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Product Hardy spaces associated with
para-accretive functions and 1T'b theorem

Ming-Yi Lee, Ji Li and Chin-Cheng Lin

ABSTRACT. We introduce the Hardy spaces associated with para-
accretive functions in product domains and demonstrate their atomic
decompositions as well as duality. Then, we establish the endpoint ver-
sion of product T theorem with respect to our Hardy spaces and the
dual spaces.
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1. Introduction

Calderén and Zygmund [2] introduced a class of convolution singular
integral operators that generalize the Hilbert transform and Riesz trans-
forms. The L?-boundedness of such convolution operators follows from the
Plancherel theorem. For non-convolution singular integral operators, David
and Journé [5] gave a general criterion for the L2-boundedness that is the
remarkable T'1 theorem. Unfortunately, the T'1 theorem cannot be applied
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to the Cauchy integral on a Lipschitz curve defined by

1 > f(y)

) = o [ eIy,
where the function a(z) satisfies the Lipschitz condition. Meyer first ob-
served that C'(b) = 0 provided b(xz) = 1+4ia/(z). Therefore, if the function 1
in the T'1 theorem is allowed to be replaced by an accretive function b which
is a bounded complex-valued function satisfying Reb(xz) > 6 > 0 almost
everywhere, then this result would imply the L?-boundedness of the Cauchy
integrals on all Lipschitz curves. Replacing the function 1 by an accretive
function b, McIntosh and Meyer [25] obtained a T'b theorem. Finally, David,
Journé and Semmes [6] proved a new T'b theorem by replacing the function
1 by the so-called para-accretive functions b. To extend the T theorem to
Hardy spaces, Han, Lee and Lin [13] introduced a new class of Hardy spaces
associated to a para-accretive function b, denoted by H {)’ , which was given
by those distributions such that their Littlewood-Paley g-functions associ-
ated to b belong to LP, and showed the H}-boundedness of singular integer
operators.

By taking the space R™ x R"2 along with two-parameter family of di-
lations (z,y) — (d1z,02y),x € R" y € R"™,§; > 0,i = 1,2, instead of
the classical one-parameter dilation, R. Fefferman and Stein [10] studied the
product convolution singular integral operators which satisfy analogous con-
ditions enjoyed by the double Hilbert transform defined on R x R. Journé
[22] generalized the product convolution singular integral operators to the
product non-convolution singular integral operators and introduced a class
of singular integral operators which coincides with the product convolution
singular integral operators on product spaces. Moreover, Journé [22] proved
the product T'1 theorem. Suppose b(z1,z2) = bi(x1)ba(z2), where by and by
are para-accretive functions on R and R"2, respectively. A generalized sin-
gular integral operator is a continuous linear operator 7' from bC{ (R™ x R"2)
into (bCJ(R™ x R™))’ for all n > 0 if the kernel of T is a singular inte-
gral kernel and, for fi,91 € CJ(R™) with supp(fi1) N supp(g1) = @ and

f2,92 € CJ(R™) with supp(f2) N supp(g2) = &,

(MyT My f1 ® f2, 91 @ g2)

= / / ba(x2)b1(z1)g1(x1)g2(x2) K (21, 22, Y1, Y2)
R7L1 XR7L2 Rnl XRTL2
X ba(y2)b1(y1) f1(y1) f2(y2)dxrdzady dyo,

where M, denotes the multiplication operator by b; that is, M,f(z) =
b(xz)f(x). Han, Lee and Lin [15] obtained the following product T'b the-
orem.

Theorem A ([15]). Suppose that by and by are para-accretive functions on
R™ and R™2, respectively, b(x1,x2) = bi(z1)ba(x2), and T is a generalized
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singular integral operator. Then T and T are bounded on L2(R™+n2) if and
only if Th, 'Tb, Tb, *Th € BMO(R™ x R™) and M,TM, € WBP.

Here T, Tb and *Th denote the three types of adjoint and partial adjoint
operators of T'. For simplicity we do not repeat all the definitions here, for
the detail of the definition we refer to [15]. We also note that a similar result
of the product T'b theorem was obtained by Ou [28] as well.

In 2013, Han, Li and Lu [18] developed a satisfactory theory of multipa-
rameter Hardy spaces in the framework of spaces of homogeneous type under
only the doubling condition and some regularity assumption of the under-
lying metric spaces. Later Han, Li and Ward [19] established the theory of
multiparameter Hardy spaces on space of homogeneous type in the sense of
Coifman and Weiss, without assuming any extra conditions. Such a metric
space of homogeneous type includes the model case of Carnot-Carathédory
spaces intrinsic to a family of vector fields satisfying Hormander’s condi-
tion of finite rank. Recently, Hart [21] presented a bilinear T'b theorem for
singular operators, and proved the product Lebesgue space bounds for bi-
linear Riesz transform defined on Lipschitz curve as an application of his T'b
theorem.

Consider the Cauchy integrals on product domain R x R

Y f(y1,92)
Cprof(z1,22) = D. -/_OO /_Oo ((x1—y1) +i(ar(z1) — a1(y1)))
X

1
((z2 — y2) +i(az(z2) — az(y2

)))dyldy%

which is a particular testing example operator for product T'b theorem. It
is well-known that Cl,;, is not bounded on Chang-Fefferman product Hardy
space H!(R x R).

Thus, a natural question arises. What is the right version of product
Hardy spaces associated to the para-accretive by (x) = 1+ia)(z) and be(x) =
1 + ia4(z) such that the operator Cpy, is bounded on these product Hardy
spaces? In this paper we focus on the following

Question 1: Can one develop the product Hardy spaces H 51 by (R™ xR"™2)
associated to para-accretive functions by, by for pg < p < 0o, pg <17

Question 2: Motivated by the duality results between product Hardy
space H' and product BMO on R™ x R™ of Chang and R. Fefferman, can
we establish the duality theory for H 51 by (R™ x R™), pg <p <17

Question 3: What is the analogous endpoint version of product T'b the-
orem for singular integral operators T" when p = 1 and p = oo or more
generally for pg < p < 17

These questions will be answered affirmatively. We will employ a uni-
fied approach to answer these questions. This approach is achieved by the
following steps:
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1. We first introduce new Banach spaces which are spaces of product
test functions and distributions in our framework. These spaces on the one-
parameter space R™ associated with para-accretive function were introduced
in [12], and on the spaces of test functions and distributions on product
spaces of homogeneous type in the sense of Coifman and Weiss only satisfy-
ing the doubling condition and the regularity assumption were introduced
in [18]. In this paper, we introduce spaces of test functions and distributions
on product spaces associated with para-accretive functions.

2. We then establish discrete Calderén’s identity on such product test
function spaces. The classical Calderén’s identity was first used by Calderén
in [1]. Such an identity is a very powerful tool, in particular, in the theory of
wavelet analysis. See [26] for more details. Using Coifman’s decomposition
of the identity operator, David, Journé and Semmes [6] provided a Calderén-
type identity which is a key tool to prove the T'1 theorems on space of
homogeneous type and the T'b theorem on R™. The continuous and discrete
versions of Calderdén’s identities associated with para-accretive function were
developed in [12], [13], [14] and [24]. In this paper, we provide discrete
Caldeondn’s identity on the product spaces associated with para-accretive
functions. This identity will be the main tool for us to establish the whole
product theory.

3. We next demonstrate the Plancherel-Polya-type (or sup-inf) inequality
in the multiparameter setting. The classical Plancherel-Polya inequality
says that the LP norm of f whose Fourier transform has compact support is
equivalent to the /P norm of the restrictions of f at appropriate lattices. This
kind of inequality was first proved in [13] on one-parameter space associated
with para-accretive function. In this paper we prove such inequalities on
product spaces associated with para-accretive functions. As an immediate
consequence of the Plancherel-Polya inequality, the product Hardy space
Hy,, (R™ x R™) is well defined.

4. We then consider the the atomic decomposition theory on product do-
mains. The atomic decomposition for one variable space Hj is given by [13]
and [14]. For product Hardy space, Chang and R. Fefferman provided the
atomic decomposition of HP(R™ x R"2). Using the atomic decomposition,
Han, Lee and Lin [15] proved the HP(R™ x R"?) boundedness of Journé’s
product singular integrals. Lee [23] also obtained the theory in weighted
product Hardy space. In this paper, we obtain the atomic decomposition in
H{)’le (R™ x R™) N L2(R™+n2),

5. We develop the dual spaces of H, lI:l by (R™ x R™2). Coifman and Meyer
[27] introduced a new Hardy space H bl that can be defined by all functions f
such that bf € H'. Similarly, BM Oy, the dual of H}, is defined as follows:
a function f € BMOy if and only if f = bg, where g € BMO. For p < 1, the
dual space of H} is defined similarly via the dual space of the classical Hardy
spaces HP. Han, Li and Lu [17] established and studied the product type
Carleson measure space CMOP and proved that it is the dual of the product
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H? for 0 < pg < p <1 for some pg on product spaces of homogeneous type.
In this paper, we introduce the Carleson measure space C'M Ofl by associated
with the para-accretive functions by and by, and prove that the dual of the
product Hardy space Hfl p, Studied in this paper can be characterized by
CMOflbz. In particular, C’MOglb2 (R™ x R™) = BM Op,p, (R" x R"?), the
dual of H, l}1 b, (R™ x R"2). For the definition of para-accretive functions, we
refer to Section 2.

6. We finally establish endpoint version of T theorem for singular integral
operators 1" on product spaces (see Definition 5.1). In this paper we apply
vector-valued singular integral, Calderén’s identity, Littlewood-Paley theory
and the almost orthogonality together with Fefferman’s rectangle atomic
decomposition and Journé’s covering lemma to show that Journé’s product
singular integrals are bounded on Hy , (R™ xR"?) and BM Oy, (R™ xR"?)
under some conditions. To be more specific, we have the following

Theorem 1.1. Suppose that b; are para-accretive functions on R™ for i =
1,2 and T s a singular integral operator in Journé’s class with reqularity
exponent € (see Definition 5.1). Let m21u2<{ e } <p<l.

=1,

n;+e
(1) Ty (b1) = T5(b2) = 0 if and only if T is bounded from HP(R™ x R"2)
to Hy , (R™ x R"?).
(2) TF(1) = T3(1) = 0 if and only if T My,s, is bounded from Hy , (R™ x
R"™2) to HP(R™ x R™).
(3) Ty (b1) = T5(b2) = 0 if and only if TMyyp, is bounded from
HY, (R™ x R™) to HP, (R™ x R"™).

For the details of definition of 77 (1), T5(1), T5(b1) and T3 (b2), we refer
to Section 5.

By the duality of H!(R™ x R™) with BMO(R™ x R"2) and the duality
of Hl}1b2 (R™ x R™) with BM Op,p,(R" x R"™?), we also have

Theorem 1.2. Suppose that b; are para-accretive functions on R™ for i =
1,2 and T s a singular integral operator in Journé’s class with reqularity
exponent €.
(1) Ti(b1) = Ta(b2) = 0 if and only if T admits a bounded extension
from BM Oy, (R™ x R"™2) to BMO(R™ x R™2).
(2) T1(1) = T5(1) = 0 if and only if My,p, T admits a bounded extension
from the space BMO(R™ x R™) to BM O, (R™ x R"2).
(3) T1(b1) = Ta(b2) = 0 if and only if My, T admits a bounded extension
from the space BMOp,p,(R™ x R™2) to BMOp,p, (R™ x R™2).

For the details of definition of 71(1), T5(1), 77(b1) and T5(b2), we refer to
Section 5.

This paper is organized as follows. In Section 2, we develop the
Littlewood-Paley-Stein theory on R™ x R"2. To do this, we first recall some
basic definitions, notion and known results established in the one parame-
ter case, and then introduce the spaces of test functions and distributions
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on R™ x R™. We prove discrete Calderén’s identity and the Plancherel-
Pélya inequalities (Theorems 2.8 and 2.13). We introduce the Littlewood-
Paley-Stein square function and define the Hardy space Hy , (R™ x R"™2).
Some important properties of H, 51 by (R™ x R™2) are also proved in this sec-
tion. In Section 3, we establish a new atomic decomposition for H, i’l py (R X
R"2) N L2(R™ x R™) (Theorem 3.1). As an application, we show that the
Hardy space Hy ,, (R™ x R"2) N L?(R™ x R™) can be defined by bibsf €
HP(R™ x R™) N L2(R™ x R"2) (Corollary 3.2). Section 4 deals with the
dual of Hy , (R™ x R"?). We introduce the generalized Carleson measure
space CM Oy, (R™ x R"?) and show that CM Oy , (R™ x R"?) is the dual
space of Hy , (R™ xR"?) (Theorem 4.1). Finally, we show the boundedness

and endpoint estimates of Journé’s product singular integrals (Theorems 1.1
and 1.2).

