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On the gonality of graphs and connections
to orientable genus

James Stankewicz

Abstract. We find that hyperelliptic graphs in the sense of Baker and
Norine are planar and examine connections between the gonality and
orientable genus of a graph. We give a notion of a bielliptic graph and
show that each of these must embed into a closed orientable surface of
genus one. We also find, for all g ≥ 0, trigonal graphs of orientable
genus g, and give analogues for graphs of higher gonality.
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1. Introduction

The gonality of a graph can refer to many related notions inspired by the
Brill-Noether theory of an algebraic curve. Baker and Norine [3] were the
first to define it as the least degree of a non-constant harmonic morphism of
graphs G→ T where G is the graph of interest and T is a tree. Compare this
to the definition of the gonality of an algebraic curve C: the least degree of a
nonconstant morphism from C to P1. We will discuss why this is a reasonable
analogy in §5. Several other notions of gonality have been defined by other
authors, including Caporaso [5] and Cornelisson-Kato-Kool [6]. The last
notion, stable gonality , allows refinements of G which do not change the
orientable genus of G. This is the least genus of a closed orientable surface
into which G embeds. This stable gonality is notable as it admits a spectral
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lower bound, i.e., in terms of the spectrum of the Laplacian of G [1, 6].
This is particularly appealing due to the connection with Shimura curves,
which define graphs that reflect spectral data of modular forms and are
typically non-planar (see §5). Could it be that there is a connection between
stable gonality and orientable genus? In the following we say that a graph is
d-gonal if its stable gonality is d. If d = 2, this ends up being equivalent to
the notion of a hyperelliptic graph when the Euler characteristic of G is
negative [3, §5]. The following shows that there is some connection between
stable gonality and orientable genus.

Theorem 1.1. All hyperelliptic graphs are planar.

Recall that for a graph to be planar it is equivalent to having orientable
genus zero. Similarly, we say a graph is toroidal if its orientable genus is
at most 1. Consider that an algebraic curve is called bielliptic if it admits
a degree 2 morphism to an algebraic curve of genus one. Similarly, we call a
graph G bielliptic if it admits a degree 2 harmonic morphism to a graph G′

of Euler characteristic zero (i.e., G′ has a unique shortest cycle). We have
the following.

Theorem 1.2. All bielliptic graphs are toroidal.

Since the bipartite graph K3,3 is bielliptic, this is the best that could be
hoped for. We are led to the following question, which is more intuitively
stated with the correct analogue of genus: we will say that the (Euler) genus
of a connected graph G′ is 1−χ(G′) where χ denotes the Euler characteristic.
Therefore a graph of negative Euler characteristic has genus g ≥ 2, etc.

Question 1.3. If G is a graph which admits a degree 2 harmonic morphism
to a graph G′ of (Euler) genus g, is the orientable genus of G at most g?

An affirmative answer to this question would not be totally optimal -
e.g., K5 admits a degree 2 morphism to a genus 2 graph, but is toroidal. We
know of no counterexamples to this statement and the proof of Theorem 4.3
suggests extensions but does not itself extend beyond the genus one case.
There are also interesting differences between the cases of degree 2 harmonic
morphisms and other cases.

Theorem 1.4. If d ≥ 3 with d 6≡ 2 mod 4 then there exist 3-connected
d-gonal graphs of all orientable genera at least (d/2− 1)2.

We mention 3-connectedness only to note that this is not the result of
anomolous examples, but of genuine phenomena. The connection between
gonality and orientable genus is therefore somewhat complicated, and ties
in with some more properly graph-theoretic notions like treewidth. It would
not be surprising if there were more interesting things that the Laplacian
spectrum could tell us about the orientable genus. Already, it is understood
that good planar immersions of graphs may be found using the eigenvectors
of the Laplacian [10].
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2. Preliminaries on the involutions of graphs and
hyperelliptic graphs

We wish to study hyperelliptic graphs, which could be defined either in
terms of harmonic morphisms of graphs or in terms of mixing involutions.
We prefer the latter. To define this, we note that a connected graph G is
given by its vertices V (G) and its edges E(G) (so that, e.g., its genus is
1 − #V (G) + #E(G)). Any given edge e is drawn between two vertices
x and y, and in this case we will say, x ∈ e or y ∈ e. We will allow
multiple edges to be drawn between the same pair of vertices. A morphism
of graphs f : G → H is given by a pair of maps fV : V (G) → V (H) and
fE : E(G) → E(H) ∪ V (H), such that if e ∈ E(G) and x ∈ e then either
fV (x) ∈ fE(e) or fE(e) = fV (x) [3, §2]. An isomorphism f : G → H
is one that admits an inverse f−1 : H → G, and an automorphism is an
isomorphism G→ G.

Definition. A mixing involution on a graph G is a non-identity order-
two automorphism ι : G→ G such that if e is an edge between x and y fixed
by ι then ι(x) = y.

A graph with a mixing involution ι and without loops1 cannot have any
edges e fixed by ι between ι-fixed vertices x and y. If G is a graph with loops,
then the graph G′ obtained by deleting those loops has the same orientable
genus. Throughout this note, we will assume all graphs G are loopless.

We are now in the proper setting to consider harmonic morphisms of
graphs [3, §2.1], an example of which is given by the quotient of a graph
G by a mixing involution ι [3, §5.2]. The quotient G/ι has vertices of the
form {v, ι(v)} such that v is a vertex of G, and edges of the form {e, ι(e)}
such that the bounding vertices of e are inequivalent under ι. The canonical
quotient morphism qι : G → G/ι sends vertices v to vertices {v, ι(v)} and
edges e between v and w to {e, ι(e)} if ι(v) 6= w and to the quotient vertex
{v, w = ι(v)} otherwise.

