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Product Hardy spaces associated with
para-accretive functions and Tb theorem

Ming-Yi Lee, Ji Li and Chin-Cheng Lin

Abstract. We introduce the Hardy spaces associated with para-
accretive functions in product domains and demonstrate their atomic
decompositions as well as duality. Then, we establish the endpoint ver-
sion of product Tb theorem with respect to our Hardy spaces and the
dual spaces.
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1. Introduction

Calderón and Zygmund [2] introduced a class of convolution singular
integral operators that generalize the Hilbert transform and Riesz trans-
forms. The L2-boundedness of such convolution operators follows from the
Plancherel theorem. For non-convolution singular integral operators, David
and Journé [5] gave a general criterion for the L2-boundedness that is the
remarkable T1 theorem. Unfortunately, the T1 theorem cannot be applied
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to the Cauchy integral on a Lipschitz curve defined by

C(f)(x) =
1

π
p.v.

∫ ∞
−∞

f(y)

(x− y) + i(a(x)− a(y))
dy,

where the function a(x) satisfies the Lipschitz condition. Meyer first ob-
served that C(b) = 0 provided b(x) = 1+ ia′(x). Therefore, if the function 1
in the T1 theorem is allowed to be replaced by an accretive function b which
is a bounded complex-valued function satisfying Re b(x) ≥ δ > 0 almost
everywhere, then this result would imply the L2-boundedness of the Cauchy
integrals on all Lipschitz curves. Replacing the function 1 by an accretive
function b, McIntosh and Meyer [25] obtained a Tb theorem. Finally, David,
Journé and Semmes [6] proved a new Tb theorem by replacing the function
1 by the so-called para-accretive functions b. To extend the Tb theorem to
Hardy spaces, Han, Lee and Lin [13] introduced a new class of Hardy spaces
associated to a para-accretive function b, denoted by Hp

b , which was given
by those distributions such that their Littlewood-Paley g-functions associ-
ated to b belong to Lp, and showed the Hp

b -boundedness of singular integer
operators.

By taking the space Rn1 × Rn2 along with two-parameter family of di-
lations (x, y) 7→ (δ1x, δ2y), x ∈ Rn1 , y ∈ Rn2 , δi > 0, i = 1, 2, instead of
the classical one-parameter dilation, R. Fefferman and Stein [10] studied the
product convolution singular integral operators which satisfy analogous con-
ditions enjoyed by the double Hilbert transform defined on R × R. Journé
[22] generalized the product convolution singular integral operators to the
product non-convolution singular integral operators and introduced a class
of singular integral operators which coincides with the product convolution
singular integral operators on product spaces. Moreover, Journé [22] proved
the product T1 theorem. Suppose b(x1, x2) = b1(x1)b2(x2), where b1 and b2
are para-accretive functions on Rn1 and Rn2 , respectively. A generalized sin-
gular integral operator is a continuous linear operator T from bCη0 (Rn1×Rn2)
into (bCη0 (Rn1 × Rn2))′ for all η > 0 if the kernel of T is a singular inte-
gral kernel and, for f1, g1 ∈ Cη0 (Rn1) with supp(f1) ∩ supp(g1) = ∅ and
f2, g2 ∈ Cη0 (Rn2) with supp(f2) ∩ supp(g2) = ∅,

〈MbTMbf1 ⊗ f2, g1 ⊗ g2〉

=

∫
Rn1×Rn2

∫
Rn1×Rn2

b2(x2)b1(x1)g1(x1)g2(x2)K(x1, x2, y1, y2)

× b2(y2)b1(y1)f1(y1)f2(y2)dx1dx2dy1dy2,

where Mb denotes the multiplication operator by b; that is, Mbf(x) =
b(x)f(x). Han, Lee and Lin [15] obtained the following product Tb the-
orem.

Theorem A ([15]). Suppose that b1 and b2 are para-accretive functions on
Rn1 and Rn2, respectively, b(x1, x2) = b1(x1)b2(x2), and T is a generalized
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singular integral operator. Then T and T̃ are bounded on L2(Rn1+n2) if and

only if Tb, tTb, T̃ b, tT̃ b ∈ BMO(Rn1 × Rn2) and MbTMb ∈WBP .

Here tTb, T̃ b and tT̃ b denote the three types of adjoint and partial adjoint
operators of T . For simplicity we do not repeat all the definitions here, for
the detail of the definition we refer to [15]. We also note that a similar result
of the product Tb theorem was obtained by Ou [28] as well.

In 2013, Han, Li and Lu [18] developed a satisfactory theory of multipa-
rameter Hardy spaces in the framework of spaces of homogeneous type under
only the doubling condition and some regularity assumption of the under-
lying metric spaces. Later Han, Li and Ward [19] established the theory of
multiparameter Hardy spaces on space of homogeneous type in the sense of
Coifman and Weiss, without assuming any extra conditions. Such a metric
space of homogeneous type includes the model case of Carnot-Carathédory
spaces intrinsic to a family of vector fields satisfying Hörmander’s condi-
tion of finite rank. Recently, Hart [21] presented a bilinear Tb theorem for
singular operators, and proved the product Lebesgue space bounds for bi-
linear Riesz transform defined on Lipschitz curve as an application of his Tb
theorem.

Consider the Cauchy integrals on product domain R× R

Cprof(x1, x2) = p.v.

∫ ∞
−∞

∫ ∞
−∞

f(y1, y2)

((x1 − y1) + i(a1(x1)− a1(y1)))

× 1

((x2 − y2) + i(a2(x2)− a2(y2)))
dy1dy2,

which is a particular testing example operator for product Tb theorem. It
is well-known that Cpro is not bounded on Chang-Fefferman product Hardy
space H1(R× R).

Thus, a natural question arises. What is the right version of product
Hardy spaces associated to the para-accretive b1(x) = 1+ia′1(x) and b2(x) =
1 + ia′2(x) such that the operator Cpro is bounded on these product Hardy
spaces? In this paper we focus on the following

Question 1: Can one develop the product Hardy spaces Hp
b1b2

(Rn1×Rn2)
associated to para-accretive functions b1, b2 for p0 < p <∞, p0 < 1 ?

Question 2: Motivated by the duality results between product Hardy
space H1 and product BMO on Rn1 ×Rn2 of Chang and R. Fefferman, can
we establish the duality theory for Hp

b1b2
(Rn1 × Rn2), p0 < p ≤ 1?

Question 3: What is the analogous endpoint version of product Tb the-
orem for singular integral operators T when p = 1 and p = ∞ or more
generally for p0 < p ≤ 1?

These questions will be answered affirmatively. We will employ a uni-
fied approach to answer these questions. This approach is achieved by the
following steps:



PRODUCT Hp
b1b2

SPACES AND Tb THEOREM 1441

1. We first introduce new Banach spaces which are spaces of product
test functions and distributions in our framework. These spaces on the one-
parameter space Rn associated with para-accretive function were introduced
in [12], and on the spaces of test functions and distributions on product
spaces of homogeneous type in the sense of Coifman and Weiss only satisfy-
ing the doubling condition and the regularity assumption were introduced
in [18]. In this paper, we introduce spaces of test functions and distributions
on product spaces associated with para-accretive functions.

2. We then establish discrete Calderón’s identity on such product test
function spaces. The classical Calderón’s identity was first used by Calderón
in [1]. Such an identity is a very powerful tool, in particular, in the theory of
wavelet analysis. See [26] for more details. Using Coifman’s decomposition
of the identity operator, David, Journé and Semmes [6] provided a Calderón-
type identity which is a key tool to prove the T1 theorems on space of
homogeneous type and the Tb theorem on Rn. The continuous and discrete
versions of Calderón’s identities associated with para-accretive function were
developed in [12], [13], [14] and [24]. In this paper, we provide discrete
Caldeonón’s identity on the product spaces associated with para-accretive
functions. This identity will be the main tool for us to establish the whole
product theory.

3. We next demonstrate the Plancherel-Pôlya-type (or sup-inf) inequality
in the multiparameter setting. The classical Plancherel-Pôlya inequality
says that the Lp norm of f whose Fourier transform has compact support is
equivalent to the `p norm of the restrictions of f at appropriate lattices. This
kind of inequality was first proved in [13] on one-parameter space associated
with para-accretive function. In this paper we prove such inequalities on
product spaces associated with para-accretive functions. As an immediate
consequence of the Plancherel-Pôlya inequality, the product Hardy space
Hp
b1b2

(Rn1 × Rn2) is well defined.
4. We then consider the the atomic decomposition theory on product do-

mains. The atomic decomposition for one variable space Hp
b is given by [13]

and [14]. For product Hardy space, Chang and R. Fefferman provided the
atomic decomposition of Hp(Rn1 × Rn2). Using the atomic decomposition,
Han, Lee and Lin [15] proved the Hp(Rn1 × Rn2) boundedness of Journé’s
product singular integrals. Lee [23] also obtained the theory in weighted
product Hardy space. In this paper, we obtain the atomic decomposition in
Hp
b1b2

(Rn1 × Rn2) ∩ L2(Rn1+n2).

5. We develop the dual spaces of Hp
b1b2

(Rn1 × Rn2). Coifman and Meyer

[27] introduced a new Hardy space H1
b that can be defined by all functions f

such that bf ∈ H1. Similarly, BMOb, the dual of H1
b , is defined as follows:

a function f ∈ BMOb if and only if f = bg, where g ∈ BMO. For p < 1, the
dual space of Hp

b is defined similarly via the dual space of the classical Hardy
spaces Hp. Han, Li and Lu [17] established and studied the product type
Carleson measure space CMOp and proved that it is the dual of the product
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Hp for 0 < p0 < p ≤ 1 for some p0 on product spaces of homogeneous type.
In this paper, we introduce the Carleson measure space CMOpb1b2 associated
with the para-accretive functions b1 and b2, and prove that the dual of the
product Hardy space Hp

b1b2
studied in this paper can be characterized by

CMOpb1b2 . In particular, CMO1
b1b2

(Rn1 ×Rn2) = BMOb1b2(Rn1 ×Rn2), the

dual of H1
b1b2

(Rn1 × Rn2). For the definition of para-accretive functions, we
refer to Section 2.

6. We finally establish endpoint version of Tb theorem for singular integral
operators T on product spaces (see Definition 5.1). In this paper we apply
vector-valued singular integral, Calderón’s identity, Littlewood-Paley theory
and the almost orthogonality together with Fefferman’s rectangle atomic
decomposition and Journé’s covering lemma to show that Journé’s product
singular integrals are bounded on Hp

b1b2
(Rn1×Rn2) and BMOb1b2(Rn1×Rn2)

under some conditions. To be more specific, we have the following

Theorem 1.1. Suppose that bi are para-accretive functions on Rni for i =
1, 2 and T is a singular integral operator in Journé’s class with regularity
exponent ε (see Definition 5.1). Let max

i=1,2

{
ni
ni+ε

}
< p ≤ 1.

(1) T ∗1 (b1) = T ∗2 (b2) = 0 if and only if T is bounded from Hp(Rn1×Rn2)
to Hp

b1b2
(Rn1 × Rn2).

(2) T ∗1 (1) = T ∗2 (1) = 0 if and only if TMb1b2 is bounded from Hp
b1b2

(Rn1×
Rn2) to Hp(Rn1 × Rn2).

(3) T ∗1 (b1) = T ∗2 (b2) = 0 if and only if TMb1b2 is bounded from
Hp
b1b2

(Rn1 × Rn2) to Hp
b1b2

(Rn1 × Rn2).

For the details of definition of T ∗1 (1), T ∗2 (1), T ∗1 (b1) and T ∗2 (b2), we refer
to Section 5.

By the duality of H1(Rn1 ×Rn2) with BMO(Rn1 ×Rn2) and the duality
of H1

b1b2
(Rn1 × Rn2) with BMOb1b2(Rn1 × Rn2), we also have

Theorem 1.2. Suppose that bi are para-accretive functions on Rni for i =
1, 2 and T is a singular integral operator in Journé’s class with regularity
exponent ε.

(1) T1(b1) = T2(b2) = 0 if and only if T admits a bounded extension
from BMOb1b2(Rn1 × Rn2) to BMO(Rn1 × Rn2).

(2) T1(1) = T2(1) = 0 if and only if Mb1b2T admits a bounded extension
from the space BMO(Rn1 × Rn2) to BMOb1b2(Rn1 × Rn2).

(3) T1(b1) = T2(b2) = 0 if and only if Mb1b2T admits a bounded extension
from the space BMOb1b2(Rn1 × Rn2) to BMOb1b2(Rn1 × Rn2).

For the details of definition of T1(1), T2(1), T1(b1) and T2(b2), we refer to
Section 5.

This paper is organized as follows. In Section 2, we develop the
Littlewood-Paley-Stein theory on Rn1×Rn2 . To do this, we first recall some
basic definitions, notion and known results established in the one parame-
ter case, and then introduce the spaces of test functions and distributions
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on Rn1 × Rn2 . We prove discrete Calderón’s identity and the Plancherel-
Pôlya inequalities (Theorems 2.8 and 2.13). We introduce the Littlewood-
Paley-Stein square function and define the Hardy space Hp

b1b2
(Rn1 × Rn2).

Some important properties of Hp
b1b2

(Rn1 × Rn2) are also proved in this sec-

tion. In Section 3, we establish a new atomic decomposition for Hp
b1b2

(Rn1×
Rn2) ∩ L2(Rn1 × Rn2) (Theorem 3.1). As an application, we show that the
Hardy space Hp

b1b2
(Rn1 × Rn2) ∩ L2(Rn1 × Rn2) can be defined by b1b2f ∈

Hp(Rn1 × Rn2) ∩ L2(Rn1 × Rn2) (Corollary 3.2). Section 4 deals with the
dual of Hp

b1b2
(Rn1 × Rn2). We introduce the generalized Carleson measure

space CMOpb1b2(Rn1 ×Rn2) and show that CMOpb1b2(Rn1 ×Rn2) is the dual

space of Hp
b1b2

(Rn1×Rn2) (Theorem 4.1). Finally, we show the boundedness

and endpoint estimates of Journé’s product singular integrals (Theorems 1.1
and 1.2).

2. The Littlewood-Paley-Stein theory on Hp
b1b2

(Rn1 × Rn2)

2.1. The Littlewood-Paley-Stein theory on Hp
b (Rn). We begin by

recalling the definition of para-accretive functions (see for example [6, 12]).

Definition 2.1. A bounded complex-valued function b defined on Rn is said
to be para-accretive if there exist constants C, γ > 0 such that for each cube
Q ⊂ Rn, there is a Q′ ⊂ Q with γ|Q| ≤ |Q′| and satisfies

1

|Q|

∣∣∣∣ ∫
Q′
b(x) dx

∣∣∣∣ ≥ C.
By the Lebesgue differentiation theorem, it is easy to show that |b(x)| ≥

C > 0 almost everywhere.
The following class of “test functions” associated to a para-accretive func-

tion was introduced in [12].

Definition 2.2. Fix two exponents 0 < β ≤ 1 and γ > 0. Let b be a para-
accretive function. A function f defined on Rn is said to be a test function
of type (β, γ) centered at x0 ∈ Rn with width d > 0 if f satisfies

|f(x)| ≤ C dγ

(d+ |x− x0|)n+γ
, (1)

|f(x)− f(x′)| ≤ C
( |x− x′|
d+ |x− x0|

)β dγ

(d+ |x− x0|)n+γ
(2)

for |x− x′| ≤ d+|x−x0|
2 , and ∫

Rn
f(x)b(x) dx = 0.