2. The Littlewood-Paley-Stein theory on Hy , (R™ x R"2)

2.1. The Littlewood-Paley-Stein theory on H} (R™). We begin by
recalling the definition of para-accretive functions (see for example [6, 12]).

Definition 2.1. A bounded complex-valued function b defined on R™ is said

to be para-accretive if there exist constants C,~v > 0 such that for each cube
Q C R™, there is a Q' C Q with v|Q| < |Q'| and satisfies

1
— b(x)dx| > C.
!Q\‘ @

By the Lebesgue differentiation theorem, it is easy to show that |b(z)| >
C > 0 almost everywhere.

The following class of “test functions” associated to a para-accretive func-
tion was introduced in [12].

Definition 2.2. Fix two exponents 0 < 5 < 1 and v > 0. Let b be a para-
accretive function. A function f defined on R" is said to be a test function
of type (B,7) centered at xo € R™ with width d > 0 if f satisfies
pAl
(d+ [z — zo|)"
x—a B dy
@)= f@l < ()

d+|$—l’0’ d—|—|{L‘—l'0|)n+’y
x/‘ S d+|1’2—:ﬂ0|’

[f(z)] <C (1)

(2)

for |z — and

f(z)b(z)dx = 0.
Rn”

We write M (x0, d) for the collection of all test functions of type (5,7)
centered at xo € R with width d > 0. For f € M (zo,d), the norm of f
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in M7 (z0,d) is defined by
1169 (g g = 0f {C  (2:1) and (2.2) hold}.

We denote M(ﬁm((), 1) simply by MY Then M is a Banach space

under the norm |[f]|, . It is easy to check that for any zp € R" and

d>0, M*7 (xo,d) = M with equivalent norms. As usual, we write
bM(B,’Y) _ {bg | ge M(ﬁﬂ)}.

If f € bM”” and f = bg for g € M| then the norm of f is defined
by HbeMwm = |lgll \ ;.- The dual space (bM(B"Y)), consists of all linear

functionals £ from bM B to C satisfying
LN < Clflopesn  forall f e dbME,

We also need the definition of an approximation to the identity associated
to a para-accretive function b.

Definition 2.3 ([12]). Let b be a para-accretive function. A sequence of
operators { S }rez is called an approximation to the identity associated to b
if Sk(x,y), the kernels of Sk, are functions from R™ x R™ into C and there
exist a constant C' and some 0 < £ < 1 such that, for all kK € Z and all
z,7',y and 3y’ € R,

(i) |Sk(z,y)| = 0if |z —y| > C27% and |Sy(z,y)| < C2F",
(ii) [Sk(z,y) — Sk(a',y)| < C220T9)|z — 2|7,
(iii) |Sk(2,y) — Sk(x,y')| < C2H )|y — |7,
(iv) |[Sk(z,y) = Sk(z,y")] = [Sk(@’,y) — Sk(a’, /)]

< 022k(n+5)‘$ _ x’|€|y o y/|a7

(v) Sk(z,y)b(y)dy =1 for all k € Z and = € R™,
R

(vi) Sk(z,y)b(x)dr =1 for all k € Z and y € R™.
R
Remark 2.1. Let Dy(z,y) := Sk(x,y) — Sk—1(z,y). It is clear that Dy(x,-) €
Mo (z,27%) and hence Dy(z,-) € M Similarly, Di(-y) € M7 By
definition, it is clear to see that bDy(z,-) € b for0O< B,y <e.

We now recall the definition of H}.

Definition 2.4 ([13]). Suppose that {Sk}rez is an approximation to the
identity associated to a para-accretive function b with regularity exponent ¢.
Set Dy = S —Sk_1. For 0 < 3,7 < ¢, denote by M7 the closure of M

with respect to the norm || - || The Hardy space HY, - < p <1, is

M(ﬂﬁ) : n-+te

the collection of f € (b/\'/l(ﬁ’w)), satisfying
1l = 1lg(F)llp < oo,
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where g(f), the Littlewood-Paley g-function of f, is defined by

- {; \Dk<bf><x>|2}l/2.

We would like to point out that one of main results in [13] is the following
Plancherel-Polya type inequality.

Proposition 2.5 ([13]). Suppose that {Sk}rez and {Ry}rez are approz-
imations to the identity associated to b with regularity erponent e, and

e <p <oo. Set Dp = Sg— Sg-1 and Ex = Ry — Ri—1. Then, for

f c (bM(ﬂfy))/,

H{ZZ sup |Bx(6)(2)]) ka}l/Q p

2€Qy

) ”{ zk:%k: (;ggk |Dk<bf)<z)|)2XQk }1/2 )

where Q. are dyadic cubes with side length £(Qy) = 27N for some fized
positive large integer N and Xo, are characteristic functions of cubes Q.

9

We have the continuous and discrete versions of the Calderén reproducing
formula.

Proposition 2.6 ([12], [14] and [24]). Let b be a para-accretive function
and {Si} be an approximation to the identity associated to b with regularity
exponent €. Set Dy = Sp — Sp_1. Then there exists a family of operators

{5k} such that, fO?" f c M(&ﬁ)’

= DyM,Dy(bf)(x)
i
and
D xw D b b(y)dy,
= S Dyl wy ) By(bf) >/Qk<y>y

k Qg
where ZQk runs over all dyadic cubes Qy,’s with side length £(Qy) = 27F—N
for some fized positive large integer N, Tq, 18 any fized point in Q, and the

series converges in ./\/l(ﬁ’vlfor 0<B,y<eandin L1, 1 < g < co. Moreover,
Dy(z,y), the kernels of Dy, satisfy the following estimates: for 0 < &’ < ¢,
there exists a constant C > 0 such that

z—ka’

27F + | —y[) e

| Di(x,y)| < C

~ ~ _ o / 2kz—:
Dute.y) - eyl < (=YY -
) @ e
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forly—y'| <@ F + |z —y)/2,

Ek(az,y)b(y) dy=0 for allk € Z and x € R",
R"

Dy (z,y)b(z) dz = 0 for allk € Z and y € R™.
]Rn
2.2. Test functions and distributions associated to para-accretive

functions. We first introduce spaces of test functions and distributions on
R™ x R™ agsociated to para-accretive functions.

Definition 2.7. Fix four exponents 0 < 31,82 < 1 and 1,72 > 0. Let by
and bs be para-accretive functions on R™ and R™2, respectively. A function
f defined on R™ x R™ is said to be a test function of type (51, B2,71,72)
centered at (o, yp) € R™ x R"2 with width dy,ds > 0 if f satisfies
Y2
<C 4 ;
zo,d1) = (da + |y — yo|)" 2
.o /
(11) ||f(7y) - f(? y )“M(51771)(x07d1)
<C< ly — /| >52 dy’
T N\daFly —wol/  (daly — yol)"2t2
(iii) properties (i) and (ii) also hold with x and y interchanged;
(iv) / f(z,y)bi(x)dx = / f(z,y)b2(y)dy = 0 for all x € R™ and
R™1 R™2
y € R™2,

If f is a test function of type (81, B2,71,72) centered at (zg,yo) € R™ x R"2
with width di,ds > 0, we write

Fe M 4y yo,dy, dy),
and the norm of f is defined by

() 1G9l om0

da+y — ol
2 b

for |y —y'| <

Hf”M(/J‘Lﬁzyﬁﬂz)(x07y07d17d2) =inf {C : (i), (ii) and (iii) hold}.

Similarly, we denote by M) Class of M(Bl’ﬁzmﬁﬂ(o, 0,1,1).
We can check that M2 — M(ﬁl’ﬁz’wl’wz)(xo,yo, dy,ds) with equiva-
lent norms for all (z,y) € R™ xR"2. Let M2 enote the completion
of the space M) gy pIR2) ey ) < Bi,vi < €, 1 =1,2. For

*(B1,82,71,72)
feM , we define ||f”M(ﬁlvf327’Ylv’YZ) = HfHM(ﬁlszvaz)- As usual,
we write

(B1:82:71:72) (B1,82:71,72)
bi1bo M = {blbgg ’ g c M }

If f e brbo M2 anq f = bibag for g € M(ﬁl’%m”), then the norm
of f is defined by

||f||b1b2M(51162!71!72) = HQHM(ﬁlvﬁQﬁlﬁz) .
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The dual space (b1b2M<Bl’B2'71'72))/ consists of all linear functionals £ from
blbgM(Bl’ﬁmmw to C satisfying

(B1,82,71:72)
|£(f)| S C‘|f||b1b2M(61aﬁ2a’Y1a’Y2) fOI" aﬂ f & b1b2_/\/l LP2:7172 .

2.3. Discrete Calderdn identity on test function spaces. Through
the paper, we always denote b;q, by

1

Theorem 2.8. Let Dy, and Ekz be the operators given in Proposition 2.6
on R™, ¢=1,2. Then

flevea) =D D 3 > 1Qk 1Qu| Dry (w1, 24, ) Dia(w2, g, )
ki k2 Qry Qu,
X DkleleQMbe(kal ) kaQ )lekl bQQk27

bl(xl)da:“ 1= 1,2.

where the series converges in MUrP) for 0 < Bi,vi <ei, i =1,2 and
m P, 1 < p<oo.

Proof. The proof of this theorem is based on the method of iteration and
some known estimates on R"™. We first show the LP,1 < p < 0o, convergence.
Denote

glen,ve) = flen, o) = D > D> Q|| Qky | Diy (21, 2 Ty, )

|k1|<L1 |k2|<L2 Qky Qky
X DkQ ($27 kaQ )Dkl Mb1Dk2Mb2f(ka1 ) ka2 )lekl bQQk2
=: g1(x1, 22) + g2(21, 22),

where
gi(n,ae) = Y > |Qky|Ds, (22, Yq,, ) Do M, f (21,54, )b2q,,
|k2|<L2 Qu,
> Z!Qk1|Dk1(w1,$le)leleklel
[k1|<L1 Qk,
Z Z ‘ka ’Dk2 (.’,12‘2, ka2 )DkszQf('7 ka2 )b2Qk2> (kal )

|k2|<L2 Qksq

and
g2(x1,w2)

= f($1,$2 Z Z |Qk2|Dk2(x2?yQ )Dk’szzf(xlaka )bQQkQ

|k2|<L2 Qky
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We now need the following two estimates on R™, which was proved in [13]
(the original idea and version is due to [12], see also [7] for a systematical
introduction): there exists a constant C' such that for f € LP(R"), 1 < p <
oo, and any integers L,

Y D QkIDr(2, 5o, ) Di(bS) (yg, oy

|k|<L Qg

< Cllfllp (3)
p

and

|k|<L Q

< cH{ 5 Z\Dk<f>r2}l/2

|k[>L Qx
Using (3) first and then (4) yields

ugluLpscH{ DS \Dle@(f)r?}l/z

|k1|>L1 |k2|<La

p

p

—0 as L1 — oo.
p

Similarly,
lg2lle =0  as Ly — oo.
Hence, the LP convergence follows.

To see the convergence in the space of test functions, we need the following
estimates on R™ which, again, was proved in [13] with the original idea and

version in [12], see also [7]): for f € M7 and any intrgers L,

>0 D 1Qk|Dr(w2, v, ) Di(Mo f) (Y, Yo,

[k|<L Qk

<C )
o = 11 80 (5)

and

DD |Qk|Dk(w2, o, ) Dr(Myf) (Yo, )b, — fH @)
[k|I<L Q M (6)

< C27 | £l g0+

where C'is a constant, 0 < 3/ < 8 and 0 </ < .
We observe that if f € M™% then IIfe, xQ)HM(Bl’“)’ as a function

of the variable xo, is in M7 and

LG |y 82mer S FN 5008201920
Similarly,

LG o2 | yorm S FN 500200720 -
Therefore, we obtain

191(-; z2)

HM(Bi,wi)
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< C2—L15 Z Z |Qk2‘Dk2(l‘27ka )DkQMbe(x17ka )bZQkQ (8
|k2|<L2 Qr,y 2 2 M
< c2 B0l f( ) “
< 2" p g (B272) (d2 ¥ |$2 _ yODTLzJF’YZ MmBrm)
d"/z
2

—L16
S 02 1 ||f(, ~)||M(ﬁ1752ﬂlﬂ2) (d2 + ’$2 _ yo‘)n2+,},2

and, similarly,
de
d2 + ‘x2 — yo‘)n2+72 ’

—L26
g2 22l o) < C2752° I fl| o122 (

Noting that g(z1, z2) — g(z1,25) = [g1(21, 22) — g1 (21, 2%)] + [g2(21, 22) —
g2(x1, 25)] and repeating the same estimates imply

lg(-s x2) = g(- z5)

(G

I,

<c@ 0+ 2_L25)HfHM(ﬁLBzmwz)(

|2 — )| )52 dy?
da + |2 — yol/ (d2 + |z2 — yo|)2+72’
where |1y — 25| < M. The same proof can be carried out to the
estimates if we interchange the roles of x and y. Hence,

—L16 —Lod
||g||M(f31;B2,v1wz> < C(2 I +2 L ) HfHMUhﬁzm»vz) ) (7)

ich vi . 81,6271,
which yields the convergence in MPrP2m2) 0

Using the same argument, we also have continuous Calderén identity on
test function spaces as follows.