In the terminology of Baker-Norine, if G has at least 3 vertices, this map
is a harmonic morphism of degree 2. All such morphisms on graphs with at
least 3 vertices arise this way [3, Lemma 5.6]. If G has two vertices, then
there is an obvious mixing involution and the quotient is a point, and thus
a tree, and it is only because that map is constant that we do not say it has
degree 2.

Definition. We say that a connected graph G admitting a mixing involu-
tion ι : G → G such that G/ι is a tree is hyperelliptic and that ι is the
corresponding hyperelliptic involution.

This is a slightly nonstandard definition in that we don’t require the
genus to be at least 2. Typically one stipulates that because when G is

1meaning edges containing only one vertex
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Figure 1. A hyperelliptic graph showing the different types
of edges

2-edge-connected and has genus ≥ 2, such an involution must be unique
[3, Corollary 5.15]. Thankfully we can reduce to the 2-edge-connected case
without pain by contracting all its bridges [3, Corollary 5.11]. There are no
2-edge connected trees, and the only 2-edge connected genus one graphs are
cycles, which are planar. In this note, all graphs G with a mixing involution
ι will be 2-edge connected unless noted.

A graph with all its bridges contracted has the same orientable genus as
the original graph. Of course we will allow other graphs to not be 2-edge
connected. Indeed G/ι will often be a tree in what follows.

Suppose now G is a graph which is 2-edge-connected, loopless, and has a
mixing involution ι. A given vertex can be either fixed or moved by ι. We
let F denote the set of vertices which are fixed by ι. By definition, all other
vertices are permuted, and there must be an even number of these. Let A
and B be any disjoint sets of permuted vertices: we let a1, . . . , an be the
elements of A, so B = {b1 = ι(a1), . . . , bn = ι(an)}.

The edges of G must therefore fall into one of the following categories
with respect to this partition.

• The set EA of edges from A to itself.
• The set EB = ι(EA) of edges from B to itself.
• The set EF of edges from F to itself.
• The “horizontal edges” H from some ai to bi.
• The “cross edges” C from some ai to some bj such that i 6= j.
• The “transfer edges” TA from F to A.
• The “transfer edges” TB = ι(TA) from F to B.

Figure 1 shows the minimal example of a hyperelliptic graph with all
seven of these types, along with the quotient by its hyperelliptic involution.
The rightward arrow indicates this quotient morphism.

A first approximation to thinking about how these graphs embed into
an orientable surface is to embed the graphs with the involution into R3

with the antipodal involution x 7→ −x and to build the orientable surface
around it. This is not exactly right, for instance because there is only one



1052 JAMES STANKEWICZ

fixed point in R3 of the antipodal map, while a hyperelliptic graph can have
arbitrarily many fixed vertices.

The basic idea remains though. To make everything precise, recall that
when we speak of an embedding of a graph ρ : G→M with M a real man-
ifold, we mean an embedding of its geometric realization, which associates
to each edge a homeomorphic copy of the unit interval [0, 1], and to each
endpoint a vertex. We note that for the purposes of graph embeddings, we
can assume without loss of generality that there are no horizontal edges.

Lemma 2.1. For any graph with a mixing involution (G, ι), there is a graph
(G′, ι′) without horizontal edges and with the same embedding genus.

Proof. We know V (G) = A ∪ B ∪ F and E(G) = EA ∪ EB ∪ TA ∪ TB ∪
H ∪ C ∪ EF . We can create a refined graph G′ without horizontal edges
as follows. If h ∈ H, then say ah ∈ h ∩ A, bh ∈ h ∩ B. We then make
a new vertex fh to be in the fixed vertices of ι′ in G′. This vertex will
have precisely two edges in G′ going through it: t(ah) connecting ah to fh
and t(bh) conneting bh to fh, which of course have to be exchanged by ι′.
Then G′ must have V (G′) = A ∪ B ∪ F ∪ {fh : h ∈ H} and E(G′) =
EA ∪ EB ∪ TA ∪ TB ∪ C ∪ EF ∪ {t(ah) : h ∈ H} ∪ {t(bh) : h ∈ H}. Note
that this operation does not introduce bridges, for if removing t(ah) or t(bh)
disconnected G′ then so too would removing h disconnect G. The action of
ι on G induces another mixing involution on G′, which we call ι′, and we
see that G,G′ have homeomorphic geometric realizations. �

We focus on a particular type of embedding which can handle an arbitrary
number of fixed vertices.

Definition. An involutive embedding of a graph G with a mixing in-
volution ι is an embedding ρ : G → R2 whose image is a piecewise smooth
subset of R2 with the following condition on ι. If (x, y) = ρ(z) ∈ ρ(G) then
ρ(ι(z)) = (−x, y).

There are many involutions of R2 that would work just as well, but this
one allows us to keep our intuition about “horizontal edges,” or rather the
pairs of edges we get from horizontals. Note that each involutive embedding
ρ gives an explicit identification of the geometric realization of the tree G/ι
with the set ρ(G) ∩ {(x, y) : x ≥ 0}. Since G is compact as a topological
space, its image will be compact and we will often think of G as embedding
into the compact subset [−1, 1]2 ∈ R2.

Once you find any involutive embedding ρ of G, you can find many, for
instance by scaling, translating vertically, or by spherical inversion at a point
(a, 0) 6∈ ρ(G). To this end we will define the functions

τa : R2 → R2

(x, y) 7→ (x, y − a),
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and

σa : R2 − {(0, a)} → R2 − {(0, a)}

(x, y) 7→
(

x

x2 + (y − a)2
,

y

x2 + (y − a)2

)
.

