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Twisted Alexander polynomials of
twisted Whitehead links

Hoang-An Nguyen and Anh T. Tran

Abstract. The twisted Alexander polynomial has been explicitly com-
puted for a few classes of knots and links, including twist knots [11] and
genus one two-bridge knots [18]. In this paper we compute the two-
variable twisted Alexander polynomial of twisted Whitehead links for
SL2(C)-representations. As an application, we verify the hyperbolic
torsion conjecture in [3, 14] for twisted Whitehead links. We also obtain
a formula for the Reidemeister torsion of the 3-manifold obtained from
S3 by p

1
-surgery along one component of twisted Whitehead links.
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1. Introduction

The twisted Alexander polynomial was introduced by Lin [9] for knots in
S3 and by Wada [21] for finitely presented groups. It is a generalization of
the classical Alexander polynomial by using linear representations and has
become an effective tool in topology. We refer to the survey papers [5, 10]
and references therein for details on the twisted Alexander polynomial, Rei-
demeister torsion and their applications. Finding an explicit formula for
the twisted Alexander polynomial of knots and links for all linear repre-
sentations is a challenging problem. The twisted Alexander polynomial has
been explicitly computed for a few classes of knots and links, including twist
knots [11] and genus one two-bridge knots [18]. In this paper we compute
the two-variable twisted Alexander polynomial of twisted Whitehead links
for SL2(C)-representations. As an application, we obtain a formula for
the Reidemeister torsion of the 3-manifold obtained by p

1 -surgery along one
component of twisted Whitehead links.

For a link L ⊂ S3 we denote by EL = S3 \N(L) its exterior, where N(L)
is an open tubular neighborhood of L. The link group of L is defined to be
π1(EL) which is the fundamental group of the link exterior. For k ≥ 0, the
k-twisted Whitehead link Wk is the two-component link depicted in Figure
1. Note that W0 is the (2, 4)-torus link and W1 is the Whitehead link.
Moreover, Wk is the two-bridge link C(2, k, 2) in the Conway notation and
is b(4k + 4, 2k + 1) in the Schubert notation. These links are all hyperbolic
except for W0, since it is known that a two-bridge link b(2p,m) is non-
hyperbolic if and only if m = 1. The link group of Wk has a standard
two-generator presentation of a two-bridge link group π1(EWk

) = 〈a, b |
aw = wa〉, where a, b are meridians depicted in Figure 1 and w is a word in
the letters a, b. More precisely, w = (bab−1a−1)na(a−1b−1ab)n if k = 2n− 1
and w = (bab−1a−1)nbab(a−1b−1ab)n if k = 2n. For a presentation ρ :
π1(EWk

) → SL2(C) we let x, y, z denote the traces of the images of a, b, ab
respectively. We also let v denote the trace of the image of bab−1a−1. An
explicit formula for v is given by v = x2+y2+z2−xyz−2. A representation
ρ : π1(EWk

) → SL2(C) is called nonabelian if its image is a nonabelian
subgroup of SL2(C).

To state a formula for the two-variable twisted Alexander polynomial of
twisted Whitehead links, we first introduce the Chebyshev polynomials of
the second kind. Let Sk(v) be the Chebyshev polynomials defined by S0(v) =
1, S1(v) = v and Sk(v) = vSk−1(v)− Sk−2(v) for all integers k. We also let

Pk(v) =
∑k

i=0 Si(v) for k ≥ 0. The polynomial Pk(v) can be expressed in
terms of Chebyshev polynomials as Pk(v) = (Sk+1(v)− Sk(v)− 1)/(v − 2),
see Lemma 2.7. Then ρ : π1(EWk

)→ SL2(C) is a nonabelian representation
if and only if x, y, z satisfy the Riley equation Rk(x, y, z) = 0, where

R2n−1(x, y, z) =
(
xySn−1(v)− (xy − z)Sn−2(v)− zSn(v)

)
Sn−1(v),

R2n(x, y, z) =
(
zSn(v)− (xy − z)Sn−1(v)

)(
Sn(v)− Sn−1(v)

)
.
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...

Figure 1. The k-twisted Whitehead link Wk.

Moreover, by [17], the defining equation for the geometric component of the
SL2(C)-character variety ofWk is xySn−1(v)−(xy−z)Sn−2(v)−zSn(v) if k =
2n−1 and is zSn(v)−(xy−z)Sn−1(v) if k = 2n. Here a geometric component
of the SL2(C)-character variety of a hyperbolic link is a component that
contains the character of a lift of the holonomy representation of the link.

The following formula for the two-variable twisted Alexander polynomial
of twisted Whitehead links is the main result of this paper.

Theorem 1. The two-variable twisted Alexander polynomial of Wk for a
nonabelian representation ρ : π1(EWk

)→ SL2(C) is given by

∆ρ
W2n−1

(t1, t2)

=
(
Pn−1(v) + Pn−2(v)

)(
t21t

2
2 − yt21t2 − xt1t22 + t21 + t22 − xt1 − yt2 + 1

)
+ 2
(
zSn−1(v) + xyPn−2(v)

)
t1t2

and

∆ρ
W2n

(t1, t2)

=
(
Pn(v) + Pn−1(v)

)
(t21t

2
2 + 1) +

(
Pn−1(v) + Pn−2(v)

)
(t21 + t22)

− 2Pn−1(v)(yt21t2 + xt1t
2
2 − xyt1t2 + xt1 + yt2).

Example 1. Consider the arithmetic two-bridge links 521 and 623 in Rolfsen’s
table, which are the twisted Whiteheads links W1 = C(2, 1, 2) and W2 =
C(2, 2, 2) respectively.

For 521 = W1, ρ : π1(EW1)→ SL2(C) is a nonabelian representation if and
only if x, y, z satisfy the Riley equation R1(x, y, z) = 0, where R1(x, y, z) =
xy − zv = xy − (x2 + y2 − 2)z + xyz2 − z3. In this case we have

∆ρ
W1

(t1, t2) = t21t
2
2 − yt21t2 − xt1t22 + t21 + t22 − xt1 − yt2 + 1 + 2zt1t2.

