilbert representation.

Definition. Let (H, f) be a Hilbert representation of the oriented cyclic
quiver C,, = (V, E) such that H; = C or 0. We give an equivalence relation
for the set of vertices {i € V; H; # 0} as follows: Take vertices 7, j such that
H; # 0 and H; # 0. We say that vertices ¢ and j are (H, f)-connected if
()i=jor(2)i<jand fo, , #0, -, fa1 # 0, fa, #00r (3) i > j and
fa,'_1 7é 07 T 7f0c]'+1 7& 07 fozj 7é 0.

Lemma 4.3. Let (H, f) be a Hilbert representation of the oriented cyclic
quiver Cy, such that H; = C or 0 (i=1,2,--- ,n). Then (H, f) is transitive
if and only if there exists only one (H, f)-connected component.

Proof. Assume that (H, f) is transitive. Assume that there exist two
(H, f)-connected components Dy and Dj in the set {i € V; H; # 0}. Let
A € C, Ay € C such that Ay # Ao. We define T' = (T});ey by T; = M1
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for i € Dy and T; = Ay for j € Dy and T}, = 0 for k (otherwise). Then
T = (T})iev is in End(H, f). This is a contradiction.

Conversely, assume that there exists only one (H, f)-connected compo-
nent. Then there exist decomposition of V' by D3 and D4 such that

DsUDy =V, DsnNDy =0, D3 ={i; H; # 0}, D4:{j;Hj=0}

and Ds is the (H, f)-connected component.
Let T = (T;)iev € End(H, f). ThenT; = T) for i,j € D3. In fact, if i < j,
then fai 7& vaOéi+1 # 07 T )fajfl 7é 0 and foasz = E-‘rlf@éw e 7f04j,17"j—1 ==

Tjfa,_,- Since fo, # 0 for i € D3, T; = T;y1 = --- = Tj. Hence T; = Tj for
alli,j € D3. And T; =T; =0 for 4, j € Dy. Thus End(H, f) is isomorphic
to C. Hence (H, f) is transitive. O

The next lemma guarantees that we may assume that H; C H; if dim H; <
dim Hj .

Lemma 4.4. Let (H;)}_, be a family of nonzero Hilbert spaces. Then there
exists a family (K (i), of subspaces in a Hilbert space V', such that for
any i (1 <i < n), there exists a number m(i) (1 < m(i) < n) such that H;

is isomorphic to @T(?K(j).

Proof. We arrange a family of Hilbert spaces (H;); in increasing order of
dimension and as a result, we have (Hy)), (Hy2)), -+, (Hy)) in increas-
ing order of dimension. Construct an ambient space V and its increasing
subspaces H! = H; such that (Hé(l)) C (Hyg) C -+ C (Hé(n)) c V. Put
Ky = Hyy), Ko = Hyo 0 (Hyy )5 Ky = Hyo 0 (Hy, )+ Hence
there exists a number m(i) such that H) = K(1) ® K(2) ® --- & K(m(i)).
Thus we have that H; is isomorphic to K(1) @ K(2)® --- & K(m(i)). O

Firstly we investigate transitive Hilbert representations of oriented cyclic
quivers Cy and C5. Let (H, f) be a Hilbert representation of Cs. In what
follows we denote fq,, fa, by A1, As for short.

Lemma 4.5. Let (H, f) be a transitive Hilbert representation of Co. Assume
that H; :HQZK#O, A1 e C andAQ e C. IfA1 750 OT’AQ#O, then
K =C.

Proof. Let T' € B(K). Then (T,T) € End(H, f). In fact, A;T = TA; and
AT =TAy. If dimK > 1, B(K) # CI. Since (H, f) is transitive, this is a
contradiction. Thus dim K = 1. O

Lemma 4.6. Let (H, f) be a Hilbert representation of Cy. Then (H, f) is
transitive if and only if one of the following conditions holds.

(1) H1 = C,HQ = O,Al =0 and A2 = O,

(2) H1 = O,Hg = C,Al =0 and A2 :()7

(3) HH =C and Hy =C and (A1 #0 or Ay #0).
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Proof. If (1), (2) or (3) holds, then (H, f) is clearly transitive. Conversely,
assume that (H, f) is transitive. Assume that dim H; # 0 and dim Hs = 0.
If dim H; > 1, then there exists a non-scalar operator in B(Hp). Since
B(Hy,) = End(H, f), this contradicts the transitivity of (H, f). Hence
dim Hy = 1. This is the case (1).

Similarly we have the case (2).

Therefore it is sufficient to assume that dim H; # 0 and dim Hs # 0. By
Lemma 4.4 we may assume that dim H; < dim Hs and H; is a subspace of
Hjy. We define T' = (T3, Ts) = (A2A1, A1 Ag). Then T € End(H, f). In fact,

AT = A1(AxAy) = (A1A2) Ay = To Ay
and
T1Ag = (AgA1) Ay = Ag(A1Ag) = AsTh.
By the assumption of transitivity for (H, f),
(Th, T») € {(ulny, plm,)|p € Cl.
Hence
Ty = A2 Ay = plp,, T = A1Ag = ply, for some p € C.

We denote by E, € B(Hi, Hs) the embedding map of H; into H and
E, € B(Ha, Hy) the projection map of Hy onto Hy. We define

T = (M, i) = (4B, B A).
Then T € End(H, f). In fact,
AT = Ay (AyEy) = (A1 A9) By = ply, By
— uEy = Eyuly, = (E1Ay)A; = TEY A,

and
T Ay = (AyEy) Ay = Ay(Ey Ay) = AT

Thus 71} € End(H, f). Since (H, f) is transitive, there exists a constant
,u{l} € C such that AxEy = p{l}IH1 and F1 Ay = u{l}IHQ. We define

T2 = (1 1) = (ByA1, AL B).
Then T2} € End(H, f). In fact,
AT = A (BoAy) = (A1 Eo) Ay = TSP 44
and
T3 Ay = (ByAy) Ay = Bo(plp,) = pEs
= g, By = Ay(ALEs) = AT\

Since (H, f) is transitive, there exists a constant {2} € C such that
E2A1 = M{Q}IHl and A1E2 = M{Q}IHZ.
We define
702 = (7 T = (ByBy, By By).
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Then TV € End(H, f). In fact,
AlTI{LQ} = A1 (B2By) = (M Bo) By = B I, By = 12 By
= BB = By (WP 1y,) = B (BaAy) = T3 A,
and
T Ay = (ByBr) Ay = Bo(u W y,) = ptVEy
= 1By = (VI ) By = As(E1Bp) = ATy
Since (H, f) is transitive, there exists a constant u{12} € C such that
BBy = pt 2y, BBy = ptM g,

For xz(# 0) € Hj, we have x = EyEjx = M{L?}[ngg = M{I’Q}x. Hence
pib2t = 1. If Hy # Ho, then Hi- N Hy # 0. Take z(# 0) € H{- N Hy. Then
E1Fox = p82 [z, Hence 0 = 2. This is a contradiction. Thus H; = H
and F1 = Ey. Since A1Ey = ,u{Q}IHQ, Al = M{Q}IHl- And we also have
Ei1Ay = Ay = ,u{l}IHl. Since (H, f) is transitive, A7 # 0 or Ay # 0. By
Lemma 4.5, we have Hy = Hy = C. Thus (H, f) is in the case (3). O

Let (H, f) be a Hilbert representation of the oriented cyclic quiver Cs5. In
the below we denote fq,, fas, fas by A1, A2, Ag for short.