Theorem 2.9. Let Dy, and lN)kl be given in Proposition 2.6 on R™, i =1, 2.
Then
f= Z Z DklMlek2Mb2Dk1Mb1Dk2Mb2fa
k1 ko

where the series converges in M) for 0 < Bi,vi <ei, i =1,2 and
m L1, 1 < q < 0.

Theorem 2.10. Let Dy, and ﬁkz be the operators given in Proposition 2.6
on Rm, i = 1’2' Then fO?" f e bleM(BLﬁQ»’YI»’YQ)

flana) =) 3 > > |Qu |Quelbr(21) Di,y (1,6, Jb2(22) Dy (22,3, )

k1 ke Qry Qky

X Dk1 Dsz(.Tle s ka2 )lekl bZQkQ )

where the series converges in blbgM(ﬁl’BQ’Wl’m for 0 < Bi,vi < e, i=1,2
and in LP, 1 <p < oo.
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Proof. Let f € bibo M7 Then there exists a g € M7 guch
that f = bibag. Since |[fll, , \ 160102 = 9l #1822 and Theorem
2.8, the proof is completed. O

By the duality, we have the following theorem.

Theorem 2.11. Let Dy, and 15;% be the operators given in Proposition 2.6
on R% ¢ =1,2. Then for f € (blbg./\/lml’ﬁ%ﬂ’m))l with 0 < Bi,vi < &,
1=1,2

Flan,e) =3 3 Y " |Qk, [|Qk, D5, (a1, o ) Dks (2, g, )
ki k2 Qpy Qg
X Dzl Dz2f(ka1 ) kaQ )lekl bQQkQ’

where the series converges in the sense of distribution, where D;;Z_,i =1,2
denote the adjoint operator of Dy,.

By [12] and [14], we also have the following continuous Calderén repro-

£,€)

ducing formula. For f € M ,
f(@) =" DyMyDy(bf)(x),
k

where 15k(x, y), the kernels of Dy, satisfy the same conditions of ﬁk(y,m).
By the above argument, we also have

Theorem 2.12. Let Dy, and ]_N)kl be the operators given in Proposition 2.6

on R ¢ =1,2. Then for f € (blbng”bﬂl’n))/ with 0 < B, v < &,
1=1,2

f($1,$2) = Z Z Z Z ‘Qlﬂ HQM’DZl (xlakal )DZQ(x27ka2)

k1 ke Qry Qkg
X Dkl Dk2f(ka1 ) ka2 )lekl bQQk2 )
where the series converges in the sense of distribution.
2.4. Plancherel-Pélya inequality on test function spaces. Using the

discrete Calderdn identity we prove the following Plancherel-Poélya inequality
on product domains associated with para-accretive functions.

Theorem 2.13. Let {Sk, }k,ez and {Ry, }r,cz be two approxzimations to the

identity associated to b; with reqularity exponent € on R™ and nﬁj_s <p<

oo, 1 = 1,2. Set Dy, = Sk, — Sk,—1 and Ey, = Ry, — Rr,—1. Then, for
f E (bleM(ﬁlvBZv’Ylv’YZ))/

H{ZZZZ ( sup sup |Ex, My, Ex, My, (f)(21, Z2)|)2Xle Yo, }2
P

k1 k2 Qi Qry A1E€Qn 72600,
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1
2 2
~ f f | Dy, My, D, M, , )
H{ZZZZ(ZIIGIkaZQIE%kJ by My, Dy Mi, () (21, 22)| X%X%} )

k1 k2 Qi Qry

where Qy, are dyadic cubes with side length £(Qy,) = 275N for some fized
positive large integer N and Xo, Ore characteristic functions of cubes Qy,,

i=1,2.

Proof. Given f € (blbg/\/lwl’ﬁ%ﬁ’m))/, Theorem 2.12 shows

= <ZZ Z Z |Q/€1||Qk2|Dk1('v kal )Dkz('7ka2)

k1 ke Qry Qky

X Dkl Mb1 DkJQMbe(kal ) kag )lekl b2Qk2 ) g>,

where g € b1b2M<ﬁl’B2'71'72>. Hence, for any ji, jo € Z, we have

ElelnEszbz (f)(xla 132)

= Z Z Z Z Qe || Qs |Ej1Mb1Ej2Mb2Dk1 (21, kal ) Dy (22, kaQ)

ki k2 Qpy Qg
S Dklelegszf(ile 7ka2 )lekl bZka'

For 0 < &’ < ¢ and x; € @Qj,, the almost orthogonality estimate (see [20,
Lemma 4.3] and [24, p. 10]) gives
9—(j1Ak1)e!

(2_(j1/\k1) + |x1 — kal |)n1+€"

|Ej1 Mbl Dkl (xl, a:le )| < C|2*|j1*k1|s/

Therefore, for every 21 € Q;;, and 22 € Qj,, we have

|Ej, My, Ej, My, (f) (21, 22)|
9—(j1Ak1)e’

k
<CZZZZ|Q’€1”Q’€2|2 e (2-(Ak1) —|—|z1—:c [yrate’
k1

ki ke Qrq Qky

9—(jaNkz)e’

x 22 —kzle’ , ;
(2= (2k2) 4 |29 — Ya, |)rate

’Dk1Mb1Dk2Mb2f(ka1 ) ka2 )‘7

where ¢ < e. Thus,
sup  sup |Ej1Mb1Ej2Mb2(f)(zla22)|XQ. (xl)XQ. (z2)
21€Qj, 22€Qj, 1 2
9—(j1nk1)e’

k
< CZZZZ Q| @nz 27 e (2— (J1nk1) 4 |z — Ty |)"1+a'
k1

ki ke Qi Qky

9—(jaNk2)e’

(2— (2 k2) 4 | — Yo, |)nate’ |
2

X 2_‘]'2_]92'5/
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X DklMlnDkQszf(kal 7ka2 )’Xle (xl)XQjQ (.%'2)

By an estimate in [10, pp. 147-148],
9—(j1nk1)e’

Z —(J1Nk1) _ ni+e’
le (2 + ’1’1 kal D

< O 2king)n gk —(kiAji)lna /7

‘ﬁk‘lelﬁkQMbe(x

o, Yay, )]

~ - ry1/r
x {0y (3 1Dk My, Dy Mo f (3, 390, Xa,. )} (1),
Qk,

where M; is the Hardy-Littlewood maximal function on R™ and

"
max e <T <D Therefore,

sup  sup |Ej My, Ej, My, (f)(21,22) X, (21)xg, (72)
21€Qj, 22€Q4, 71 J2

<C Z Z Q. 1| Qr, |2—\j1—k1|€'2(k1/\j1)n1 glk1—(k1Ag1)Ina /7
k1 ko
% 9~ li2—kzle’' 9(k2Aj2)na glka—(k2Aj2)Ina /7

X {M2 ( > {M1 ( > | Diy My, Dy My, f (24, 90, )Xo, )T}(xl)

le le
1/r
X XQk2> } (xz)XQj1 (xl)x% (x2),

where M is the Hardy-Littlewood maximal function on R™2. By Cauchy-
Schwartz inequality,

Sup  sup ‘EleblEj2Mb2(f)(ZlaZQ)‘QXQ. (xl)XQ. ($2)
21€Qj 5, 22€Qj, 1 72

<C Z Z 2—k1n1 2—\j1—k1|a’2(k1/\j1)n12[k1—(l<;1/\j1)]n1/r
k1 ko
% 2—k2n22_|j2—k2‘5/2(k2/\j2)n22[k2—(kg/\j2)}n2/r

9 {Mz(z {3 (32 1Dr My, D M f g, 0, M, ) Ha)

Qk, Qk,
2/r
“Xa,, )| (g, (o)X, (@2

since

SUPZ 27]?111227|‘717k1‘5/2(](:2/\]1)71,12[’617(]62/\_71)}71,1/7‘ < 00, i = 1’ 2.
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This yields

1/2
{zzzzsup Sup 1B Moy B Mo (1) o120, (01), )

g @ Q _Z1€Q]1226Q]2

< C{ Z Z Z Z 2_k’1n1 2_U1—k1|a’2(k’1/\j1)n1 Q[kl_(kl/\jl)]nl/r

1 g2 k1 k2
« 9~ kanag—lja—kale'o(kaNj2)n2glka—(kaAj2)In2/r

x {MQ<Z (M (S 1D My, Di My F (g, 10, VX, ) 1)

Qrky Qry

) )

<of ¥ {an( 3 {00 (X103 B g 1, I, ) Ho)

k1,k2 Qi Qi

X X%)} (902)};-

Qn, and Yo,, are any fixed point in Qj, and Qy,, respectively, by

3o

Since x

the Fefferman-Stein vector-valusd maximal function inequality twice with
r < p, the proof is completed. ]

2.5. The Hardy spaces on product domains.

Definition 2.14. Let {Sk, }r,ez be approximations to the identity associ-
ated to b; with regularity exponent € on R™ and - < p < oo, 1 = 1,2.

Set Dy, = Sk, — Sk,—1. For 0 < Bi,vi <€, f € (b b MUz m) , the
Littlewood-Paley G-function of f is defined by

1/2
G(f) (w1 2) = {ZZ erleleQM@(f)(xl,mr?} |

k1 ko

We point out that due the Remark 2.1, this discrete Littlewood-Paley
square function is well-defined. Strictly speaking we shall denote it by
Gy, () (21, x2), since it is associated with the functions b; and by. However,
for the sake of simplicity, we drop the subscript bibs.

Applying the result of one parameter and using the iteration as given in
[10], we immediately obtain

Theorem 2.15. If f € LP(R™ x R™), 1 < p < oo, then ||G(f)|lp = || fllp-

We point out that the following discrete Littlewood-Paley function is more
convenient for the study of the Hardy space H, 51,)2 when p < 1.
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Definition 2.16. Let {Sk, }r,ecz be approximations to the identity associ-
ated to b; with regularity exponent € on R and o +6 <p<oo,i=1,2. Set

Dy, = Sk, — Sk;—1. For 0 < B;,v: <e¢, f € (blbg./\/l(/jl 2 72)) , the discrete
Littlewood-Paley Gq-function of f is defined by

Ga(f)(z1,22)

1/2
= { DD 2D 1Dk My, Dy My, ()21, 72)Pxay, (11)x04, (m)} :

ki k2 Qpy Qky

By the Plancherel-Polya inequality, the LP norm of these two kinds of
Littlewood-Paley functions are equivalent.

Theorem 2.17. Let 0 < B;,7 < € and 4, < p < o0, i = 1,2. If

£ e (bibaM =22 Sihen (1Ga(£)lp =~ 1G(F)]lp-

We now define the Hardy spaces as follows.

Definition 2.18. Suppose that {S, }r,cz are approximations to the identity
associated to b; with regularity exponent € on R™ and ’“ -<p<li=12

Set Dy, = Sk, — Sk,—1. For 0 < B4, < e, the Hardy space Hblb2 is the
collection of f € (blbz/\/l(ﬁl’ﬁ%%m)/ satisfying

HfHHp = [1Ga(f)lp < oo

Remark 2.2. Let f € Hy,, (blb Mo 72)) and denote by

$17$2 Z Z ZZ|QI€1HQ1€2‘DM($1? Qk )Dk2($27ka)

‘k‘1|<L |k2|<L le Qk2

X Dk1 Dsz(.%'le y kaQ )lekl bQQkQ .

Using Theorem 2.12 and applying the same argument for the proof of
Plancherel-Polya inequality, we obtain that

19alf — f)lly < © { S S ST S By M, iy My (£) (1, 22) 2

[k1|>L |k2|>L Qry Qky

1/2
% xau, (@1)xar, <x2>}
p

Since |Ga(f)ll, and

H{ Z Z Z Z | Dy My, Diy M, (f) (1, 22)*xqu, (21)XQ, (xz)}l/Q

k1 k2 Qry Qg

are equivalent (see [14, p. 75| for one variable) and ||Gq(f)||, < oo, we have
|Ga(f — fr)llp tend to zero as L — oo. It is clear that

(B1,82:71,72)
Dkl('?‘erl)DkQ('vakl)EM 1827172

p
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B1.62.:71, . B1.82.71:72) - ,
and hence fr, € MEF22) e ohvain that M7 s dense in Hlibg'
. (B1:B2,71,72) D 2 D 2 . . P
Since M C Hy,, N L7, the subset Hy , N L= is dense in Hy , .