For 623 = W2, ρ : π1(EW2)→ SL2(C) is a nonabelian representation if and
only if x, y, z satisfy the Riley equation R2(x, y, z) = 0, where R2(x, y, z) =(
zv−(xy−z)

)
(v−1) =

(
z3−xyz2+(x2+y2−1)z−xy

)
(x2+y2+z2−xyz−3).
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In this case we have

∆ρ
W2

(t1, t2) = (x2 + y2 + z2 − xyz)(t21t22 + 1) + t21 + t22

− 2(yt21t2 + xt1t
2
2 − xyt1t2 + xt1 + yt2).

The hyperbolic torsion conjecture of Dunfield, Friedl and Jackson [3]
states that for a hyperbolic knot K in S3, the twisted Alexander poly-
nomial associated to a lift of the holonomy representation detects the genus
and fiberedness of K. The conjecture was generalized to hyperbolic links by
Morifuji and the second author [14]. This generalized conjecture states that
for an oriented hyperbolic link L in S3, the twisted Alexander polynomial
associated to a lift of the holonomy representation detects the Thurston
norm and fiberedness of L. The hyperbolic torsion conjecture has been
verified for all hyperbolic knots with at most 15 crossings [3] and most dou-
ble twist knots/links (see [12], [13], [14]). Moreover, Agol and Dunfield [1]
showed that the twisted Alexander polynomial detects the genus of libroid
hyperbolic knots.

As a corollary of Theorem 1 we will show the following.

Corollary 1. The hyperbolic torsion conjecture holds true for twisted White-
head links.

Let Mk,p be the 3-manifold obtained from S3 by p
1 -surgery along the

component of Wk corresponding the meridian a. Note that M1,p is the tunnel
number one once-punctured torus bundle studied by Baker and Petersen in
[2]. Its character variety and twisted Alexander polynomial (and hence its
Reidemeister torsion) were computed in [2]. The following gives a formula
for the Reidemeister torsion of Mk,p for all k ≥ 1.

Corollary 2. Suppose ρ : π1(EWk
) → SL2(C) is a nonabelian representa-

tion which extends to a representation ρ : π1(Mk,p) → SL2(C). Then the
Reidemeister torsion of Mk,p for ρ is given by

τρM2n−1,p

= 2
[
(2− x− y + z)Sn−1(v) + (4− 2x− 2y + xy)Pn−2(v)

]
/(2− x)

and

τρM2n,p
= 2

[
Sn(v)− Sn−1(v) + (4− 2x− 2y + xy)Pn−1(v)

]
/(2− x).

This paper is organized as follows. In Section 2 we review the twisted
Alexander polynomial, hyperbolic torsion conjecture, Reidemeister torsion
and Chebyshev polynomials. In Section 3 we compute the two-variable
twisted Alexander polynomial of twisted Whitehead links and prove Theo-
rem 1. Finally, in Section 4 we prove Corollaries 1 and 2.
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2. Preliminaries

In this section we review the twisted Alexander polynomial, hyperbolic
torsion conjecture, Reidemeister torsion and Chebyshev polynomials. For
more details, see [9, 21, 5, 10, 20, 6, 7, 3, 14].

2.1. Twisted Alexander polynomial. Let L = K1∪ · · · ∪Km be an ori-
ented m-component link in S3 and EL = S3 \N(L) its exterior, where N(L)
is an open tubular neighborhood of L. We choose a Wirtinger presentation
of the link group of L:

π1(EL) = 〈x1, . . . , xl | r1, . . . , rl−1〉.

The abelianization homomorphism

a : π1(EL)→ H1(EL;Z) ∼= Z⊕m = 〈t1〉 ⊕ · · · ⊕ 〈tm〉

is given by assigning to each generator xi a meridian element tj ∈ H1(EL;Z)
of its corresponding component Kj . Here we denote the sum in Z multi-
plicatively.

We consider a linear representation ρ : π1(EL) → SL2(C). The maps ρ
and a naturally induce two ring homomorphisms ρ̃ : Z[π1(EL)]→M2(C) and
ã : Z[π1(EL)]→ Z[t±1

1 , · · · , t±1
m ], where Z[π1(EL)] is the group ring of π1(EL)

and M2(C) is the matrix algebra of degree 2 over C. Then the tensor prod-
uct ρ̃ ⊗ ã defines a ring homomorphism Z[π1(EL)] → M2

(
C[t±1

1 , · · · , t±1
m ]
)
.

Let Fl denote the free group on generators x1, . . . , xl and Φ : Z[Fl] →
M2

(
C[t±1

1 , · · · , t±1
m ]
)

the composition of the surjection φ̃ : Z[Fl]→ Z[π1(EL)]
induced by the presentation of π1(EL) and the map ρ̃ ⊗ ã : Z[π1(EL)] →
M2

(
C[t±1

1 , · · · , t±1
m ]
)
.

Let A denote the (l− 1)× l matrix whose (i, j)-entry is the 2× 2 matrix

Φ
(
∂ri
∂xj

)
∈ M2

(
C[t±1

1 , · · · , t±1
m ]
)
, where ∂

∂x denotes the Fox differential. For

1 ≤ j ≤ l, we denote by Aj the (l − 1)× (l − 1) matrix obtained from A by
removing the jth column. We regard Aj as a 2(l− 1)× 2(l− 1) matrix with

coefficients in C[t±1
1 , · · · , t±1

m ]. Then Wada’s twisted Alexander polynomial
[21] of the link L for a representation ρ : π1(EL)→ SL2(C) is defined to be
the rational function

∆ρ
L(t1, · · · , tm) =

detAj
det Φ(1− xj)

and is well-defined up to multiplication by tk11 · · · tkmm (ki ∈ Z). It is known
that the rational function ∆ρ

L(t1, · · · , tm) will be a Laurent polynomial in
the variables t1, · · · , tm if L is a link with two or more components [21,
Proposition 9], or L is a knot K and ρ is a nonabelian representation [8,
Theorem 3.1].