Lemma 4.7. Let (H, f) be a transitive Hilbert representation of Cs. Assume
that H; = C (i =1,2,3) . Then A;A; # 0 for some i # j.

Proof. Assume that A; = A; = 0 for some 7 # j. We may and do assume
1= 1,j =2. Let T = (Tl,TQ,Tg) such that T1 = Tg,TQ 7& Tl, Tl 75 0 and
Ty # 0. Then T = (T1,1%,T3) is in End(H, f). Since (H, f) is transitive,
Ty, =15 =1T3 € C. This is a contradiction. Hence this lemma holds. O

Lemma 4.8. Let (H, f) be a Hilbert representation of C3. Then (H, f) is
transitive if and only if one of the following holds.

(1) Hi =C and H; =0 (i = 2,3).

(2) Hy=C and H; =0 (i = 1,3).

(3) Hy=C and H; =0 (i =1,2).

(4) Hi =C (i: 1,2),H3:O and A1 750

(5) Hi =C (i:2,3),H1 =0 and A2 750

(6) Hz‘ =C (i: 1,3),H2 =0 and Ag 750

(7) H; =C (i=1,2,3) and A;A; # 0 for some i # j (i,j =1,2,3).

Proof. If a Hilbert representations (H, f) satisfies (1), (2), -+ or (7), then
the Hilbert representation is obviously transitive. Conversely assume that
(H, f) is transitive. At first we assume that all Hilbert spaces H; # 0
(1 << 3) and by Lemma 4.4 a totally ordered set by inclusion order and
Hy C H; (i =2,3). We define

Ty = A3AAy, Ty = A1A3Ay, T3 = AyA1 Az, T = (T1, T3, T3).
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We define a mapping F; € B(H;, H;y1) by

B the inclusion map of H; into Hj41, H; C Hiqq,
"] the projection map of H; onto H; 1, H;+1 C H;.

For a subset S of {1,2,3}, we define B; € B(H;, H;11) by
B; = 4 lfz £ 5
E; ifieS.
We also define
T{ = B3ByBy, Ty = B1B3By, Ty = BoB B3, T° = (T, Ty, T3)).

We note that T° = (TP, Ty, T5) is obtained by replacing each word A;
inT = (Tl,TQ,Tg) with E; for all i € S. We regard T = (Tl,T27T3> as
T = (12,72, 79). Since

ATy = A1(A3AAr) = Th Ay,
ATy = Ax(A1A3Az) = T3 A,

ATy = A3(AxA1Ag) = T As,

we have that T is in End(H, f). Since (H, f) is transitive, there exists a
constant y € C such that

A3As Ay = ply,, A1A3As = ply,, AsA1Az = ply,.
For S = {1}, we define 7% = T{1} = (Tl{l},Tz{l},Tél}) by
T = AsAEy, TV = BiA3Ay, TV = AyBy As.
It follows that
AT = A1 A3 By = ply, By = pEy
= Evplg, = E1(A3A2) A = TQ{I}Ala
AT = 431 (A3As) = T A,,
AsTiY = A3 Ao By Ag = T As.

Thus 71 is in End(H, f). Since (H, f) is transitive, there exists a constant
p1} € C such that

AsAoBy = pB Ty, 1Az Ay = Wy, AgBr Ay = W Iy,
For S = {2}, we define 75 = T2 = (1® 7 1) vy

T/ = A3 Ay, TS = A AsE,, TS = EyA, As.
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It follows that
AT = A1 A3 By Ay = TP Ay
A2Tg{2} = As A1 A3Ey = ply, By = ks
= Eopuly, = F3A1A3Ay = Tg{z}z‘b,
AT = AgEyA Ay = TP A3,

Thus 712} is in End(H, f). Since (H, f) is transitive, there exists a constant
2 e C such that

A3ByAy = P Iy, Ay ASEy = iy, (ByAr)As = P Ty
For S = {3}, we define T° = T{3} = (Tl{g},TQ{S},T?;{3}) by
T = BsAy Ay, TS = A EsAy, TS = 4,4, Es.
It follows that
AT = A1 B3 Ay Ay = T Ay
AT = Ap A B3 Ay = TS Ay, AsTY = A3 Ay A By = ply, Bs = uEs
= Esplp, = B3AyAyAg = T As.

Thus T3} is in End(H, f). Since (H, f) is transitive, there exists a constant
13} € C such that

E3AsAy = p3 Ty, AyEsAy = 3y, AgA By = 3 Iy,
For S = {1,2}, we have
{12} — (Tfl,z},T§1,2}7T§1,2}> = (A3EyEy, E1A3Es, Bs E1 A3).
It follows that
AT = M A3 BBy = P T, By = 2y
= BBy, = BiA3 B Ay = T2{1’2}A17
AT = Ay B A By = iUy, By = 1V By
= EopM Iy, = B2 By AgAy = T A,
AT = AsBp B Ay = TV A,

Thus 712} is in End(H, f). Since (H, f) is transitive, there exists a constant
ph2h e C such that

A3E2E1 = ,u{l’2}IH1, E1A3E2 = /L{l’2}IH27 E2E1A3 = N{LQ}IHS'
For S = {1,3}, we have
T{1’3} _ (T1{173}’ T2{173}7T3{173}> — (E3A2E17E1E3A2, A2E1E3).
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It follows that
AT = A By AsEy = P By = iR,
= BBy, = BiEs Ay Ay = Tz>{1’3}A1,
A2T2{1’3} = AsE1E3As = Tg{l’g}AQ,
AT = A3A B By = pV Iy, By = 11 By
= Eg/,{l}IH3 — E3AyE As = Tl{l’3}A3_

Thus 713} is in End(H, f). Since (H, f) is transitive, there exists a constant
p13} e C such that

BsAsEy = 13y EyEsAy = p U3 g, AsE By = M{l’g}IHg-
For S = {2,3}, we have
723 = (723 23 723 = (BB, A, A\ B3 By, By Ay ).
It follows that
AT = A BBy Ay = TP A4,
AT = Ay A BBy = B I, By = 3 By
= EQ#{S}IHZ — EyA F3Ay = T§2’3}A2,
AT = Ay A By = 1P Ty, By = 2 By
= E3ﬂ{2}IH3 — F3EyAAs = T1{2’3}A3,

Thus T{*3} is in End(H, f). Since (H, f) is transitive, there exists a constant
23} e C such that

B3y Ay = 3y, A\EsEy = p ¥ 1y, ByA1EBs = 31y,
For S = {1,2, 3}, we have
23y = (o238 plt23h pb23h _ (pap, By By EsEy, ByE Es).
It follows that
A1T1{1’2’3} = A\ E3Er By = 1* 3y By = 13 By
= B3y, = Bi BBy Ay = T2{1’2’3}A1,
A2T2{1’2’3} = AsE B3 By = 3 [y, By = B,
= BV Iy, = By By By Ay = T A,
A3T3{1’2’3} = A3Ey By By = 8 Iy By = 2 By
= By gy, = ByEy B Ay = T 4,
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Thus 7123} is in End(H, f). Since (H, f) is transitive, there exists a
constant 1123} € C such that

EsBo By = pt 23y ByB3By = p 23 1y, By By By = 23 1y,

Take x (75 0) S Hl. Since Hl C Hi (1 < 7 < 3), E3E2E1:E = T =
u{1’2’3}IH1:z. Hence u{m’?’} = 1. By Lemma 4.4, we can represent H; by
H=K &KyP-- @Km(z) (1 <1< 3) We shall show that H; = Hy = Hs.