3. Atomic decomposition for Hy , (R™ X R™?)

Let max{ergl, n2+£2} <p <1 A (p2)-atoms of Hy, is a function
a(x1,x2) defined on R™ x R™ whose support is contained in some open set
Q of finite measure such that

(1) flally> < |Qp/2-1/7,

(2) a can be further decomposed into p elementary particles agr as fol-

lows:
(i) @ =" pem(a) ar, where M(€2) denotes the class of all maximal
dyadic subrectangles of 2 and agr is supported in 5R where

RCQ(say R=1xJ),
(ii) /aR(xl,fng)bl(:cl)d:cl = /aR(i'l,$2)b2(x2)d(E2 =0 for each
I J
T €1, 9 € J,

(i) Y larllfe <1927

REM(Q)

We establish a new atomic decomposition for H lfl by 1 L? as follows.

Theorem 3.1. Let b; be para-accretive functions on R™ i = 1,2 and
maX{n1+€1, n2+€2} <p<1. For fe Hfb N L2, there exist a sequence of

(p,2)-atoms {a;} of Hy , and a sequence of scales {\;} such that f =37 \ia;
and Y- |Ni|P < C|fIl5» - Moreover, the series converges in both Hy , ~and
by b

L? norms.
Proof. For k € Z, let

Qp = {z € R™ x R" : Gy(f)(21,32) > Qk}
and

1 1
Ry = {dyadic rectangle R : |[RN Q| > §\R| and |[RN Q1| < §\R]}

By Calderén reproducing formula (Theorem 2.8),
xl?‘T? ZZZZ‘leHka‘Dkl(‘Th Qk )Dk2(‘7}2 ka )
k1 ke Qry Qg
X Dyy My, Diy My, f (24, +Yq, )b1Q1, 020,
= Z Z | Rkiks | Dy (21,2, ) Dis (22,9, )
keZ Rkle ERy

X Dyy My, Diy My, f (2, +Yq, 0101, 021,
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where Ry, 1, = Qk, X Qk,. We rewrite the above decomposition as

flar,we) =Y Apax(@r, @), (8)
k

where

1

ag(w1,x2) = " Z | Ry ko | Dy (561756% ) Dy (w2, ?JQ,Q)
k Ricy ko €RE
X Dkleleszzf(kal 7ka2 >b1Qk1 bQkay
and
_ _ 2
Ak = CH{ > | Diy My Dy, M, f (24, 7ka2)|2XRk1k2} Q| /P12
2

Ry 1y ERE

Let Q = {(21,22) + My(xq,)(z1,22) > 155}. Then, for each R € Ry,
there exists a maximal dyadic subrectangle R € M(£) such that R C R.
For each S € M(§), set

1
aS(xth) = )\7k Z |Rk1k2|Dk1(ﬂj17ka1 )Dk2(1:2aka2)

—

RkleZS
X Dk1 Mb1 Dkszgf(kal y kaz )lekl bQQk2 .

Then ay(x1,z2) = ZSGM(ﬁk) as(z1,z2). Since Ry,r, € Ry and 5Ryk, C
Qk, we have

U 5Rk1k2 C Q.
Ric, ko ERE

This implies that a; is supported in an open set (NZk and ag is supported
on 55. The vanishing moment conditions of ag follow from the assumption
of Dy, and Dy,. To verify the size conditions of atom, the duality and the
discrete Littlewood-Paley square function estimates on L? show

Z |Rk1k2’Dk1 <x17ka1 )Dk‘g(x27ka2)
L

Ry 1y €RE

X Dk1 Mb1 Dkszzf(kal ) kaz )lekl b2Qk2

= sup > | Rkiks | Dk Dr (20, 5, )
llgll2<1 Ri 1y €RE

X Dk1Mb1Dk2Mb2f(ka1 ’ka2 )lekl b2Qk2

< C sup

~ ~ 1/2
llgll2<1 { Z |Dk1Mb1Dk2Mb2f(ka1 ’ka2)|2XRk1k2}

Ry 1y €RE

2



PRODUCT Hl’:le SPACES AND Tb THEOREM 1457

1/2
{ Z ‘Dk1Dkzg($Qk17ka2)|2XRklk2}

Rkl ko ERk

X

2

B _ 1/2
Z |Dk1Mb1Dk2Mb2f(ka17ka2)|2XRk1k2}

Ric ko €RE

2
This yields
larlla < |2 1/7.
Following the same proof, we have
Yo lasl? < (4.
SeEM(Qy)

Note that |Q| < C|Q%| due to the maximal theorem. Since (z,z) €
N 1
Ry k, € Ry implies MS(XRkleOﬁk\Qk+1)(xl’xz) > 3, we have xp, , <
2
2MS(XRk1k2m§k\Qk+1) and then xrg, ,, < 4MZ( Thus, by
the Fefferman-Stein vector valued inequality,

XRkl g N2\ 41 )-

2

1/2
n N 2
H{ Z |Dk1Mb1Dk2Mbe(ka17ka2>’ XRklkz}
Ry kg €RE

<c / / S 1Dk My, Dy My, (g, i)
R ko €ERE
x M(

2

2
XRkleQQk\Qk+l)(x17x2)| dxidxy

<C //; Z ’ﬁkl Mb1 DkQMbe(kal ,kaz )XRk1k2 (xh x2)|2d$1d$2
Qk\QkJF]Rklk2 ER

< C2%|Cu|.
Therefore,
DA < Y 2O P 2|0y P
k k
=C) 2kP|Qy
k
< CGall5 < Cllf I
bybo
This ends the proof of Theorem 3.1. O

As an application of Theorem 3.1, we have

Corollary 3.2. Let b; be para-accretive functions on R™, ¢ =1,2, and

n1 n2
max , <p<l.
ny+e1 ng+é&2
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Then f € H§1b2 N L2 if and only if bibof € HP N L?, and the norm of f on
Hfle and the norm of bibsf on HP are equivalent.

The definition of product HP is the same with Hfle where by = by = 1

and the classical product atom is the same with (p,2)-atoms of H£1b2 for
by =by=1.

4. The dual spaces of Hy , (R™ X R"2)

We now consider the dual spaces of Hfl p,- For one variable, the dual of
H}! is BMOy = {bf : f € BMO} given by Meyer and Coifman [27]. As a
consequence of Corollary 3.2,

the proof of dual space of H51b2 is just a copy of the classical product

Hardy space HP. More precisely, let CMO§1b2 ={f=biboh: he CMOPN
L%} with || f||c Mmor = Ilh||caror, where the product type Carleson measure
192

space CMOP was given in [17, pages 647 & 653] and [18, pages 340-341].
Denote

CMOy, = {f : there is a sequence {fn} in CMO}

such that (f, g) (fm,g) forall g € Hflbg N L2}

= lim
m—00

and || flemop, = 1m || fmllemor , -

Theorem 4.1. Suppose that b; are para-accretive functions on R™ for i =
1,2. Let max {#52/2} < p < 1. The dual space of Hy , is CMOy ,, in the
following sense.

(a) For each g € CMOfle, the linear functional £y : f — (f, g), defined
initially on H51b2 N L%, has a continuous extension to H51b2 and
161 < Clgllenro .-

(b) Conversely, every continuous linear functional £ on Hfle can be
realized as { = {4, defined initially on Hlibz N L2, for some g €
CMOY,,, and lgllearop, < -

In particular, when p = 1, we obtain BM Op,p,(R™ x R™) = {bjbeg : g €
BMO(R™ x R™)}. We refer the reader to [17, pages 647 & 653] or [18,
pages 340-341] for the definition and details about BMO(R™ x R"2).

Proof. For each g € CMOy ,,, there exists a sequence {gn} in CMOy
such that (f,g) = lim (f,gn) for f € HY, N L% By the definition, g, =
m—o0 192
bibohy, with h,, € CMOP N L%, and lgmllemor , = lhmllcaor. For f €
192
Hy,, N L2, Corollary 3.2 gives bibyf € HP N L? and 1z, lbrbaf| e
192
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The dual of HP (cf. [17]) yields
< lim_{biba f{[mel|hmllcror
< Clfllp, lollowrog, -
Since H. 51 by NL? is dense in H 51 by the map ¢, can be extended to a continuous

linear functional on Hy , satisfying [|£,] < Cligllenor , -
192

Conversely, let £ € (Hy, )" and define ¢ by £1(bibaf) = £(f) for f €
Hlibz N L2. Tt follows from Corollary 3.2 that £ is a linear functional on

HP N L?. By the duality argument between HP and CMOP, there exists
h € CMOP such that

U(f) = ti(brbaf) = (brbaf, h)
= (brbaf, hm) = lim (f,bibohyn)  for f e Hy, NL?

lim
m—00

where h,, € CMOP N L? and [b1b2hmllerror , = lhmllcaror. Let (f,g)
192

Jm (f,bibohm). Then llglleyop = lim |bibohumllenrop < Clitall <
c|ley. O

5. The boundedness and endpoint estimates of singular
integral operators on product spaces

We start with recalling the definition of a Calderén-Zygmund kernel. A
continuous complex-valued function K(z,y) defined on R™ x R™"\{(x,y) :
x =y} is called a Calderdn-Zygmund kernel if there exist constant C' > 0
and a regularity exponent € € (0, 1] such that

(i) |K(z,y)| < Clz —y[™"
(i) |K(z,y) - K (2, y)| < Cle—a'Flz—y[™"™° if [z—2'| < [z—y|/2

(i) |K(z,y) = K(z, )| < Cly—y'[Fle—y[™"= if fy—y/[ < |z—yl/2.
The smallest such constant C' is denoted by |K|cz.

We say that an operator T is a Calderon-Zygmund operator if T is a
continuous linear operator from C§°(R"™) into its dual associated with a
Calderén-Zygmund kernel K (x,y) given by

(Tf.g) = / / 9(2)K (2, ) (y) dyde

for all test functions f and ¢ with disjoint supports and 7" is bounded on
L?(R"). If T is a Calderén-Zygmund operator associated with a kernel K,
its Calderén-Zygmund operator norm is defined by [|T|lcz = || T||r2—12 +
|K|cz. Of course, in general, one cannot conclude that a singular integral
operator T is bounded on L?(R™) because Plancherel’s theorem doesn’t work
for non-convolution operators. However, if one assumes that T is bounded
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on L2(R™), then the LP,1 < p < oo, boundedness follows from Caldernén-
Zygmund’s real variable method. The characterization of the L?(R") bound-
edness of non-convolution singular integral operators was finally proved by
the remarkable T'1 theorem by David and Journé [5], in which they gave a
general criterion for the L?-boundedness of singular integral operators. Let
T be a singular integral operator defined for functions on R™ x R"2 by

Tf(z1,22) = // K (w1, 22,91, y2) f (Y1, y2) dy1 dya,
R™1 xR™2

for (z1,x2) is outside the support of f. For each z1,y; € R™, set K! (z1,91)
to be the singular integral operator acting on functions on R"? with the ker-
nel K'(x1,91)(z2,y2) = K (21,22, 91,y2) and, similarly, K2(z2, y2)(x1,91) =
K (1, 72,91, Y2)-

Definition 5.1. A singular integral operator T is said to be in Journé’s class
if the associated kernel K(x1,x2,y1,y2) satisfies the following conditions.
There exist constants C' > 0 and € € (0, 1] such that

(A1) T is bounded on L?(R™+n2),
(A2) [|KY(z1,1)]| oy < Clar — 3] ™™,
| K (21, 91) — K (21,9} < Clyr — ¥y [F|z1 — ya|~(m+e)
for [y1 — 4| < [z1 —y1l/2,
[K! (1, 91) — Kl(xllvyl)ch < Clay — 24| |lwy — g~ +e)
for |z — 2| < |x1 —31]/2,

ez

(43) HkQ(flfz,yQ)HCZ < Clry —y2| ™™,

K2 (22, 92) — K2(2,95) || oy < Clyz — vhlf |z — yo| (1279
for |y2 — 5| < |22 — v2|/2,

| K2 (22, y2) — K2(2h, 42)|| oy < Claz — ah|*|g — yo|~(n2te)
for |xo — x| < |xo — yal/2.
Let L§o(R™)={f € L*(R™): f has compact support with [ f(z)dz = 0}.
Suppose that T is a singular integral in Journé’s class. By [8, p.840], T is
bounded from H!(R™ xR") to L}(R™"7"2). Note that if p! € L%,O (R™) and
¢* € Lg o(R"™), then o' (y1)p*(y2) € H'(R™ x R"2). Thus, T(¢'¢?)(z1,72)
€ LY(R™ x R"™). This implies that T(¢'¢?)(z1, x2), as a function of x1, is a
integrable function on R™. Similarly, T'(¢'¢?)(z1, 72), as a function of s,

is a integrable function on R"2. Now we say that 77(1) = 0 if

/ / K (1, 22, 91, 32) 0 (1) 0% (42) dys dy diry = 0
R™1 JR™1 xR™2

for all o € L§ o(R™), p* € L§ ((R™), and zp € R". Similarly, T5 (1) = 0 if

/ / K (1,29, y1,92)¢" (y1)9* (y2) dy1 dys dza = 0
Rr2 JRM xRP2
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for all ! € L§,(R™), ¢* € L§,(R™), and z; € R™.
We also say that 77 (b1) = 0 if

/ / K (21,22, y1,y2)b1 (z1) " (y1)° (y2) dyr dy2 day = 0

for all ! € L§ o(R™), ¢* € L§o(R™), and x5 € R". Similarly, T} (b2) = 0
if

Lo Ko mba(e)e! )6 (0e) din dys das =0
R™2 JR™1 xR™2
for all ! € L§,(R™), ¢* € L§,(R™), and z; € R™.