We could define various scaling functions as well, but instead we will use
the single map

α : R2 → R2

(x, y) 7→
(

2

π
arctan(x),

2

π
arctan(y)

)
,

which is a diffeomorphism R2 → (−1, 1)2 respecting the involution ι.
Any involutive embedding (or in fact any embedding ρ : G→ R2 defines

an embedding G→ S2. In fact, it will define a CW decompostion of S2 as
follows.

Definition. An interior face of an involutive embedding ρ is a connected
component of S2 − ρ(G).

Each interior face F ◦ is homeomorphic to the open unit disc D◦, as G is
connected and ρ(G) is piecewise smooth. The closure in S2 of any interior
face F ◦ will be referred to as a face F , and will be homeomorphic to the
closed unit disc D. The boundary of any face F − F ◦ will therefore be
homeomorphic to D − D◦, or S1. We single out the face containing the
point∞ ∈ S2 as “the outside face” F∞. We close this set of preliminaries by
noting that every interior face of an involutive embedding of a hyperelliptic
graph must have a point of the form (0, y).

Lemma 2.2. If ρ : G → R2 is an involutive embedding of (G, ι) and F ◦ is
an interior face of ρ without a point of the form (0, y), then G/ι is not a
tree.

Proof. If S ⊂ R2 is a set, then let us use ι(S) to mean {(−x, y) : (x, y) ∈ S}.
If there is no such point, then F ◦ ∩ ι(F ◦) is empty. Up to the action of ι,
assume F ◦ ⊂ {(x, y) : x > 0}. Therefore ∂F = F − F ◦ ⊂ {(x, y) : x ≥
0}∩ ρ(G), which is homeomorphic to the geometric realization of G/ι. This
one-dimensional topological space contains ∂F , which is homeomorphic to
S1, so G/ι contains a cycle. �

In light of Lemma 2.2, we can move any face F to the outside face by
selecting any yF such that (0, yF ) ∈ F ◦ and applying σyF .

3. Subgraphs and involutive embeddings

Let us begin with an informal description of how we make an involutive
embedding of a hyperelliptic graph G. We retain all notation of the previous
section, and will induct on the size of #A = #B. Suppose we want to create
an involutive embedding for G with #A = n, and we assume we can create
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Γ1

•an
... •bn

Γm

Figure 2. The inductive step for creating an involutive embedding.

an involutive embedding for graphs with fewer exchanged vertices. We can
then perform the following rough operations, as depicted in Figure 2.

(1) Remove one element an from A ⊂ V (G), bn = ι(an), and all edges
containing an and bn, setting them aside.

(2) Let {Γi}1≤i≤m be the ι-orbits of connected components of the re-
maining vertices and edges. Find involutive embeddings ρi of each
into [−1, 1]2 by our inductive hypothesis.

(3) By connectedness, there must be an edge ei connecting an to each
Γi. Apply σyi for some yi so that σyiρi puts the other end of ei on
the outside face. By the action of ι, the edge connecting bn to Γi
will be ι(ei).

(4) Apply α to embed each Γi into (−1, 1)2. Translate each embedding
Γi → (−1, 1)2 into different boxes with τ1−2i and draw piecewise
smooth edges from an, bn to the Γi.

We now seek to formalize this inductive process. The hyperelliptic con-
dition places severe restrictions on the edges that can occur between fixed
vertices. Specifically, the subgraph (F,EF ) of G with all vertices fixed by ι
will be a finite collection of connected components and each will be a “string
of sausage links” of the following form:

• • • . . . • •

Lemma 3.1. The connected components of the subgraph (F,EF ) are either
single vertices or chains of vertices f1, . . . , fr such that between fi and fi+1

there are exactly two edges and between fi and fj there are no edges if
|i− j| > 1.

Proof. Let e ∈ EF and let f, f ′ be the bounding vertices of e. Since ι
fixes f, f ′ and ι is mixing, we must have ι(e) 6= e. Therefore there are at
least 2 edges between f and f ′. If we suppose to the contrary that there
was a third edge e′ then ι(e′) would be distinct from e′ again by the mixing
property. But also since e′ 6= e and e′ 6= ι(e) we must also have ι(e′) 6= e
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and e′ 6= ι(e). The quotient graph G/ι would then have a cycle ee′ and since
the hyperelliptic involution is unique we have a contradiction.

Therefore between any two vertices f, f ′ in our subgraph (F,EF ) there
are either zero or two edges. If f, f ′, f ′′ each have two edges between them,
then in the quotient, we would have a cycle e(f, f ′)e(f ′, f ′′)e(f ′′, f). The
result follows. �

We see therefore that (F,EF ) is planar, and if we wish to provide an ex-
plicit involutive embedding of (F,EF ) into R2 it suffices to give an involutive
embedding of the connected components, each of which must be a string as
above.

Lemma 3.2. If (G, ι) is a connected hyperelliptic graph with each vertex
fixed by ι, then it admits an involutive embedding.

Proof. The graph ({f1, . . . , fm+1}, E{f1,...,fm+1}) admits an explicit involu-
tive embedding. For the vertices we take fi 7→ (0, π(i − 1)). For the edges,
we take the smooth functions t 7→ (± sin(t), t) for t ∈ [0,mπ]. �

Note that the boundary of each face is piecewise smooth. For all compact
subsets of the plane D with nonempty connected interior D◦ and boundary
δ given as a connected, piecewise smooth parametrized curve, and for all
finite subsets S ⊂ δ, D◦ ∪ S is path-connected by simple piecewise linear
paths.