Now, m(1) = 1 and assume that m(2) # 1. We compare m(3) with m(2).
Assume that m(3) < m(2). Take z (# 0) € Ky,2) C Hz. Then Faz = 0.
This contradicts that EyE3FEy = Ipg,. Assume that m(3) > m(2). Take
z (#0) € Kyp2) C Hz. Then Epx = x and Ezx = 0. This contradicts that
By E3Es = Iy,

Hence m(1) = m(2) and Hy = H,. Next assume that Hs # H; (hence
m(3) # 1). Take z (# 0) € K3y C H3. Then Ezz = 0. This contradicts
that EyEy1E3 = Ip,. Hence we have that Hy = Hy = H3 := M. Therefore,

By = By = By = Iy and T1"*% = I}y € C Since
E3EyAy = p*3 1y, ByEsAy = pt" 3 1y, ByE Az = 2 g,

we have
Ay = p®3 0y, Ay = 3y, Ay = pH 1,

If dim M > 1, there is a non-scalar operator B € B(M). Since A1, Ag, A3
are scalar operators, (B, B, B) € End(H, f). This contradicts that (H, f)
is transitive. Hence we have dim M = 1. By Lemma 4.7,4;A; # 0 for some
i# 7 (i,7=1,2,3). Thus (H, f) is in the case (7).

Next we consider other cases. Assume that there exists H; = 0 for some
i. Since (H, f) is transitive, the number |{i; H; # 0}| is 1 or 2. If |{i; H; #
0} = 1 = |{k}|, then dim H; = 1 because (H, f) is transitive. Hence
these are in the cases (1), (2), (3). If |{i; H; # 0} =2 = {k,0}|,(k < ¢
mod 3), then we consider the reduction Cy of the quiver Cs as it is shown in
Lemma 4.2. Let (K, g) be the reduced Hilbert representation of Cy from the
Hilbert representation (H, f) of Cy by Lemma 4.2. We have End(H, f) =
End(K,g). Hence End(K,g) is transitive. By the same argument in the
case (7), we have dim Hy, = dim Hy = 1. Since (H, f) is transitive, Ay # 0.
Thus these are in the cases (4), (5), (6). All these cases are summarized as
the existence of unique (H, f)-connected component by Lemma 4.3. ([l

Let (H, f) be a Hilbert representation of Cj. In the below we denote
foars fags s fan, DY A1, Ag, -+, Ay, for short.

Lemma 4.9. Let (H, f) be a Hilbert representation of the oriented cyclic
quiver Cy,. Then (H, ) is transitive if and only if H; = C or 0 and there
exists only one (H, f)-connected component in {i € V; H; # 0}.

Proof. Assume that H; = C or 0 and there exists only one (H, f)-connected
component in {i € V; H; # 0}. Then (H, f) is transitive by Lemma 4.3.
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Conversely assume that (H, f) is transitive. At first we consider the case
that H; # 0 for any i. By lemma 4.4, we may and do assume that the family
(H;) of Hilbert spaces are totally ordered under the inclusion order. We also
assume that dim H is the smallest dimension among {dim H;;i = 1,--- ,n}.

We define T' = (T1,Ts, - ,T,,) by

Ty =A,- - A3AATh = Q1A - - AyAsAy, - [T, = Ay -+ - A3 A AL Ay,

Then T' = (T, T»,- -+ ,T},) is clearly in End(H, f).
We denote by E; the following operator F; : H; — H;t1:

B the inclusion map from H; into H;11, H; C Hiy1,
"] the projection map fromH; onto H;4+1, H;y1 C H;.

For S C {1,2,--- ,n}, we define B; € B(H;, Hi11), which depends on S,

by
B, — A;, 1fz¢S
E; ifiesS

We also define 7° € B(H;) and T° € B(H, @ ... ® Hy,) by
Tf = Bi_1Bi—5++BsB1B,By_1 -+ Bi1B;  for 1 <i<nm,

1
and 7% = (TP, Ty, -, T7). That is, T° = (T, Ty ,--- ,T) is obtained by
replacing each word A; in T'= (Th,T5,--- ,T,) with E; for alli € S.
For example, T} = (TI{I},TZ{I},- . ,T,;{l}) is given by

Tl{l} = ApAp_1---AsEy,
Tg{l} = FE1ApAp_1-- A3Ay,
T3{1} = AgE1ApAp_q - - AyAs,

T = A, 1Ay o AsFL Ay,

We regard T as 7°.

In the following we shall show that 7% = (1%, Ty, --- ,T2?) is in End(H, f)
for any S C {1,2,--- ,n}. We shall prove it by the induction on the number
k = |S|. First consider the case k = |S| = 0, that is, S = 0. Then
T =T = (11, Ty, - - ,T,) is clearly in End(H, f).

Next, we assume that T is in End(H, f) for |S| = k. Since (H, f) is
transitive, there exists a constant x° € C such that Tis = Iy, for any
i=1,...,n. Take S such that |S| = k + 1. We shall show that T is in
End(H, f). It is enough to show that, for any i = 1,...,n, we have AiTZ-S =
TZ-ilAi. First we consider the case that i = 1. We need to show the validity
of the relation 41Ty = Ty Ay, that is, A1B,---BaBy = BB, --- BaAj.
Assume that 1 is in S. Then B} = E; and Tis\{l} is in End(H, f) by the
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assumption of the induction. Since A1B,B,_1--- By and B, B,,_1--- By Ay
have k changed letters, we have

T2S\{1} = A1BpBp—1-- By = NS\{I}IH2
and

TN Z BB,y ByAy = SNy
Therefore, we have

A1Tls — AB,---B; = MS\{l}ij1 = S\ R,

and
Ty Ay = B1ByBy1 -~ BoAy = Byp® Wiy, = S\ Wy

Thus A, TP = T5 Ay
Assume that 1 is not in S. Then By = A;. Hence

ATY = A\B,,--- By = A\ By, --- By Ay

and
Ty Ay = BB, -+ ByA; = A1B,, - - - ByAy.

Thus A1 TP = T5 A;.
For other cases that ¢ = 2,3,...n, we also have that AiTiS = T[ilAi.
Hence, by induction, we have that 7*° is in End(H, f) for any S C {1,2,---n}.
In particular, put S = {1,2,--- ,n}. Since

T{1727A.. n} _ (T1{1,2,-.. ,n}’ T2{1,2,-~~ ,n}, o Tél’Q’“' 7n})

is in End(H, f) and (H, f) is transitive, there exits a constant u{12"} ¢ C
such that

Ti{1,2,...,n} =E; 1 E\EyEp 1 Eip1E; = M{l’z"“’”}IHi~

Take x (# 0) € Hy. Since H; C Hj forany 1 < j<nand E,---E =
M{I’Q"”’"}IHI, we have that z = p{b2 "z, Hence p{l2 o =1,

We shall show that Hy = Hy = --- = H,. On the contrary we as-
sume that Hp # H; for some k # ¢. Using Lemma 4.4, we can rep-
resent H; as H; = K1 @ K2 @ -+ @ K,y and m(1) = 1. Then there
exists the smallest i such that m(i) > 1. We compare m(j) and m(7).
If there exists m(j) such that m(j) < m(:) (i < j < n). Take x (#
0) € Ky C Hi. Then Ej 1Ej o+ Ejp1Eyr = 0. This contradicts that
Ei---E1E,E, 1 BBy = Iy,

If there exists no m(j) such that m(j) < m(i) (i < j < n). Take x (#
0) € Ky € Hy. Then B, 1By _o--- By Eyr = z, and E,x = 0. This also
contradicts that

Ei 1 -E\E,Ey - BB = Iy,
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Therefore we have that Hy = Hy = --- = H,, =: M. Moreover we also have
that F1 = Fy = --- = E,, = Ij;. In particular, Ti{l’Q"“’"} = I for any i
and

Ai=FE;_1- - F\EpEp_1-- - Ej1Aj = 1}{1,2,...,71}\1@ _ H{1’2""’"}\kIHk-

We shall show that dim M = 1. On the contrary, assume that dim M > 2.
Then there exists a non-scalar operator B € B(M). Since each Ay is a
scalar operator for any k, (B,...,B) is in End(H, f). This contradicts to
that (H, f) is transitive. Therefore dim M = 1. Hence we may assume
that H; = C for any 4. Since (H, f) is transitive, there exists only one
(H, f)-connected component on V' = {1,2,--- ,n} by Lemma 4.3.