When t1 = · · · = tm = t, we denote ∆ρ
L(t1, · · · , tm) by ∆ρ

L(t) and call it
the reduced twisted Alexander polynomial of L.
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2.2. Hyperbolic torsion conjecture. Let M be a compact connected
orientable 3-manifold and σ ∈ H1(M ;Z). The Thurston norm of σ is de-
fined as

||σ||T = min{χ−(S) |S ⊂M properly embedded surface dual to σ},

where for a given surface S with connected components S1∪· · ·∪Sk, we define

χ−(S) =
∑k

i=1 max{−χ(Si), 0}. Here χ(S) denotes the Euler characteristice
of a surface S. Thurston [15] showed that || · ||T defines a seminorm on
H1(M ;Z).

For a hyperbolic knot K in S3, Dunfield, Friedl and Jackson [3] studied
the twisted Alexander polynomial ∆K,ρ0(t) associated to the holonomy rep-
resentation ρ0 : π1(EK)→ SL2(C) and called it the hyperbolic torsion poly-
nomial of K. Based on many computations, they conjectured that ∆K,ρ0(t)
determines the genus of K, in the sense that deg ∆K,ρ0(t) = 4g(K) − 2.
Moreover, the knot K is fibered if and only if ∆K,ρ0(t) is monic. Here, the
degree of a Laurent polynomial f(t) ∈ C[t±1] is the difference between the
highest degree and the lowest degree of f .

Morifuji and the second author generalized the conjecture to the case of
hyperbolic links. For a µ-component oriented link L, let ω ∈ H1(EL;Z)
be given by sending each meridian of L to one. The generalized conjec-
ture in [14] states that for an oriented hyperbolic link L in S3, the twisted
Alexander polynomial ∆L,ρ0(t) associated to the holonomy representation
ρ0 : π1(EL) → SL2(C) determines the Thurston norm of ω, in the sense
that deg ∆L,ρ0(t) = 2||ω||T . Moreover, the link L is fibered if and only if
∆L,ρ0(t) is monic. We should remark that deg ∆L,ρ(t) ≤ 2||ω||T holds for
any representation ρ : π1(EL)→ SL2(C), see [4].

For a knot or a µ-component alternating link L in S3, it is known that
the Thurston norm ||ω||T is equal to 2g(L) + µ − 2, see e.g. [14, Remark
3.4]. Hence the equality in the above conjecture becomes deg ∆L,ρ0(t) =
4g(L) + 2(µ− 2) for alternating links.

2.3. Reidemeister torsion.

2.3.1. Torsion of a chain complex. Let C be a chain complex of finite
dimensional vector spaces over C:

C =

(
0→ Cm

∂m−→ Cm−1
∂m−1−→ · · · ∂2−→ C1

∂1−→ C0 → 0

)
such that for each i = 0, 1, · · · ,m the followings hold

• the homology group Hi(C) is trivial, and
• a preferred basis ci of Ci is given.

Let Bi ⊂ Ci be the image of ∂i+1. For each i choose a basis bi of Bi. The
short exact sequence of C-vector spaces

0→ Bi −→ Ci
∂i−→ Bi−1 → 0
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implies that a new basis of Ci can be obtained by taking the union of the
vectors of bi and some lifts b̃i−1 of the vectors bi−1. Define [(bi ∪ b̃i−1)/ci] to

be the determinant of the matrix expressing (bi ∪ b̃i−1) in the basis ci. Note

that this scalar does not depend on the choice of the lift b̃i−1 of bi−1. The
torsion of C is then defined to be

τ(C) :=
m∏
i=0

[(bi ∪ b̃i−1)/ci]
(−1)i+1 ∈ C \ {0}.

Remark 2.1. Once a preferred basis of C is given, τ(C) is independent of
the choice of b0, . . . , bm. See e.g. [20].

2.3.2. Reidemeister torsion of a CW-complex. Let M be a finite CW-
complex and ρ : π1(M) → SL2(C) a representation. Denote by M̃ the

universal covering of M . The fundamental group π1(M) acts on M̃ as deck

transformations. Then the chain complex C(M̃ ;Z) has the structure of a
chain complex of left Z[π1(M)]-modules.

Let V be the 2-dimensional vector space C2 with the canonical basis
{e1, e2}. Using the representation ρ, V has the structure of a right Z[π1(M)]-
module which we denote by Vρ. Define the chain complex C(M ;Vρ) to be

Vρ ⊗Z[π1(M)] C(M̃ ;Z), and choose a preferred basis of C(M ;Vρ) as follows.

Let {ui1, · · · , uimi
} be the set of i-cells of M , and choose a lift ũij of each cell.

Then {ũi1⊗ e1, ũi1⊗ e2, · · · , ũimi
⊗ e1, ũimi

⊗ e2} is chosen to be the preferred
basis of Ci(M ;Vρ).

The Reidemeister torsion τρM is defined as follows:

τρM =

{
τ(C(M ;Vρ)) if ρ is acyclic,

0 otherwise.

Here a representation ρ is called acyclic if all the homology groups Hi(M ;Vρ)
are trivial.

When M is the exterior EL of a link L ⊂ S3 and ρ : π1(M) → SL2(C)
is a representation, we also denote τρM by τρL and call it the Reidemeister
torsion of L for ρ. In which case Johnson showed the following. See also [7].

Theorem 2.2. [6] For any representation ρ : π1(EL)→ SL2(C) we have

τρL = ∆ρ
L(1, . . . , 1).

2.4. Chebyshev polynomials. Recall that Sk(v) are the Chebyshev poly-
nomials of the second kind defined by S0(v) = 1, S1(v) = v and Sk(v) =
vSk−1(v)− Sk−2(v) for all integers k. Similarly, let Tk(v) be the Chebyshev
polynomials of the first kind defined by T0(v) = 2, T1(v) = v and Tk(v) =
vTk−1(v) − Tk−2(v) for all integers k. Note that Tk(v) = Sk(v) − Sk−2(v).