We writeM(β,γ)
(x0, d) for the collection of all test functions of type (β, γ)

centered at x0 ∈ Rn with width d > 0. For f ∈M(β,γ)
(x0, d), the norm of f
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in M(β,γ)
(x0, d) is defined by

‖f‖M(β,γ)
(x0,d)

= inf
{
C : (2.1) and (2.2) hold

}
.

We denote M(β,γ)
(0, 1) simply by M(β,γ)

. Then M(β,γ)
is a Banach space

under the norm ‖f‖M(β,γ) . It is easy to check that for any x0 ∈ Rn and

d > 0, M(β,γ)
(x0, d) =M(β,γ)

with equivalent norms. As usual, we write

bM(β,γ)
=
{
bg | g ∈M(β,γ)}

.

If f ∈ bM(β,γ)
and f = bg for g ∈ M(β,γ)

, then the norm of f is defined

by ‖f‖
bM(β,γ) = ‖g‖M(β,γ) . The dual space

(
bM(β,γ)

)′
consists of all linear

functionals L from bM(β,γ) to C satisfying

|L(f)| ≤ C‖f‖bM(β,γ) for all f ∈ bM(β,γ).

We also need the definition of an approximation to the identity associated
to a para-accretive function b.

Definition 2.3 ([12]). Let b be a para-accretive function. A sequence of
operators {Sk}k∈Z is called an approximation to the identity associated to b
if Sk(x, y), the kernels of Sk, are functions from Rn × Rn into C and there
exist a constant C and some 0 < ε ≤ 1 such that, for all k ∈ Z and all
x, x′, y and y′ ∈ Rn,

(i) |Sk(x, y)| = 0 if |x− y| ≥ C2−k and |Sk(x, y)| ≤ C2kn,

(ii) |Sk(x, y)− Sk(x′, y)| ≤ C2k(1+ε)|x− x′|ε,
(iii) |Sk(x, y)− Sk(x, y′)| ≤ C2k(n+ε)|y − y′|ε,
(iv)

∣∣[Sk(x, y)− Sk(x, y′)]− [Sk(x
′, y)− Sk(x′, y′)]

∣∣
≤ C22k(n+ε)|x− x′|ε|y − y′|ε,

(v)

∫
Rn
Sk(x, y)b(y)dy = 1 for all k ∈ Z and x ∈ Rn,

(vi)

∫
Rn
Sk(x, y)b(x)dx = 1 for all k ∈ Z and y ∈ Rn.

Remark 2.1. Let Dk(x, y) := Sk(x, y)−Sk−1(x, y). It is clear that Dk(x, ·) ∈
M(ε,ε)

(x, 2−k) and hence Dk(x, ·) ∈M
(ε,ε)

. Similarly, Dk(·, y) ∈M(ε,ε)
. By

definition, it is clear to see that bDk(x, ·) ∈ bṀ
(β,γ)

for 0 < β, γ < ε.

We now recall the definition of Hp
b .

Definition 2.4 ([13]). Suppose that {Sk}k∈Z is an approximation to the
identity associated to a para-accretive function b with regularity exponent ε.

Set Dk = Sk−Sk−1. For 0 < β, γ < ε, denote by Ṁ(β,γ)
the closure ofM(ε,ε)

with respect to the norm ‖ · ‖M(β,γ) . The Hardy space Hp
b , n

n+ε < p ≤ 1, is

the collection of f ∈
(
bṀ(β,γ))′

satisfying

‖f‖Hp
b

:= ‖g(f)‖p <∞,
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where g(f), the Littlewood-Paley g-function of f, is defined by

g(f)(x) :=

{∑
k

|Dk(bf)(x)|2
}1/2

.

We would like to point out that one of main results in [13] is the following
Plancherel-Pôlya type inequality.

Proposition 2.5 ([13]). Suppose that {Sk}k∈Z and {Rk}k∈Z are approx-
imations to the identity associated to b with regularity exponent ε, and
n
n+ε < p < ∞. Set Dk = Sk − Sk−1 and Ek = Rk − Rk−1. Then, for

f ∈
(
bṀ(β,γ))′

,∥∥∥∥{∑
k

∑
Qk

(
sup
z∈Qk

|Ek(bf)(z)|
)2
χQk

}1/2∥∥∥∥
p

≈
∥∥∥∥{∑

k

∑
Qk

(
inf
z∈Qk

|Dk(bf)(z)|
)2
χQk

}1/2∥∥∥∥
p

,

where Qk are dyadic cubes with side length `(Qk) = 2−k−N for some fixed
positive large integer N and χQk are characteristic functions of cubes Qk.

We have the continuous and discrete versions of the Calderón reproducing
formula.

Proposition 2.6 ([12], [14] and [24]). Let b be a para-accretive function
and {Sk} be an approximation to the identity associated to b with regularity
exponent ε. Set Dk = Sk − Sk−1. Then there exists a family of operators

{D̃k} such that, for f ∈M(ε,ε)
,

f(x) =
∑
k

DkMbD̃k(bf)(x)

and

f(x) =
∑
k

∑
Qk

Dk(x, xQk )D̃k(bf)(xQk )

∫
Qk

b(y)dy,

where
∑

Qk
runs over all dyadic cubes Qk’s with side length `(Qk) = 2−k−N

for some fixed positive large integer N , xQk is any fixed point in Qk, and the

series converges inM(β,γ)
for 0 < β, γ < ε and in Lq, 1 < q <∞. Moreover,

D̃k(x, y), the kernels of D̃k, satisfy the following estimates: for 0 < ε′ < ε,
there exists a constant C > 0 such that

|D̃k(x, y)| ≤ C 2−kε
′

(2−k + |x− y|)n+ε′
,

|D̃k(x, y)− D̃k(x, y
′)| ≤ C

( |y − y′|
(2−k + |x− y|)

)ε′ 2−kε
′

(2−k + |x− y|)n+ε′
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for |y − y′| ≤ (2−k + |x− y|)/2,∫
Rn
D̃k(x, y)b(y) dy = 0 for all k ∈ Z and x ∈ Rn,∫

Rn
D̃k(x, y)b(x) dx = 0 for all k ∈ Z and y ∈ Rn.

2.2. Test functions and distributions associated to para-accretive
functions. We first introduce spaces of test functions and distributions on
Rn1 × Rn2 associated to para-accretive functions.

Definition 2.7. Fix four exponents 0 < β1, β2 ≤ 1 and γ1, γ2 > 0. Let b1
and b2 be para-accretive functions on Rn1 and Rn2 , respectively. A function
f defined on Rn1 × Rn2 is said to be a test function of type (β1, β2, γ1, γ2)
centered at (x0, y0) ∈ Rn1 × Rn2 with width d1, d2 > 0 if f satisfies

(i) ‖f(·, y)‖M(β1,γ1) (x0,d1)
≤ C dγ22

(d2 + |y − y0|)n2+γ2
;

(ii) ‖f(·, y)− f(·, y′)‖M(β1,γ1) (x0,d1)

≤ C
( |y − y′|
d2 + |y − y0|

)β2 dγ22

(d2 + |y − y0|)n2+γ2
for |y − y′|≤ d2 + |y − y0|

2
;

(iii) properties (i) and (ii) also hold with x and y interchanged;

(iv)

∫
Rn1

f(x, y)b1(x)dx =

∫
Rn2

f(x, y)b2(y)dy = 0 for all x ∈ Rn1 and

y ∈ Rn2 .

If f is a test function of type (β1, β2, γ1, γ2) centered at (x0, y0) ∈ Rn1 ×Rn2

with width d1, d2 > 0, we write

f ∈M(β1,β2,γ1,γ2)
(x0, y0, d1, d2),

and the norm of f is defined by

‖f‖M(β1,β2,γ1,γ2) (x0,y0,d1,d2)
= inf

{
C : (i), (ii) and (iii) hold

}
.

Similarly, we denote by M(β1,β2,γ1,γ2) the class of M(β1,β2,γ1,γ2)(0, 0, 1, 1).

We can check that M(β1,β2,γ1,γ2) = M(β1,β2,γ1,γ2)(x0, y0, d1, d2) with equiva-

lent norms for all (x, y) ∈ Rn1×Rn2 . Let Ṁ(β1,β2,γ1,γ2) denote the completion

of the space M(ε1,ε2,ε1,ε2) in M(β1,β2,γ1,γ2) with 0 < βi, γi < εi, i = 1, 2. For

f ∈ Ṁ(β1,β2,γ1,γ2) , we define ‖f‖Ṁ(β1,β2,γ1,γ2) = ‖f‖M(β1,β2,γ1,γ2) . As usual,

we write

b1b2M
(β1,β2,γ1,γ2)

=
{
b1b2g | g ∈M

(β1,β2,γ1,γ2)
}
.

If f ∈ b1b2M
(β1,β2,γ1,γ2) and f = b1b2g for g ∈ M(β1,β2,γ1,γ2) , then the norm

of f is defined by

‖f‖
b1b2M

(β1,β2,γ1,γ2) = ‖g‖M(β1,β2,γ1,γ2) .
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The dual space
(
b1b2M

(β1,β2,γ1,γ2)
)′

consists of all linear functionals L from

b1b2M
(β1,β2,γ1,γ2) to C satisfying

|L(f)| ≤ C‖f‖
b1b2M

(β1,β2,γ1,γ2) for all f ∈ b1b2M
(β1,β2,γ1,γ2)

.

2.3. Discrete Calderón identity on test function spaces. Through
the paper, we always denote biQi by

1

|Qi|

∫
Qi

bi(xi)dxi, i = 1, 2.

Theorem 2.8. Let Dki and D̃ki be the operators given in Proposition 2.6
on Rni, i = 1, 2. Then

f(x1, x2) =
∑
k1

∑
k2

∑
Qk1

∑
Qk2

|Qk1 ||Qk2 |Dk1(x1, xQk1
)Dk2(x2, yQk2

)

× D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)b1Qk1 b2Qk2 ,

where the series converges in Ṁ(β1,β2,γ1,γ2) for 0 < βi, γi < εi, i = 1, 2 and
in Lp, 1 < p <∞.

Proof. The proof of this theorem is based on the method of iteration and
some known estimates on Rn. We first show the Lp, 1 < p <∞, convergence.
Denote

g(x1, x2) = f(x1, x2)−
∑
|k1|≤L1

∑
|k2|≤L2

∑
Qk1

∑
Qk2

|Qk1 ||Qk2 |Dk1(x1, xQk1
)

×Dk2(x2, yQk2
)D̃k1Mb1D̃k2Mb2f(xQk1

, yQk2
)b1Qk1 b2Qk2

=: g1(x1, x2) + g2(x1, x2),

where

g1(x1, x2) =
∑
|k2|≤L2

∑
Qk2

|Qk2 |Dk2(x2, yQk2
)D̃k2Mb2f(x1, yQk2

)b2Qk2

−
∑
|k1|≤L1

∑
Qk1

|Qk1 |Dk1(x1, xQk1
)b1Qk1 D̃k1Mb1

×
( ∑
|k2|≤L2

∑
Qk2

|Qk2 |Dk2(x2, yQk2
)D̃k2Mb2f(·, yQk2 )b2Qk2

)
(xQk1

)

and

g2(x1, x2)

= f(x1, x2)−
∑
|k2|≤L2

∑
Qk2

|Qk2 |Dk2(x2, yQk2
)D̃k2Mb2f(x1, yQk2

)b2Qk2 .
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We now need the following two estimates on Rn, which was proved in [13]
(the original idea and version is due to [12], see also [7] for a systematical
introduction): there exists a constant C such that for f ∈ Lp(Rn), 1 < p <
∞, and any integers L,∥∥∥∥ ∑

|k|≤L

∑
Qk

|Qk|Dk(x2, yQk )D̃k(bf)(yQk )bQk

∥∥∥∥
p

≤ C‖f‖p (3)

and ∥∥∥∥ ∑
|k|≤L

∑
Qk

|Qk|Dk(x2, yQk )D̃k(bf)(yQk )bQk − f
∥∥∥∥
p

≤ C
∥∥∥∥{ ∑
|k|≥L

∑
Qk

|Dk(f)|2
}1/2∥∥∥∥

p

.

(4)

Using (3) first and then (4) yields

‖g1‖Lp ≤ C
∥∥∥∥{ ∑
|k1|≥L1

∑
|k2|≤L2

|Dk1Dk2(f)|2
}1/2∥∥∥∥

p

→ 0 as L1 →∞.

Similarly,

‖g2‖Lp → 0 as L2 →∞.
Hence, the Lp convergence follows.

To see the convergence in the space of test functions, we need the following
estimates on Rn which, again, was proved in [13] with the original idea and

version in [12], see also [7]): for f ∈M(β,γ)
and any intrgers L,∥∥∥∥ ∑

|k|≤L

∑
Qk

|Qk|Dk(x2, yQk )D̃k(Mbf)(yQk )bQk

∥∥∥∥
M(β,γ)

≤ C‖f‖M(β,γ) (5)

and ∥∥∥∥ ∑
|k|≤L

∑
Qk

|Qk|Dk(x2, yQk )D̃k(Mbf)(yQk )bQk − f
∥∥∥∥
M(β′,γ′)

≤ C2−Lδ‖f‖M(β,γ) ,

(6)

where C is a constant, 0 < β′ < β and 0 < γ′ < γ.

We observe that if f ∈M(β1,β2,γ1,γ2) , then ‖f(·, x2)‖M(β1,γ1) , as a function

of the variable x2, is in M(β2,γ2) and∥∥‖f(·, ·)‖M(β1,γ1)

∥∥
M(β2,γ2) ≤ ‖f‖M(β1,β2,γ1,γ2) .

Similarly, ∥∥‖f(·, ·)‖M(β2,γ2)

∥∥
M(β1,γ1) ≤ ‖f‖M(β1,β2,γ1,γ2) .

Therefore, we obtain

‖g1(·, x2)‖
M

(β′1,γ
′
1)
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≤ C2−L1δ

∥∥∥∥ ∑
|k2|≤L2

∑
Qk2

|Qk2 |Dk2(x2, yQk2
)D̃k2Mb2f(x1, yQk2

)b2Qk2

∥∥∥∥
M(β1,γ1)

≤ C2−L1δ

∥∥∥∥‖f(·, ·)‖M(β2,γ2)

dγ22

(d2 + |x2 − y0|)n2+γ2

∥∥∥∥
M(β1,γ1)

≤ C2−L1δ‖f(·, ·)‖M(β1,β2,γ1,γ2)

dγ22

(d2 + |x2 − y0|)n2+γ2

and, similarly,

‖g2(·, x2)‖
M

(β′1,γ
′
1)
≤ C2−L2δ ‖f‖M(β1,β2,γ1,γ2)

dγ22

(d2 + |x2 − y0|)n2+γ2
.

Noting that g(x1, x2)− g(x1, x
′
2) = [g1(x1, x2)− g1(x1, x

′
2)] + [g2(x1, x2)−

g2(x1, x
′
2)] and repeating the same estimates imply

‖g(·, x2)− g(·, x′2)‖
M

(β′1,γ
′
1)

≤ C(2−L1δ + 2−L2δ)‖f‖M(β1,β2,γ1,γ2)

( |x2 − x
′
2|

d2 + |x2 − y0|

)β2 dγ22

(d2 + |x2 − y0|)n2+γ2
,

where |x2 − x
′
2| ≤

d2+|x2−y0|
2 . The same proof can be carried out to the

estimates if we interchange the roles of x and y. Hence,

‖g‖Ṁ(β1,β2,γ1,γ2) ≤ C(2−L1δ + 2−L2δ) ‖f‖M(β1,β2,γ1,γ2) , (7)

which yields the convergence in Ṁ(β1,β2,γ1,γ2) . �

Using the same argument, we also have continuous Calderón identity on
test function spaces as follows.