We now prove the main result of this article.

Proof of the “if part” of Theorem 1.1. We prove (1) only since the
proof of (2) and (3) are similar. We use the skill in the proof of [16, Theorem
1]. We define the Hilbert space H by

1/2
H= {{akz,j}kz,jez | {aws}],, = < > |ak:,j|2> < 00}-
k,jEZ
For sunph(:lty, we use Dy, r, My and Dk1 ko My to express Dy, My, Dy, My,
and Dy, My, Dy, My, respectively. We also denote [ dv by [eny , gns dv1dvs
and similarly for other variables. Set Ty, x,(f) = Dk, kg, MpT(f). For f €
L?(R™+72) 0 HP(R™ x R™2), by the continuous Calderén identity,

Ty ko (f ) (21, 22) = Dy oy MyT ( >N MyD;, 5, MyDj, iy () (21, 1‘2)) -
Jj1 J2
Hence, the kernel Ty, , (21,22, y1,y2) of Tk, k, is given by

Tkhk’z (xla x2, Y1, yQ)

= ZZ//D"H 1, u1)b(u1) D, (w2, u2)b2(u2) K (u1, uz, v1, v2)

Ji g2
X MyDjy j, My Dy, (v1, y1) Djy (2, y2)dudv.

By the definition of HY ,_ (R™ xR™), the HP(R™ xR"2)—HP | (R™ xR"2)
boundedness of T is equivalent to the H? — L% (R™ x R™?) boundedness
of the H-valued operator £ which maps f into {Tj, k,(f)}k, keecz. Note
that the L?(R™*"2) boundedness of T" and the product Littlewood-Paley
estimate imply that £ is bounded from L?(R™*"2) to L3 (R™*"2). Let ¢

be the regularity exponent satisfying (As) and (Asz). We will prove that
{Tk ko (21, 2, Y1, Y2) } iy ko ez satisfies the following estimates:

(B1) [{ Ty oo (21, 22, 91, 92) |, < Clat — g1 7" oz — 2|72,
(Bg) for &' < ¢,
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() [{Thy ko (21, 22, 91, 92) — Ty ko (21, 72, 91, 2) 3|5,

Eary
<C ly1—v1|

= 7 a—y |t |29 — yo| 7™

if |y1— w1l <o —wnl/2,
(i) H{Tkl,kQ(l‘l,ff%ybyz) — Ty oy (1, 22,41, 45) } |5,
SO tlslor—pl™  if 2 — bl < Jz2 —wal/2,
(B3) for &’ < ¢,

[ Ter ks (@1, @2, Y1, y2) = Ty o (@1, T2, 91, y2)]

_[Tk1,k2 (‘7317 €2, Y1, yé) - Tk1,k2 (1’1, x2, y/17 y/Z)]}HH
co m-ul -
T R F R T

it |y1 -yl <z —wl/2 and |y2 — g5l < 22 — y2l/2.

To this end, according to the almost orthogonal estimates, we decompose
the kernel Ty, ,(z1,22,y1,y2) as follows.

i

Ty ko (71, T2, Y1, Y2)
- EZ// Dy, (w1, u1)b1 (u1) Dy, (w2, u2)bo (u2) K (u1, uz, v1, va2)

J1 J2

X MbDjlvaMbDjl (Ulu yl)Djz (U27y2)dUdU

(ZX+E T+ Y S+ ¥ ¥ )f[ratmnwm

J12k1 j2>ka  j12k1 ja<ka  ji<kijo>ke  j1<ky ja<ka

X D@2, ug)ba(u) K (u1, ug, vi,v2) MyDj, j, MyDj (v1, y1)Djy(v2, Y2 ) dudv
= Tio, 5o (@1, 22,51, 92) + T3, 1y (@1, T2, 91, 42)

+ Tlgl,kg(xla Zx2, y17y2) + Tlfl,kg(xlvx%ylv y2)'

The estimates of (B1) — (B3) for {Tk, k, (21,2, Y1, y2) } k1 keecz Will follow
easily by the following lemma.

Lemma 5.2. For 1 < j <4 and k1, ke € Z, there exists a constant C' such
that

(Dq) fore <e,
27k15’ 27]628/
278 |z — ) (270 g — ya|)m2 e

}Téhkz(xla x2,Y1, 3/2)| < C(

(Dg) fore” <€,
(1) ’T]gh]@ ($17$2,3/17y2) - Tkjhk‘Q(‘Tla x2, ylp?ﬁ)’

) e —k:lel —kJQE/
§C<|y1_ky1\> —k . +e’ (9—k . +e’
270 (27R o — )M (2702 o g — g )2t
if -yl <27R
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(i) T}, (@1, 22,91, 42) = T}, 4 (21, 22,91, 45) |
< C(\yz yg\) 2 / /
2k 27 4 |2y — ) Fe (277 + |og — yo)r2te

if ly2 —yhl <2771,

—kie’ 27’626/

(Ds3) fore" <€,

Ty (1,22, 91, 92) = Tiy (1, 22, 01 1))

[Ty o (1, 22,91, 93) = Ty o (1, 22, 41, 92) 1} |,
<C(|yl —y/1’>5//<|312—yé|)8” 9—kie’
= 2—k1 9—k2 (2—k1 + |z — y1|)n1+51

2—k2€'
X /
(2*162 + |.’E2 _ y2|)n2+s
if ly =il <2707 and g —gp <277

Proof. We will use the iteration method which reduces the product case
to the classical case. We first check that Tkl1 ks (z1,22,y1,Yy2) satisfies the
estimates (D1) — (Ds3). For fixed ki, x; and y;, set

KCa(ug,v2)

= / Dy, (21, u1)bi(ur) K (w1, ug, v1, vg)bl(m)Dleblﬁjl(vl, y1)duiduy.
R™1 xR™1

Since T7(b1) = 0, we have

Ka(u2,v2) = / (Dpe, (z1,w1) — Dy, (21, 91) ) b1 (u1) K (w1, ug, vy, v2)
Rnl XR"Ll

x by(v1) Dj, My, Dj, (vi, y1)du duy.
By [15, Theorem 3.1] with j; > k1, the operator S associated with the kernel
Ko (uz,v9) is a Calderén-Zygmund operator and satisfies, for &/ < e,
27]615/
= E=g (9)
279 + |z — )™
Note that the condition 75 (b2) = 0 implies S*(b2) = 0. Therefore, first
writing
Tiy g (@1, T2, 41, 02) = > Y / Dy, (2, ug)ba(u2) Ko (uz, v2)
J12k1 jo>ko Rtz >R
x by(v2) Dj, My, Dj, (v2, yo) duadvs

1S|lcz < C2~ ke

and then applying the almost orthogonal estimate for KCo(ug,vs) with the
norm estimate in (9) imply

27]616/ 2*]625/
(27 + |2y — )M (270 + |ag — o )r2te

’Tkll,kg(xla x2,Y1, 3/2)‘ < C
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This shows that Tlil ks (1, x2,y1,Yy2) satisfies the estimate (D1). To check
(D2)(i), we write

Tk}th(xl)xQ?yl)yQ) - Tk}LkQ(xla X2, 3/1, 3/2)

- Z Z/ Dkz(x%U2)b2('d2)]€272(u2702)
1>k ja>ke Y RMZXRT2

X b2(U2)Dj2Mb2Dj2 (Ug,yg)dUQdUQ,
where for fixed k1, z1,y1, 9],
KCo,2(u2,v2) :/ Dy, (21, u1)by (u1) K (w1, ug, vi, v2)
R™1 xR™1 JR"1
X b1 (vl)Djl (1)1, zl)bl(zl) (l)j1 (21, yl) — Dj1 (2’1, y'l))duldvl.

By the similar argument of the proof in [15, Theorem 3.1] (but simpler since
T is bounded on L?), we obtain that K2 2(ug,v2) is a Calderén-Zygmund
kernel and

for |y1 — | < 9~ k11,

(10)
The almost orthogonal estimate together with the estimate of (10) yields

Z Z / Dy, (w2, u2)b2(u2)K2,2(us2, v2)

. . ny ny
J12k1 ja>ka Rz xR

1 — yi\)ﬁ” 9= (1—k1)e' g—kre’
(

K < C’( '
1Ka22lcz < 9—k1 27kt |z — yy|)mate

X b2 (1}2)ng Mb2 Dj2 (1)2, yg)dUQdUQ

< <\y1 - y/1‘>6// 2 ke 9—kae’
- (

T N R e
for |y1 —y}| < 27%~! and hence (D5)(i) follows. The proof of (Ds)(ii) is the
same. To prove (Ds) for the kernel Tklhkg (x1,22,y1,Y2), we write
[Tkll,kQ (21,22, Y1,92) — Tkll,kQ (z1, 22,91, y2)]
- [Tkll,kg (xla €2,Y1, yé) - Tk}l,kz ($17 x2, yi) yé)]
= Z Z /// Dy, (w1, u1)b1 (u1) Dy, (22, u2)ba(u2) K (u1, uz, v1, ve)
J12k1 ja>ke
X b1 (v1)Djy (v1, 21)b1(21) (Djy (21, 91) — Dy (21, 1))
X by(v2) Dy, (va, 22)b2(22) (D, (22, y2) — Dy, (22, ) ) dudud
=> Y / / Dy, (w2, u2)ba (u2) Ko 2 (uz, v2)
1>k jo>ky R"2 JRMZ TR
X bg ('U2)Dj2 (Ug, ZQ)bQ(ZQ) (ﬁjz (ZQ, yg) — lN)Jé (22, yé))dUdedeQ.
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By the almost orthogonal estimate together with the estimate of (10), we
obtain that the kernel Tlil ko (T1, T2, Y1, y2) satisfies (Ds).

Since the proofs for T,zl ks (r1,22,Y1,Y2),J = 2,3 are similar, we estimate
the kernel T, ,621’ Ky (T1, T2, Y1, y2) only. We rewrite

T, 1, (@1, T2, Y1, y2)
- Z Z/ Dy, (z1,u1)b1 (u1) D, (22, u2)bo(u2) K (u1, u2, v1,v2)
J12k1 ja<ks
X MbDjl:jQMbDjl (Ula yl)Djz (UvaZ)dUdU
=3 5 [ [ Do un)orn) Dis a2 K ()
R"2

J12k1 ja<ka

x by (v1) Dj, My, Djy (1, y1)b2(v2) D, (v2, 22)b2(22) D, (22, y2) dudvdzy
= Z Z // Dy, (21, u1)b1(u1) Dy, (22, u2)bo (u2) K (u1, u2, v1, v2)
J1>k1 j2<ko Rz
% b1(v1)Dj, My, Djy (v1,y1)ba(v2) (Dj, (v2, 22) — Dy, (2, 22))

X bQ(ZQ)Dj2 (22, yg)dudUdZQ

+ Z Z // Dy, (z1,u1)b1 (u1) Dy, (22, uz)ba(u2) K (u1, uz, v1, v2)

. . ny
J12k1 j2<ka R

x by (v1)Djy My, Dj, (v1, y1)ba2(v2) Djy (22, 22)b2(22) Dy, (22, y2) dudvdzs
2 2,2
=T, (@, w2, y1, ) + T (w1, 22,91, 42).

2,1 L
The proof for T, (x1,22,y1,Yy2) is similar to Tklth(xl,xg,yl,yg), SO we
leave details to the reader. Write

Py, (22, y2) = Z/R Dj, (w2, 22)ba(22) Djy (22, y2)dzo.
ng

J2<ko
Note that 75 (b1) = 0. We have

2.2
Ty, (21, 22,91, 42)

= Z // (Dkl(ml,U1)—Dkl(xl,Ul))bl(Ul)DkZ(II?Q,UQ)bQ(’UQ)

Jj1=2k1
x K (u1, ug, v1,v2)b1 (v1) Dj, My, Dj, (v1,y1)ba(v2) Pry (9, y2)dudv.