In a similar style to Lemma 2.2, we establish another useful fact about
our informal setup. As before, we let (G, ι) be a connected hyperelliptic
graph containing two vertices a 6= b such that ι(a) = b. By Lemma 2.1,
assume G has no horizontal edges, i.e., no edges e such that ι(e) = e. We
let Ga,b = (V (G)− {a, b}, {e ∈ E(G) : a 6∈ e and b 6∈ e}, and we let {Γi}mi=1
be the ι-orbits of connected components of Ga,b. Note that each Γi is the
disjoint union of one or two connected components, and if there are two,
they must be exchanged by ι, so in any case Γi/ι is connected.

Lemma 3.3. With (G, ι), a, b,Ga,b, {Γi}mi=1 as above, if Γ = Γi is not con-
nected then it contains no fixed vertices and ι gives an isomorphism between
each connected component and the tree Γ/ι.

Proof. First we show that if Γ contains a fixed vertex f , then it is connected.
If Γ contains only f then it must be connected. If not, let v 6= f be a vertex,
and let γ̄ be the shortest path in the tree Γ/ι from the vertex {v, ι(v)} to
the vertex {f, f}. Pick an edge e of Γ in the preimage of γ̄ containing v.
Since e is not a loop, there is a vertex v1 6= v in e. If v1 = f then you’re
done. If not, pick an edge e1 6∈ {e, ι(e)} in the preimage of γ̄ containing v1.
Repeat this process until we have a path γv in Γ from v to f . Therefore if
w 6∈ {f, v} is a vertex, then γvγw makes a path in Γ from v to w, showing Γ
is connected.

Therefore each vertex v of Γ/ι has 2 vertices v1, v
′
1 in its preimage. Let

K,K ′ be the connected components of Γ. We claim that neither can contain
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both v1 and v′1, for if not, let K contain both without loss of generality. Since
K is connected, we must have a simple path of length n from v1 to v′1 = vn+1

in K. Let v2, . . . , vn be the vertices in this path and e1, . . . , en be the edges
in this path with ei 3 {vi, vi+1}. Since Γ/ι is a tree, the image of this path
is a straight line of edges. Therefore ι(e1) = en, and so ι(v2) = vn, and
continuing along we see that ι(e1+i) = en−i, ι(v2+j) = vn−j .

If n is even, say n = 2k then ι(vk+1) = vk+1 is a fixed vertex, which by
the above argument do not exist in Γ. Therefore our path cannot be of even
length. If n is odd, say n = 2k + 1 then ι(ek+1) = ek+1, a horizontal edge,
which are not in G by assumption. Therefore the vertices of Γ are equally
partitioned into K and K ′. The same argument shows that the edges are
equally partitioned into K and K ′, for if not we could pick endpoints of edges
exchanged by ι as our v1, v

′
1. We conclude that ι induces an isomorphism of

graphs K → K ′ as they have matching vertices and edges. �

Lemma 3.4. With (G, ι), a, b,Ga,b, {Γi}mi=1 as above, there exists for each
1 ≤ i ≤ m a unique pair of ι-permuted edges ei, e

′
i ∈ E(G) such that a ∈ ei,

b ∈ e′i and the other endpoints of ei, e
′
i lie in Γi.

Proof. Existence holds because G is connected. Uniqueness holds because
if not, then let di, d

′
i be another set. Let ri ∈ ei∩Γi and si ∈ di∩Γi, and r′i, s

′
i

similarly defined for e′i, d
′
i. Since Γi/ι is connected, there is a path pi between

the quotient vertices {ri, r′i} and {si, s′i}. It follows that {ei, e′i}pi{di, d′i} is
a cycle in G/ι. �

The following Lemma will be the main tool in the inductive step of our
main Theorem on hyperelliptic graphs.

Lemma 3.5. With (G, ι), a, b,Ga,b,Γi, ei, e
′
i as above, for all 1 ≤ i ≤ m let

vi be the unique vertex in ei ∩ Γi and v′i ∈ e′i ∩ Γi. If for all i there is an
involutive embedding ρi : Γi → R2 such that

(1) ρi(vi) (and thus also ρi(v
′
i)) is on the outside face of ρi, and

(2) the x value of ρi(vi) is ≤ 0,

then there is an involutive embedding ρ : G→ R2.

Proof. If so, then ζi := τ1−2iαρi embeds each Γi into the product of intervals
(−1, 1) × (2i − 2, 2i) with vi sent to the outside face in the left half plane.
Let Mi be the maximum over (−1, 0] of the x-values of ζi(Γi). Since G has
no horizontal edges, Mi is zero if and only if Γi has a fixed vertex by Lemma
3.3. Consider the set

Σ =
m⋃
i=1

(ζi(Γi) ∪ {(Mi, t) : t ∈ [2i− 2, 2i]})

∪
m⋃
j=0

({(t, 2j(t+ 2)) : t ∈ [−2,−1]} ∪ {(t, 2j) : t ∈ [−1, 0]}) .
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Let D◦i be the connected component of the point (−3/2, i−1/2) in R2−Σ
and note that the closure Di is compact with connected, piecewise smooth
boundary. Let D∗i = D◦i ∪ {ζi(vi), (−2, 0)} and note that the only point of
intersection between any D∗i is the point (−2, 0). Let εi be a simple piecewise
smooth path from (−2, 0) to ζi(vi) contained within D∗i . Let ε′i be the image
of εi under the map (x, y) 7→ (−x, y).