For k ≥ 0 we let Pk(v) =
∑k

i=0 Si(v).
The following four lemmas are taken from [14].
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Lemma 2.3. Write v = q + q−1. Then Tk(v) = qk + q−k.
We have Sk(2) = k + 1 and Sk(−2) = (−1)k(k + 1). If q 6= ±1 then

Sk(v) = qk+1−q−(k+1)

q−q−1 . In particular, if v = 2 cosβ, where β
π ∈ R \ Z, then

Sk(v) = sin(k+1)β
sinβ .

Lemma 2.4. (i) If k ≥ 1 is even, then

Tk(v)− 2 = (v − 2)(v + 2)

k
2
−1∏
j=1

(
v − 2 cos

2jπ

k

)2
.

(ii) If k ≥ 1 is odd, then

Tk(v)− 2 = (v − 2)

k−1
2∏
j=1

(
v − 2 cos

2jπ

k

)2
.

Lemma 2.5. (i) If k ≥ 1 is odd, then

Tk(v)− v = (v − 2)(v + 2)

k−3
2∏
j=1

(
v − 2 cos

2jπ

k − 1

) k−1
2∏
j=1

(
v − 2 cos

2jπ

k + 1

)
.

(ii) If k ≥ 1 is even, then

Tk(v)− v = (v − 2)

k−2
2∏
j=1

(
v − 2 cos

2jπ

k − 1

) k
2∏
j=1

(
v − 2 cos

2jπ

k + 1

)
.

Lemma 2.6. For k ∈ Z we have Sk+1(v)Sk−1(v) + 1 = S2
k(v).

We also need the following two lemmas which are proved in [19].

Lemma 2.7. For k ≥ 0 we have

(1) Pk(v) =
(
Sk+1(v)− Sk(v)− 1

)
/(v − 2).

(2) Pk+1(v) + Pk−1(v) = vPk(v) + 1.
(3) P 2

k (v) + P 2
k−1(v) = vPk(v)Pk−1(v) + Pk(v) + Pk−1(v).

Lemma 2.8. Suppose V ∈ SL2(C) and v = trV . For k ≥ 0 we have

k∑
i=0

V i = Pk(v)1− Pk−1(v)V −1

where 1 denotes the identity 2× 2 matrix.

3. Twisted Whitehead links

In this section we compute the two-variable twisted Alexander polyno-
mial of twisted Whitehead links and prove Theorem 1. We start with a
linear algebra lemma which is useful for computing the twisted Alexander
polynomial.
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3.1. A lemma. For a 2× 2 matrix A =

[
a11 a12
a21 a22

]
we let

A∗ =

[
a22 −a12
−a21 a11

]
denote the adjugate of A. Note that

trAB∗ = trA∗B = a11b22 + a22b11 − a12b21 − a21b12

for A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
.

Lemma 3.1. Suppose A,B,C ∈M2(C) and x, y ∈ C. Then

det(Ax+By + C) = (detA)x2 + (detB)y2 + (trAB∗)xy

+ (trAC∗)x+ (trBC∗)y + detC.

Proof. Write A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
and C =

[
c11 c12
c21 c22

]
.

We have

det(Ax+By + C)

= det

[
xa11 + yb11 + c11 xa12 + yb12 + c12
xa21 + yb21 + c21 xa22 + yb22 + c22

]
= (xa11 + yb11 + c11)(xa22 + yb22 + c22)

− (xa12 + yb12 + c12)(xa21 + yb21 + c21)

= (a11a22 − a12a21)x2 + (b11b22 − b12b21)y2

+ (a11b22 + a22b11 − a12b21 − a21b12)xy
+ (a11c22 + a22c11 − a12c21 − a21c12)x
+ (b11c22 + b22c11 − b12c21 − b21c12)y
+ c11c22 − c12c21.

The lemma then follows. �

3.2. Proof of Theorem 1 for W2n−1. Recall that the link group of
W2n−1 has a presentation π1(EW2n−1) = 〈a, b | wa = aw〉, where a, b are

meridians depicted in Figure 1 and w = (bab−1a−1)na(a−1b−1ab)n. Suppose
ρ : π1(EW2n−1) → SL2(C) is a nonabelian representation. Up to conjuga-
tion, we may assume that

ρ(a) =

[
s1 1
0 s−1

1

]
and ρ(b) =

[
s2 0
u s−1

2

]
(1)

where (u, s1, s2) ∈ (C∗)3 satisfies ρ(aw) = ρ(wa). By [17] this matrix equa-
tion is equivalent to the following equation(

xySn−1(v)− (xy − z)Sn−2(v)− zSn(v)
)
Sn−1(v) = 0. (2)

Here x, y, z and v are the traces of the images of a, b, ab and bab−1a−1

respectively.
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Let r = awa−1w−1. We have

∂r

∂b
= a

(
∂w

∂b
− wa−1w−1∂w

∂b

)
= a(1− wa−1w−1)

∂w

∂b
.

Hence ∆ρ
W2n−1

(t1, t2) = det Φ
(
∂r
∂b

) /
det Φ(1− a) = det Φ

(
∂w
∂b

)
.

Let c = bab−1a−1 and d = a−1b−1ab. We have w = cnadn and

∂w

∂b
= δn−1(c)

∂c

∂b
+ cnaδn−1(d)

∂d

∂b

= cn
(
δn−1(c

−1)(aba−1b−1 − a) + a δn−1(d)(a−1b−1a− a−1b−1)
)

where δk(g) = 1 + g + · · ·+ gk.

For g ∈ π1(EW2n−1) we denote ρ(g) by g̃. Since tr c̃ = tr d̃ = v, by Lemma
2.8 we have

δn−1(c̃
−1) = Pn−1(v)1− Pn−2(v)c̃,

δn−1(d̃) = Pn−1(v)1− Pn−2(v)d̃−1.