Theorem 2.9. Let Dki and D̃ki be given in Proposition 2.6 on Rni, i = 1, 2.
Then

f =
∑
k1

∑
k2

Dk1Mb1Dk2Mb2D̃k1Mb1D̃k2Mb2f,

where the series converges in Ṁ(β1,β2,γ1,γ2) for 0 < βi, γi < εi, i = 1, 2 and
in Lq, 1 < q <∞.

Theorem 2.10. Let Dki and D̃ki be the operators given in Proposition 2.6

on Rni, i = 1, 2. Then for f ∈ b1b2Ṁ
(β1,β2,γ1,γ2)

f(x1, x2) =
∑
k1

∑
k2

∑
Qk1

∑
Qk2

|Qk1 ||Qk2 |b1(x1)Dk1(x1, xQk1
)b2(x2)Dk2(x2, yQk2

)

× D̃k1D̃k2f(xQk1
, yQk2

)b1Qk1 b2Qk2 ,

where the series converges in b1b2Ṁ
(β1,β2,γ1,γ2) for 0 < βi, γi < εi, i = 1, 2

and in Lp, 1 < p <∞.
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Proof. Let f ∈ b1b2Ṁ
(β1,β2,γ1,γ2) . Then there exists a g ∈ Ṁ(β1,β2,γ1,γ2) such

that f = b1b2g. Since ‖f‖
b1b2M

(β1,β2,γ1,γ2) = ‖g‖M(β1,β2,γ1,γ2) and Theorem

2.8, the proof is completed. �

By the duality, we have the following theorem.

Theorem 2.11. Let Dki and D̃ki be the operators given in Proposition 2.6

on Rni, i = 1, 2. Then for f ∈
(
b1b2M

(β1,β2,γ1,γ2)
)′

with 0 < βi, γi < εi,
i = 1, 2

f(x1, x2) =
∑
k1

∑
k2

∑
Qk1

∑
Qk2

|Qk1 ||Qk2 |D̃∗k1(x1, xQk1
)D̃∗k2(x2, yQk2

)

×D∗k1D
∗
k2f(xQk1

, yQk2
)b1Qk1 b2Qk2 ,

where the series converges in the sense of distribution, where D∗ki , i = 1, 2
denote the adjoint operator of Dki.

By [12] and [14], we also have the following continuous Calderón repro-

ducing formula. For f ∈M(ε,ε)
,

f(x) =
∑
k

˜̃
DkMbDk(bf)(x),

where
˜̃
Dk(x, y), the kernels of

˜̃
Dk satisfy the same conditions of D̃k(y, x).

By the above argument, we also have

Theorem 2.12. Let Dki and D̃ki be the operators given in Proposition 2.6

on Rni, i = 1, 2. Then for f ∈
(
b1b2M

(β1,β2,γ1,γ2)
)′

with 0 < βi, γi < εi,
i = 1, 2

f(x1, x2) =
∑
k1

∑
k2

∑
Qk1

∑
Qk2

|Qk1 ||Qk2 |D∗k1(x1, xQk1
)D∗k2(x2, yQk2

)

× D̃k1D̃k2f(xQk1
, yQk2

)b1Qk1 b2Qk2 ,

where the series converges in the sense of distribution.

2.4. Plancherel-Pôlya inequality on test function spaces. Using the
discrete Calderón identity we prove the following Plancherel-Pôlya inequality
on product domains associated with para-accretive functions.

Theorem 2.13. Let {Ski}ki∈Z and {Rki}ki∈Z be two approximations to the
identity associated to bi with regularity exponent ε on Rni and ni

ni+ε
< p <

∞, i = 1, 2. Set Dki = Ski − Ski−1 and Eki = Rki − Rki−1. Then, for

f ∈
(
b1b2M

(β1,β2,γ1,γ2)
)′

,∥∥∥∥{∑
k1

∑
k2

∑
Qk1

∑
Qk2

(
sup

z1∈Qk1
sup

z2∈Qk2
|Ek1Mb1Ek2Mb2(f)(z1, z2)|

)2
χQk1

χQk2

} 1
2
∥∥∥∥
p
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≈
∥∥∥∥{∑

k1

∑
k2

∑
Qk1

∑
Qk2

(
inf

z1∈Qk1
inf

z2∈Qk2
|Dk1Mb1Dk2Mb2(f)(z1, z2)|

)2
χQk1

χQk2

} 1
2
∥∥∥∥
p

,

where Qki are dyadic cubes with side length `(Qki) = 2−ki−N for some fixed
positive large integer N and χQki

are characteristic functions of cubes Qki,

i = 1, 2.

Proof. Given f ∈
(
b1b2M

(β1,β2,γ1,γ2)
)′

, Theorem 2.12 shows

〈f, g〉 =

〈∑
k1

∑
k2

∑
Qk1

∑
Qk2

|Qk1 ||Qk2 |Dk1(·, xQk1 )Dk2(·, yQk2 )

× D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)b1Qk1 b2Qk2 , g

〉
,

where g ∈ b1b2M
(β1,β2,γ1,γ2) . Hence, for any j1, j2 ∈ Z, we have

Ej1Mb1Ej2Mb2(f)(x1, x2)

=
∑
k1

∑
k2

∑
Qk1

∑
Qk2

|Qk1 ||Qk2 |Ej1Mb1Ej2Mb2Dk1(x1, xQk1
)Dk2(x2, yQk2

)

× D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)b1Qk1 b2Qk2 .

For 0 < ε′ < ε and x1 ∈ Qj1 , the almost orthogonality estimate (see [20,
Lemma 4.3] and [24, p. 10]) gives

|Ej1Mb1Dk1(x1, xQk1
)| ≤ C|2−|j1−k1|ε′ 2−(j1∧k1)ε′

(2−(j1∧k1) + |x1 − xQk1 |)
n1+ε′

.

Therefore, for every z1 ∈ Qj1 and z2 ∈ Qj2 , we have

|Ej1Mb1Ej2Mb2(f)(z1, z2)|

≤ C
∑
k1

∑
k2

∑
Qk1

∑
Qk2

|Qk1 ||Qk2 |2−|j1−k1|ε
′ 2−(j1∧k1)ε′

(2−(j1∧k1) + |z1 − xQk1 |)
n1+ε′

× 2−|j2−k2|ε
′ 2−(j2∧k2)ε′

(2−(j2∧k2) + |z2 − yQk2 |)
n2+ε′

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|,

where ε′ < ε. Thus,

sup
z1∈Qj1

sup
z2∈Qj2

|Ej1Mb1Ej2Mb2(f)(z1, z2)|χQj1 (x1)χQj2
(x2)

≤ C
∑
k1

∑
k2

∑
Qk1

∑
Qk2

|Qk1 ||Qk2 |2−|j1−k1|ε
′ 2−(j1∧k1)ε′

(2−(j1∧k1) + |x1 − xQk1 |)
n1+ε′

× 2−|j2−k2|ε
′ 2−(j2∧k2)ε′

(2−(j2∧k2) + |x2 − yQk2 |)
n2+ε′

|
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× D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|χQj1 (x1)χQj2
(x2).

By an estimate in [10, pp. 147-148],

∑
Qk1

2−(j1∧k1)ε′

(2−(j1∧k1) + |x1 − xQk1 |)
n1+ε′

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|

≤ C2(k1∧j1)n12[k1−(k1∧j1)]n1/r

×
{
M1

(∑
Qk1

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|χQk1

)r}1/r
(x1),

where M1 is the Hardy-Littlewood maximal function on Rn1 and
max
i=1,2

ni
ni+ε′

′ < r < p. Therefore,

sup
z1∈Qj1

sup
z2∈Qj2

|Ej1Mb1Ej2Mb2(f)(z1, z2)|χQj1 (x1)χQj2
(x2)

≤ C
∑
k1

∑
k2

|Qk1 ||Qk2 |2−|j1−k1|ε
′
2(k1∧j1)n12[k1−(k1∧j1)]n1/r

× 2−|j2−k2|ε
′
2(k2∧j2)n22[k2−(k2∧j2)]n2/r

×
{
M2

(∑
Qk1

{
M1

(∑
Qk1

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|χQk1

)r}
(x1)

× χQk2

)}1/r

(x2)χQj1
(x1)χQj2

(x2),

where M2 is the Hardy-Littlewood maximal function on Rn2 . By Cauchy-
Schwartz inequality,

sup
z1∈Qj1

sup
z2∈Qj2

|Ej1Mb1Ej2Mb2(f)(z1, z2)|2χQj1 (x1)χQj2
(x2)

≤ C
∑
k1

∑
k2

2−k1n12−|j1−k1|ε
′
2(k1∧j1)n12[k1−(k1∧j1)]n1/r

× 2−k2n22−|j2−k2|ε
′
2(k2∧j2)n22[k2−(k2∧j2)]n2/r

×
{
M2

(∑
Qk1

{
M1

(∑
Qk1

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|χQk1

)r}
(x1)

× χQk2

)}2/r

(x2)χQj1
(x1)χQj2

(x2)

since

sup
ji

∑
ki

2−kini2−|ji−ki|ε
′
2(ki∧ji)ni2[ki−(ki∧ji)]ni/r <∞, i = 1, 2.
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This yields{∑
j1

∑
j2

∑
Qj1

∑
Qj2

sup
z1∈Qj1

sup
z2∈Qj2

|Ej1Mb1Ej2Mb2(f)(z1, z2)|2χQj1 (x1)χQj2
(x2)

}1/2

≤ C
{∑

j1

∑
j2

∑
k1

∑
k2

2−k1n12−|j1−k1|ε
′
2(k1∧j1)n12[k1−(k1∧j1)]n1/r

× 2−k2n22−|j2−k2|ε
′
2(k2∧j2)n22[k2−(k2∧j2)]n2/r

×
{
M2

(∑
Qk1

{
M1

(∑
Qk1

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|χQk1

)r}
(x1)

× χQk2

)}2/r

(x2)

}1/2

≤ C
{ ∑
k1,k2

{
M2

(∑
Qk1

{
M1

(∑
Qk1

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|χQk1

)r}
(x1)

× χQk2

)} 2
r

(x2)

} 1
2

.

Since xQk1
and yQk2

are any fixed point in Qk1 and Qk2 , respectively, by

the Fefferman-Stein vector-valusd maximal function inequality twice with
r < p, the proof is completed. �

2.5. The Hardy spaces on product domains.

Definition 2.14. Let {Ski}ki∈Z be approximations to the identity associ-
ated to bi with regularity exponent ε on Rni and ni

ni+ε
< p < ∞, i = 1, 2.

Set Dki = Ski − Ski−1. For 0 < βi, γi < ε, f ∈
(
b1b2M

(β1,β2,γ1,γ2)
)′

, the
Littlewood-Paley G-function of f is defined by

G(f)(x1, x2) :=

{∑
k1

∑
k2

|Dk1Mb1Dk2Mb2(f)(x1, x2)|2
}1/2

.

We point out that due the Remark 2.1, this discrete Littlewood-Paley
square function is well-defined. Strictly speaking we shall denote it by
Gb1b2(f)(x1, x2), since it is associated with the functions b1 and b2. However,
for the sake of simplicity, we drop the subscript b1b2.

Applying the result of one parameter and using the iteration as given in
[10], we immediately obtain

Theorem 2.15. If f ∈ Lp(Rn1 × Rn2), 1 < p <∞, then ‖G(f)‖p ≈ ‖f‖p.

We point out that the following discrete Littlewood-Paley function is more
convenient for the study of the Hardy space Hp

b1b2
when p ≤ 1.
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Definition 2.16. Let {Ski}ki∈Z be approximations to the identity associ-
ated to bi with regularity exponent ε on Rni and ni

ni+ε
< p <∞, i = 1, 2. Set

Dki = Ski − Ski−1. For 0 < βi, γi < ε, f ∈
(
b1b2M

(β1,β2,γ1,γ2)
)′

, the discrete
Littlewood-Paley Gd-function of f is defined by

Gd(f)(x1, x2)

:=

{∑
k1

∑
k2

∑
Qk1

∑
Qk2

|Dk1Mb1Dk2Mb2(f)(x1, x2)|2χQk1 (x1)χQk2 (x2)

}1/2

.

By the Plancherel-Pôlya inequality, the Lp norm of these two kinds of
Littlewood-Paley functions are equivalent.

Theorem 2.17. Let 0 < βi, γi < ε and ni
ni+ε

< p < ∞, i = 1, 2. If

f ∈
(
b1b2M

(β1,β2,γ1,γ2)
)′

, then ‖Gd(f)‖p ≈ ‖G(f)‖p.

We now define the Hardy spaces as follows.

Definition 2.18. Suppose that {Ski}ki∈Z are approximations to the identity
associated to bi with regularity exponent ε on Rni and ni

ni+ε
< p ≤ 1, i = 1, 2.

Set Dki = Ski − Ski−1. For 0 < βi, γi < ε, the Hardy space Hp
b1b2

is the

collection of f ∈
(
b1b2M

(β1,β2,γ1,γ2)
)′

satisfying

‖f‖Hp
b1b2

:= ‖Gd(f)‖p <∞.

Remark 2.2. Let f ∈ Hp
b1b2
⊆
(
b1b2M

(β1,β2,γ1,γ2)
)′

and denote by

fL(x1, x2) =
∑
|k1|≤L

∑
|k2|≤L

∑
Qk1

∑
Qk2

|Qk1 ||Qk2 |D∗k1(x1, xQk1
)D∗k2(x2, yQk2

)

× D̃k1D̃k2f(xQk1
, yQk2

)b1Qk1 b2Qk2 .

Using Theorem 2.12 and applying the same argument for the proof of
Plancherel-Pôlya inequality, we obtain that

‖Gd(f − fL)‖p ≤ C
∥∥∥∥{ ∑
|k1|>L

∑
|k2|>L

∑
Qk1

∑
Qk2

|D̃k1Mb1D̃k2Mb2(f)(x1, x2)|2

× χQk1 (x1)χQk2 (x2)

}1/2∥∥∥∥
p

.

Since ‖Gd(f)‖p and∥∥∥∥{∑
k1

∑
k2

∑
Qk1

∑
Qk2

|D̃k1Mb1D̃k2Mb2(f)(x1, x2)|2χQk1 (x1)χQk2 (x2)

}1/2∥∥∥∥
p

are equivalent (see [14, p. 75] for one variable) and ‖Gd(f)‖p <∞, we have
‖Gd(f − fL)‖p tend to zero as L→∞. It is clear that

Dk1(·, xQk1 )Dk2(·, xQk1 ) ∈M(β1,β2,γ1,γ2)
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and hence fL ∈M
(β1,β2,γ1,γ2). We obtain thatM(β1,β2,γ1,γ2) is dense in Hp

b1b2
.

Since M(β1,β2,γ1,γ2) ⊆ Hp
b1b2
∩ L2, the subset Hp

b1b2
∩ L2 is dense in Hp

b1b2
.

3. Atomic decomposition for Hp
b1b2

(Rn1 × Rn2)

Let max
{

n1
n1+ε1

, n2
n2+ε2

}
< p ≤ 1. A (p, 2)-atoms of Hp

b1b2
is a function

a(x1, x2) defined on Rn1 ×Rn2 whose support is contained in some open set
Ω of finite measure such that

(1) ‖a‖L2 ≤ |Ω|1/2−1/p,
(2) a can be further decomposed into p elementary particles aR as fol-

lows:
(i) a =

∑
R∈M(Ω) aR, whereM(Ω) denotes the class of all maximal

dyadic subrectangles of Ω and aR is supported in 5R where
R ⊂ Ω (say R = I × J),

(ii)

∫
I
aR(x1, x̃2)b1(x1)dx1 =

∫
J
aR(x̃1, x2)b2(x2)dx2 = 0 for each

x̃1 ∈ I, x̃2 ∈ J ,

(iii)
∑

R∈M(Ω)

‖aR‖2L2 ≤ |Ω|1−2/p.