We therefore have an embedding ρ defined as follows:

• ρ(a) = (−2, 0) and ρ(b) = (2, 0).
• For all 1 ≤ i ≤ m, ρ(ei) = εi, ρ(e′i) = ε′i.
• If r is either a vertex or an edge of Ga,b, then r ∈ Γi for exactly one
i. For this i, ρ(r) = ζi(r).

We see that each edge is piecewise smooth, and that ρ is involutive because
each ζi is involutive. �

4. Planarity and toroidality of graphs with involutions

Theorem 4.1. All hyperelliptic graphs are planar.

Proof. Let (G, ι) be a hyperelliptic connected graph, which without loss of
generality has no loops and is 2-edge connected. Let F be the set of vertices
of G fixed by ι and let A = A(G) be a maximal collection of vertices of G
which are not equivalent under ι, B = ι(A). By Lemma 2.1, we may assume
that G has no horizontal edges. The method of proof will be to show that
one can choose the partition V (G) = A ∪ B ∪ F in such a way that there
are no cross edges.

Let Ind(n) be the statement that for all connected hyperelliptic graphs
H with #A(H) ≤ n, there is an involutive embedding of H. By Lemma 3.2,
Ind(0) is true. If we can show Ind(n) holds for all n then our proof will be
complete.

Suppose that Ind(n) holds, #A = n + 1, and let a ∈ A, b = ι(a). Let
Ga,b = (V (G)− {a, b}, {e ∈ E(G) : a 6∈ e and b 6∈ e}, and we let {Γi}mi=1 be
the ι-orbits of connected components of Ga,b.

If Γi is connected, then the action of ι on Γi makes Γi into a connected
hyperelliptic graph with at most n vertices exchanged by ι, so by Ind(n),
there is an involutive embedding ρ̄i of Γi.

Since Γi/ι is connected, there are at most two connected components of Γi.
If Γi is not connected, call them Ci, C

′
i. Lemma 3.3 shows Ci ∼= C ′i

∼= Γi/ι.
We may therefore take ρ̄i|Ci to be any embedding of Ci into {(x, y) : x <
0}, and ρ̄i|C′

i
such that ρ̄iC

′
i = ρ̄iιCi is the image of ρ̄iCi under the map

(x, y) 7→ (−x, y).
Therefore we have involutive embeddings of each Γi. By Lemma 3.4, there

is a unique edge ei from a to Γi and e′i from b to Γi with respective other
endpoints vi, v

′
i. Since we have assumed that G has no horizontal edges, we

recall that C (the set of cross edges) is now nothing more than the set of
edges from A to B.
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We may then define a function ψa,b : {1, . . . ,m} → {0, 1} by

ψa,b(i) =

{
1 ei ∈ C
0 else

,

with respect to the partition of V (G) as A ∪ B ∪ F . As a ∈ ei, this means
that ψa,b(i) = 1 if and only if there is a vertex of B lying in ei. We will say

that ι0 is the identity map on G, and so the function ιψa,b(i) either fixes or
flips Γi based on the partition of V (G).

Finally, for each i, we pick a face Fi of ρ̄i such that vi lies in the boundary
of Fi. We will pick for all i a real number yi such that the point (0, yi) lies

in the interior face F ◦i , by Lemma 2.2. It follows that ρi := σyi ρ̄iι
ψa,b(i) is

an involutive embedding of Γi such that ρi(vi) has x-value ≤ 0 and lies on
the boundary of the outside face. We may therefore apply Lemma 3.5 to
produce an involutive embedding of (G, ι).

We have therefore shown that Ind(n) implies Ind(n+ 1), completing our
induction. �

We give a second proof of the planarity of hyperelliptic graphs.

Proof. By work of de Bruyn and Gijswijt [7], we know that for all graphs
G, the stable gonality of G is bounded below by the treewidth of G. We
know that G is hyperelliptic if and only if the stable gonality is 2. Since G
is hyperelliptic, we find that it has treewidth 2, and therefore is a subgraph
of a series-parallel graph [4], and is therefore planar. �

There is also a third proof of this result due to Spencer Backman which
characterizes the ear decomposition of a hyperelliptic graph and which pre-
dates work of de Bruyn and Gijswijt but was not written up. While it may
not seem so, these proofs work out to being very similar. Since G is hyper-
elliptic, G/ι is a tree. We may think of the inductive proof as rooting that
tree and thus realizing it as a series-parallel graph. Note that our embedding
ρG gives G/ι as ρG(G) ∩ {(x, y) : x ≤ 0}, so the source and sink vertices
are respectively the a and b that we remove from G in the inductive step.
The advantage of working so explicitly is that some natural improvements
present themselves.

Lemma 4.2. Suppose that (G, ι) is a hyperelliptic graph, v1 6= v2 are vertices
of G/ι. Then there is an involutive embedding ρ : G → (−1, 1)2 such that
all vertices of G in the preimage of {v1, v2} lie on a common face of ρ.

Proof. We proceed by induction. To fix notation analogous to that of earlier
sections, we will let ρ̄ be an involutive embedding of (G, ι) constructed as
in the proof of Theorem 4.1. Let A be the set of vertices of G with negative
x-value, B positive, and F zero. Let Ind′(n) be considered verified when
the conditions of the lemma are verified for all hyperelliptic graphs G with
#A = #B ≤ n.
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•f4

e′ ι(e′)

•f1

•a

e

•f2 •b

ι(e)

•f3

Figure 3. A depiction of a portion of an involutive embed-
ding with fixed vertices sharing a face.