Since Φ(a) = t1ã and Φ(b) = t2b̃, we then obtain

Φ

(
∂w

∂b

)
= c̃ n

(
Pn−1(v)E − Pn−2(v)F

)
where

E = ãb̃ã−1b̃−1 − t1ã+ t1t
−1
2 b̃−1ã− t−1

2 b̃−1,

F = c̃(ãb̃ã−1b̃−1 − t1ã) + ãd̃−1(t1t
−1
2 ã−1b̃−1ã− t−1

2 ã−1b̃−1)

= 1− t1b̃ãb̃−1 + t1t
−1
2 ãb̃−1 − t−1

2 ãb̃−1ã−1.

By Lemma 3.1 we have

det Φ

(
∂w

∂b

)
= det(Pn−1(v)E − Pn−2(v)F )

= (detE)P 2
n−1(v) + (detF )P 2

n−2(v)

− (trEF ∗)Pn−1(v)Pn−2(v).

Since P 2
n−1(v)+P 2

n−2(v) = vPn−1(v)Pn−2(v)+Pn−1(v)+Pn−2(v) (by Lemma
2.7) we get

det Φ

(
∂w

∂b

)
= (detF − detE)P 2

n−2(v) (3)

+ (v detE − trEF ∗)Pn−1(v)Pn−2(v)

+ (detE)
(
Pn−1(v) + Pn−2(v)

)
.
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Using the form of ρ in (1) we have E =

[
e11 e12
e21 e22

]
where

e11 = 1− s1t1 − s−1
2 t−1

2 + s1s
−1
2 t1t

−1
2 + (s−1

1 s−1
2 − s1s

−1
2 + s1s2)u+ u2,

e12 = s1 − s1s22 − t1 + s−1
2 t1t

−1
2 − s2u,

e21 = (−s−1
2 + s−2

1 s−1
2 + t−1

2 − s1t1t
−1
2 )u+ s−1

1 u2,

e22 = 1− s−1
1 t1 − s2t−1

2 + s−1
1 s2t1t

−1
2 − (s−1

1 s2 + t1t
−1
2 )u,

and F =

[
f11 f12
f21 f22

]
where

f11 = 1− s1t1 − s−1
2 t−1

2 + s1s
−1
2 t1t

−1
2 + (s2t1 + s−1

1 t−1
2 − t1t

−1
2 )u,

f12 = −s22t1 + s1s
−1
2 t−1

2 − s1s2t
−1
2 + s2t1t

−1
2 − t

−1
2 u,

f21 = (s−1
1 s−1

2 t1 − s1s−1
2 t1 + s−2

1 t−1
2 − s

−1
1 t1t

−1
2 )u+ t1u

2,

f22 = 1− s−1
1 t1 − s2t−1

2 + s−1
1 s2t1t

−1
2 − (s2t1 + s−1

1 t−1
2 )u.

Then, by direct calculations, we have

detF − detE = (v − 2)(2z − xy)t1t
−1
2 , (4)

v detE − trEF ∗ = (v − 2)(xy − vz)t1t−1
2 , (5)

detE = t21t
−2
2 − yt

2
1t

−1
2 − xt1t

−2
2 + t21 + t−2

2 (6)

+
(
xy − (v − 2)z

)
t1t

−1
2 − xt1 − yt

−1
2 + 1.

Note that x = s1 + s−1
1 , y = s2 + s−1

2 , z = s1s2 + s−1
1 s−1

2 + u and v =
x2 + y2 + z2 − xyz − 2.

From equations (4) and (5) we have

(detF − detE)P 2
n−2(v) + (v detE − trEF ∗)Pn−1(v)Pn−2(v) (7)

=
[
(2z − xy)Pn−2(v) + (xy − vz)Pn−1(v)

]
(v − 2)Pn−2(v)t1t

−1
2

=
[
(xy − 2z)

(
Pn−1(v)− Pn−2(v)

)
− z(v − 2)Pn−1(v)

]
× (v − 2)Pn−2(v)t1t

−1
2

=
[
(xy − 2z)Sn−1(v)− z

(
Sn(v)− Sn−1(v)− 1

)]
×
[
Sn−1(v)− Sn−2(v)− 1

]
t1t

−1
2

=
[
(xy − z)Sn−1(v)− zSn(v) + z

][
Sn−1(v)− Sn−2(v)− 1

]
t1t

−1
2 .

Here we use (v−2)Pk(v) = Sk+1(v)−Sk(v)−1 (by Lemma 2.7) in the third
equality.

From equations (3), (6) and (7) we have

∆ρ
W2n−1

(t1, t2) =
(
t21t

−2
2 − yt

2
1t

−1
2 − xt1t

−2
2 + t21 + t−2

2 − xt1 − yt
−1
2 + 1

)
×
(
Pn−1(v) + Pn−2(v)

)
+ αt1t

−1
2 .
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where

α =
[
(xy − z)Sn−1(v)− zSn(v) + z

][
Sn−1(v)− Sn−2(v)− 1

]
+
(
xy − (v − 2)z

)(
Pn−1(v) + Pn−2(v)

)
.

Finally, we simplify α using equation (2). By Lemmas 2.6 and 2.7 we
have Sn(v)Sn−2(v) +1 = S2

n−1(v) and (v−2)(Pn−1(v) +Pn−2(v)) = Sn(v)−
Sn−2(v)− 2. Hence

α = (xy − z)S2
n−1(v)− Sn−1(v)

[
(xy − z)(Sn−2(v) + 1) + z(Sn(v)− 1)

]
+ z(Sn(v)− 1)(Sn−2(v) + 1)− z(Sn(v)− Sn−2(v)− 2)

+xy
(
Pn−1(v) + Pn−2(v)

)
= (xy − z)S2

n−1(v)− Sn−1(v)
[
(xy − z)Sn−2(v) + zSn(v)

]
− (xy − 2z)Sn−1(v) + xy

(
Sn−1(v) + 2Pn−2(v)

)
+ z(Sn(v)Sn−2(v) + 1)

= Sn−1(v)
[
xySn−1(v)− (xy − z)Sn−2(v)− zSn(v)

]
+ 2zSn−1(v) + 2xyPn−2(v)

= 2zSn−1(v) + 2xyPn−2(v).