For fixed x5, set

K1(u1,v1) =/ Dy, (22, u2)ba(u2) K (u1, ug, v1, v2)ba(v2)dusdus
R7L2 R7L2

= / Dk2 (33‘2, UQ)bQ(UQ)KV-I(Ul, ’U1)(U2, UQ)bQ(UQ)dUQd’UQ.
R™2 R"2
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Note that for fixed (u1,v1), fan K1 (u1,v1)(ug2, v2)ba(ve)dvs, as a function of
the variable ug, is a BM O function and Dy, (22, -)bs is a function in H!(R"2)
with H*(R"2)-norm uniformly bounded for all x5 and ks. Moreover,

K (ug,v1) (-, v2)ba(v2)dvs < C’Hl?l(ul,vl
BMO(R"2)

< Clug —wn|™™,

ez

H R™2

which implies
| K1 (u1,v1)] < Clug — o7

Similarly, for |u; — u}| < |uy — v1], we have

H /an [kl(ul’vl)("w) - kl(“’uUl)(',vz)]bz(vz)dvz

< CHI?l(ul,vl) — I?l(u'l,vl

’771,1 —E&

BMO(R"2)

ez
< Cluy — u)|flug — v

)

and hence

| K (u1,v1) — K1 (uy, v

/ Dy, (22, u2)ba(us2)
Rz JRn2

X [Kl (ul, 'l)l)('LLQ, 'UQ) — Kl (u’l, 1)1)(712, '1)2)] bg(’vg)d’u,gdvg

< Cluy — u}|flug — vy | 7™ 7C.

The estimate | K1 (u1,v1)—Ki(u1,v])| can be obtained by the same approach.
Thus, Kj(uj,v1) is a Calderén-Zygmund kernel and |K1|cz < C. Note that

2,2
Tkl,kz (1‘17 x2, Y1, yz)

= Z / / (Dg, (z1,u1) — Dy, (z1,v1)) by (u1) Ky (ug,v1)
ji>ky R IRM
X bl (Ul)Djl Mbl ﬁjl (’Ul, yl)duldlek2 (.1‘2, yg).
Note that the kernel Py, (z2,y2) satisfies the same size and smoothness con-

ditions as a Poisson kernel by using the method in [15, page 133]. Applying
the almost orthogonal estimate to Kj(u1,v1) together with the size condi-

tion on Py,, we get (Dy) for Tl?sz (z1,22,Y1,y2). The estimates of (Ds) and
(D3) can be proved by the same way.
Finally, we rewrite

Tifl,kQ (x1, 2,91, Y2)

=> ) Dy, (21, u1)b1 (u1) D, (w2, u2)bo(u2) K (u1, ug, v1,v2)bi (v1)
J1<k1 ja<ko
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x Dj, J2MbDJ1(”1,y1)b2(02) Jo (v2, y2)dudv

=> > // Dy, (21, u1)b1 (u1) Dy, (22, u2)ba(u2) K (u1, uz, v1, v2)b1 (v1)

J1<ki ja<ks
x Dj, (v1,21)b1(21)Dj, (21, y1)b2(v2) Dj, (v2, 22)ba(22) Dj, (22, y2 ) dudvdz

=> Y // Dy, (21, u1)b1(u1) Dy (22, u2)b2(u2) K (u1, u2, v1, v2)

Jj1<ky jo<ka
x b1 (v1)(Dj, (v1, 21) — Dj, (21, 21)) b1 (21) Dy, (21, 41)

X bg (’1}2)( o ’1)2, 22) DJQ ({L‘Q, ZQ))bQ(ZQ)ﬁjQ (2’2, yg)dudvdz

+>D ///Dk:1 1,1 )by (u) Dy (2, u2)bo (u2) K (ur, ug, v1, v9)

Ji1<ki g2<kz
x b1 (v1)Djy (1, 21)b1(21) Dy (21, 1)
X b2 (1)2) (Dj2 (’UQ, ZQ) — Dj2 ($2, ZQ))bQ(ZQ)ﬁjQ (22, yz)dudvdz

+ Z Z ///Dkl x1,u1)bi (u1) Dy, (22, u2)ba(u2) K (u1, uz, v1, v2)

J1<k1 ja<ks
X by(v2) Dj, (w2, 22)b1 (v1) (D, (v1, 21) — Dy, (21, 21))
x b1 (21) Dy, (21, y1)b2(22) Dy (22, y2) duduvdz
+ Z Z ///Dkl x1, u1)bi(u1) Diy(@2, u2)ba(uz) K(u1, uz, v, v2)bi(v1)

J1<k1 ja<ko
x Dy, (21, 21)b2(v2) D, (2, 20)b1(21) Djy (21, y1)b2(22) Dy, (22, yo) dudvdz
=Ty (@1, 22,01, 0) + T (1, 72, 41, 42)
+ Tk{ 1y (T15 T2, Y1, Y2) + Tkl’ kQ(ﬂzl, T2, Y1,Y2)-
Since the proof for T,j‘l’}kQ (z1,22,Y1,Yy2) is similar to Tklth (%1, 22,91, y2) and

the proofs of T:l’sz(xl,xz,yl,yg) and Tk’k2($1,$2,y1,y2) are similar to

2,2 .
Tk1’7k2(a:1,a:2, Y1,Y2), we estimate Tkl’J€2 (1, x2,y1,y2) only. Let

(i, yi) Z D]Z azz,zl)bi(zi)ﬁji(zi,yi)dzi, i=1,2.

Ji<k;

Then
T, (1, 32,91, 52) = / Dy, (21, u1)bi(ur) Dy(22, u2)bo(uz) K(ui, ug, v1, v2)
x by (v1)ba(va)dudv Py, (21, y1) Pr, (22, y2)-

Note that [ K (u1,ug,v1,v2)b1(v1)bz(v2)dvidvg, as a function of variables u,
and ug, belongs to BMO(R™ xR"2), and Dy, (1, u1)bi(u1) Dy,(x2, ug)ba(uz),
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as function of (uq,uz), is in H!(R™ xR"?) with the bounded norm uniformly
for all k1, ko and x1, z9. Thus,

/Dkl(ifl,ul)bl(ul)DkQ(ﬂfQ,U2)52(U2)K(U1,UQ,vl,UQ)bl(vl)bQ(vz)dudv

is uniformly bounded for all ki, ks and z1, z2. Therefore, estimates (D7) —
(D3) for T:l’flkz) (x1,x2,y1,y2) are the same as those for Py, (z1,y1)Pr, (2, y2).
By the similar method in [15, page 133], the kernels Py, and Py, satisfy
the same size and smoothness conditions as a Poisson kernel, and hence
Py, (x1,91)Pr, (22, y2) satisfies estimates (D) — (Ds3). Thus, the proof of
Lemma 2 is completed. (]

Now we demonstrate the regularity of the operator T}, r, mapping from
2 2
L* into L3,.

Lemma 5.3. Let T}, 1, be defined above and € be the regularity exponent of
T. For e’ <e,

(1) if ly1 — x| < |21 — 21]/2, then

H{ /R" (T o (@191, 92) = T o (@1, 21, yz)]f(yz)dlﬂ}

L2 (R"2)
ly1 — 1|
<C—— :
< O —agpure 11l
(i) of ly2 —ysl <[22 —ysl/2, then
R L2, (R™1)

ly2 — ysI”
< CWWHz-

Proof. The proofs of (i) and (ii) are the same, so we show the case (i) only.
We will use 0 < £” < ” < ¢’ < ¢ through the proof. Note that

H{ /Rn [Tkl’kQ (@1, 91,92) = Thy by (21, 21,4 y2)]f(y2)dy2}

.

We write

L% (R"2)

2

{/ [Tkl,k2($17x27y17y2)_Tkl,kg(xly$27$17y2)]f(y2)dy2} dzs.
R™2 H

/ [Ty ko (21, T2, Y1, Y2) — Thy ko (1, 22, 71, y2) | f (y2)dy2
Rn2
Z/ E E/Dk1($1,U1)b1(u1)Dk2(1‘2,U2)b2(u2)K(u1,U2,v1,U2)
R"2 3 -
J 92

% by (v1)(Dj, My, Dy, (v1,31) — Dj, My, Djy (v1, 1))
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X by (v2) Djy My, Djy (v2, y2) f (y2) dudvdy;

= ZZ// Dy, (w1, u1)b1 (u1) Dy, (w2, u2)bo (u2) K (u1, u2, v1, va2)
J1 o J2
x by(v1)(Dj, My, Dj, (v1,91) — Djy, My, Dy, (v1, 7))
X b2(’UQ)D]'QMbQEjQMbe(UQ)d’U,dU

= Dy, (z1,u1)b1 (u1) Dy, (22, uz)ba(uz) K (u1, uz, v1, v2)
%://klllleQQQ 1, U2, V1, V2

X by (Ul)(Dleblf)jl (vi,91) — Dj, My, Dj, (v1,21))ba(v2) f (v2)dudv
:Dk‘gMb2<Z/ Dk1($1,U1)b1(U1)K(U1,’,’Ul,’UQ)

- R™1
J1

x by (v1)(Dj, My, Dy, (v1,91) — Dj, My, D, (v1, :EI))bz(UQ)f(Uz)dUldU) (z2),

where we first write
A Dj, My, Dj, (va, y2)ba(y2) f (y2)dy2 = Dy, My, Dj, My, f (v2)
ng

and then use the Calderén identity DJQMb25j2M52f(’L}2) = f(v2). The
Littlewood-Paley estimate gives

/ {/ [Ty oo (21, 2, 41, Y2) —Tkl,kg(l‘l,@,951,y2)]f(1/2)dy2}
Rn2 Rn2
< CZ/ Z// Dy, (1, u1)b1 (u1) K (ug, x2,v1,02)
L R"2 X R™1
1 J1
2

% b1(y1)(Djy, My, Dj, (v1,31) — Dj, My, Dy (v1, 1)) ba(v2) f (v2)durdv| dzs.

2

dl’g
H

(11)
Divide the sum ) j, into three parts as follows:
/ Z/ Dy, (21, u1)b1 (u1) K (w1, v2,v1,v2)
R"2 . R"1
J1
_ _ 2
% bi(y1) (Djy My, Djy(v1,91) — Dj, My, Djy(v1, 1)) ba(v2) f (v2)durdv| dza

<C
R’ILQ

> / / Dy, (21, u1)br (ur) K (w1, w2, v1, v2)b1 (v1)
ji>ky R R

2

x Dj, (v1,21)b1 (21)(ﬁjl(zl,yl)—ﬁjl(2:1,xj))bg(vg)f(vg)duldvdzl dxo
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> / / Dy, (21, u1)br (ur) K (w1, w2, v1, v2)b1 (v1)
ji<ky R R

+C

R™2

x (Djy (v1,21) = Dj, (w1, 21))b1(21) (Dyy (21,51) — Dy, (21, 21))
2

X bg (vg)f(vg)duldvdzl d.CCQ

E / / Dy, (21, u1)b1 (u1) K (u1, x2, v1,v2)b1 (v1)
. R™1 R™1
J1<ki

+C

R™2

2
x Dj, (x1, zl)bl(zl)(Djl(zl,yl)—Djl(zl,xI))bg(vg)f(vg)duldvdzl dxo

=F4+F+dG.