The number of vertices in the preimage of {v1, v2} can be either 2, 3, or
4, and this will effect how we show Ind′(n) implies Ind′(n+1). In the latter
two cases, without loss of generality there will be a pair (a, b) such that
a ∈ A, b ∈ B in the preimage of v1. As before, we let {Γi} be the ι-orbits of
connected components of Ga,b, with Γ1 containing the preimages of v2. We
let v be the unique vertex in Γ1 connected to a, and note that v 6∈ B.

We find involutive embeddings ρ2, . . . , ρm of Γ2, . . . ,Γm keeping the x
values of A negative and the vertices connecting to a, b on the outside face
as in the proof of Theorem 4.1. We find ρ1 of Γ1 with both v and the
preimages of v2 on the outside face of Γ1 by Ind′(n). We then draw the
edges between a and the Γi, b and the Γi to get an involutive embedding
ρ of G. Then any face of ρ containing a preimage of v2 and contained in
the outside face of ρ1 also contains a, b. This shows that ρ satisfies the
conditions of Ind′(n+ 1).

If on the other hand the preimage of {v1, v2} contains only two vertices,
both must be fixed under ι. Let f1, f2 be these vertices.

Suppose first that f1, f2 lie on two different connected components of
(F,EF ) ⊂ G. If this is the case, note that G/ι is a tree, and so there is
a unique simple path of edges and vertices from v1 to v2 in G/ι. If we
remove any a ∈ A which lies in the preimage of that path, then f1, f2
lie in distinct ι-orbits of connected components in Ga,b where b = ι(a).
Order the ι-orbits Γ1, . . . ,Γm so that f1 ∈ Γ1, f2 ∈ Γm. By Theorem 4.1
or Lemma 3.3 there is an involutive embedding of Γi into the product of
intervals [−1, 1]× [2i− 2, 2i] with the vertex connecting a to Γi and thus Γi
to b on the outside face. Therefore (modulo flipping Γ1 or Γm upside down)
drawing symmetric edges to a and b produces an involutive embedding of G
with f1, f2 on the outside face.

Finally, suppose that f1, f2 lie on the same connected component K of
(F,EF ). Let e be an edge with one vertex in K and another, a ∈ A. Let
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b = ι(a) and let f3 be the other endpoint of e. Since f1 6= f2, the number
of vertices of K is at least 2, and so there is an edge e′ ∈ K connected to
f3 and its conjugate ι(e′) 6= e′. Let f4 be the other endpoint of e′, ι(e′).
Let Γ1, . . . ,Γm be the ι-orbits of connected components of Ga,b, and reorder
them so that Γ1 ⊃ K. There are involutive embeddings of Γ2, . . . ,Γm. We
pick them so that the connecting vertices to a, b are on the outside and the
signs of the x-coordinates are the same as for ρ̄. By Ind′(n) there is an
involutive embedding of Γ1 keeping f1, f2 on the outside face F∞. Let the
embedding of Γi be denoted ρi, and let γ = ρ1(e

′) ∪ ρ1(ι(e′)). Therefore
f1, f2 do not lie inside of γ (in the sense of differential topology [9, §3.3]).
Note that ρ1 takes F and no other part of G to the line {0} × R. We can,
without loss of generality, say that ρ1(f4) = (0, y4) has a higher y-value
than ρ1(f3) = (0, y3). There is thus a bounded open interval I = {(0, y) :
y3 < y < y′3 ≤ y4} where I ∩ ρ1(Γ1) is empty. Since ρ1(Γ1) is compact,
there is an open subset U of R2 containing I and not intersecting ρ1(Γ1).
Therefore, if y3 < y < y′3 then ασyρ1 is an involutive embedding with a face
ασy(F∞) which is not outside of ασy(γ), and such that the outside face of
ασyρ1 contains ασy(U), thus its closure, and thus ασy(ρ1(f3)). Therefore
we may construct our involutive embedding ρ of G without altering the face
ασyF∞ containing f1, f2. See Figure 3 for a depiction.

Having established that Ind′(n) implies Ind′(n+1), we note that if #A =
0 then we have an embedding where all vertices lie on the outside face by
Lemma 3.2. All other cases follow from our inductive assumption above. �

Theorem 4.3. Bielliptic graphs are toroidal.

Proof. Let (G, ι) be a bielliptic graph. Without loss of generality, we as-
sume G is 2-edge connected , and that the genus of G is at least 3, else G is
already planar.

Since G/ι has genus one, there is an edge ē of G/ι such that G/ι − ē is
a tree. Let e, e′ = ι(e) be the preimages of ē in G and let G0 = G − {e, e′}
with ι0 the induced involution, whose quotient is G/ι− ē. Let v1, v2 be the
vertices in ē.

By Lemma 4.2 there is an involutive embedding ρ0 : G0 → (−1, 1)2 such
that all pre-images of v1, v2 lie on the outside face of ρ0. We let A be the
set of vertices of G0 (and thus G) which get mapped under ρ0 to the left
half plane {(x, y) : x < 0}. For this choice of A,B = ι(A), there are no cross
edges of G0. Let m be the minimum x value such that (x, 0) ∈ ρ0(G0).