Next we consider the case that there exists H; = 0 for some i. If there
exists only one vertex i such that H; # 0, then dim H; = 1 because (H, f)
is transitive. Therefore we may assume that there exists more than two
vertices i such that H; # 0.

We consider the reduction of the quiver C,, to the set of vertices ¢ with
H; # 0 to get another quiver Cp, (2 <m <mn).

Let (K, g) be the reduced Hilbert representation of Cy, from the Hilbert
representation (H, f) of C), by Lemma 4.2. Then End(H, f) is isomorphic
to End(K,g). Since (H, f) is transitive, (K, g) is also transitive.

Since we can adapt the above consideration to (K, g), we have that H; = C
for all ¢ such that H; # 0. Therefore in (H, f), we may and do have that
H; =Cor0for 1 <i<mn. Since (H, f) is transitive, by Lemma 4.3, there
exists only one (H, f)-connected component {i € V; H; # 0}. O

Theorem 4.10. Let I' be a quiver whose underlying undirected graph is
an extended Dynkin diagram A,, n > 0. Then there exists an infinite-
dimensional transitive Hilbert representation of I' if and only if I' is not an
oriented cyclic quiver.

Proof. Assume that I" is not an oriented cyclic quiver. By Theorem 4.1,
there exists an infinite-dimensional transitive Hilbert representation of I'.
Conversely, assume that I' is an oriented cyclic quiver. Then transitive
Hilbert representations of I' are finite-dimensional by Lemma 4.9. Hence

there exist no infinite-dimensional transitive Hilbert representations of I
O

Gabriel’s theorem states that a finite, connected quiver has only finitely
many indecomposable representations if and only if the underlying undi-
rected graph is one of Dynkin diagrams A, D, FEgs, E7, Es. In [EW3], we
constructed some examples of indecomposable, infinite-dimensional repre-
sentations of quivers with the underlying undirected graphs being extended
Dynkin diagrams D,, (n > 4),E6, F7 and Es. We used the quivers whose
vertices are represented by a family of subspaces and whose arrows are
represented by natural inclusion maps. Replacing the unilateral shift S
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with a transitive operator in the construction of examples of indecompos-
able, infinite-dimensional representations of quivers in [EW3], we shall give
some examples of infinite-dimensional transitive representations of quivers
with the underlying undirected graphs being extended Dynkin diagrams
D, (n > 4), Eﬁ, F7 and Es. Our construction of examples is considered as
a modification of an unbounded operator used by Harrison, Radjavi and
Rosenthal [HRR] to provide a transitive lattice.

Lemma 4.11. Let I' = (V, E, s,r) be the following quiver with the underly-
ing undirected graph an extended Dynkin diagram D, forn >4 :

2 4

6 o

§ y
o—»0—>0—> ""—»>0-—>0<«+—o0
1 a1 5 6 n nt+l @3 3

Then there exists an infinite-dimensional, transitive Hilbert representation
(H,f) of T.

Proof. Let K = (?(N) and S a transitive operator on K with the domain
D(S). We define a Hilbert representation (H, f) := ((Hy)vev, (fa)ack) of
I' as follows: Hy = K®0, Hy=0® K, H3 = {(z,5z) € K® K;z € D(S)},
Hy={(z,2) e K& K;ze K},and Hy=Hg=---=H,11 = K® K.

Let fo, : Hyay,) — Hp,) be the inclusion map for any a € E for
k =1,2,3,4, and fg = id for other arrows § € E. Take T = (Ty)pecy €
End(H, f). Since T € End(H, f) and any arrow is represented by the
inclusion map, we have T; = T; (i = 5,--- ,n + 1),Tsz = T,z for any
v € {1,2,4}, any x € H,. In particular, TsH,, C H, (v € {1,2,4}). Hence
Ts is written as 75 = A ® A as in [EW3, Lemma 6.1, Example 3]. Moreover
Hj is also invariant under T5. Since S is transitive, we have that A is a
scalar by Lemma 3.3. Thus 7' is a scalar, that is, End(H, f) = C. Therefore
(H, f) is transitive. O

Lemma 4.12. Let I'= (V, E, s, 1) be the following quiver with the underly-
ing undirected graph an extended Dynkin diagram FEg :
o 2//

}

0 17

}

O —> 0 —> 0 «— 0 <+ O

2 1 0 12

Then there exists an infinite-dimensional, transitive Hilbert representation

(H, f) of .

Proof. Let (H, f) = ((Hy)vev, (fa)ack) be the following Hilbert represen-
tation of I': Let K = ¢2(N) and S a transitive operator on K with the domain
D(S). Define H=K®K® K, HH =00 K ® K, Hy = 0® {(y,Sy) €
K% ye DS)}, H = K®@K®0, Hy = {(z,z) € K* z € K} ®0,
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Hy, =K®0& K, and Hyr = {(2,0,2) € K3 2 € K}. For any ar-
row o € E, let fo 1 Hyo) — Hpq) be the canonical inclusion map. Take
T = (Ty)vev € End(H, f). Since any arrow is represented by the inclusion
map, we have Tox = T,z for any v € {1,1/,2/,1”,2"} and any z € H,. In
particular, TyH, C H,. Hence Ty is written as Tp = A ® A ® A. Moreover
Hy = {(0,z,Sz) € K3; x € D(S)} is also invariant under Tp. Hence for
any = € D(S5), there exists y € D(S) such that (0, Az, ASz) = (0,y, Sy) as
in [EW3, Example 4]. Since S is transitive, we have that A is a scalar by
Lemma 3.3. Thus T is a scalar, that is, End(H, f) = C. Therefore (H, f) is
transitive. U

Lemma 4.13. Let I' = (V, E, s,r) be the following quiver with the underly-
ing undirected graph an extended Dynkin diagram FE7 :

o 17

— —> —» 0 +— 0 +— 0 +— O

] ] ]
3 2 1 0 1/ o 3/
Then there exists an infinite-dimensional, transitive Hilbert representation

(H,f) of T.