We first consider the item G and write

G=C
R™2

S [ [ Do)k wnm v, e ()
R™1

Jj1<ki
2
x (Dj, My, Djy (v1,91) — Dj, My, Djy (v1, 21)) ba(v2) f (v2)durdv| das

= C|Py, (v1,y1) — Py (v1,21) |

/ Dy, (21, u1)b1(u1)
R71

2
dZCQ

R™2

X K(ul, T2, V1, ’Ug)bl (’Ul)bg(vz)f(’l)z)duldv

=C sup (/ Dy, (x1,u1)b1 (1) K (u1, 2, v1,v2)
llgll2<1

2
X by (Ul)bZ(UZ)f(U2)9($2)duldvd$2> | Py, (v1,51) — P, (v1, 1),

where Py, (v1,-) = 325 <, Dy My, Dj, (01, 7).
For fixed uq and vq, set

F(ul,vl) :/ K(ul,552,’01,’L)Q)bQ(’UQ)f(UQ)Q(CEQ)d’UQd.’EQ.
R™2 JR"2

Then the operator associated to the kernel K (u1, v1) is a Calderén-Zygmund
operator with operator norm C/||f||2||g||2. Since [pn, K (u1,v1)dv; is a BMO
function for wuq,

Dy (21, u1)by (u1) K (u1,v1)b1(v1)dvidur | < Clf|l2]lg]l2
R™1 R™1
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uniformly for z1. Hence, for |y; — z7| < t/2,

G < C|Py, (v1,11) — Pr, (v1, 1) (I £13
9~ki2e 2 (12)
@+ Jor — oo 2

< C@" |y —2g])*

To estimate E, we consider two cases {|z; — 21| > 8c27%1} and {|z1 —
21| < 8¢27%1}, where the constant c satisfies item (ii) in the definition of
{Sk, },i =1,2. By duality, we get

EY2 = ¢ sup / h(z2) Z/ / Dy, (21, u1)b1(u1)
Rn2 R R™1

IAll2<1 >k

x K (u1,x2,v1,v2)b1(v1)Dj, (v1, 21)b1(21)

X (Ejl (2’1, yl) — .5]'1 (21, 931))bg(vg)f(vg)duldvdzldxg

=C sup (/ —l—/ ) //h(zz)
[|h]l2<1 |z1—21|>8c27F1 |w1—21|<8c27F1 Z

J1>k1
X Dy, (w1, u1)b1 (u1) K (u1, x2, v1,v2)b1 (v1) Dy, (v1, 21)b1(21)

X (Z)j1 (Zl, yl) — Dj1 (2’1, iL‘[))bQ (’Ug)f(vg)dulded’Ule
= F + Ebs.

For Fy, we use the cancellation properties of D;, to get

[hll2<1

E1=C sup / Z //h(@)Dkl(fUl,ul)bl(ul)
|z1 —21|>8c2~F1 1>k

X (K(ul, T2, U1, UQ) — K(ul, T2, 21, ’Ug))bl(’ul)D]’l (Ul, Zl)bl (Zl)

X (Djl (21, yl) — Dj1 (21, x'[))bQ (’UQ)f(’Ug)duldiCQd’Ule.

Note that the facts |v1 — 21| > 8c27™, |z1 —u1| < 27% and |v; — z1| <
277 < 27" easily imply |v; — 21| < |ug —v1|/2 and |ug —v1| > |1 — 21]/2.
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We apply (Az) to obtain that, for |y; — x| < 27F 1,
o1 — 21|

E1<C sup \hH I1.f1l2 Z / ’Dh(xlvul)’m

j1>k1 1 xR"1 xR™1 ‘

X |Dj1 (’Ul,Zl HDjl Zl,yl) — ﬁjl(zl,xl)’duldvldzl

<clifl: 3 | 2~ k)% Dy, (2, )

Jioky JRIXR™M me (27F1 4+ Jug — vy |)te

27]616

X |Dj, (v1, 21) Hﬁjl (z1,91) — ]_N)jl(zl,xl)’duldvldzl
9~ ke ly1 — z1|\¢
—(j1—k1)(e—¢") Y1 I
<Clfle 3o [ o e (M)

J1>k1

it 9—Ji€e p
X - -
(T o=+ )

ly1 — w1]\¢ 2~ he
< c( ) .
- 2k (270 + |z — xg|)mrte 1712

(13)
By the condition on the support of Dy,

=C sup / Z // h(x2) Dy, (21, u1)b1 (u1)
IRll2<1 J @1 —21|<8c2~F1 lug—21|<9c2—F1

Jj12k1
X K(u1,x2,v1,v2))b1(v1)Dj, (v1, 21)b1(21)
X (5]'1 (21, yl) — 5j1 (Zl, x]))bg(?)g)f(’l)g)duldmgd'l}dzl.

Note that Ey = 0 if |21 — 31| > 27 and |2, — 27| > 2751, It implies
lz1 — 27| < 10c27 provided |z — 21| < 8c27F and |y; — 27| < 271,
This fact will be used later.

Now let g € C°°(R™) be 1 on the unit ball and 0 outside the ball B(0, 2).
Set m =1 —mn9. We use T7(b1) = 0 to obtain

Ey,=C sup / g // h(z2)
Ihlla<1 |21 —21|<8c27F1 755 S S ur—21|<9c27F1

X (Dy, (z1,u1) — Dy, (21, 21)) b1 (w1) K (u1, o2, v1,v2)b1 (v1) Dj, (v1, 21)
X bl (21)(5]‘1 (2’1, yl) — 5]‘1 (Zl, a:[))bg(vg)f(vg)duldxgdvdzl

=C sup / g // h(z2)
|Rll2<1 J |21 —21|<8c27F1 |u1—21|<9c2— k1

J12k1

X <770(1;1_j_1_221> +m (21_]_1_221)> (Dg, (x1,u1) — Dy, (21, 21)) b1 (1)

x K (u1, x2,v1,v2)b1 (v1) Djy (v1, 21)b1 (21) (Djy (21, 91) — Dy, (21, 21))
X bg(vg)f(vg)duldl’dele
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= Ea1 + FEoao.
Let
Uy — 21
fin e (ur) = ﬂo(m) (D, (z1,u1) — Dy, (1, 21))

and

951,21 (Ul) = Djl (Ulv Zl)bl(zl) (Djl (Zlv yl) - Djl (Zlv xf))
The L?(R™*72) boundedness of T yields, for |y, — x| < 27F1—1,

Ey < C sup / > Bllall £z 2l g 2 121l fll2dz

HAllz<1 5y >k
91 , RN
27 o—hm/2( YL T TN ohina /2
<O Y s () ez g,
J1zki

< Clyr — w25 £ o

To estimate oy, we use the cancellation property of D;, and write

Uy — 21
E3 =C sup / // h(l‘z)ﬁl(%)
hll2<1 J |21 —21|<8c2— k1 Z lu1—21]<9c2- k1 2-~2

Jj1>k1
X (Dg, (z1,u1) — Dy, (21, 21)) b1 (w1)

X (K (u1, x2,v1,v2) — K(u1, 2, 21,v2) b1 (v1) Dj, (v1, 21)
X bl (21) (Eji (2:1, yl) — 5]‘1 (2’1, :L’]))bg (vg)f(vg)duldxgdvdzl.

By the conditions on the supports of 71 and D;,, we have |uj — 21| > 4¢2771
and |v; — 21| < 2771, This gives |v; — 21| < |u; — 21]/2. Applying (A2) with
the estimate

ur — 2|

|Dkﬁ1 ('1"13 ul) - Dkﬁl ('1"17 Z1| < 027]{1(1114»1) ’

we obtain that, for |y; — x| < 27F~1

’ul — 21‘ |U Z1’
Ep<C )
22 / /2_j1_2§|u1—21|§92—k1 /R”1 9—ki(n1+1) ’ — 2 ’n1+5“f‘|

j1>k1

x |Djy (v1,21)||D;, (21,31) — Dy, (21, 21)|dvrdurdzy
< Clyr — &1 2+ £l

Thus, Ey < Cly; — m1|€/2k1("1+€/)\\f\\2. By the fact |27 — 27| < 10c27% as
mentioned before, we have

ly1 — x|\ 2~ he
B, < c( ) . 14
2= 2—Fk1 27k + |zq — xp|)rte 7112 (14)
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The estimate of I is the same as the estimate of E. It follows from (12)—(14)
that, for |y; — x7| < 27F~1,

L.
2

% b1(y1)(Dj, My, Dy, (v1,31) — Dj, My, D, (v1, 21))ba(v2) f (v2)durdv| dza

E / Dy, (z1,u1)b1(u1) K (ug, z2, v1, v2)
~ R™1
Ji

2—k12€

k‘l _ 2e
C(2" yr — z1l) P —— ||f||2

(15)
Inserting (15) into (11), we obtain the desired result (i) of Lemma 5.3. O

To finish the proof of Theorem 1.1, we need the following general result
that follows from Theorem 3.1 and [16, Proposition 4].

Proposition 5.4. Let L be a bounded operator from L?(R™*7m2) to
L?H(R”ﬁ”?). Then, for 0 < p < 1, L extends to be a bounded operator
from HP(R™ x R"2) to L (R™*"2) if and only if H,C(a)||L€’_L(Rn1+n2) < C for
all HP(R™ x R™2)-atoms a, where the constant C' is independent of a.

It ie known that the L?(R™*"2) boundedness of 7" and the product
Littlewood-Paley estimate imply that £ is bounded from L2(R™*"2) to
L3,(R™*"2). As mentioned before, the HP(R™ x R"2) — HY, (R™ x R"™2)
boundedness of T is equivalent to the H? — L% (R™ x R™?) boundedness of
the H-valued operator £ which maps f into {7k, x,(f)}k, keez. Hence, to
show the “if part” of Theorem 1.1, by Proposition 5.4, it suffices to prove

”{Tkl’]€2 (a)}ktheZHLl;{(Rnl+n2) <cC for all HP(RM X an) atoms a,

where the constant C' is independent of a.

To do this, we follow R. Fefferman’s idea [9]. Suppose that a is an
HP(R™ x R™) atom supported on an open set & C R™ x R"2 with fi-
nite measure. Furthermore, a can be decomposed as a = ) pc M(Q) AR
where M () is the collection of all maximal dyadic subrectangles contained
in , each ap is supported on 2R = 21 x 2J, the double of R = I x J,
Joar(z1,xo)dey = 0 for all zp € 2J, and [, ap(x1,22)dry = 0 for all
x1 € 2I. Here the higher order moments vanishing of ar are not needed
because we only consider max{-" } < p < 1. Moreover, |allz <

n1+s ’ n2+z-:

Q277 and Y pepqo larld < 19177, Let @ = {(z1,22) € R™ x R™

Ms(xo)(z1,22) > 47" ™20, n1/2 an/z}’ where Mj is the strong maximal
function defined by

M(f)(z1,22) = sup / |f(y1, y2)|dy1dys2,
(z1,22)EP |P‘
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where the supremum is taken over all rectangles P (a product of a cube
in R™ with a cube in R"?) containing (x1,x2). It follows from the strong
maximal theorem that |Q] < C|Q].

We now estimate ”{Tkth(a)}k17k2€ZHL%(Rn1+n2) as follows. Write Q =
{(z1,22) € R™ x R"™ : My(xg)(x1,22) > 4*”1*”2n1_n1/2n2_n2/2} and simi-

larly for Q. Then

[T s @)1, s
= L@} o, m0) s + /( .

By Hoélder’s inequality, the L2 —L%{ boundedness of £, and the size condition
of a,

{Tk, iy (@)} (1, 22) Hf_ldajldxg.

/Q [{ iy (@)} (1, 2) [ drs v

3 =
< ( L H{Tkl,kxa)}(xl,x2>Hidw1dw2) o
Q
< Cllalzlo) -t < c.

Therefore it remains to deal with

/(g)c 7k2(a)}(x1,x2)H§_de1daz2

< 2 e

ReM(Q

where we use the inequality (a4 5)P < o + P for p < 1.
For each R =1 x J € M(Q), we set a larger rectangle R = I x J such
that I is the largest dyadic cube containing I and I x J C . Similarly,

[MIS]

k2 )}(xly 1’2)“%d$1d$2,

{Q

R = I xJ where J is the largest dyadic cube containing J and IxJ C Q. Let
M () denote the collection of all dyadic subrectangles R C Q, R=1 x .J
that are maximal in the z; direction. It is clear that R € M(Q) implies

R € My(Q2) and ]ie M; (). Define My(9) similarly. Also note that
4y/n,I x 4/nyJ C Q. Then

Jiy

<[ e e)fdnidey
(4v/n 1) xR"2

{T, ko (ar) Y1, 22) ||}, d1 da

+/ ATy ke (ar) } (1, 22) |5, dar dacs
R™1 X (4y/nqyJ)¢
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.= U(R) + V(R).

We define v1(R) = 11 (R, Q) = % and 72(R) = v2(R, Q) = ﬁ%), where ¢(T)

denotes the side length of I. To estimate U(R), we write

~

U(R) = / B H{Tkth(aR)}(m,xg)HI;_[d:Cld:zg
(4vn )exdy/nyJ

wf i), 20) [ s
(4y/m, D)o x (4/y )
= Ul(R) + U2(R).