If e (and thus e′) is not a cross edge, then G is still planar by drawing e
in the left half plane and e′ in the right. Let Σ be the set

ρ0(G0)∪{(t,±1) : −1 ≤ t ≤ 0}∪{(−1, t) : −1 ≤ t ≤ 1}∪{(0, t) : −1 ≤ t ≤ 1}.
Let u1, u2 respectively be preimages of v1, v2 such that ρ0(ui) each have x-
coordinates in (−1, 0]. For any x0 in the interval (−1,m), let D◦ be the
connected component of the point (m, 0) in R2 − Σ0 and let D be D◦ ∪
{ρ0(u1), ρ0(u2)}. Let ε be any non-self-intersecting piecewise smooth path
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from ρ0(u1) to ρ0(u2) in D and ε′ be the image of ε under the map (x, y) 7→
(−x, y). We therefore find an involutive embedding ρ : G → R2 such that
ρ = ρ0 away from e, e′, ρ(e) = ε, ρ(e′) = ε′.

Now suppose that e is a cross edge, and thus the same is true for e′. Let
u1 be a preimage of v1 with strictly negative x-value, u′1 = ιu1 and likewise
for u2, u

′
2. We say e 3 u1, u′2 and e′ 3 u′1, u2 without loss of generality.

Note that if we build ρ0 inductively as in Lemma 4.2, then always the
y-value of ρ0(u1) is strictly less than the y-value of ρ0(u2). With the ap-
plication of some τy, we will assume that ρ0(u1) has negative y-value and
ρ0(u2) has positive y-value. That is to say, each vertex in a preimage of ē is
mapped to a different quadrant under ρ0. We will let

QN = ρ0(u2), QS = ρ0(u
′
1), QE = ρ0(u

′
2), QW = ρ0(u1),

and consider the points

RN = (0, 1), RS = (0,−1), RE = (1, 0), RW = (−1, 0).

Suppose can create paths γ∗ between Q∗ and R∗ which do not intersect
each other and do not meet ρ0(G0) aside from Q∗. Then we may identify
points on the boundary of [−1, 1]2 to create the torus

R2/Z2 ∼= T =
[−1, 1]2

{(−1, y) ∼ (1, y), (x,−1) ∼ (x, 1) : x, y ∈ [−1, 1]}
.

Then we have an embedding ρ : G → T by ρ(G0) = ρ0(G0) ⊂ T and
ρ(e) = γN ∪ γS , ρ(e′) = γE ∪ γW .

We therefore create the γ∗ to complete the proof. Let Σ be the set

ρ0(G0) ∪ {(s, t), (t, s) : s ∈ {0,±1},−1 ≤ t ≤ 1}.

We will also let PN , PS , PE , PW be points on the outside face of ρ0 such that

PN ∈ (−1, 0)× (0, 1), PS ∈ (0, 1)× (−1, 0),

and

PE ∈ (0, 1)× (0, 1), PW ∈ (−1, 0)× (−1, 0).

Let U∗ be the connected component of P∗ in R2 − Σ and then let D∗ =
U∗∪{Q∗, R∗}. We may then take γ∗ to be a piecewise smooth path between
Q∗ and R∗ in D∗. �

Example. The complete bipartite graph G = K3,3 is well-known to be bi-
elliptic. If {a1, a2, a3, b1, b2, b3} are the vertices of G, and the edges of G are
only between the a’s and b’s, then there is an involution ι taking ai to bi and
vice versa. Let us see how to use this involution to realize G as toroidal. The
quotient G/ι is the cycle on 3 vertices v1, v2, v3. We refine the horizontal
edges away by introducing 3 fixed vertices f1, f2, f3, producing a G′. Then
from G′ we obtain a hyperelliptic graph G0 by removing the preimages of the
edge between v1 and v3. See Figure 4 for a depiction of these graphs.
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•a1 •b1 •a1 •f1 •b1 •a1 •f1 •b1

•a2 •b2 •a2 •f2 •b2 •a2 •f2 •b2

•a3 •b3 •a3 •f3 •b3 •a3 •f3 •b3

Figure 4. The complete graph K3,3 with a refinement G′

and a hyperelliptic G0 ⊂ G′

◦

•a1 •f1 •b1 •a1 •b1

•b2 •f2 •a2 • •b2 •a2 ◦

•a3 •f3 •b3 •a3 •b3

•

Figure 5. A planar embedding of G0 gives a toroidal em-
bedding of G ∼= K3,3

We may then use Theorem 4.1 to embed G0 into the product of inter-
vals (−1, 1)2. We may then re-insert the edges of G to obtain a toroidal
embedding, as depicted in Figure 5.

One could imagine extending this to the case where G/ι has genus g,
e.g. by removing g edges from G/ι and embedding the analogous G0 into
a 4g-gon in the plane, or something similar. That would depend on finding
a sequence of points interchanged by ι which sequentially lie on common
faces. This fails however, as we see in Figure 6 where G/ι has genus 2.

Nonetheless we note that this graph does indeed admit an embedding into
a genus two surface! In particular, we get slightly lucky in that the above
method shows how to embed this graph into the connected sum of two tori,
albeit in a way that does not obviously generalize. Indeed, we do not know
of an example of a graph with a mixing involution ι to a genus g graph
which does not already embed into a genus g orientable surface.
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• • • • • • •

• • • • • • •

Figure 6. A graph with mixing involution quotient of Euler
genus 2.

We conclude by noting that although our criterion for being toroidal has
something to do with gonality, there is more that goes into the orientable
genus than the gonality.

Theorem 4.4. There are trigonal graphs of all possible orientable genera.
Moreover, there are d-gonal graphs which are either planar or of all possible
orientable genera ≥ (d2 − 1)2 whenever d 6≡ 2 mod 4.

Proof. First we note that there are d-gonal planar graphs for all d - simply
take n ≥ d and note that the d × n grid graph has gonality d [7, Example
3.3].