We establish a new atomic decomposition for Hp
b1b2
∩ L2 as follows.

Theorem 3.1. Let bi be para-accretive functions on Rni , i = 1, 2 and
max

{
n1

n1+ε1
, n2
n2+ε2

}
< p ≤ 1. For f ∈ Hp

b1b2
∩ L2, there exist a sequence of

(p, 2)-atoms {ai} of Hp
b1b2

and a sequence of scales {λi} such that f =
∑
λiai

and
∑
|λi|p ≤ C‖f‖pHp

b1b2

. Moreover, the series converges in both Hp
b1b2

and

L2 norms.

Proof. For k ∈ Z, let

Ωk =
{
x ∈ Rn1 × Rn2 : Gd(f)(x1, x2) > 2k

}
and

Rk =
{

dyadic rectangle R : |R ∩ Ωk| ≥
1

2
|R| and |R ∩ Ωk+1| <

1

2
|R|
}
.

By Calderón reproducing formula (Theorem 2.8),

f(x1, x2) =
∑
k1

∑
k2

∑
Qk1

∑
Qk2

|Qk1 ||Qk2 |Dk1(x1, xQk1
)Dk2(x2, yQk2

)

× D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)b1Qk1 b2Qk2

=
∑
k∈Z

∑
Rk1k2∈Rk

|Rk1k2 |Dk1(x1, xQk1
)Dk2(x2, yQk2

)

× D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)b1Qk1 b2Qk2 ,
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where Rk1k2 = Qk1 ×Qk2 . We rewrite the above decomposition as

f(x1, x2) =
∑
k

λkak(x1, x2), (8)

where

ak(x1, x2) =
1

λk

∑
Rk1k2∈Rk

|Rk1k2 |Dk1(x1, xQk1
)Dk2(x2, yQk2

)

× D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)b1Qk1 b2Qk2 ,

and

λk = C

∥∥∥∥{ ∑
Rk1k2∈Rk

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|2χRk1k2

}1/2∥∥∥∥
2

|Ω̃k|1/p−1/2

Let Ω̃k =
{

(x1, x2) : Ms(χΩk)(x1, x2) > 1
100

}
. Then, for each R ∈ Rk,

there exists a maximal dyadic subrectangle R̃ ∈ M(Ω̃k) such that R ⊂ R̃.

For each S ∈M(Ω̃k), set

aS(x1, x2) =
1

λk

∑
R̃k1k2=S

|Rk1k2 |Dk1(x1, xQk1
)Dk2(x2, yQk2

)

× D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)b1Qk1 b2Qk2 .

Then ak(x1, x2) =
∑

S∈M(Ω̃k)
aS(x1, x2). Since Rk1k2 ∈ Rk and 5Rk1k2 ⊂

Ω̃k, we have ⋃
Rk1k2∈Rk

5Rk1k2 ⊆ Ω̃k.

This implies that ak is supported in an open set Ω̃k and aS is supported
on 5S. The vanishing moment conditions of aS follow from the assumption
of Dk1 and Dk2 . To verify the size conditions of atom, the duality and the
discrete Littlewood-Paley square function estimates on L2 show∥∥∥∥ ∑

Rk1k2∈Rk

|Rk1k2 |Dk1(x1, xQk1
)Dk2(x2, yQk2

)

× D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)b1Qk1 b2Qk2

∥∥∥∥
2

= sup
‖g‖2≤1

∑
Rk1k2∈Rk

|Rk1k2 |Dk1Dk2g(xQk1
, yQk2

)

× D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)b1Qk1 b2Qk2

≤ C sup
‖g‖2≤1

∥∥∥∥{ ∑
Rk1k2∈Rk

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|2χRk1k2

}1/2∥∥∥∥
2



PRODUCT Hp
b1b2

SPACES AND Tb THEOREM 1457

×
∥∥∥∥{ ∑

Rk1k2∈Rk

|Dk1Dk2g(xQk1
, yQk2

)|2χRk1k2

}1/2∥∥∥∥
2

≤ C
∥∥∥∥{ ∑

Rk1k2∈Rk

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|2χRk1k2

}1/2∥∥∥∥
2

.

This yields

‖ak‖2 ≤ |Ω̃k|1/2−1/p.

Following the same proof, we have∑
S∈M(Ω̃k)

‖aS‖2 ≤ |Ω̃k|1−2/p.

Note that |Ω̃k| ≤ C|Ωk| due to the maximal theorem. Since (x1, x2) ∈
Rk1k2 ∈ Rk implies Ms(χRk1k2∩Ω̃k\Ωk+1

)(x1, x2) > 1
2 , we have χRk1k2 ≤

2Ms(χRk1k2∩Ω̃k\Ωk+1
) and then χRk1k2 ≤ 4M2

s (χ
Rk1k2∩Ω̃k\Ωk+1

). Thus, by

the Fefferman-Stein vector valued inequality,∥∥∥∥{ ∑
Rk1k2∈Rk

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)|2χRk1k2

}1/2∥∥∥∥2

2

≤ C
∫∫ ∑

Rk1k2∈Rk

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)

×Ms(χRk1k2∩Ω̃k\Ωk+1
)(x1, x2)|2dx1dx2

≤ C
∫∫

Ω̃k\Ωk+1

∑
Rk1k2∈Rk

|D̃k1Mb1D̃k2Mb2f(xQk1
, yQk2

)χRk1k2 (x1, x2)|2dx1dx2

≤ C22k|Ω̃k|.
Therefore, ∑

k

|λk|p ≤ C
∑
k

2kp|Ω̃k|p/2|Ω̃k|1−p/2

= C
∑
k

2kp|Ω̃k|

≤ C‖Gd‖pp ≤ C‖f‖
p
Hp
b1b2

.

This ends the proof of Theorem 3.1. �

As an application of Theorem 3.1, we have

Corollary 3.2. Let bi be para-accretive functions on Rni, i = 1, 2, and

max

{
n1

n1 + ε1
,

n2

n2 + ε2

}
< p ≤ 1.
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Then f ∈ Hp
b1b2
∩ L2 if and only if b1b2f ∈ Hp ∩ L2, and the norm of f on

Hp
b1b2

and the norm of b1b2f on Hp are equivalent.

The definition of product Hp is the same with Hp
b1b2

where b1 = b2 = 1

and the classical product atom is the same with (p, 2)-atoms of Hp
b1b2

for
b1 = b2 = 1.

4. The dual spaces of Hp
b1b2

(Rn1 × Rn2)

We now consider the dual spaces of Hp
b1b2

. For one variable, the dual of

H1
b is BMOb = {bf : f ∈ BMO} given by Meyer and Coifman [27]. As a

consequence of Corollary 3.2,
the proof of dual space of Hp

b1b2
is just a copy of the classical product

Hardy space Hp. More precisely, let CMOpb1b2 = {f = b1b2h : h ∈ CMOp ∩
L2} with ‖f‖CMOpb1b2 = ‖h‖CMOp , where the product type Carleson measure

space CMOp was given in [17, pages 647 & 653] and [18, pages 340–341].
Denote

CMOpb1b2 =
{
f : there is a sequence {fm} in CMOpb1b2

such that 〈f, g〉 = lim
m→∞

〈fm, g〉 for all g ∈ Hp
b1b2
∩ L2

}
and ‖f‖CMOpb1b2

= lim
m→∞

‖fm‖CMOpb1b2 .

Theorem 4.1. Suppose that bi are para-accretive functions on Rni for i =
1, 2. Let max

i=1,2

{
ni

ni+εi/2

}
< p ≤ 1. The dual space of Hp

b1b2
is CMOpb1b2 in the

following sense.

(a) For each g ∈ CMOpb1b2 , the linear functional `g : f 7→ 〈f, g〉, defined

initially on Hp
b1b2
∩ L2, has a continuous extension to Hp

b1b2
and

‖`g‖ ≤ C‖g‖CMOpb1b2
.

(b) Conversely, every continuous linear functional ` on Hp
b1b2

can be

realized as ` = `g, defined initially on Hp
b1b2
∩ L2, for some g ∈

CMOpb1b2 and ‖g‖CMOpb1b2
≤ C‖`‖.

In particular, when p = 1, we obtain BMOb1b2(Rn1 × Rn2) = {b1b2g : g ∈
BMO(Rn1 × Rn2)}. We refer the reader to [17, pages 647 & 653] or [18,
pages 340–341] for the definition and details about BMO(Rn1 × Rn2).

Proof. For each g ∈ CMOpb1b2 , there exists a sequence {gm} in CMOpb1b2
such that 〈f, g〉 = lim

m→∞
〈f, gm〉 for f ∈ Hp

b1b2
∩ L2. By the definition, gm =

b1b2hm with hm ∈ CMOp ∩ L2, and ‖gm‖CMOpb1b2 = ‖hm‖CMOp . For f ∈
Hp
b1b2
∩ L2, Corollary 3.2 gives b1b2f ∈ Hp ∩ L2 and ‖f‖Hp

b1b2
≈ ‖b1b2f‖Hp .
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The dual of Hp (cf. [17]) yields

|`g(f)| = |〈f, g〉| =
∣∣ lim
m→∞

〈f, b1b2hm〉
∣∣ =

∣∣ lim
m→∞

〈b1b2f, hm〉
∣∣

≤ lim
m→∞

‖b1b2f‖Hp‖hm‖CMOp

≤ C‖f‖Hp
b1b2
‖g‖CMOpb1b2

.

Since Hp
b1b2
∩L2 is dense in Hp

b1b2
, the map `g can be extended to a continuous

linear functional on Hp
b1b2

satisfying ‖`g‖ ≤ C‖g‖CMOpb1b2
.

Conversely, let ` ∈ (Hp
b1b2

)′ and define `1 by `1(b1b2f) = `(f) for f ∈
Hp
b1b2
∩ L2. It follows from Corollary 3.2 that `1 is a linear functional on

Hp ∩ L2. By the duality argument between Hp and CMOp, there exists
h ∈ CMOp such that

`(f) = `1(b1b2f) = 〈b1b2f, h〉
= lim

m→∞
〈b1b2f, hm〉 = lim

m→∞
〈f, b1b2hm〉 for f ∈ Hp

b1b2
∩ L2,

where hm ∈ CMOp ∩ L2 and ‖b1b2hm‖CMOpb1b2
= ‖hm‖CMOp . Let 〈f, g〉 =

lim
m→∞

〈f, b1b2hm〉. Then ‖g‖CMOpb1b2
= lim

m→∞
‖b1b2hm‖CMOpb1b2

≤ C‖`1‖ ≤
C‖`‖. �

5. The boundedness and endpoint estimates of singular
integral operators on product spaces

We start with recalling the definition of a Calderón-Zygmund kernel. A
continuous complex-valued function K(x, y) defined on Rn × Rn\{(x, y) :
x = y} is called a Calderón-Zygmund kernel if there exist constant C > 0
and a regularity exponent ε ∈ (0, 1] such that

(i) |K(x, y)| ≤ C|x− y|−n
(ii) |K(x, y)−K(x′, y)| ≤ C|x−x′|ε|x−y|−n−ε if |x−x′| ≤ |x−y|/2
(iii) |K(x, y)−K(x, y′)| ≤ C|y−y′|ε|x−y|−n−ε if |y−y′| ≤ |x−y|/2.

The smallest such constant C is denoted by |K|CZ .
We say that an operator T is a Calderón-Zygmund operator if T is a

continuous linear operator from C∞0 (Rn) into its dual associated with a
Calderón-Zygmund kernel K(x, y) given by

〈Tf, g〉 =

∫∫
g(x)K(x, y)f(y)dydx

for all test functions f and g with disjoint supports and T is bounded on
L2(Rn). If T is a Calderón-Zygmund operator associated with a kernel K,
its Calderón-Zygmund operator norm is defined by ‖T‖CZ = ‖T‖L2 7→L2 +
|K|CZ . Of course, in general, one cannot conclude that a singular integral
operator T is bounded on L2(Rn) because Plancherel’s theorem doesn’t work
for non-convolution operators. However, if one assumes that T is bounded
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on L2(Rn), then the Lp, 1 < p < ∞, boundedness follows from Caldernón-
Zygmund’s real variable method. The characterization of the L2(Rn) bound-
edness of non-convolution singular integral operators was finally proved by
the remarkable T1 theorem by David and Journé [5], in which they gave a
general criterion for the L2-boundedness of singular integral operators. Let
T be a singular integral operator defined for functions on Rn1 × Rn2 by

Tf(x1, x2) =

∫∫
Rn1×Rn2

K(x1, x2, y1, y2)f(y1, y2) dy1 dy2,

for (x1, x2) is outside the support of f . For each x1, y1 ∈ Rn1 , set K̃1(x1, y1)
to be the singular integral operator acting on functions on Rn2 with the ker-

nel K̃1(x1, y1)(x2, y2) = K(x1, x2, y1, y2) and, similarly, K̃2(x2, y2)(x1, y1) =
K(x1, x2, y1, y2).

Definition 5.1. A singular integral operator T is said to be in Journé’s class
if the associated kernel K(x1, x2, y1, y2) satisfies the following conditions.
There exist constants C > 0 and ε ∈ (0, 1] such that

(A1) T is bounded on L2(Rn1+n2),

(A2)
∥∥K̃1(x1, y1)

∥∥
CZ
≤ C|x1 − y1|−n1 ,∥∥K̃1(x1, y1)− K̃1(x1, y

′
1)
∥∥
CZ
≤ C|y1 − y′1|ε|x1 − y1|−(n1+ε)

for |y1 − y′1| ≤ |x1 − y1|/2,∥∥K̃1(x1, y1)− K̃1(x′1, y1)
∥∥
CZ
≤ C|x1 − x′1|ε|x1 − y1|−(n1+ε)

for |x1−x′1| ≤ |x1− y1|/2,
(A3)

∥∥K̃2(x2, y2)
∥∥
CZ
≤ C|x2 − y2|−n2 ,∥∥K̃2(x2, y2)− K̃2(x2, y

′
2)
∥∥
CZ
≤ C|y2 − y′2|ε|x2 − y2|−(n2+ε)

for |y2 − y′2| ≤ |x2 − y2|/2,∥∥K̃2(x2, y2)− K̃2(x′2, y2)
∥∥
CZ
≤ C|x2 − x′2|ε|x2 − y2|−(n2+ε)

for |x2−x′2| ≤ |x2− y2|/2.

Let L2
0,0(Rn) =

{
f ∈ L2(Rn): f has compact support with

∫
f(x)dx = 0

}
.

Suppose that T is a singular integral in Journé’s class. By [8, p. 840], T is
bounded from H1(Rn1×Rn2) to L1(Rn1+n2). Note that if ϕ1 ∈ L2

0,0(Rn1) and

ϕ2 ∈ L2
0,0(Rn2), then ϕ1(y1)ϕ2(y2) ∈ H1(Rn1 ×Rn2). Thus, T (ϕ1ϕ2)(x1, x2)

∈ L1(Rn1×Rn2). This implies that T (ϕ1ϕ2)(x1, x2), as a function of x1, is a
integrable function on Rn1 . Similarly, T (ϕ1ϕ2)(x1, x2), as a function of x2,
is a integrable function on Rn2 . Now we say that T ∗1 (1) = 0 if∫

Rn1

∫
Rn1×Rn2

K(x1, x2, y1, y2)ϕ1(y1)ϕ2(y2) dy1 dy2 dx1 = 0

for all ϕ1 ∈ L2
0,0(Rn1), ϕ2 ∈ L2

0,0(Rn2), and x2 ∈ Rn2 . Similarly, T ∗2 (1) = 0 if∫
Rn2

∫
Rn1×Rn2

K(x1, x2, y1, y2)ϕ1(y1)ϕ2(y2) dy1 dy2 dx2 = 0
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for all ϕ1 ∈ L2
0,0(Rn1), ϕ2 ∈ L2

0,0(Rn2), and x1 ∈ Rn1 .