By Holder’s inequality and Minkowski’s inequality,

P

UL(R) < C|J|'"% /(4f - (/an H{Tkl,kQ(aR)}(xl,xﬁ”ida@)Qdazl. (16)

The cancellation condition of ag yields

Ty ko (ar) (71, 22)
:/Tk1,k2($1am2aylayQ)GR(ylay2)dyldy2
Z/[Tkl,kz(ﬂcl,@,yl,m)—Tt,s(m,5172,1’173/2)]@R(y17y2)d?/1dy2,

where z; denotes the center of I. Now we apply Schwarz’s inequality to get

{Thy o (ar) } (@1, 22) |5,

§C|I|/ {/ [Ty ey (1, T2, Y1, Y2)
or 2J

— Ty ks (w1, 22,27, yQ)] ar(y1, yz)dy2}

2

dyl .
H

This estimate and Lemma 5.3 imply that, for 21 € (4y/n,I)¢ and y; € 21,

/Rm T s (ar) Y (a1, 22) ||, s

SC‘I’/ / {/ [Tkl,kg(xlvx%yl?yQ)
21 JR™2 2J

— Ty oo (21, T2, 21, y2) | ar(y1, Z/z)dyz}

2
) llarl3,

Inserting the estimate above into (16) shows

2
dzodyy
H

/

(1)

‘xl _ 37[‘”+€,

< cm(

Ui(R) < C(m(R)"™ " PRI 5 ||ag]5. (17)
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To estimate Us(R), we use the cancellation conditions of ar to write
Tkhkz (aR)(xl’ xQ)
= / (Tkl,kz(ﬂﬁla 2, Y1, Y2) = Thy oo (%1, T2, 71, 2)
— Ty ko (1, %2, y1, 7)) + Thy ko (21, T2, 27, $J))GR(?J1, Y2 )dy1dysa,

where z; is the center of J. For x; € (4\/517)0, xg € (4y/nyJ)C, y1 € 21,
and y € 2J, we have |y1 — x| < jla1 — x| and |yo — 2| < 3lzs — 2.
Thus, the estimate (Bs) gives

H {Tkh’@ (aR)}(xh xQ)HH

y1 — x| Yo — x| 2 12
§O</|R’<|x|1 ! | ; ly2 | ,|aR(y1,y2)|> dyldy2> .

_ $I|n1+€ |1‘2 _ $J|n2+e

Hence,

Us(R) < C(n(R)™ ™" R E |agls. (18)
Both estimates (17) and (18) give

U(R) < C(3a(R)™ ™" | RIE |l

The estimate for V' (R), though slightly different from U(R), can be handled
in much the same manner so that

V(R) < C(r2(R)"™ ™ PRI 5 ||ag]5.

Summing over R gives

> Jr

(ar) Hw1, z2) H%;_Ld:rld:z:g

ReM(Q
<C 3 (@)™ RIS gl
REM(Q)
+C Z )" RIS g
ReM(Q
s 1-5
gc{( > Ilen(m) ")
ReM2(Q)
L\
A ey ) (X )
ReM;(Q) ReM(Q)

Where51:w>0and52: > 0.

To estimate the last part above, we use the following

2[n2—(na+e")p]
=2
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Journé’s lemma. Let M;(Q) and M3(f2) be defined as above. Then

_5 -4
2 ReMs(9) |R|(v1(R))° < C5|Q| and 2 ReM1(Q) |R[(72(R)) " < C5|Q| for
any 6 > 0, where Cj is a constant depending on § only.

Journé’s lemma and the size condition of ar imply

> Jor

ReM(2

{Thy oo (ar) H a1, 22) ||, dardas < ClQI' 5012 < C

We complete the proof of the “if part” of Theorem 1.1. O

Proof of Theorem 1.2. “if” part:

We point out that the “if” part follows directly from duality of H l}l b, (R X
R"™2) with BM Op,p, (R™ x R™). We provide the details as follows.

(1) Suppose T1 (bl) == Tg(bg) = 0.

Then for the adjoint operator T* of T, it is clear to see that T™ satisfies

(T7)1(b1) = (T7)3(b2) = 0.
Hence, from (1) in Theorem 1.1 we obtain that T* is bounded from H!(R™ x
R™) to Hj ;, (R™ x R").
Then for every f € BMOy,p, (R™ x R"2) N L2(R™ x R™2), g € H(R™ x
R"2) N L2(R™ x R"2), we have
(L1, 0] = AT < CUllmr104, 0 xien) IT6ll g, o o)
< CllflBroy, by (R xRP2) 9] 1 (R xR72)
By density argument we can obtain that 7'f is in BMO(R™ x R"2).
(2) Suppose T1(1) =T»(1) = 0.
Then for the adjoint operator T* of T, it is clear to see that T™ satisfies
(T7)1(1) = (T7)3(1) = 0.
Hence, from (2) in Theorem 1.1 we obtain that 7™ Mp,;, is bounded from
Hy, (R™ X R™) to H'(R™ x R™).
Then for every f € BMO(R™ x R™) N L2(R™ x R™), g € H§1b2 (R™ x
R"2) N L2(R™ x R™), we have
’<Mb1b2Tfa g>’ = |<f7 T*b1b29>|

< CllFl 10y, 0, @1 xrra) T Moroogll g3 o wrna)
< Cllf | BMOy by (R xR72) | 9] 211 (R < R2)

By density argument we can obtain that M;, 5, T f is in BM Oy, p, (R™ xR™2).
(3) Suppose T (b1) = Ta(ba2) = 0.
Then for the adjoint operator T™ of T', it is clear to see that T™ satisfies

(T%)1(b1) = (T7)3(b2) = 0.
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Hence, from (3) in Theorem 1.1 we obtain that T%M;,;, is bounded from
H}, (R™ x R™) to H}, (R™ x R"2).
102 102
Then for every f € BMOy,p,(R™ xR"™)NL*(R™ xR"?), g € H} , (R™ X
R™) N L2(R™ x R™), we have
’<Mb1b2Tfa g)’ = ’<f7 T*blb29>|

< Cll Al 10y, b, @1 xrra) [T Moo gl 3 | o wrna)

< Cllf a0y, 0, @1 xwr) 1912, (o1 xn2)
By density argument we can obtain that M, T f is in BM Oy, p, (R™ xR™?).
“only if” part:

We now prove the “only if” part.

(1) Suppose T' admits a bounded extension from BM Op,p, (R™ x R™2) to
BMO(R™ x R").

We now consider the function f(x1,z2) = x1(x1)f2(22)by ' (x2), where
x1(z1) = 1 on R™, and fa(x2) € C§°(R™). Then it is clear that this
f(z1,22) is in L*°(R™ x R™2), and hence it is in BMO(R™ x R"2) with

I £l Brro®m xRr2) = 0.
Then we also have g(x1,x2) = bi(x1)ba(z2) f(z1,z2) is in BMOp,p, (R™ x
R"2) with
91l BA10y, s, (RP1 xRA2) = 0.
Moreover, since T'g is in BMO(R™ x R™?) with

ITgll Bro@m xrn2) < 19l B0y, (R xRP2) = 0.

Hence, we obtain that for all 11 € C§°(R™) with [pn, ¥1(x1)dz; = 0 and
all i € CSO(RHQ) with fR"Q ’(ﬁg(.ﬁtz)d.fvg =0,

/ Y1(w1)2(z2)Tg(21, 20)dT1dTs = 0,
R’VLl XR’VLQ
since 11 (z1)Y2(x2) is in HI(R™ x R"2). This yields
/R oy T (rt2) (s 52)b1 (91)02(y2) f (w1, y2) Ay dy> = 0,
1 xR™2

which, together with the definition of f, gives

/ T (1p2) (1, y2)b1 (y1) f2(y2)dyrdyz = 0,

R™ xR"2
Since 11 (21)1ha(22) is in H'(R™ xR"™2), we have that T*(¢11s) is in L (R x
R™)NL2(R™ x R"2). Moreover, since fa(z2) € C§°(R"2) and b is bounded,

we see that the set {bafa : |ba| < C, fo € C§°(R™)} is dense in L?(R"™).
We get that

[ T )b =



1480 MING-YI LEE, JI LI AND CHIN-CHENG LIN
which is
/ Y1(z1)a(w2) K (21, 22, Y1, y2)b1 (y1)dyrdz1drs = 0.
R™ xR"2 JR™
Based on the definition, this shows that
T1(b1) = 0.
Similarly we can obtain that
T5(b2) = 0.

(2) Suppose Mp,, T admits a bounded extension from BMO(R™ x R"2)
to BMOble (Rnl X RnZ).

We now consider the function f(z1,z2) = x1(z1)f2(z2), where x1(z1) =1
on R™, and fa(xe) € C§°(R™). Then it is clear that this f(z1,x2) is in
L>*(R™ x R"™), and hence it is in BMO(R™ x R™) with

I £l Brro®m xRr2) = 0.
Therefore, My, p, T f is in BM Op,p, (R™ x R™2) with

[ Mb16, T fll Brrom xrrzy < ([ BrOy ,, (R xRP2) = 0.

For all ¢ € C§°(R™) with [pn, ¥1(21)dz; = 0 and all ¢ € C5°(R"2) with
Jgns Y2(x2)dxs = 0, we have wl(xl)w (z ) is in H1(R™ x R"2) N L2(R™ x
R"2) and then 1 (1) (z2)by * (21)by (2) is in Hl}le (R™ x R"2)N L2 (R™ x
R™2). Hence

/ W1 (21)2(22)b7  (21)by  (22) My, T f (21, 32)d21dae = 0,
R™1 xR™2
This yields
/ T*(P1b2) (Y1, y2) f (Y1, y2)dyrdys = 0,

R™1 xR™2
which, together with the definition of f, gives

/ T* (Y12) (Y1, y2) fa(y2)dyrdy2 = 0,

R™1 xR™2

Since 11 (21)1ha(x2) is in H'(R™ xR"™2), we have that T (¢11s) is in L (R x
R™2) N L2(R™ x R"2). Moreover, since fa(r2) € C5°(R"™2), we see that the
set {fa: fo € CP(R™)} is dense in L?(R"2). We get that

/R T* (Y112) (Y1, y2)b1(y1)dyr = 0,
ny
which is
/ Y1 (z1)2(x2) K (21, 22, Y1, y2)dy1dzidzy = 0.
R71 xR72 JR™M

Based on the definition, this shows that 7 (1) = 0. Similarly we can obtain
that T2(2) = 0.
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(3) Suppose T" admits a bounded extension from BM Op,p, (R™ x R™2) to
BM Oy, (Rnl x R™2).

We now consider the function f(x1,z2) = x1(x1)f2(22)by ' (x2), where
x1(z1) = 1 on R™, and fao(x2) € C§°(R™). Then it is clear that this
f(z1,22) is in L*°(R™ x R™2), and hence it is in BMO(R™ x R"?) with

HfHBMO(Rm xR"2) = 0.

Then we also have g(x1,x2) = bi(x1)ba(z2) f(x1,z2) is in BMOp,p, (R™ x
R"™2) with

HQHBMO,,11,2(R”1 xRkn2) = 0.
Moreover, since My, p,Tg is in BM Oy, (R™ x R™2) with

[ Mb,0, Tl Brio®m xrr2) < 19llBMO, 4, (R71 xRA2) = 0.

Hence, we obtain that for all ¢; € C§°(R™) with f]Rnl ¥1(x1)dx; = 0 and
all ¥y € Cg°(R™) with fR"2 o(x9)dre = 0,

/ 1 (1) (x2)b]  (21)by H(w2) My, Tg(1, 22)dx1das = 0,
R’n/l XR7L2

since 1 (21)ha(w2)by (x1)by ' (w2) is in HY ) (R™ x R"2) 0 L2(R™ x R"2).
This yields

/}Rn1 . T (h11b2) (y1, y2)b1(y1)b2(y2) f (y1, y2)dy1dya = 0,

which, together with the definition of f, gives

/Rnl o T (b11b2) (y1, y2)b1(y1) fa(y2)dyrdy2 = 0O,

Since 11 (z1)2(x2) is in H'(R™ xR"2), we have that T*(11) is in L*(R™ x
R™)NL2(R™ x R"2). Moreover, since fa(z2) € C§°(R"2) and by is bounded,
we see that the set {bafa : |b2| < C, fo € C§°(R™2)} is dense in L?(R"™2).
We get that

/R T (619h2) (1, o) (91 )dys = 0,
ni
which is

/ (1) (x2) K (21, 22, Y1, y2)b1 (y1)dyrdz1des = 0.
Rnl XRTLZ R’,Ll

Based on the definition, this shows that T (b;) = 0. Similarly we can obtain
that TQ(bQ) =0.
The proof of Theorem 1.2 is complete. O

We now finalize the proof of Theorem 1.1.
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Proof of the “only if part” of Theorem 1.1. (1) Suppose 7" is bounded
from HP(R™ x R"?) to Hy , (R™ x R"2). Then we see that the adjoint 7"
extends to a bounded operator from BM Op,p, (R™ x R"2) to BMO(R™ x
R™). Then apply the “only if” part for (2) of Theorem 1.2, we see that
T (by) = T5 (be) — 0.

Similarly we can verify the “only if” part of (2) and (3).

The proof of Theorem 1.1 is complete. O

Acknowledgement: The authors would like to thank the referees for all
the helpful comments and suggestions, which made this paper much more
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