Then note that for 3 ≤ d ≤ n, the complete bipartite graph Kd,n has

orientable genus
⌈
(d−2)(n−2)

4

⌉
[14]. If d is not 2 mod 4 then this can be any

integral value at least (d2 −1)2. If d ≡ 2 mod 4 then the orientable genus can

by any integer multiple of d−2
4 at least (d2 − 1)2. We see that there is a clear

degree d harmonic map from Kd,n to a tree given by simply identifying the
vertices in the size d subset. Therefore the gonality of Kd,n is at most d.
For the lower bound, note that the treewidth of Kd,n is d, so this is a lower
bound for gonality [7], and we find that Kd,n is d-gonal. �

We conclude by noting that in the complete bipartite graphs above, go-
nality, stable gonality, and treewidth all coincide. It is conjectured for the
hypercube graph Qn that there is a gap between the two which increases
along with n [7, §3]. In that case, the orientable genus is large and the
conjectural least degree map to a tree is given by successive quotients by
involutions Qn → Qn−1. Finally we give some open questions.

• Are there any other infinite families of graphs with gaps between
gonality and treewidth which also have large orientable genus?
• What is the connection between the orientable genus and the spec-

trum of the Laplacian?

We think the latter ought to be better understood. After all, the spectrum
of the d× n grid graph is very limited [8]: the eigenvalues can only be

λj,k = 4 sin2

(
jπ

2n

)
+ 4 sin2

(
kπ

2d

)
.

In particular, the spectral lower bound on gonality [6, Theorem C] for
this example tends to 0 as n→∞.
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5. Hyperelliptic graphs associated to Shimura curves

A graph theorist who has made their way through this paper might be
filled with questions. Why should a tree correspond to P1? Why should any
curve tell us about a graph or vice versa? It is difficult to explain without
some algebraic geometry, but briefly, if X is a curve over a number field K,
which is the fraction field of a valuation ring R with residue field k, then
consider X over R to be a regular semistable model for X.

Note that the reduction of X need not be smooth, nor even irreducible.
Let (C1, . . . , Cv) be the irreducible components of Xk and (P1, . . . , Pe) be
the set of singular points. Since X is a semistable model, the only possible
singularities are ordinary double points and each Pj is the intersection of at
most two components. We form a graph from this data by associating to
each Ci a vertex Vi and to each Pj at the intersection of components Cm, Cn,
we associate an edge Ej between Vm and Vn. We need not work in the
semistable case [11, Introduction] but this greatly simplifies the description.
A great deal of arithmetic and geometry of X can be contained in the dual
graph G(X) produced above.

When X has a semistable model X such that for 1 ≤ i ≤ v, Ci ∼= P1
k
,

we have the most information transferred to the graph G(X ). This is the
case known as “totally degenerate reduction.” For instance, if X is a curve
with totally degenerate reduction then the genus of X is the (Euler) genus
of G(X ), so X with totally degenerate reduction has genus zero if and only
if G(X ) is a tree. For any graph G it is possible to find a curve X(G) with
totally degenerate reduction and G as the dual graph [2, Appendix B].

There is a very special set of curves for certain squarefree numbers D with
totally degenerate reduction modulo p | D called Shimura curves XD. The
differentials of these curves can be given by certain cuspidal modular forms
for the congruence subgroup Γ0(D) of SL2(Z), and the adjacency matrix for
the dual graph at a prime p | D is the matrix for the Hecke operator Tp acting
on a certain subspace of modular forms for Γ0(D/p). The resulting graph
is (p + 1)-regular and Ramanujan since cusp forms obey the Ramanujan
bound. Families of Shimura curves therefore give prototypical families of
expander graphs.

Ogg has determined all Shimura curves XD which are hyperelliptic over
Q [13]. In particular, note that in each case D is the product of two primes
and so there are only two primes of bad reduction to explore. In each case,
the dual graph is also hyperelliptic. The following magma code verifies that
all of these dual graphs are planar.

Dlist := [26,35,38,39,51,55,57,58,62,69,74,

82,86,87,93,94,95,111,119,134,146,159,194,206];

// Ogg’s list of Shimura curves hyperelliptic over QQbar

del := function(x)

if x eq 0 then return 0;
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else return 1;

end if;

end function;

ReducedDualGraph := function(p,q)

// Returns in magma format the dual graph of X^{pq} over FFpbar

// Rather, the "reduced dual graph" with parallel edges collapsed

M := BrandtModule(q,1);

d := Dimension(M);

Mx := MatrixRing(Integers(),d);

Bx := Mx!HeckeOperator(M,p);

for i in [1..d] do for j in [1..d] do

Bx[i,j] := del(Bx[i,j]);

end for; end for;

return Graph<2*Dimension(M)|BlockMatrix(2,2,[[Mx!0,Bx],[Bx,Mx!0]])>;

end function;

for D in Dlist do

G1 := ReducedDualGraph(PrimeDivisors(D)[1],PrimeDivisors(D)[2]);

G2 := ReducedDualGraph(PrimeDivisors(D)[2],PrimeDivisors(D)[1]);

D,IsPlanar(G1),IsPlanar(G2);

end for;

Similar lists exist for, e.g., bielliptic Shimura curves, each of which has
D ≤ 546. Similar code to the above suggests that if XD has a dual graph
(of its reduction modulo p for p | D) which is planar and has at least six
vertices, then for D ≥ 500 the complete list of (D, p) is

p 2 3 5 7 11 13 29
D 510, 546 510, 570, 690 690, 910, 1110 798, 910 1122 1365 667, 2958

.
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