We also say that T ∗1 (b1) = 0 if∫
Rn

∫
Rn1×Rn2

K(x1, x2, y1, y2)b1(x1)ϕ1(y1)ϕ2(y2) dy1 dy2 dx1 = 0

for all ϕ1 ∈ L2
0,0(Rn1), ϕ2 ∈ L2

0,0(Rn2), and x2 ∈ Rn2 . Similarly, T ∗1 (b2) = 0
if ∫

Rn2

∫
Rn1×Rn2

K(x1, x2, y1, y2)b2(x2)ϕ1(y1)ϕ2(y2) dy1 dy2 dx2 = 0

for all ϕ1 ∈ L2
0,0(Rn1), ϕ2 ∈ L2

0,0(Rn2), and x1 ∈ Rn1 .

We now prove the main result of this article.

Proof of the “if part” of Theorem 1.1. We prove (1) only since the
proof of (2) and (3) are similar. We use the skill in the proof of [16, Theorem
1]. We define the Hilbert space H by

H =

{
{ak,j}k,j∈Z :

∥∥{ak,j}∥∥H =

( ∑
k,j∈Z

|ak,j |2
)1/2

<∞
}
.

For simplicity, we use Dk1,k2Mb and D̃k1,k2Mb to express Dk1Mb1Dk2Mb2

and D̃k1Mb1D̃k2Mb2 , respectively. We also denote
∫
dv by

∫
Rn1×Rn2 dv1dv2

and similarly for other variables. Set Tk1,k2(f) = Dk1,k2MbT (f). For f ∈
L2(Rn1+n2) ∩Hp(Rn1 × Rn2), by the continuous Calderón identity,

Tk1,k2(f)(x1, x2) = Dk1,k2MbT

(∑
j1

∑
j2

MbDj1,j2MbD̃j1,j2(f)(x1, x2)

)
.

Hence, the kernel Tk1,k2(x1, x2, y1, y2) of Tk1,k2 is given by

Tk1,k2(x1, x2, y1, y2)

=
∑
j1

∑
j2

∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

×MbDj1,j2MbD̃j1(v1, y1)D̃j2(v2, y2)dudv.

By the definition ofHp
b1b2

(Rn1×Rn2), theHp(Rn1×Rn2)−Hp
b1b2

(Rn1×Rn2)

boundedness of T is equivalent to the Hp − LpH(Rn1 × Rn2) boundedness
of the H-valued operator L which maps f into {Tk1,k2(f)}k1,k2∈Z. Note
that the L2(Rn1+n2) boundedness of T and the product Littlewood-Paley
estimate imply that L is bounded from L2(Rn1+n2) to L2

H(Rn1+n2). Let ε
be the regularity exponent satisfying (A2) and (A3). We will prove that
{Tk1,k2(x1, x2, y1, y2)}k1,k2∈Z satisfies the following estimates:

(B1)
∥∥{Tk1,k2(x1, x2, y1, y2)}

∥∥
H ≤ C|x1 − y1|−n1 |x2 − y2|−n2 ,

(B2) for ε′ < ε,
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(i)
∥∥{Tk1,k2(x1, x2, y1, y2)− Tk1,k2(x1, x2, y

′
1, y2)}

∥∥
H

≤ C |y1−y′1|ε
′

|x1−y1|n1+ε
′ |x2 − y2|−n2 if |y1 − y′1| ≤ |x1 − y1|/2,

(ii)
∥∥{Tk1,k2(x1, x2, y1, y2)− Tk1,k2(x1, x2, y1, y

′
2)}
∥∥
H

≤ C |y2−y′2|ε
′

|x2−y2|n2+ε
′ |x1 − y1|−n1 if |y2 − y′2| ≤ |x2 − y2|/2,

(B3) for ε′ < ε,∥∥{[Tk1,k2(x1, x2, y1, y2)− Tk1,k2(x1, x2, y
′
1, y2)]

−[Tk1,k2(x1, x2, y1, y
′
2)− Tk1,k2(x1, x2, y

′
1, y
′
2)]}

∥∥
H

≤ C |y1 − y′1|ε
′

|x1 − y1|n1+ε′
|y2 − y′2|ε

′

|x2 − y2|n2+ε′

if |y1 − y′1| ≤ |x1 − y1|/2 and |y2 − y′2| ≤ |x2 − y2|/2.
To this end, according to the almost orthogonal estimates, we decompose
the kernel Tk1,k2(x1, x2, y1, y2) as follows.

Tk1,k2(x1, x2, y1, y2)

=
∑
j1

∑
j2

∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

×MbDj1,j2MbD̃j1(v1, y1)D̃j2(v2, y2)dudv

=

( ∑
j1≥k1

∑
j2≥k2

+
∑
j1≥k1

∑
j2<k2

+
∑
j1<k1

∑
j2≥k2

+
∑
j1<k1

∑
j2<k2

)∫∫
Dk1(x1, u1)b1(u1)

×Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)MbDj1,j2MbD̃j1(v1, y1)D̃j2(v2, y2)dudv

:= T 1
k1,k2(x1, x2, y1, y2) + T 2

k1,k2(x1, x2, y1, y2)

+ T 3
k1,k2(x1, x2, y1, y2) + T 4

k1,k2(x1, x2, y1, y2).

The estimates of (B1) − (B3) for {Tk1,k2(x1, x2, y1, y2)}k1,k2∈Z will follow
easily by the following lemma.

Lemma 5.2. For 1 ≤ j ≤ 4 and k1, k2 ∈ Z, there exists a constant C such
that

(D1) for ε′ < ε,∣∣T jk1,k2(x1, x2, y1, y2)
∣∣ ≤ C 2−k1ε

′

(2−k1 + |x1 − y1|)n1+ε′
2−k2ε

′

(2−k2 + |x2 − y2|)n2+ε′
,

(D2) for ε′′ < ε′,

(i)
∣∣T jk1,k2(x1, x2, y1, y2)− T jk1,k2(x1, x2, y

′
1, y2)

∣∣
≤ C

( |y1 − y′1|
2−k1

)ε′′ 2−k1ε
′

(2−k1 + |x1 − y1|)n1+ε′
2−k2ε

′

(2−k2 + |x2 − y2|)n2+ε′

if |y1 − y′1| ≤ 2−k1−1,
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(ii)
∣∣T jk1,k2(x1, x2, y1, y2)− T jk1,k2(x1, x2, y1, y

′
2)
∣∣

≤ C
( |y2 − y′2|

2−k2

)ε′′ 2−k1ε
′

(2−k1 + |x1 − y1|)n1+ε′
2−k2ε

′

(2−k2 + |x2 − y2|)n2+ε′

if |y2 − y′2| ≤ 2−k2−1,

(D3) for ε′′ < ε′,∥∥{[Tk1,k2(x1, x2, y1, y2)− Tk1,k2(x1, x2, y
′
1, y2)]

−[Tk1,k2(x1, x2, y1, y
′
2)− Tk1,k2(x1, x2, y

′
1, y
′
2)]}

∥∥
H

≤ C
( |y1 − y′1|

2−k1

)ε′′( |y2 − y′2|
2−k2

)ε′′ 2−k1ε
′

(2−k1 + |x1 − y1|)n1+ε′

× 2−k2ε
′

(2−k2 + |x2 − y2|)n2+ε′

if |y1 − y′1| ≤ 2−k1−1 and |y2 − y′2| ≤ 2−k2−1.

Proof. We will use the iteration method which reduces the product case
to the classical case. We first check that T 1

k1,k2
(x1, x2, y1, y2) satisfies the

estimates (D1)− (D3). For fixed k1, x1 and y1, set

K2(u2, v2)

=

∫
Rn1×Rn1

Dk1(x1, u1)b1(u1)K(u1, u2, v1, v2)b1(v1)Dj1Mb1D̃j1(v1, y1)du1dv1.

Since T ∗1 (b1) = 0, we have

K2(u2, v2) =

∫
Rn1×Rn1

(
Dk1(x1, u1)−Dk1(x1, y1)

)
b1(u1)K(u1, u2, v1, v2)

× b1(v1)Dj1Mb1D̃j1(v1, y1)du1dv1.

By [15, Theorem 3.1] with j1 ≥ k1, the operator S associated with the kernel
K2(u2, v2) is a Calderón-Zygmund operator and satisfies, for ε′ < ε,

‖S‖CZ ≤ C2−(j1−k1)ε′ 2−k1ε
′

(2−k1 + |x1 − y1|)n1+ε′
. (9)

Note that the condition T ∗2 (b2) = 0 implies S∗(b2) = 0. Therefore, first
writing

T 1
k1,k2(x1, x2, y1, y2) =

∑
j1≥k1

∑
j2≥k2

∫
Rn2×Rn2

Dk2(x2, u2)b2(u2)K2(u2, v2)

× b2(v2)Dj2Mb2D̃j2(v2, y2)du2dv2

and then applying the almost orthogonal estimate for K2(u2, v2) with the
norm estimate in (9) imply

|T 1
k1,k2(x1, x2, y1, y2)| ≤ C 2−k1ε

′

(2−k1 + |x1 − y1|)n1+ε′
2−k2ε

′

(2−k2 + |x2 − y2|)n2+ε′
.
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This shows that T 1
k1,k2

(x1, x2, y1, y2) satisfies the estimate (D1). To check

(D2)(i), we write

T 1
k1,k2(x1, x2, y1, y2)− T 1

k1,k2(x1, x2, y
′
1, y2)

=
∑
j1≥k1

∑
j2≥k2

∫
Rn2×Rn2

Dk2(x2, u2)b2(u2)K2,2(u2, v2)

× b2(v2)Dj2Mb2D̃j2(v2, y2)du2dv2,

where for fixed k1, x1, y1, y
′
1,

K2,2(u2, v2) =

∫
Rn1×Rn1

∫
Rn1

Dk1(x1, u1)b1(u1)K(u1, u2, v1, v2)

× b1(v1)Dj1(v1, z1)b1(z1)
(
D̃j1(z1, y1)− D̃j1(z1, y

′
1)
)
du1dv1.

By the similar argument of the proof in [15, Theorem 3.1] (but simpler since
T is bounded on L2), we obtain that K2,2(u2, v2) is a Calderón-Zygmund
kernel and

|K2,2|CZ ≤ C
( |y1 − y′1|

2−k1

)ε′′ 2−(j1−k1)ε′2−k1ε
′

(2−k1 + |x1 − y1|)n1+ε′
for |y1 − y′1| ≤ 2−k1−1.

(10)
The almost orthogonal estimate together with the estimate of (10) yields∣∣∣∣ ∑

j1≥k1

∑
j2≥k2

∫
Rn2×Rn2

Dk2(x2, u2)b2(u2)K2,2(u2, v2)

× b2(v2)Dj2Mb2D̃j2(v2, y2)du2dv2

∣∣∣∣
≤
( |y1 − y′1|

2−k1

)ε′′ 2−k1ε
′

(2−k1 + |x1 − y1|)n1+ε′
2−k2ε

′

(2−k2 + |x2 − y2|)n2+ε′

for |y1−y′1| ≤ 2−k1−1 and hence (D2)(i) follows. The proof of (D2)(ii) is the
same. To prove (D3) for the kernel T 1

k1,k2
(x1, x2, y1, y2), we write

[T 1
k1,k2(x1, x2, y1, y2)− T 1

k1,k2(x1, x2, y
′
1, y2)]

− [T 1
k1,k2(x1, x2, y1, y

′
2)− T 1

k1,k2(x1, x2, y
′
1, y
′
2)]

=
∑
j1≥k1

∑
j2≥k2

∫∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

× b1(v1)Dj1(v1, z1)b1(z1)
(
D̃j1(z1, y1)− D̃j1(z1, y

′
1)
)

× b2(v2)Dj2(v2, z2)b2(z2)
(
D̃j2(z2, y2)− D̃j2(z2, y

′
2)
)
dudvdz

=
∑
j1≥k1

∑
j2≥k2

∫
Rn2

∫
Rn2

∫
Rn2

Dk2(x2, u2)b2(u2)K2,2(u2, v2)

× b2(v2)Dj2(v2, z2)b2(z2)
(
D̃j2(z2, y2)− D̃j2(z2, y

′
2)
)
du2dv2dz2.
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By the almost orthogonal estimate together with the estimate of (10), we
obtain that the kernel T 1

k1,k2
(x1, x2, y1, y2) satisfies (D3).

Since the proofs for T jk1,k2(x1, x2, y1, y2), j = 2, 3 are similar, we estimate

the kernel T 2
k1,k2

(x1, x2, y1, y2) only. We rewrite

T 2
k1,k2(x1, x2, y1, y2)

=
∑
j1≥k1

∑
j2<k2

∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

×MbDj1,j2MbD̃j1(v1, y1)D̃j2(v2, y2)dudv

=
∑
j1≥k1

∑
j2<k2

∫∫ ∫
Rn2

Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

× b1(v1)Dj1Mb1D̃j1(v1, y1)b2(v2)Dj2(v2, z2)b2(z2)D̃j2(z2, y2)dudvdz2

=
∑
j1≥k1

∑
j2<k2

∫∫ ∫
Rn2

Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

× b1(v1)Dj1Mb1D̃j1(v1, y1)b2(v2)
(
Dj2(v2, z2)−Dj2(x2, z2)

)
× b2(z2)D̃j2(z2, y2)dudvdz2

+
∑
j1≥k1

∑
j2<k2

∫∫ ∫
Rn2

Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

× b1(v1)Dj1Mb1D̃j1(v1, y1)b2(v2)Dj2(x2, z2)b2(z2)D̃j2(z2, y2)dudvdz2

:= T 2,1
k1,k2

(x1, x2, y1, y2) + T 2,2
k1,k2

(x1, x2, y1, y2).

The proof for T 2,1
k1,k2

(x1, x2, y1, y2) is similar to T 1
k1,k2

(x1, x2, y1, y2), so we

leave details to the reader. Write

Pk2(x2, y2) =
∑
j2<k2

∫
Rn2

Dj2(x2, z2)b2(z2)D̃j2(z2, y2)dz2.

Note that T ∗1 (b1) = 0. We have

T 2,2
k1,k2

(x1, x2, y1, y2)

=
∑
j1≥k1

∫∫ (
Dk1(x1, u1)−Dk1(x1, v1)

)
b1(u1)Dk2(x2, u2)b2(u2)

×K(u1, u2, v1, v2)b1(v1)Dj1Mb1D̃j1(v1, y1)b2(v2)Pk2(x2, y2)dudv.

For fixed x2, set

K1(u1, v1) =

∫
Rn2

∫
Rn2

Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)b2(v2)du2dv2

=

∫
Rn2

∫
Rn2

Dk2(x2, u2)b2(u2)K̃1(u1, v1)(u2, v2)b2(v2)du2dv2.
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Note that for fixed (u1, v1),
∫
Rn2 K̃

1(u1, v1)(u2, v2)b2(v2)dv2, as a function of

the variable u2, is a BMO function and Dk2(x2, ·)b2 is a function in H1(Rn2)
with H1(Rn2)-norm uniformly bounded for all x2 and k2. Moreover,∥∥∥∥∫

Rn2
K̃1(u1, v1)(·, v2)b2(v2)dv2

∥∥∥∥
BMO(Rn2 )

≤ C
∥∥K̃1(u1, v1)

∥∥
CZ

≤ C|u1 − v1|−n1 ,

which implies

|K1(u1, v1)| ≤ C|u1 − v1|−n1 .