Proof. Let K = /*(N) and S a transitive operator on K with the domain
D(S). Define a Hilbert representation (H, f) := ((Hy)vev, (fa)acr) of T
as follows: Let H = K K K® K, HH = K00 K& K, Hy =
Ko0d {(z,z);x € K}, HH=K®09000, H =00 K& K ® K,
Hy =00 K& {(y,Sy) € K%yeD(S)}, Hy =08 K ®060, and H» =
{(z,y,z,y) € K* x,y € K}. For any arrow o € E, let f, : Hyoy = Hyo)
be the canonical inclusion map. Take T' = (Ty)yev € End(H, f). Since
any arrow is represented by the inclusion map, we have Tox = T,z for any
ve{l,2,3,1,2,3,1"} and any x € H,. In particular, ToH, C H,. Hence
Ty is written as Tp = A® A® A® A. Moreover Hy N H,y = {(0,0,2,Sx) €
K% z € D(S)} is also invariant under Ty. Hence for any x € D(S), there
exists y € D(S) such that (0,0, Az, ASz) = (0,0,y, Sy) as in [EW3, Lemma
6.2]. Since S is transitive , we have that A is a scalar by Lemma 3.3. Thus
T is a scalar, that is, End(H, f) = C. Therefore (H, f) is transitive. O

Lemma 4.14. Let I' = (V, E, s, 1) be the following quiver with the underly-
ing undirected graph an extended Dynkin diagram Eg :

o 1//

—> 0 —>0-—>0—>0—> 0 < 0 < O

o o o o
5 4 3 2 1 0 A
Then there exists an infinite-dimensional, transitive Hilbert representation

(H,f) of T.

Proof. Let K = ¢?(N) and S a transitive operator on K with the domain
D(S). We define a Hilbert representation (H, f) := ((Hy)vev, (fa)ackr) of
I as follows: Let Hop=K 9 Ko K® K& K ® K, Hy = {(z,7) € K?; x €
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K}oKoKoK®K, Hy = 0000 KO KOK®K, H3 = 000000 KO KD K,
Hy=000000K®{(y,Sy) € K%, y€ D(S)}, Hs=000000 K ®0®0,
H/ =KoKa{(z,y,z,y) €K', 2,ye K}, Hy =Ko K®0305 060,
and H» = {(y,2,2,0,y,2) € K% z,y,2 € K}. For any arrow a € E, let
Jo : Hya) = Hy(a) be the canonical inclusion map.

Take T = (T})vey € End(H, f). Since any arrow is represented by the
inclusion map, we have Tox = T,z for any v € V and any x € H,. In par-
ticular, ToH, C H,. Since Ty preserves subspaces H,,v =1,1,17,2,2'3,5,
Ty is written as

To=ABADADAD A A.

Finally, Hy=00030® K @ {(y,Sy) € K?; y € K} is invariant under
To. Then for any z € K and y € D(S), there exist 2/ € K and 3y € D(S)
such that

T()(0,0,0,l',y, Sy) = (070707Ax7Ay7ASy) = (07070733/7y/75y/)-

Hence ASy = Sy’ = SAy as in [EW3, Lemma 6.3]. Since S is transitive, we
have that A is a scalar by Lemma 3.3.

Thus T = (Ty)vev is a scalar, that is, End(H, f) = C. Therefore, (H, f)
is transitive. (]

Next, we shall investigate the endomorphism algebras of Hilbert represen-
tations. At first we recall some facts about reflection functors from [EW3].

Reflection functors are crucially used in the proof of the classification of
finite-dimensional, indecomposable representations of tame quivers (cf.[As],
[BGP], [DIR],[DoF], [GaR], [GeP]). As a matter of fact, many indecom-
posable representations of tame quivers can be reconstructed by iterating
reflection functors on simple indecomposable representations. We can not
expect such a best position in infinite-dimensional Hilbert representations.
But reflection functors are still valuable to show that some property of repre-
sentations of quivers on infinite-dimensional Hilbert spaces does not depend
on the choice of orientations and does depend on the fact underlying undi-
rected graphs are (extended) Dynkin diagrams or not.

Let I' = (V, E,s,r) be a finite quiver. We say that a vertex v € V is a
sink if v # s(a) for any o € E. Put EY = {a € E; r(a) = v}. We denote
by E the set of all formally reversed new arrows @ for o € E. In this way if
o« x — y is an arrow, then @ : z < y.

Definition.[EW3] Let I' = (V, E, s, r) be a finite quiver. For asink v € V,
we construct a new quiver o; (T') = (0.f (V), 0 (E), s,r) as follows: All the
arrows of I' having v as range are reversed and all the other arrows remain
unchanged. That is,
of(V)=V ol (E)=(E\E")UEY,

v v

where EV = {a; o € E°}.
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Definition. [EW3| (reflection functor ®;.) Let I' = (V, E,s,r) be a

finite quiver. For a sink v € V, we define a reflection functor at v
@ : HRep(T') — HRep(o,} ()
between the categories of Hilbert representations of I' and o/ (T') as follows:
For a Hilbert representation (H, f) of I', we define a Hilbert representation
(K.g) = ®} (H, f) of o (I). Let
hy : @QEE“Hs(a) — H,
be a bounded linear operator defined by
ho((Ta)acrr) = D fal@a).
acEv
We shall define
K, :=Kerh, = {(xa)erE” S @aeEvHs(a); Z foz(xoc) = 0}
acbEv

We also consider the canonical inclusion map i, : K, = ®acpvH, s(a)- For
u € V with u # v, put K, = H,,.

For 5 € EY, let

Pp : @aepr Hya) = Hy(g)
be the canonical projection. Then we shall define
95 Ky = Ko = K5y = Hyp) by g5="Dsoin

that is, g5((za)acsr) = .

For 8 ¢ EV, let gg = fg. For a homomorphism T : (H, f) — (H', f'), we
define a homomorphism

S = (Su)uev =, (T) : (K,9) = ) (H, f) = (K',g') = 2, (H', ')

If w = v, a bounded operator S, : K, — K], is given by

Sv((xa>oc€E”) = (Ts(a) (wa))oceE“-
It is easily seen that S, is well-defined and we have the following commu-
tative diagram:

0 — K, L> @QGEUHS(OC) L H,

Svl (Ts(a))aeE”l Tvl

., h
0 — K'y — @®acprH'y0) —— H',

For other v € V with u # v, put
S.=T,: K,=H,— K, =H,.
We also consider a dual of the above construction. We say that a vertex
v €V is a source if v# r(a) for any a € E. Put E, = {a € E; s(a) = v}.
Definition.[EW3] Let I' = (V, E,s,r) be a finite quiver. For a source

v € V, we shall construct a new quiver o, (I') = (0, (V),0, (E),s,r) as
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follows: All the arrows of I' having v as source are reversed and all the other
arrows remain unchanged. That is,

o, V)=V o,(E)=(F\E,)UE,,

v
where E, = {a; a € E,}.
Definition.[EW3] (reflection functor ®;.) Let I' = (V, E, s, ) be a finite
quiver. For a source v € V', we shall define a reflection functor at v

o, : HRep(I') — HRep(o, (T"))
between the categories of Hilbert representations of I' and o (") as follows:
For a Hilbert representation (H, f) of I', we define a Hilbert representation
(K., g) = ®; (H, ) of o, (T). Let
]tLv cHy — @aeEuHr(a)
be a bounded linear operator defined by
ho(2) = (fa(2))acp, for @ € H,.
We shall define
Ky := (hnilv)L = Ker B: C @aeEqur(a)v

where ﬁf, : @aek, Hyq) — Hy is given ﬁ;‘j((aza)agEv) => fi(xq). ForueV
with u # v, put K, = Hy,.

Let Qv : ®ack, Hr(a) = Ky be the canonical projection. For 8 € E,, let

Jg  Hygy = Sack, Hy(a)
be the canonical inclusion. We shall define
95 Ko@) = Hr(g) = K, 5= Ko by g5=Quvojs.