Here we use equation (2) in the last equality.
The proof of Theorem 1 for W2n−1 is complete, since ∆ρ

W2n−1
(t1, t2) is

well-defined up to multiplication by tk11 t
k2
2 (ki ∈ Z).

3.3. Proof of Theorem 1 for W2n. Recall that the link group of W2n

has a presentation π1(EW2n) = 〈a, b | wa = aw〉, where a, b are meridians
depicted in Figure 1 and w = (bab−1a−1)nbab(a−1b−1ab)n. Suppose ρ :
π1(EW2n)→ SL2(C) is a nonabelian representation. Up to conjugation, we
may assume that

ρ(a) =

[
s1 1
0 s−1

1

]
and ρ(b) =

[
s2 0
u s−1

2

]
where (u, s1, s2) ∈ (C∗)3 satisfies ρ(aw) = ρ(wa). By [17] this matrix equa-
tion is equivalent to the following equation(

zSn(v)− (xy − z)Sn−1(v)
)(
Sn(v)− Sn−1(v)

)
= 0. (8)

As in the case of W2n−1 we have ∆ρ
W2n

(t1, t2) = det Φ
(
∂w
∂b

)
where

∂w

∂b
= cn

[
δn−1(c

−1)(aba−1b−1 − a) + bab δn−1(d)(a−1b−1a− a−1b−1)

+ 1 + ba
]
.

Since Φ(a) = t1ã and Φ(b) = t2b̃, we obtain

Φ

(
∂w

∂b

)
= c̃ n

(
Pn−1(v)G− Pn−2(v)H + I

)
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where

G = ãb̃ã−1b̃−1 − t1ã+ t1t2b̃ãb̃ã
−1b̃−1ã− t2b̃ãb̃ã−1b̃−1,

H = 1− t1b̃ãb̃−1 + t1t2b̃ã− t2b̃,
I = 1 + t1t2b̃ã.

By Lemmas 3.1 and 2.7 we obtain

det Φ

(
∂w

∂b

)
= det(Pn−1(v)G− Pn−2(v)H + I) (9)

= (detG)P 2
n−1(v) + (detH)P 2

n−2(v) + det I

− (trGH∗)Pn−1(v)Pn−2(v)

+ (trGI∗)Pn−1(v)− (trHI∗)Pn−2(v)

= (detG− detH)P 2
n−1(v) + det I

+ (v detH − trGH∗)Pn−1(v)Pn−2(v)

+ (detH + trGI∗)Pn−1(v)

+ (detH − trHI∗)Pn−2(v).

By direct calculations we have

detG− detH = (v − 2)(vz − xy)t1t2, (10)

v detH − trGH∗ = (v − 2)(xy − 2z)t1t2, (11)

detH + trGI∗ = (v + 1)t21t
2
2 − 2xt1t

2
2 − 2yt21t2 + t21 + t22 + 1 (12)

+
(
xy + 2(v − 1)z

)
t1t2 − 2xt1 − 2yt2 + v,

detH − trHI∗ = −t21t22 + t21 + t22 + (xy − 2z)t1t2 − 1, (13)

det I = t21t
2
2 + zt1t2 + 1. (14)

From equations (10) and (11) we have

(detG− detH)P 2
n−1(v) + (v detH − trGH∗)Pn−1(v)Pn−2(v) (15)

=
[
(vz − xy)Pn−1(v) + (xy − 2z)Pn−2(v)

]
(v − 2)Pn−1(v)t1t2

=
[
z(v − 2)Pn−1(v)− (xy − 2z)(Pn−1(v)− Pn−2(v))

]
(v − 2)Pn−1(v)t1t2

=
[
z
(
Sn(v)− Sn−1(v)− 1

)
− (xy − 2z)Sn−1(v)

]
(v − 2)Pn−1(v)t1t2

=
[
zSn(v)− (xy − z)Sn−1(v)− z

][
Sn(v)− Sn−1(v)− 1

]
t1t2.

From equations (9), (15), (12), (13) and (14) we obtain

∆ρ
W2n

(t1, t2) =
(
(v + 1)Pn−1(v)− Pn−2(v) + 1

)
(t21t

2
2 + 1)

+
(
Pn−1(v) + Pn−2(v)

)
(t21 + t22)

− 2Pn−1(v)(yt21t2 + xt1t
2
2 + xt1 + yt2) + βt1t2

where

β =
[
zSn(v)− (xy − z)Sn−1(v)− z

][
Sn(v)− Sn−1(v)− 1

]
+
(
xy + 2(v − 1)z

)
Pn−1(v) + (xy − 2z)Pn−2(v) + z.
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Note that (v + 1)Pn−1(v)− Pn−2(v) + 1 = Pn(v) + Pn−1(v), by Lemma 2.7.
Finally, we simplify β using equation (8). Indeed, since(

zSn(v)− (xy − z)Sn−1(v)
)(
Sn(v)− Sn−1(v)

)
= 0

we have

β =
[
z − (zSn(v)− (xy − z)Sn−1(v))− z(Sn(v)− Sn−1(v))

]
+
(
xy + 2(v − 1)z

)
Pn−1(v) + (xy − 2z)(Pn−1(v)− Sn−1(v)) + z

= 2z − 2zSn(v) + 2zSn−1(v) + 2
(
xy + (v − 2)z

)
Pn−1(v)

= 2xyPn−1(v).

Here we use (v − 2)Pn−1(v) = Sn(v) − Sn−1(v) − 1 (by Lemma 2.7) in the
last equality.