Similarly, for |u1 − u′1| ≤ 1
2 |u1 − v1|, we have∥∥∥∥∫

Rn2

[
K̃1(u1, v1)(·, v2)− K̃1(u′1, v1)(·, v2)

]
b2(v2)dv2

∥∥∥∥
BMO(Rn2 )

≤ C
∥∥K̃1(u1, v1)− K̃1(u′1, v1)

∥∥
CZ

≤ C|u1 − u′1|ε|u1 − v1|−n1−ε,

and hence

|K1(u1, v1)−K1(u′1, v1)|

=

∣∣∣∣ ∫
Rn2

∫
Rn2

Dk2(x2, u2)b2(u2)

×
[
K̃1(u1, v1)(u2, v2)− K̃1(u′1, v1)(u2, v2)

]
b2(v2)du2dv2

∣∣∣∣
≤ C|u1 − u′1|ε|u1 − v1|−n1−ε.

The estimate |K1(u1, v1)−K1(u1, v
′
1)| can be obtained by the same approach.

Thus, K1(u1, v1) is a Calderón-Zygmund kernel and |K1|CZ ≤ C. Note that

T 2,2
k1,k2

(x1, x2, y1, y2)

=
∑
j1≥k1

∫
Rn1

∫
Rn1

(
Dk1(x1, u1)−Dk1(x1, v1)

)
b1(u1)K1(u1, v1)

× b1(v1)Dj1Mb1D̃j1(v1, y1)du1dv1Pk2(x2, y2).

Note that the kernel Pk2(x2, y2) satisfies the same size and smoothness con-
ditions as a Poisson kernel by using the method in [15, page 133]. Applying
the almost orthogonal estimate to K1(u1, v1) together with the size condi-

tion on Pk2 , we get (D1) for T 2,2
k1,k2

(x1, x2, y1, y2). The estimates of (D2) and

(D3) can be proved by the same way.
Finally, we rewrite

T 4
k1,k2(x1, x2, y1, y2)

=
∑
j1<k1

∑
j2<k2

∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)b1(v1)
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×Dj1,j2MbD̃j1(v1, y1)b2(v2)D̃j2(v2, y2)dudv

=
∑
j1<k1

∑
j2<k2

∫∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)b1(v1)

×Dj1(v1, z1)b1(z1)D̃j1(z1, y1)b2(v2)Dj2(v2, z2)b2(z2)D̃j2(z2, y2)dudvdz

=
∑
j1<k1

∑
j2<k2

∫∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

× b1(v1)
(
Dj1(v1, z1)−Dj1(x1, z1)

)
b1(z1)D̃j1(z1, y1)

× b2(v2)
(
Dj2(v2, z2)−Dj2(x2, z2)

)
b2(z2)D̃j2(z2, y2)dudvdz

+
∑
j1<k1

∑
j2<k2

∫∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

× b1(v1)Dj1(x1, z1)b1(z1)D̃j1(z1, y1)

× b2(v2)
(
Dj2(v2, z2)−Dj2(x2, z2)

)
b2(z2)D̃j2(z2, y2)dudvdz

+
∑
j1<k1

∑
j2<k2

∫∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

× b2(v2)Dj2(x2, z2)b1(v1)
(
Dj1(v1, z1)−Dj1(x1, z1)

)
× b1(z1)D̃j1(z1, y1)b2(z2)D̃j2(z2, y2)dudvdz

+
∑
j1<k1

∑
j2<k2

∫∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)b1(v1)

×Dj1(x1, z1)b2(v2)Dj2(x2, z2)b1(z1)D̃j1(z1, y1)b2(z2)D̃j2(z2, y2)dudvdz

= T 4,1
k1,k2

(x1, x2, y1, y2) + T 4,2
k1,k2

(x1, x2, y1, y2)

+ T 4,3
k1,k2

(x1, x2, y1, y2) + T 4,4
k1,k2

(x1, x2, y1, y2).

Since the proof for T 4,1
k1,k2

(x1, x2, y1, y2) is similar to T 1
k1,k2

(x1, x2, y1, y2) and

the proofs of T 4,2
k1,k2

(x1, x2, y1, y2) and T 4,3
k1,k2

(x1, x2, y1, y2) are similar to

T 2,2
k1,k2

(x1, x2, y1, y2), we estimate T 4,4
k1,k2

(x1, x2, y1, y2) only. Let

Pki(xi, yi) =
∑
ji<ki

∫
Rni

Dji(xi, zi)bi(zi)D̃ji(zi, yi)dzi, i = 1, 2.

Then

T 4,4
k1,k2

(x1, x2, y1, y2) =

∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

× b1(v1)b2(v2)dudvPk1(x1, y1)Pk2(x2, y2).

Note that
∫
K(u1, u2, v1, v2)b1(v1)b2(v2)dv1dv2, as a function of variables u1

and u2, belongs to BMO(Rn1×Rn2), and Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2),
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as function of (u1, u2), is in H1(Rn1×Rn2) with the bounded norm uniformly
for all k1, k2 and x1, x2. Thus,∫∫

Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)b1(v1)b2(v2)dudv

is uniformly bounded for all k1, k2 and x1, x2. Therefore, estimates (D1) −
(D3) for T 4,4

k1,k2
(x1, x2, y1, y2) are the same as those for Pk1(x1, y1)Pk2(x2, y2).

By the similar method in [15, page 133], the kernels Pk1 and Pk1 satisfy
the same size and smoothness conditions as a Poisson kernel, and hence
Pk1(x1, y1)Pk2(x2, y2) satisfies estimates (D1) − (D3). Thus, the proof of
Lemma 2 is completed. �

Now we demonstrate the regularity of the operator Tk1,k2 mapping from
L2 into L2

H.

Lemma 5.3. Let Tk1,k2 be defined above and ε be the regularity exponent of
T . For ε′ < ε,

(i) if |y1 − xI | ≤ |x1 − xI |/2, then∥∥∥∥{∫
Rn2

[
Tk1,k2(x1, ·, y1, y2)− Tk1,k2(x1, ·, xI , y2)

]
f(y2)dy2

}∥∥∥∥
L2
H(Rn2 )

≤ C |y1 − xI |ε
′

|x1 − xI |n1+ε′
‖f‖2;

(ii) if |y2 − yJ | ≤ |x2 − yJ |/2, then∥∥∥∥{∫
Rn1

[
Tk1,k2(·, x2, y1, y2)− Tk1,k2(·, x2, y1, yJ)

]
f(y1)dy1

}∥∥∥∥
L2
H(Rn1 )

≤ C |y2 − yJ |ε
′

|x2 − yJ |n2+ε′
‖f‖2.

Proof. The proofs of (i) and (ii) are the same, so we show the case (i) only.
We will use 0 < ε′′′ < ε′′ < ε′ < ε through the proof. Note that∥∥∥∥{∫

Rn2

[
Tk1,k2(x1, ·, y1, y2)− Tk1,k2(x1, ·, xI , y2)

]
f(y2)dy2

}∥∥∥∥
L2
H(Rn2 )

=

∫
Rn2

∥∥∥∥{∫
Rn2

[
Tk1,k2(x1, x2, y1, y2)− Tk1,k2(x1, x2, xI , y2)

]
f(y2)dy2

}∥∥∥∥2

H
dx2.

We write∫
Rn2

[
Tk1,k2(x1, x2, y1, y2)− Tk1,k2(x1, x2, xI , y2)

]
f(y2)dy2

=

∫
Rn2

∑
j1

∑
j2

∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

× b1(v1)
(
Dj1Mb1D̃j1(v1, y1)−Dj1Mb1D̃j1(v1, xI)

)
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× b2(v2)Dj2Mb2D̃j2(v2, y2)f(y2)dudvdy2

=
∑
j1

∑
j2

∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

× b1(v1)
(
Dj1Mb1D̃j1(v1, y1)−Dj1Mb1D̃j1(v1, xI)

)
× b2(v2)Dj2Mb2D̃j2Mb2f(v2)dudv

=
∑
j1

∫∫
Dk1(x1, u1)b1(u1)Dk2(x2, u2)b2(u2)K(u1, u2, v1, v2)

× b1(v1)
(
Dj1Mb1D̃j1(v1, y1)−Dj1Mb1D̃j1(v1, xI)

)
b2(v2)f(v2)dudv

= Dk2Mb2

(∑
j1

∫ ∫
Rn1

Dk1(x1, u1)b1(u1)K(u1, ·, v1, v2)

× b1(v1)
(
Dj1Mb1D̃j1(v1, y1)−Dj1Mb1D̃j1(v1, xI)

)
b2(v2)f(v2)du1dv

)
(x2),

where we first write∫
Rn2

Dj2Mb2D̃j2(v2, y2)b2(y2)f(y2)dy2 = Dj2Mb2D̃j2Mb2f(v2)

and then use the Calderón identity
∑

j2
Dj2Mb2D̃j2Mb2f(v2) = f(v2). The

Littlewood-Paley estimate gives∫
Rn2

∥∥∥∥{∫
Rn2

[
Tk1,k2(x1, x2, y1, y2)− Tk1,k2(x1, x2, xI , y2)

]
f(y2)dy2

}∥∥∥∥2

H
dx2

≤ C
∑
k1

∫
Rn2

∣∣∣∣∑
j1

∫ ∫
Rn1

Dk1(x1, u1)b1(u1)K(u1, x2, v1, v2)

× b1(y1)
(
Dj1Mb1D̃j1(v1, y1)−Dj1Mb1D̃j1(v1, xI)

)
b2(v2)f(v2)du1dv

∣∣∣∣2dx2.

(11)

Divide the sum
∑

j1
into three parts as follows:∫

Rn2

∣∣∣∣∑
j1

∫ ∫
Rn1

Dk1(x1, u1)b1(u1)K(u1, x2, v1, v2)

× b1(y1)
(
Dj1Mb1D̃j1(v1, y1)−Dj1Mb1D̃j1(v1, xI)

)
b2(v2)f(v2)du1dv

∣∣∣∣2dx2

≤ C
∫
Rn2

∣∣∣∣ ∑
j1≥k1

∫
Rn1

∫ ∫
Rn1

Dk1(x1, u1)b1(u1)K(u1, x2, v1, v2)b1(v1)

×Dj1(v1, z1)b1(z1)
(
D̃j1(z1, y1)−D̃j1(z1, xI)

)
b2(v2)f(v2)du1dvdz1

∣∣∣∣2dx2
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+ C

∫
Rn2

∣∣∣∣ ∑
j1<k1

∫
Rn1

∫ ∫
Rn1

Dk1(x1, u1)b1(u1)K(u1, x2, v1, v2)b1(v1)

×
(
Dj1(v1, z1)−Dj1(x1, z1)

)
b1(z1)

(
D̃j1(z1, y1)− D̃j1(z1, xI)

)
× b2(v2)f(v2)du1dvdz1

∣∣∣∣2dx2

+ C

∫
Rn2

∣∣∣∣ ∑
j1<k1

∫
Rn1

∫ ∫
Rn1

Dk1(x1, u1)b1(u1)K(u1, x2, v1, v2)b1(v1)

×Dj1(x1, z1)b1(z1)
(
D̃j1(z1, y1)−D̃j1(z1, xI)

)
b2(v2)f(v2)du1dvdz1

∣∣∣∣2dx2

:= E + F +G.

We first consider the item G and write

G = C

∫
Rn2

∣∣∣∣ ∑
j1<k1

∫ ∫
Rn1

Dk1(x1, u1)b1(u1)K(u1, x2, v1, v2)b1(v1)

×
(
Dj1Mb1D̃j1(v1, y1)−Dj1Mb1D̃j1(v1, xI)

)
b2(v2)f(v2)du1dv

∣∣∣∣2dx2

= C|Pk1(v1, y1)− Pk1(v1, xI)|2
∫
Rn2

∣∣∣∣ ∫ ∫
Rn1

Dk1(x1, u1)b1(u1)

×K(u1, x2, v1, v2)b1(v1)b2(v2)f(v2)du1dv

∣∣∣∣2dx2

= C sup
‖g‖2≤1

(∫∫
Dk1(x1, u1)b1(u1)K(u1, x2, v1, v2)

× b1(v1)b2(v2)f(v2)g(x2)du1dvdx2

)2

|Pk1(v1, y1)− Pk1(v1, xI)|2,

where Pk1(v1, ·) =
∑

j1<k1
Dj1Mb1D̃j1(v1, ·).

For fixed u1 and v1, set

K(u1, v1) =

∫
Rn2

∫
Rn2

K(u1, x2, v1, v2)b2(v2)f(v2)g(x2)dv2dx2.

Then the operator associated to the kernel K(u1, v1) is a Calderón-Zygmund
operator with operator norm C‖f‖2‖g‖2. Since

∫
Rn1 K(u1, v1)dv1 is a BMO

function for u1,∣∣∣∣ ∫
Rn1

Dk1(x1, u1)b1(u1)

∫
Rn1

K(u1, v1)b1(v1)dv1du1

∣∣∣∣ ≤ C‖f‖2‖g‖2
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uniformly for x1. Hence, for |y1 − xI | ≤ t/2,

G ≤ C|Pk1(v1, y1)− Pk1(v1, xI)|2‖f‖22

≤ C(2k1 |y1 − xI |)2ε 2−k12ε

(2−k1 + |x1 − xI |)2(n1+ε)
‖f‖22.

(12)

To estimate E, we consider two cases {|x1 − z1| > 8c2−k1} and {|x1 −
z1| ≤ 8c2−k1}, where the constant c satisfies item (ii) in the definition of
{Ski}, i = 1, 2. By duality, we get

E1/2 = C sup
‖h‖2≤1

∫
Rn2

h(x2)
∑
j1≥k1

∫
Rn1

∫ ∫
Rn1

Dk1(x1, u1)b1(u1)

×K(u1, x2, v1, v2)b1(v1)Dj1(v1, z1)b1(z1)

×
(
D̃j1(z1, y1)− D̃j1(z1, xI)

)
b2(v2)f(v2)du1dvdz1dx2

= C sup
‖h‖2≤1

(∫
|x1−z1|>8c2−k1

+

∫
|x1−z1|≤8c2−k1

) ∑
j1≥k1

∫∫
h(x2)

×Dk1(x1, u1)b1(u1)K(u1, x2, v1, v2)b1(v1)Dj1(v1, z1)b1(z1)

×
(
D̃j1(z1, y1)− D̃j1(z1, xI)

)
b2(v2)f(v2)du1dx2dvdz1

:= E1 + E2.

For E1, we use the cancellation properties of Dj1 to get

E1 = C sup
‖h‖2≤1

∫
|x1−z1|>8c2−k1

∑
j1≥k1

∫∫
h(x2)Dk1(x1, u1)b1(u1)

×
(
K(u1, x2, v1, v2)−K(u1, x2, z1, v2)

)
b1(v1)Dj1(v1, z1)b1(z1)

×
(
D̃j1(z1, y1)− D̃j1(z1, xI)

)
b2(v2)f(v2)du1dx2dvdz1.