For 8 ¢ E,, let gg = f3.

For a homomorphism T : (H, f) — (H', '), we shall define a homomor-
phism

S = (Swuev = @, (T) : (K,g9) =@, (H, f) = (K',g') = ©, (H', f").

For w = v, a bounded operator S, : K, — K], is given by

SU((xa)aEEU) = Q;((Tr(a) (xa))aEEu )7

where Q) : @aeEvH;«(a) — K be the canonical projection.
We have the following commutative diagram:

For other v € V with u # v, put
S.=T,:K,=H,— K, =H,.
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We shall describe a relation between two (covariant) functors ®; and ;.
We shall define another (contravariant) functor ®* at the begining.

Let I' = (V, E, s,r) be a finite quiver. We shall define the opposite quiver
T = (V,E,s,r) by reversing all the arrows, more precisely, V = V and
E={a; a € E}

Definition.[EW3] Let I' = (V, E, s,7) be a finite quiver and T = (V, E, s, 7)
its opposite quiver. We shall define a contravariant functor

®* : HRep(T') — HRep(T)

between the categories of Hilbert representations of I' and T’ as follows:
For a Hilbert representation (H, f) of I', we define a Hilbert representation
(K,g) = ®*(H, f) of T by K, = H, for u € V and g5z = f; for a € E. For
a homomorphism 7T : (H, f) — (H', '), we define a homomorphism

S = (Su)uev = X(T) : (K',¢') = @"(H', [') = (K,g) = ®"(H, [),
by bounded operators S, : K, = H, — K, = H, given by S, = T
Proposition 4.15. [EW3, Proposition 4.2.] Let I' = (V, E,s,r) be a finite
quiver. If v € V is a source of T, then v is a sink of T, o, (I') = o (T) and
the following assertions hold:

(1) For a Hilbert representation (H, f) of T',

&, (H, f) = (0 (6" (H, 1)),

(2) For a homomorphism T : (H, ) — (H', f'),

o, (T) = 2*() (2*(T)))-

v

Proposition 4.16. [EW3, Proposition 4.3.] Let I' = (V, E,s,r) be a finite
quiver. If v € V is a sink of T, then v is a source of T, o,/ (I') = o, (T) and
the following assertions hold:

(1) For a Hilbert representation (H, f) of T,

O (H, f) = (2, (®°(H, f))).
(2) For a homomorphism T : (H, f) — (H', f'),
O (T) = 2" (2, (27(T))).

We shall investigate endomorphisms of Hilbert representations and its
images of reflection functors. In the case of infinite-dimensional Hilbert
representations, we need to assume a certain closedness condition at a sink
or a source.

Definition.[EW3]| Let I = (V, E, s, 7) be a finite quiver and v € V a sink.
We recall that EV = {«; r(«a) = v}. It is said that a Hilbert representation
(H, f) of T is closed at v if ) cpo Imfo C H, is a closed subspace. It is
said that (H, f) is full at v if ) po Imfy = H,.

Definition.([EW3]) Let I' = (V, E,s,r) be a finite quiver and v € V
a source. We recall that F, = {a|s(a) = v}. It is said that a Hilbert
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representation (H, f) of T is co-closed at v if ) .p Imf5 C H, is a closed
subspace. It is said that (H, f) is co-full at v if . p Imfy = H,.

We note that the properties of fullness, co-fullness, closedness and co-
closedness are preserved under isomorphism of Hilbert representations.

Lemma 4.17. Let T be a finite quiver and v € T' a sink. Let (H, f)
and (K,g) be isomorphic Hilbert representations of T'. If (H,f) is full
(resp.closed) at v, then (K, g) is full (resp.closed) at v.

Proof. Assume that (H, f) is full at v. Since (H, f) and (K, g) are isomor-
phic, there exists a family S = (S, )y of bounded invertible operators such
that Sy (a)fa = gaSs(a) for a € E. Take an element y € K. By the invert-
ibility of S, there exists an element = € H, such that S,(xz) = y. Since
(H, f) is full at v, there exist x,) € Hy(q) such that Y po fa(Tsa)) = .
We put ys(a) = Ss(a) (xs(a))- Then

Z ga(ys(a)) = Z gaSs(a)(xs(a)) = Z Svfoa(xs(a))

acEv aceEv acEv
=Sy Z fa(xs(a)) = Su(z) =y
ackv

Hence (K, g) is full at v.
We can similarly prove that closedness property is preserved under iso-
morphism of Hilbert representations. U

Lemma 4.18. Let ' be a finite quiver and v € V a source. Let (H, f)
and (K, g) be isomorphic Hilbert representations of I'. If (H, f) is co-full
(resp.co-closed) at v, then (K, g) is co-full (resp.co-closed) at v.

Proof. Since (H, f) and (K, g) are isomorphic, ®*(H, f) and ®*(K, g) are
isomorphic. Hence the case of co-fullness is reduced to the case of full-
ness. We can similarly prove that co-closedness property is preserved under
isomorphism of Hilbert representations. O

The following theorem is well known for finite-dimensional Hilbert spaces
([As, page289, 5.7. Corollary] and [DIR, pagel6, Proposition 2.1]).

Theorem 4.19. Let I' = (V, E,s,r) be a finite quiver and v € V a sink.
If a Hilbert representation (H,f) of T' is full at v, then the map ®} :
End(H, f) — End(®}f(H, f)) is an isomorphism as C-algebras.

Proof. We put (K,g) := ®;(H, f). The mapping ®;" gives a mapping of
End(H, f) to End(K,g). At first we shall show that ®} is one to one.
Assume that S := ®(T) = 0 for T € End(H, f). We have S, = T, =
0 (u # v). From this we shall show that 7T;, = 0. Since T' € End(H, f),
Ty fo = faTs) for a € EY = {a € E;r(a) = v}. Hence, for 1o € Hyy,

T( Z fa(za)) = Z faTs(a)(CBa) =0.

ackEv acRY
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Since (H, f) is full at v, T, = 0. Thus ® is one to one. Next we shall show
that @; is onto. Take S = (S, )ucy € End(K,g). We put T, = S,, for u # v.
We shall define an operator T, : H, — H, such that T,(}_ cpo fa(za)) =
Yoacry fa(Ts)(wa)) for xo € Hyq ) We need to show that T, is well
defined. If there exists an element (z))acpr € Gacpy Hy (a) Such that

> falza) =Y falal
aclRv acERY
then we must show that

Z JoT. s(a) xoz Z JaT. s(a)

ackv ackv

Since D cpo fa(Ta) = ZaeEv fa(zl), we have
hv((xa - aGE“ Z fa To _xa =
ack?

Hence (24 — ), )acpy € ker h, = K,. Since S, : K, — K, we have S,((z4
xl )acpr) € kerh, = K,. Hence hy(Sy,((zo — 2))acpv)) = 0. Since S €
End(K, g), we have Sy()9a = gaSy for a € EY,

Ss)9a((zs — ) serv)) = Ss(a)(Ta — 24,) = Tya)(Ta — 24,),
and
9aSy((xp — 3)perv)) = PuSy((xs — 23)perv))-
Hence

Ty(a)(Ta — zh) = PoSy((wg — .QZ'IB)IQEE'U)).