This completes the proof of Theorem 1 for W2n.

4. Proof of Corollaries 1 and 2

4.1. Proof of Corollary 1. We prove the hyperbolic torsion conjecture
for W2n−1. The proof for W2n is similar. Up to mirror image, there are
two orientations on W2n−1 which correspond to the two cases t1 = t2 = t
and t1 = t−1

2 = t in the reduced twisted Alexander polynomial ∆W2n−1(t).
In both cases, the genus of L = W2n−1 is given by g(L) = 1 and L is
fibered if and only if n = 1. (These facts can be proved by computing
the reduced Alexander polynomial of L and then applying [16, Theorem
1.1].) Moreover, by Theorem 1, the degree of the reduced twisted Alexander
polynomial ∆ρ

W2n−1
(t) is 4 and the coefficient of the highest degree term is

Pn−1(v) + Pn−2(v). Note that the hyperbolic torsion conjecture holds true
for the fibered link W1 since Pn−1(v) + Pn−2(v) = 1 when n = 1. We now
consider the case n ≥ 2.

For a link L in S3, a non-abelian representation ρ : π1(EL) → SL2(C)
is called parabolic if the images of all the meridians of L by ρ are matrices
with trace 2. When L is hyperbolic, it is known that the holonomy represen-
tation ρ0 is a parabolic representation. Moreover, ρ0 lies on the geometric
component of the SL2(C)-character variety of L.

To prove Corollary 1 for W2n−1, with n ≥ 2, it suffices to show that
Pn−1(v) + Pn−2(v) 6= 0 and Pn−1(v) + Pn−2(v) 6= 1 for any parabolic repre-
sentation on the geometric component of W2n−1. By [17] the defining equa-
tion for the geometric component of W2n−1 is xySn−1(v)−(xy−z)Sn−2(v)−
zSn(v) = 0. Hence, for a parabolic representation on the geometric compo-
nent we have x = y = 2 and 4Sn−1(v)− (4− z)Sn−2(v)− zSn(v) = 0, where
v = x2 + y2 + z2 − xyz − 2 = (z − 2)2 + 2. By Lemma 2.7 we have

Pn−1(v) + Pn−2(v) = (Sn(v)− Sn−2(v)− 2)/(v − 2) = (Tn(v)− 2)/(v − 2).
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4.1.1. Genus. We show that Pn−1(v) + Pn−2(v) 6= 0 for any parabolic
representation on the geometric component of W2n−1, where n ≥ 2.

By Lemma 2.4 we have Tn(v)−2
v−2 = 0 if and only if v = 2 cos 2jπ

n for some
1 ≤ j ≤ n

2 . In particular, v ∈ R and −2 ≤ v < 2.

Suppose v = 2 cos 2jπ
n for some 1 ≤ j < n

2 . Then, by Lemma 2.3,

Sn−2(v) =
sin(n− 1)2jπn

sin 2jπ
n

= −1, Sn−1(v) =
sinn2jπ

n

sin 2jπ
n

= 0,

Sn(v) =
sin(n+ 1)2jπn

sin 2jπ
n

= 1.

Equation 4Sn−1(v)− (4− z)Sn−2(v)− zSn(v) = 0 then implies that z = 2.
Hence v = (z − 2)2 + 2 = 2. This contradicts −2 ≤ v < 2.

Suppose v = −2 (in this case n must be even). Then

Sn−2(v) = (−1)n−2(n− 1) = n− 1, Sn−1(v) = (−1)n−1n = −n
and Sn(v) = (−1)n(n+ 1) = n+ 1. Equation 4Sn−1(v)− (4− z)Sn−2(v)−
zSn(v) = 0 then implies that z = 4n − 2. Hence v = (z − 2)2 + 2 =
(4n− 4)2 + 2 ≥ 2. This contradicts −2 ≤ v < 2.

4.1.2. Fiberedness. We show that Pn−1(v) + Pn−2(v) 6= 1 for any para-
bolic representation on the geometric component of W2n−1, where n ≥ 2.

By Lemma 2.5 we have Tn(v)−2
v−2 = 1 if and only if v = 2 cos 2jπ

n−1 for some

1 ≤ j ≤ n−1
2 , or v = 2 cos 2kπ

n+1 for some 1 ≤ k ≤ n+1
2 . In particular, v ∈ R

and −2 ≤ v < 2.
Suppose v = 2 cos 2jπ

n−1 for some 1 ≤ j < n−1
2 . Then, by Lemma 2.3, we

have

Sn−2(v) =
sin(n− 1) 2jπ

n−1

sin 2jπ
n−1

= 0, Sn−1(v) =
sinn 2jπ

n−1

sin 2jπ
n−1

= 1,

Sn(v) =
sin(n+ 1) 2jπ

n−1

sin 2jπ
n−1

= v.

Equation 4Sn−1(v) − (4 − z)Sn−2(v) − zSn(v) = 0 then implies that 0 =
4−zv = 4−6z+4z2−z3 = 0. This is equivalent to (2−z)(z2−2z+2) = 0.
Then z ∈ {2, 1± i}. Hence v = (z − 2)2 + 2 ∈ {2, 2∓ 2i}. This contradicts
−2 ≤ v < 2.

Suppose v = 2 cos 2jπ
n+1 for some 1 ≤ j < n+1

2 . Then, by Lemma 2.3, we
have

Sn−2(v) =
sin(n− 1) 2jπ

n+1

sin 2jπ
n+1

= −v, Sn−1(v) =
sinn 2jπ

n+1

sin 2jπ
n+1

= −1,

Sn(v) =
sin(n+ 1) 2jπ

n+1

sin 2jπ
n+1

= 0.
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Equation 4Sn−1(v) − (4 − z)Sn−2(v) − zSn(v) = 0 then implies that 0 =
−4 + (4− z)v = 20− 22z + 8z2 − z3 = 0. This is equivalent to (2− z)(z2 −
6z+ 10) = 0. Then z ∈ {2, 3± i}. Hence v = (z− 2)2 + 2 ∈ {2, 2± 2i}. This
contradicts −2 ≤ v < 2.