Note that the facts |x1 − z1| > 8c2−k1 , |x1 − u1| < c2−k1 and |v1 − z1| <
c2−j1 ≤ c2−k1 easily imply |v1−z1| ≤ |u1−v1|/2 and |u1−v1| > |x1−z1|/2.
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We apply (A2) to obtain that, for |y1 − xI | ≤ 2−k1−1,

E1 ≤ C sup
‖h‖2≤1

‖h‖2‖f‖2
∑
j1≥k1

∫
Rn1×Rn1×Rn1

|Dk1(x1, u1)| |v1 − z1|ε

|u1 − v1|n1+ε

× |Dj1(v1, z1)|
∣∣D̃j1(z1, y1)− D̃j1(z1, xI)

∣∣du1dv1dz1

≤ C‖f‖2
∑
j1≥k1

∫
Rn1×Rn1×Rn1

2−(j1−k1)ε|Dk1(x1, u1)| 2−k1ε

(2−k1 + |u1 − v1|)n1+ε

× |Dj1(v1, z1)|
∣∣D̃j1(z1, y1)− D̃j1(z1, xI)

∣∣du1dv1dz1

≤ C‖f‖2
∑
j1≥k1

∫
Rn1

2−(j1−k1)(ε−ε′) 2−k1ε

(2−k1 + |x1 − z1)|n1+ε

( |y1 − xI |
2−k1

)ε′
×
(

2−j1ε

(2−j1 + |z1 − y1|)n1+ε
+

2−j1ε

(2−j1 + |z1 − xI |)n1+ε

)
dz1

≤ C
( |y1 − xI |

2−k1

)ε′ 2−k1ε

(2−k1 + |x1 − xI |)n1+ε
‖f‖2.

(13)

By the condition on the support of Dk1 ,

E2 = C sup
‖h‖2≤1

∫
|x1−z1|≤8c2−k1

∑
j1≥k1

∫∫
|u1−z1|≤9c2−k1

h(x2)Dk1(x1, u1)b1(u1)

×K(u1, x2, v1, v2)
)
b1(v1)Dj1(v1, z1)b1(z1)

×
(
D̃j1(z1, y1)− D̃j1(z1, xI)

)
b2(v2)f(v2)du1dx2dvdz1.

Note that E2 = 0 if |z1 − y1| > c2−k1 and |z1 − xI | > c2−k1 . It implies
|x1 − xI | ≤ 10c2−k1 provided |x1 − z1| ≤ 8c2−k1 and |y1 − xI | ≤ c2−k1−1.
This fact will be used later.

Now let η0 ∈ C∞(Rn1) be 1 on the unit ball and 0 outside the ball B(0, 2).
Set η1 = 1− η0. We use T ∗1 (b1) = 0 to obtain

E2 = C sup
‖h‖2≤1

∫
|x1−z1|≤8c2−k1

∑
j1≥k1

∫∫
|u1−z1|≤9c2−k1

h(x2)

×
(
Dk1(x1, u1)−Dk1(x1, z1)

)
b1(u1)K(u1, x2, v1, v2)b1(v1)Dj1(v1, z1)

× b1(z1)
(
D̃j1(z1, y1)− D̃j1(z1, xI)

)
b2(v2)f(v2)du1dx2dvdz1

= C sup
‖h‖2≤1

∫
|x1−z1|≤8c2−k1

∑
j1≥k1

∫∫
|u1−z1|≤9c2−k1

h(x2)

×
(
η0

(u1 − z1

2−j1−2

)
+ η1

(u1 − z1

2−j1−2

))(
Dk1(x1, u1)−Dk1(x1, z1)

)
b1(u1)

×K(u1, x2, v1, v2)b1(v1)Dj1(v1, z1)b1(z1)
(
D̃j1(z1, y1)− D̃j1(z1, xI)

)
× b2(v2)f(v2)du1dx2dvdz1
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:= E21 + E22.

Let

fj1,z1(u1) = η0

(u1 − z1

2−j1−2

)(
Dk1(x1, u1)−Dk1(x1, z1)

)
and

gj1,z1(v1) = Dj1(v1, z1)b1(z1)
(
D̃j1(z1, y1)− D̃j1(z1, xI)

)
.

The L2(Rn1+n2) boundedness of T yields, for |y1 − xI | ≤ 2−k1−1,

E21 ≤ C sup
‖h‖2≤1

∫ ∑
j1≥k1

‖h‖2‖ft′,z1‖2‖gt′,z1‖2‖f‖2dz1

≤ C
∑
j1≥k1

2−j1

2−k1(n1+1)
2−j1n1/2

( |y1 − xI |
2−j1

)ε′
2j1n1/2‖f‖2

≤ C|y1 − xI |ε
′
2k1(n1+ε′)‖f‖2.

To estimate E22, we use the cancellation property of Dj1 and write

E22 = C sup
‖h‖2≤1

∫
|x1−z1|≤8c2−k1

∑
j1≥k1

∫∫
|u1−z1|≤9c2−k1

h(x2)η1

(u1 − z1

2−j1−2

)
×
(
Dk1(x1, u1)−Dk1(x1, z1)

)
b1(u1)

×
(
K(u1, x2, v1, v2)−K(u1, x2, z1, v2

)
b1(v1)Dj1(v1, z1)

× b1(z1)
(
D̃j1(z1, y1)− D̃j1(z1, xI)

)
b2(v2)f(v2)du1dx2dvdz1.

By the conditions on the supports of η1 and Dj1 , we have |u1− z1| ≥ 4c2−j1

and |v1− z1| < c2−j1 . This gives |v1− z1| ≤ |u1− z1|/2. Applying (A2) with
the estimate

|Dk1(x1, u1)−Dk1(x1, z1| ≤ C
|u1 − z1|

2−k1(n1+1)
,

we obtain that, for |y1 − xI | ≤ 2−k1−1,

E22 ≤ C
∑
j1≥k1

∫
Rn1

∫
2−j1−2≤|u1−z1|≤92−k1

∫
Rn1

|u1 − z1|
2−k1(n1+1)

|v1 − z1|ε

|u1 − z1|n1+ε
‖f‖2

× |Dj1(v1, z1)||D̃j1(z1, y1)− D̃j1(z1, xI)|dv1du1dz1

≤ C|y1 − xI |ε
′
2k1(n1+ε′)‖f‖2.

Thus, E2 ≤ C|y1 − xI |ε
′
2k1(n1+ε′)‖f‖2. By the fact |x1 − xI | ≤ 10c2−k1 as

mentioned before, we have

E2 ≤ C
( |y1 − xI |

2−k1

)ε′ 2−k1ε

(2−k1 + |x1 − xI |)n1+ε
‖f‖2. (14)
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The estimate of F is the same as the estimate of E. It follows from (12)−(14)
that, for |y1 − xI | ≤ 2−k1−1,∫

Rn2

∣∣∣∣∑
j1

∫ ∫
Rn1

Dk1(x1, u1)b1(u1)K(u1, x2, v1, v2)

× b1(y1)
(
Dj1Mb1D̃j1(v1, y1)−Dj1Mb1D̃j1(v1, xI)

)
b2(v2)f(v2)du1dv

∣∣∣∣2dx2

≤ C(2k1 |y1 − xI |)2ε 2−k12ε

(2−k1 + |x1 − xI |)2(n1+ε)
‖f‖22.

(15)

Inserting (15) into (11), we obtain the desired result (i) of Lemma 5.3. �

To finish the proof of Theorem 1.1, we need the following general result
that follows from Theorem 3.1 and [16, Proposition 4].

Proposition 5.4. Let L be a bounded operator from L2(Rn1+n2) to
L2
H(Rn1+n2). Then, for 0 < p ≤ 1, L extends to be a bounded operator

from Hp(Rn1×Rn2) to LpH(Rn1+n2) if and only if ‖L(a)‖LpH(Rn1+n2 ) ≤ C for

all Hp(Rn1 × Rn2)-atoms a, where the constant C is independent of a.

It ie known that the L2(Rn1+n2) boundedness of T and the product
Littlewood-Paley estimate imply that L is bounded from L2(Rn1+n2) to
L2
H(Rn1+n2). As mentioned before, the Hp(Rn1 × Rn2) −Hp

b1b2
(Rn1 × Rn2)

boundedness of T is equivalent to the Hp − LpH(Rn1 ×Rn2) boundedness of
the H-valued operator L which maps f into {Tk1,k2(f)}k1,k2∈Z. Hence, to
show the “if part” of Theorem 1.1, by Proposition 5.4, it suffices to prove

‖{Tk1,k2(a)}k1,k2∈Z‖LpH(Rn1+n2 ) ≤ C for all Hp(Rn1 × Rn2) atoms a,

where the constant C is independent of a.
To do this, we follow R. Fefferman’s idea [9]. Suppose that a is an

Hp(Rn1 × Rn2) atom supported on an open set Ω ⊂ Rn1 × Rn2 with fi-
nite measure. Furthermore, a can be decomposed as a =

∑
R∈M(Ω) aR,

whereM(Ω) is the collection of all maximal dyadic subrectangles contained
in Ω, each aR is supported on 2R = 2I × 2J, the double of R = I × J ,∫

2I aR(x1, x2)dx1 = 0 for all x2 ∈ 2J , and
∫

2J aR(x1, x2)dx2 = 0 for all
x1 ∈ 2I. Here the higher order moments vanishing of aR are not needed
because we only consider max{ n1

n1+ε ,
n2
n2+ε} < p ≤ 1. Moreover, ‖a‖2 ≤

|Ω|
1
2
− 1
p and

∑
R∈M(Ω) ‖aR‖22 ≤ |Ω|

1− 2
p . Let Ω̃ = {(x1, x2) ∈ Rn1 × Rn2 :

Ms(χΩ)(x1, x2) > 4−n1−n2n
−n1/2
1 n

−n2/2
2 }, where Ms is the strong maximal

function defined by

Ms(f)(x1, x2) = sup
(x1,x2)∈P

1

|P |

∫
P
|f(y1, y2)|dy1dy2,
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where the supremum is taken over all rectangles P (a product of a cube
in Rn1 with a cube in Rn2) containing (x1, x2). It follows from the strong

maximal theorem that |Ω̃| ≤ C|Ω|.
We now estimate ‖{Tk1,k2(a)}k1,k2∈Z‖LpH(Rn1+n2 ) as follows. Write

˜̃
Ω =

{(x1, x2) ∈ Rn1 × Rn2 : Ms(χΩ̃
)(x1, x2) > 4−n1−n2n

−n1/2
1 n

−n2/2
2 } and simi-

larly for
˜̃̃
Ω. Then∫ ∥∥{Tk1,k2(a)}(x1, x2)

∥∥p
Hdx1dx2

=

∫
˜̃̃
Ω

∥∥{Tk1,k2(a)}(x1, x2)
∥∥p
Hdx1dx2 +

∫( ˜̃̃
Ω
)c ∥∥{Tk1,k2(a)}(x1, x2)

∥∥p
Hdx1dx2.

By Hölder’s inequality, the L2−L2
H boundedness of L, and the size condition

of a, ∫
˜̃̃
Ω

∥∥{Tk1,k2(a)}(x1, x2)
∥∥p
Hdx1dx2

≤
(∫

˜̃̃
Ω

∥∥{Tk1,k2(a)}(x1, x2)
∥∥2

Hdx1dx2

) p
2

|
˜̃̃
Ω|1−

p
2

≤ C‖a‖p2|Ω|
1− p

2 ≤ C.
Therefore it remains to deal with∫( ˜̃̃

Ω
)c ∥∥{Tk1,k2(a)}(x1, x2)

∥∥p
Hdx1dx2

≤
∑

R∈M(Ω)

∫( ˜̃̃
Ω
)c ∥∥{Tk1,k2(a)}(x1, x2)

∥∥p
Hdx1dx2,

where we use the inequality (α+ β)p ≤ αp + βp for p ≤ 1.

For each R = I × J ∈ M(Ω), we set a larger rectangle R̃ = Ĩ × J such

that Ĩ is the largest dyadic cube containing I and Ĩ × J ⊂ Ω̃. Similarly,˜̃
R = Ĩ×J̃ where J̃ is the largest dyadic cube containing J and Ĩ×J̃ ⊂ ˜̃Ω. Let
M1(Ω) denote the collection of all dyadic subrectangles R ⊂ Ω, R = I × J
that are maximal in the x1 direction. It is clear that R ∈ M(Ω) implies

R ∈ M2(Ω) and R̃ ∈ M1(Ω̃). Define M2(Ω) similarly. Also note that

4
√
n1Ĩ × 4

√
n2J̃ ⊂

˜̃̃
Ω. Then∫( ˜̃̃

Ω
)c ∥∥{Tk1,k2(aR)}(x1, x2)

∥∥p
Hdx1dx2

≤
∫

(4
√
n1Ĩ)

c×Rn2

∥∥{Tk1,k2(aR)}(x1, x2)
∥∥p
Hdx1dx2

+

∫
Rn1×(4

√
n2J̃)c

‖{Tk1,k2(aR)}(x1, x2)‖pHdx1dx2
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:= U(R) + V (R).

We define γ1(R) = γ1(R,Ω) = `(Ĩ)
`(I) and γ2(R̃) = γ2(R̃, Ω̃) = `(J̃)

`(J) , where `(I)

denotes the side length of I. To estimate U(R), we write

U(R) =

∫
(4
√
n1Ĩ)

c×4
√
n2J

∥∥{Tk1,k2(aR)}(x1, x2)
∥∥p
Hdx1dx2

+

∫
(4
√
n1Ĩ)

c×(4
√
n2J)c

∥∥{Tk1,k2(aR)}(x1, x2)
∥∥p
Hdx1dx2

:= U1(R) + U2(R).

By Hölder’s inequality and Minkowski’s inequality,

U1(R) ≤ C|J |1−
p
2

∫
(4
√
n1Ĩ)

c

(∫
Rn2

∥∥{Tk1,k2(aR)}(x1, x2)
∥∥2

Hdx2

) p
2

dx1. (16)

The cancellation condition of aR yields

Tk1,k2(aR)(x1, x2)

=

∫
Tk1,k2(x1, x2, y1, y2)aR(y1, y2)dy1dy2

=

∫ [
Tk1,k2(x1, x2, y1, y2)− Tt,s(x1, x2, xI , y2)

]
aR(y1, y2)dy1dy2,

where xI denotes the center of I. Now we apply Schwarz’s inequality to get∥∥{Tk1,k2(aR)}(x1, x2)
∥∥2

H

≤ C|I|
∫

2I

∥∥∥∥{∫
2J

[
Tk1,k2(x1, x2, y1, y2)

− Tk1,k2(x1, x2, xI , y2)
]
aR(y1, y2)dy2

}∥∥∥∥2

H
dy1.

This estimate and Lemma 5.3 imply that, for x1 ∈ (4
√
n1Ĩ)c and y1 ∈ 2I,∫

Rm

∥∥{Tk1,k2(aR)}(x1, x2)
∥∥2

Hdx2

≤ C|I|
∫

2I

∫
Rn2

∥∥∥∥{∫
2J

[
Tk1,k2(x1, x2, y1, y2)

− Tk1,k2(x1, x2, xI , y2)
]
aR(y1, y2)dy2

}∥∥∥∥2

H
dx2dy1

≤ C|I|
( `(I)ε

′

|x1 − xI |n+ε′

)2
‖aR‖22.

Inserting the estimate above into (16) shows

U1(R) ≤ C
(
γ1(R)

)n1−(n1+ε′)p|R|1−
p
2 ‖aR‖p2. (17)
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To estimate U2(R), we use the cancellation conditions of aR to write

Tk1,k2(aR)(x1, x2)

=

∫ (
Tk1,k2(x1, x2, y1, y2)− Tk1,k2(x1, x2, xI , y2)

− Tk1,k2(x1, x2, y1, xJ) + Tk1,k2(x1, x2, xI , xJ)
)
aR(y1, y2)dy1dy2,

where xJ is the center of J . For x1 ∈ (4
√
n1Ĩ)c, x2 ∈ (4

√
n2J)c, y1 ∈ 2I,

and y2 ∈ 2J , we have |y1 − xI | ≤ 1
2 |x1 − xI | and |y2 − xJ | ≤ 1

2 |x2 − xJ |.
Thus, the estimate (B3) gives∥∥{Tk1,k2(aR)

}
(x1, x2)

∥∥
H

≤ C
(∫

|R|
( |y1 − xI |ε

′

|x1 − xI |n1+ε′
|y2 − xJ |ε

′

|x2 − xJ |n2+ε′
|aR(y1, y2)|

)2
dy1dy2

)1/2

.