Z faTs(a)(xoa Z faPa S )BEEU)

aceEv acEv

Then

and
Z faPaSy((z5 — x/ﬁ)ﬂeE”)) = hv(Sv((xﬁ - m%)BEE“)) =0.
acbv

This gives

Z JoT. s(a) xoc Z JaT. sa)

ackv ackv
Thus T, is well defined.
Next we shall show that T, fo(z) = faTsq)(7) for x € Hy,). Take and
fix z € Hy(q) for a € EY. For 8 € EY, we put

e (B=a)

P70 (B#a).
Since Ty (3 ge o fﬂ(%’)) =3 gem fﬂ(T )(z5)), we have
Ty folz ngT = faTs(a)(@)-
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Next we shall show that T, : H, — H, is bounded. We decompose
Dacrr Hy() = ker hy ® (ker hy) " = K, @ K.

By the Banach invertibility theorem, hv’(Kv)l : (Ky)* — H, is a bounded
invertible operator. We shall show that there exists a positive constant c
such that || Tyx [|£ ¢ || = || for any x € H,. Take z = h((z4)acEr) =
Y ozemy fa(ra). We get

I 7o) 1=l Y Tolfal@a)) 1= D falTyy(@a) |

ackv TeERY
= (faTs(a))ace?)(xa)ace) SN ((faTs@)acer) [l (za)acer) |

=Il (faTs@))ace) Il (hlgg) T Iz IS el 2 |

where ((foTs(a))ackr) is a row matrix and

¢ =] ((faTsa))aer) Il (Rl )7H -
Hence T, is bounded. Next we shall show that ®}(7) = S. Since S €
End(K, g), Ss(a)Paiv = Ssa)9a = 9gaSv = PaivSy for a € EV. For ((Ta)ackr) €
K, we have

So((za)) = (PaivSu((Ta)))acEr = (Ss(a)Paiv(($a)))a€E” = (Ss(a) (Ta))-
By the definition of ®}(T), (®}(T))y = Sy = Ty, for u # v. For u = v and
((CEa)aGE”) € Ky,
(@5 (T)o((za)ace) = (Ty(a)(€a))ackr)

= ((Ss(a)(xa))aeE”) = Su((Ta)acEr)-
Thus (& (T)), = S,. Hence ®}(T) = S. Hence &, is onto. We conclude
that End(H, f) = End(®} (H, f)) as C-algebras. O

Corollary 4.20. Let I' = (V, E,s,r) be a finite quiver and v € V a sink.
Assume that a Hilbert representation (H, f) of T is full at v. If (H,f) is
transitive (resp. indecomposable), then ®F(H, f) is transitive(resp. inde-
composable).

The following theorem is well known for finite-dimensional Hilbert spaces
([As, page289, 5.7. Corollary] and [DIR, pagel6, Proposition 2.1]).

Theorem 4.21. LetT' = (V, E,s,r) be a finite quiver andv € V a source. If
a Hilbert representation (H, f) of I is co-full at v. Then ®; : End(H, ) —
End(®, (H, f)) is an isomorphism as C-algebras.

Proof. We put (K, g) := ®,(H, f). The mapping ®; gives a mapping of
End(H, f) to End(K,g). At first we shall show that ®, is one to one.
Assume that S := &, (T) = 0 for T € End(H, f). We shall show that

T, = 0. Since T' € End(H, f), foTy = Ty(a)fa for a € Ey. For (zo)ack, €
DacE, Hr(a)a we have

T3 Fil@a)) = 3 FilT ey (@) = 3 £} oy (wa)) = 0.
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Since (H, f) is co-full at v, T,y = 0. Hence T,, = 0. Thus ®, is one to one.

Next we shall show that . is onto. We put 7;, = .5, for u # v. And we shall
define an operator W, : H, — H, such that for (za)acr, € ®ack, Hy(a),

Wv( Z f;(l‘a)) = Z f;;(T:(a)(x

aelE, ackE,

We need to show that W, is well defined. Assume that there exists an
element (27,)acE, € ®ack, Hy(q) such that

We have

Hence (24 — 2))acE, € kerhAv* = K,. Since S} : K, — K,, we have
S*((Ta — 2l)acs,) € K,. Hence hy (S*((2a — #))ack,)) = 0. Since S €
End(K, g), we have Syg5 = g55,(3) and 925’: = S:(B)gg. Hence
9550 (Ta = 20)ack,) = Pr(g)ivSy (Ta — 23 )ack,)

and

S:(ﬁ)gé((iﬂa — %q)acE,) = S:(/B) (zg — 1‘%)-
Thus we have

Pr(ﬁ)ivsz((xa - mla)aeEv) = S:([i’) (xﬁ - 5”,,8)

and

> F5P)in(Si(wa — #)acs,) = > [5S5s) (x5 — o).
Since
> f5P)in(Si(Ta — 2h)aer,)) = I (S5((xs — ) per,)) =0,

we have

N FiSip s —al) = D 5T (ws — ) =

Hence

D 5T @) = D J5T s (wh)
Thus W, is well defined. Put T,, = W,;. Next we shall show that f,T, =
To(a)fo and T f = ;Ts*(a). Take and fix x € H,(,). For 8 € E,, we put

_ )z (6 = a)a
xg =
0 (8+a)
By the definition of W, =T},

Wol D falwa)) = D falTia)(@a))

ackv acRv
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Hence
Ty falz Z [3T7 5y (@) = faT7 () (@) for @ € Hy ().

Thus we proved it.

Next we shall show that W, = Ty : H, — H, is bounded. By the
Banach invertibility theorem, ﬁ;\( Ko)L (K,)* — H, is a bounded invertible
operator. We shall show that there exists a positive constant ¢ such that
| T¥z ||£ ¢ || « || for any € H,. For z € H,, there exists (za)acr, € (Ky)*
such that 2 = b ((%a)acp,) = > ack, falTa). We have

I T5@) =1 Y Tr(fata)) 1= D faTi)(@a)) |

aeEv OLEEU
=l (faTr())acE, (Ta)acr, IS (AT a))aes, Il (Za)ack, |
=I (2T ay)aer, Il (Rl )~ Il 2 1S e 2 |,

where ( aT:( ))ae E, is a row matrix and

¢ = (faTriw)aer, Il Bile) ™" 1 -
Hence T, is bounded. Next we shall show that &, (T) = S. By the definition
of & (T), (P, (T))y = Sy, =T, for u (# v) € V. Since S € End(K, g), we
have
Sy Qv]ﬁ = vgﬁ = gﬁS Qv]ﬁsr(ﬁ
for g € E,. For (23)secE, € Ky, we have
Su((z8)per,) = Se@u( Y js(zp) = D SvQuis(zp)

BEE, BEE,
= > Quis(Srps) = Qu Y Js(Sr(p)zs)
BEE, BEE,

= Qu((Sr(a)2p)pek,)-

Thus

Sv((z)per,) = Qu((Sr(s)T8)seE, )-
For v =v and ((2q)acE,) € Ky,

(@, (T)o((xa)ack,) = Qu((Tr()Ta)acr,)) = Qu((Sr@)Ta)ack,))
= Su((za)acE, )

Thus (¢, (T"))y, = Sy. Hence &, (T') = S and

&, End(H, f) — End(®, (H, f))
is onto. Thus we have End(H, f) = End(®, (H, f)) as C-algebras. O

Corollary 4.22. Let T'= (V,E,s,r) be a finite quiver and v € V' a source.
Assume that a Hilbert representation (H, f) of T is co-full at v. If (H, f) is
transitive, then ® (H, f) is transitive. Similarly, if (H, f) is indecomposible,
then @ 1(H, f) is indecomposible.
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Next, we shall show the existence of infinite-dimensional transitive Hilbert
representations of quivers with any orientation whose underlying undirected
graphs are extended Dynkin diagrams D,, (n > 4), Fg, E7 and Eg.