Suppose v = −2 (in this case n must be odd). Then

Sn−2(v) = (−1)n−2(n− 1) = −(n− 1), Sn−1(v) = (−1)n−1n = n

and Sn(v) = (−1)n(n+1) = −(n+1). Equation 4Sn−1(v)−(4−z)Sn−2(v)−
zSn(v) = 0 then implies that z = 4n − 2. Hence v = (z − 2)2 + 2 =
(4n− 4)2 + 2 ≥ 2. This contradicts −2 ≤ v < 2.

4.2. Proof of Corollary 2. We prove Corollary 2 for W2n−1. The proof
for W2n is similar. Let M2n−1,p be the 3-manifold obtained from S3 by
p
1 -surgery along the component of W2n−1 corresponding the meridian a.
Suppose ρ : π1(EW2n−1) → SL2(C) is a nonabelian representation of the
form

ρ(a) =

[
s1 1
0 s−1

1

]
and ρ(b) =

[
s2 0
u s−1

2

]
where (

xySn−1(v)− (xy − z)Sn−2(v)− zSn(v)
)
Sn−1(v) = 0.

Here x = s1+s−1
1 , y = s2+s−1

2 , z = s1s2+s−1
1 s−1

2 +u and v = x2+y2+z2−
xyz − 2 are the traces of the images of a, b, ab and bab−1a−1 respectively.

The following determines when the representation ρ : π1(EW2n−1) →
SL2(C) extends to a representation ρ : π1(M2n−1,p)→ SL2(C).

Lemma 4.1. ρ extends to a representation ρ : π1(M2n−1,p) → SL2(C) if
and only if one of the following holds:

• Sn−1(v) = 0, sp1 = 1 and s1 6= ±1,

• xySn−1(v)− (xy− z)Sn−2(v)− zSn(v) = 0, s1 = −1, 2y
y+z = −p and

p is odd,
• xySn−1(v) − (xy − z)Sn−2(v) − zSn(v) = 0, s1y−z

−s−1
1 y+z

= s−p1 and

s1 6= ±1.

In all cases we have x 6= 2 (i.e. s1 6= 1).

Proof. Let λa be the canonical longitude corresponding to the meridian a
of W2n−1. By [17] we have

ρ(λa) =

[
la ∗
0 l−1

a

]
,

where

la =

{
1 if Sn−1(v) = 0,
s1y−z

−s−1
1 y+z

if xySn−1(v)− (xy − z)Sn−2(v)− zSn(v) = 0,
(16)
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and

∗ =

{
0 if Sn−1(v) = 0,
y(xy−2z)
xyz−y2−z2 if xySn−1(v)− (xy − z)Sn−2(v)− zSn(v) = 0.

(17)

Note that there is a small error in [17]: the canonical longitude in [17] is
actually the inverse of the canonical longitude.

The nonabelian representation ρ : π1(EW2n−1) → SL2(C) extends to a
representation ρ : π1(M2n−1,p) → SL2(C) if and only if apλa = 1. Note

that ρ(ap) =

[
sp1 Sp−1(x)

0 s−p1

]
, where Sp−1(x) =

sp1−s
−p
1

s1−s−1
1

if s1 6= ±1 and

Sp−1(x) = (±1)p−1p if s1 = ±1. Hence the matrix equation apλa = 1 is

equivalent to la = s−p1 and ∗ = −Sp−1(x).
Case 1: If Sn−1(v) = 0, then la = 1 and ∗ = 0 by (16) and (17) respec-

tively. Hence apλa = 1 is equivalent to s−p1 = 1 and Sp−1(x) = 0, which
means that sp1 = 1 and s1 6= ±1.

Case 2: If xySn−1(v)− (xy − z)Sn−2(v)− zSn(v) = 0, then

la =
s1y − z
−s−1

1 y + z
and ∗ =

y(xy − 2z)

xyz − y2 − z2

by (16) and (17) respectively. Hence apλa = 1 is equivalent to

s1y − z
−s−1

1 y + z
= s−p1 and

y(xy − 2z)

xyz − y2 − z2
= −Sp−1(x). (18)

If s1 = 1, then s1y−z
−s−1

1 y+z
= s−p1 does not hold. Hence apλa 6= 1.

If s1 = −1, then s1y−z
−s−1

1 y+z
= s−p1 holds if and only if p is odd. In which

case, the second equation of (18) is equivalent to 2y
y+z = −p.

If s1 6= ±1 then the first equation of (18) implies the second one. Indeed,

if s1y−z
−s−1

1 y+z
= s−p1 then

Sp−1(x) =
sp1 − s

−p
1

s1 − s−1
1

=

−s−1
1 y+z
s1y−z −

s1y−z
−s−1

1 y+z

s1 − s−1
1

= − y(xy − 2z)

xyz − y2 − z2
.

In this case apλa = 1 is equivalent to s1y−z
−s−1

1 y+z
= s−p1 . �

We now finish the proof of Corollary 2 for W2n−1. Suppose the non-
abelian representation ρ : π1(EW2n−1) → SL2(C) extends to a representa-
tion ρ : π1(M2n−1,p) → SL2(C). By Lemma 4.1, x 6= 2. Since the core of
the attaching solid torus is homotopic to a, by the gluing formula for the
Reidemeister torsion (see e.g. [6]) we have

τρM2n−1,p
=

τρW2n−1

2− tr ρ(a)
=
τρW2n−1

2− x
. (19)
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By Theorem 2.2 we have τρW2n−1
= ∆ρ

W2n−1
(1, 1). Theorem 1 then implies

that

τρW2n−1
= 2
[
(2− x− y + z)Sn−1(v) + (4− 2x− 2y + xy)Pn−2(v)

]
.

This, together with equation (19), completes the proof of Corollary 2 for
W2n−1.
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