We recall some definitions and lemmas in [EW3].

Definition.[EW3] Let I be a quiver whose underlying undirected graph
is Dynkin diagram A,,. We count the arrows from the left as ay : s(ax) —
r(ag), (k=1,...,n—1). Let (H, f) be a Hilbert representation of I". We
denote f,, briefly by fi. For example,

f1 f2 I3 fa fs
Of, —* OHy — Off; $— O, —> Of; <— OF

It is said that (H, f) is positive-unitary diagonal if there exist m € N and
orthogonal decompositions (admitting zero components) of Hilbert spaces

H, = @?llHk,i (k =1,.. .,n)
and decompositions of operators
fe = Ol frit 1 Hyay)i = OitiHray)s  (k=1,...,n)

such that each fy; 1 Hy(ay),i = Hp(ay),i 18 written as fr; = 0 or fr; = Agiug,
for some positive scalar Ay ; and onto unitary uk; € B(Hg(ay),is Hr(ay)i)-

It is easily seen that if (H, f) is positive-unitary diagonal, then ®*(H, f)
is also positive-unitary diagonal.

Lemma 4.23. [EW3, Lemma 6.4.] Let I" be a quiver whose underlying undi-
rected graph is Dynkin diagram A, and (H, f) be a Hilbert representation of
I'. Suppose that (H, f) is positive-unitary diagonal. Then (H, f) is closed
at any sink of I' and co-closed at any source of T'.

Proposition 4.24. [EW3, Proposition 6.5.] Let T' be a quiver whose un-
derlying undirected graph is Dynkin diagram A, and (H,f) be a Hilbert
representation of I'. Let v be a source of T'. Suppose that (H, f) is positive-
unitary diagonal. Then ®; (H, f) is also positive-unitary diagonal.

It is known that every orientation of Dynkin diagram A, is obtained by an
iteration of o, at sources v except the right end from a particular orientation
as follows:

Lemma 4.25. [EW3, Lemma 6.6.] Let 'y and T be quivers whose underlying
undirected graphs are the same Dynkin diagram A, for n > 2. Assume that
To is the following:

0] —> 03 —2 03-+:0p_1 — Op

Then there exists a sequence vy, ...,V of vertices in I'g such that

(1) for each k =1,...,m, vy is a source in o, . ...0, 0, ([o),
(2) o, ...050,, (o) =T,
(3) for each k =1,...,m, vx # n.
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Lemma 4.26. [EW3, Lemma 5.6.] LetT' = (V, E, s, ) be a finite quiver and
v €V a sink. Then for any Hilbert representation (H, f) of T, ®F(H, f) is
co-full at v.

Theorem 4.27. [EW3, Theorem 5.13.] LetT' = (V, E, s,r) be a finite quiver
and v € V' a source. Assume that a Hilbert representation (H, f) of T is
indecomposable and co-closed at v. Then the following assertions hold:
(1) If &, (H, f) =0, then H, = C, H, = 0 for any u € V with u # v
and fo =0 for any o € E.
(2) If @, (H, f) # 0, then @, (H, f) is also indecomposable and (H, f) =
C P, (H, f)).

The following is one of the main theorems in this paper.

Theorem 4.28. Let I' be a quiver whose underlying undirected graph is an
extended Dynkin diagram. Then there exists an infinite-dimensional tran-
sitive Hilbert representation of I' if and only if I is not an oriented cyclic
quiver.

Proof. Suppose that I' is an oriented cyclic quiver. Theorem 4.10 proves
the nonexistence of infinite-dimensional transitive Hilbert representation of
I". Suppose that I' is not an oriented cyclic quiver. We shall prove the exis-
tence of infinite-dimensional transitive Hilbert representations of I'. ' When
A, case, Theorem 4.10 proves the existence of infinite-dimensional transitive
Hilbert representations of I'. Next we consider the case that the |T| is D,,.
Let Ty be the quiver of Lemma 4.11 and (H, f©)) the Hilbert represen-
tation constructed there. Then |[g| = |T'| = D,,, but their orientations are
different in general. Let T'; be a quiver such that |T'1| = D,, and the orienta-
tion is as same as I' on the path between 5 and n + 1 and as same as I'g on
the rest four “wings”. We shall define a Hilbert representation (H®), f(1))

of T'y modifying (H©), f©). We put fél) = I for any arrow [ in the path
between 5 and n + 1. and féo) = él) for other arrow 5. The same proof

for (H©, £ shows that (H(®, (1) is transitive. Since f(g) (t=1,---,4)
is an inclusion map, (H™®, f1)) is co-full at sources 1,2,3 and 4. By Theo-
rem 4.21, a certain iteration of reflection functors at a source 1,2,3 or 4 on
(HMW, ) gives an infinite-dimensional, transitive, Hilbert representation
of I'. We have proved this case.

Next we consider the case that the |I'| is Eg. Let Iy be the quiver of
Lemma 4.12, and we denote here by (H(®, f(0)) the Hilbert representation
constructed there. Then |To| = |I'| = Eg, but their orientations are different
in general. Three “wings” of Iy 2—-1-0, 2/ =1 -0, 2/ — 1" — 0 can
be regarded as Dynkin diagrams As. Applying Lemma 4.25 for these wings
locally, we can find a sequence v1,...,v,, of vertices in I'g such that

(1) for each k = 1,...,m, v is a source in o, ...0,,0, (I'o),
(2) o, ...0p0,, (T0) =T,

v
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(3) for each k=1,...,m, v #0.

We note that co-closedness of Hilbert representations at a source can be
checked locally around the source. Since the restriction of the representation
(H O 5 (0)) to each “wing” is positive-unitary diagonal and the iteration of
reflection functors does not move the vertex 0, we can apply Lemma 4.23
and Proposition 4.24 locally that ®, ... @%@;(H(O),f(o)) is co-closed

at v for k = 1,...,m. Since the particular Hilbert space H(()O) associated
with the vertex 0 is infinite-dimensional and remains unchanged under the
iteration of the reflection functors above, @ - - @;1(H(0), fO) (1 <i<m)
is infinite-dimensional. Therefore Theorem 4.27 implies that

o, - ..q);l(H(O),f(O)) (1<i<m)
is an infinite-dimensional indecomposable Hilbert representation of

oy 0y 0, ().

(%3 V2T U1

By Theorem 4.27, for
(K,g) =@y, @, (HO, fO) (1 < i <m),

v
we have
(K,9) =, @, (K,qg).

Vi+1 = Vi41

On the other hand, by Lemma 4.26, ®} &, (K, g) is co-full at v;1;. Since

Vi+1 = Vi41

(K,g) =2 ® &  (K,g), by Lemma 4.18, we have that (K, g) is co-full at

Vi1~ Vitl
vi+1. Hence Theorem 4.21 implies that End(K, g) = End(®,,,, (K, g)). By
induction, we have

End(H, f0) = End(®, - @5, (H®, f7)).

Since (H©), f©)) is transitive, (0, --- @, (H®, f(0)) is also transitive.
Thus there exist infinite-dimensional transitive Hilbert representations for
quivers with any orientation whose underlying undirected graphs is extended
Dynkin diagram Fg. The other cases F; and Eg are proved similarly. O
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