Hence,

U2(R) ≤ C
(
γ1(R)

)n1−(n1+ε′)p|R|1−
p
2 ‖aR‖p2. (18)

Both estimates (17) and (18) give

U(R) ≤ C
(
γ1(R)

)n1−(n1+ε′)p|R|1−
p
2 ‖aR‖p2.

The estimate for V (R), though slightly different from U(R), can be handled
in much the same manner so that

V (R) ≤ C
(
γ2(R̃)

)n2−(n2+ε′)p|R|1−
p
2 ‖aR‖p2.

Summing over R gives∑
R∈M(Ω)

∫( ˜̃̃
Ω
)c ∥∥{Tk1,k2(aR)}(x1, x2)

∥∥p
Hdx1dx2

≤ C
∑

R∈M(Ω)

(
γ1(R)

)n1−(n1+ε′)p|R|1−
p
2 ‖aR‖p2

+ C
∑

R∈M(Ω)

(
γ2(R̃)

)n2−(n2+ε′)p|R|1−
p
2 ‖aR‖p2

≤ C

{( ∑
R∈M2(Ω)

|R|
(
γ1(R)

)−δ1)1− p
2

+

( ∑
R̃∈M1(Ω̃)

|R̃|
(
γ2(R̃)

)−δ2)1− p
2

}( ∑
R∈M(Ω)

‖aR‖22
) p

2

,

where δ1 = 2[n1−(n1+ε′)p]
p−2 > 0 and δ2 = 2[n2−(n2+ε′)p]

p−2 > 0.

To estimate the last part above, we use the following
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Journé’s lemma. Let M1(Ω) and M2(Ω) be defined as above. Then∑
R∈M2(Ω) |R|

(
γ1(R)

)−δ ≤ Cδ|Ω| and
∑

R∈M1(Ω) |R|
(
γ2(R)

)−δ ≤ Cδ|Ω| for

any δ > 0, where Cδ is a constant depending on δ only.

Journé’s lemma and the size condition of aR imply∑
R∈M(Ω)

∫( ˜̃̃
Ω
)c ∥∥{Tk1,k2(aR)}(x1, x2)

∥∥p
Hdx1dx2 ≤ C|Ω|1−

p
2 |Ω|

p
2
−1 ≤ C.

We complete the proof of the “if part” of Theorem 1.1. �

Proof of Theorem 1.2. “if” part:
We point out that the “if” part follows directly from duality ofH1

b1b2
(Rn1×

Rn2) with BMOb1b2(Rn1 × Rn2). We provide the details as follows.
(1) Suppose T1(b1) = T2(b2) = 0.
Then for the adjoint operator T ∗ of T , it is clear to see that T ∗ satisfies

(T ∗)∗1(b1) = (T ∗)∗2(b2) = 0.

Hence, from (1) in Theorem 1.1 we obtain that T ∗ is bounded from H1(Rn1×
Rn2) to H1

b1b2
(Rn1 × Rn2).

Then for every f ∈ BMOb1b2(Rn1 ×Rn2)∩L2(Rn1 ×Rn2), g ∈ H1(Rn1 ×
Rn2) ∩ L2(Rn1 × Rn2), we have

|〈Tf, g〉| = |〈f, T ∗g〉| ≤ C‖f‖BMOb1b2 (Rn1×Rn2 )‖T ∗g‖H1
b1b2

(Rn1×Rn2 )

≤ C‖f‖BMOb1b2 (Rn1×Rn2 )‖g‖H1(Rn1×Rn2 )

By density argument we can obtain that Tf is in BMO(Rn1 × Rn2).
(2) Suppose T1(1) = T2(1) = 0.
Then for the adjoint operator T ∗ of T , it is clear to see that T ∗ satisfies

(T ∗)∗1(1) = (T ∗)∗2(1) = 0.

Hence, from (2) in Theorem 1.1 we obtain that T ∗Mb1b2 is bounded from
H1
b1b2

(Rn1 × Rn2) to H1(Rn1 × Rn2).

Then for every f ∈ BMO(Rn1 × Rn2) ∩ L2(Rn1 × Rn2), g ∈ H1
b1b2

(Rn1 ×
Rn2) ∩ L2(Rn1 × Rn2), we have

|〈Mb1b2Tf, g〉| = |〈f, T ∗b1b2g〉|
≤ C‖f‖BMOb1b2 (Rn1×Rn2 )‖T ∗Mb1b2g‖H1

b1b2
(Rn1×Rn2 )

≤ C‖f‖BMOb1b2 (Rn1×Rn2 )‖g‖H1(Rn1×Rn2 )

By density argument we can obtain that Mb1b2Tf is in BMOb1b2(Rn1×Rn2).
(3) Suppose T1(b1) = T2(b2) = 0.
Then for the adjoint operator T ∗ of T , it is clear to see that T ∗ satisfies

(T ∗)∗1(b1) = (T ∗)∗2(b2) = 0.
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Hence, from (3) in Theorem 1.1 we obtain that T ∗Mb1b2 is bounded from
H1
b1b2

(Rn1 × Rn2) to H1
b1b2

(Rn1 × Rn2).

Then for every f ∈ BMOb1b2(Rn1×Rn2)∩L2(Rn1×Rn2), g ∈ H1
b1b2

(Rn1×
Rn2) ∩ L2(Rn1 × Rn2), we have

|〈Mb1b2Tf, g〉| = |〈f, T ∗b1b2g〉|
≤ C‖f‖BMOb1b2 (Rn1×Rn2 )‖T ∗Mb1b2g‖H1

b1b2
(Rn1×Rn2 )

≤ C‖f‖BMOb1b2 (Rn1×Rn2 )‖g‖H1
b1b2

(Rn1×Rn2 )

By density argument we can obtain that Mb1b2Tf is in BMOb1b2(Rn1×Rn2).

“only if” part:
We now prove the “only if” part.
(1) Suppose T admits a bounded extension from BMOb1b2(Rn1 ×Rn2) to

BMO(Rn1 × Rn2).
We now consider the function f(x1, x2) = χ1(x1)f2(x2)b−1

2 (x2), where
χ1(x1) ≡ 1 on Rn1 , and f2(x2) ∈ C∞0 (Rn2). Then it is clear that this
f(x1, x2) is in L∞(Rn1 × Rn2), and hence it is in BMO(Rn1 × Rn2) with

‖f‖BMO(Rn1×Rn2 ) = 0.

Then we also have g(x1, x2) = b1(x1)b2(x2)f(x1, x2) is in BMOb1b2(Rn1 ×
Rn2) with

‖g‖BMOb1b2 (Rn1×Rn2 ) = 0.

Moreover, since Tg is in BMO(Rn1 × Rn2) with

‖Tg‖BMO(Rn1×Rn2 ) ≤ ‖g‖BMOb1b2 (Rn1×Rn2 ) = 0.

Hence, we obtain that for all ψ1 ∈ C∞0 (Rn1) with
∫
Rn1 ψ1(x1)dx1 = 0 and

all ψ2 ∈ C∞0 (Rn2) with
∫
Rn2 ψ2(x2)dx2 = 0,∫

Rn1×Rn2
ψ1(x1)ψ2(x2)Tg(x1, x2)dx1dx2 = 0,

since ψ1(x1)ψ2(x2) is in H1(Rn1 × Rn2). This yields∫
Rn1×Rn2

T ∗(ψ1ψ2)(y1, y2)b1(y1)b2(y2)f(y1, y2)dy1dy2 = 0,

which, together with the definition of f , gives∫
Rn1×Rn2

T ∗(ψ1ψ2)(y1, y2)b1(y1)f2(y2)dy1dy2 = 0,

Since ψ1(x1)ψ2(x2) is inH1(Rn1×Rn2), we have that T ∗(ψ1ψ2) is in L1(Rn1×
Rn2)∩L2(Rn1×Rn2). Moreover, since f2(x2) ∈ C∞0 (Rn2) and b2 is bounded,
we see that the set {b2f2 : |b2| ≤ C, f2 ∈ C∞0 (Rn2)} is dense in L2(Rn2).
We get that ∫

Rn1
T ∗(ψ1ψ2)(y1, y2)b1(y1)dy1 = 0,
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which is∫
Rn1×Rn2

∫
Rn1

ψ1(x1)ψ2(x2)K(x1, x2, y1, y2)b1(y1)dy1dx1dx2 = 0.

Based on the definition, this shows that

T1(b1) = 0.

Similarly we can obtain that

T2(b2) = 0.

(2) Suppose Mb1b2T admits a bounded extension from BMO(Rn1 ×Rn2)
to BMOb1b2(Rn1 × Rn2).

We now consider the function f(x1, x2) = χ1(x1)f2(x2), where χ1(x1) ≡ 1
on Rn1 , and f2(x2) ∈ C∞0 (Rn2). Then it is clear that this f(x1, x2) is in
L∞(Rn1 × Rn2), and hence it is in BMO(Rn1 × Rn2) with

‖f‖BMO(Rn1×Rn2 ) = 0.

Therefore, Mb1b2Tf is in BMOb1b2(Rn1 × Rn2) with

‖Mb1b2Tf‖BMO(Rn1×Rn2 ) ≤ ‖f‖BMOb1b2 (Rn1×Rn2 ) = 0.

For all ψ1 ∈ C∞0 (Rn1) with
∫
Rn1 ψ1(x1)dx1 = 0 and all ψ2 ∈ C∞0 (Rn2) with∫

Rn2 ψ2(x2)dx2 = 0, we have ψ1(x1)ψ2(x2) is in H1(Rn1 × Rn2) ∩ L2(Rn1 ×
Rn2) and then ψ1(x1)ψ2(x2)b−1

1 (x1)b−1
2 (x2) is in H1

b1b2
(Rn1×Rn2)∩L2(Rn1×

Rn2). Hence∫
Rn1×Rn2

ψ1(x1)ψ2(x2)b−1
1 (x1)b−1

2 (x2)Mb1b2Tf(x1, x2)dx1dx2 = 0,

This yields ∫
Rn1×Rn2

T ∗(ψ1ψ2)(y1, y2)f(y1, y2)dy1dy2 = 0,

which, together with the definition of f , gives∫
Rn1×Rn2

T ∗(ψ1ψ2)(y1, y2)f2(y2)dy1dy2 = 0,

Since ψ1(x1)ψ2(x2) is inH1(Rn1×Rn2), we have that T ∗(ψ1ψ2) is in L1(Rn1×
Rn2) ∩ L2(Rn1 × Rn2). Moreover, since f2(x2) ∈ C∞0 (Rn2), we see that the
set {f2 : f2 ∈ C∞0 (Rn2)} is dense in L2(Rn2). We get that∫

Rn1
T ∗(ψ1ψ2)(y1, y2)b1(y1)dy1 = 0,

which is∫
Rn1×Rn2

∫
Rn1

ψ1(x1)ψ2(x2)K(x1, x2, y1, y2)dy1dx1dx2 = 0.

Based on the definition, this shows that T1(1) = 0. Similarly we can obtain
that T2(2) = 0.
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(3) Suppose T admits a bounded extension from BMOb1b2(Rn1 ×Rn2) to
BMOb1b2(Rn1 × Rn2).

We now consider the function f(x1, x2) = χ1(x1)f2(x2)b−1
2 (x2), where

χ1(x1) ≡ 1 on Rn1 , and f2(x2) ∈ C∞0 (Rn2). Then it is clear that this
f(x1, x2) is in L∞(Rn1 × Rn2), and hence it is in BMO(Rn1 × Rn2) with

‖f‖BMO(Rn1×Rn2 ) = 0.

Then we also have g(x1, x2) = b1(x1)b2(x2)f(x1, x2) is in BMOb1b2(Rn1 ×
Rn2) with

‖g‖BMOb1b2 (Rn1×Rn2 ) = 0.

Moreover, since Mb1b2Tg is in BMOb1b2(Rn1 × Rn2) with

‖Mb1b2Tg‖BMO(Rn1×Rn2 ) ≤ ‖g‖BMOb1b2 (Rn1×Rn2 ) = 0.

Hence, we obtain that for all ψ1 ∈ C∞0 (Rn1) with
∫
Rn1 ψ1(x1)dx1 = 0 and

all ψ2 ∈ C∞0 (Rn2) with
∫
Rn2 ψ2(x2)dx2 = 0,∫

Rn1×Rn2
ψ1(x1)ψ2(x2)b−1

1 (x1)b−1
2 (x2)Mb1b2Tg(x1, x2)dx1dx2 = 0,

since ψ1(x1)ψ2(x2)b−1
1 (x1)b−1

2 (x2) is in H1
b1b2

(Rn1 × Rn2) ∩ L2(Rn1 × Rn2).
This yields∫

Rn1×Rn2
T ∗(ψ1ψ2)(y1, y2)b1(y1)b2(y2)f(y1, y2)dy1dy2 = 0,

which, together with the definition of f , gives∫
Rn1×Rn2

T ∗(ψ1ψ2)(y1, y2)b1(y1)f2(y2)dy1dy2 = 0,

Since ψ1(x1)ψ2(x2) is inH1(Rn1×Rn2), we have that T ∗(ψ1ψ2) is in L1(Rn1×
Rn2)∩L2(Rn1×Rn2). Moreover, since f2(x2) ∈ C∞0 (Rn2) and b2 is bounded,
we see that the set {b2f2 : |b2| ≤ C, f2 ∈ C∞0 (Rn2)} is dense in L2(Rn2).
We get that ∫

Rn1
T ∗(ψ1ψ2)(y1, y2)b1(y1)dy1 = 0,

which is∫
Rn1×Rn2

∫
Rn1

ψ1(x1)ψ2(x2)K(x1, x2, y1, y2)b1(y1)dy1dx1dx2 = 0.

Based on the definition, this shows that T1(b1) = 0. Similarly we can obtain
that T2(b2) = 0.

The proof of Theorem 1.2 is complete. �

We now finalize the proof of Theorem 1.1.
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Proof of the “only if part” of Theorem 1.1. (1) Suppose T is bounded
from Hp(Rn1 × Rn2) to Hp

b1b2
(Rn1 × Rn2). Then we see that the adjoint T ∗

extends to a bounded operator from BMOb1b2(Rn1 × Rn2) to BMO(Rn1 ×
Rn2). Then apply the “only if” part for (2) of Theorem 1.2, we see that
T ∗1 (b1) = T ∗2 (b2) = 0.

Similarly we can verify the “only if” part of (2) and (3).
The proof of Theorem 1.1 is complete. �
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ory on Carnot-Carathèodory spaces and product spaces of homogeneous type.
Trans. Amer. Math. Soc. 365 (2013), no. 1, 319–360. MR2984061, Zbl 1275.42035,
doi: 10.1090/S0002-9947-2012-05638-8. 1440, 1441, 1458

[19] Han, Yongsheng; Li, Ji; Ward, Lesley A. Hardy space theory on spaces
of homogeneous type via orthonormal wavelet bases. Appl. Comput. Harmon.
Anal. 45 (2018), no. 1, 120–169. MR3790058, Zbl 1390.42030, arXiv:1507.07187,
doi: 10.1016/j.acha.2016.09.002. 1440

[20] Han, Yongsheng; Sawyer, Eric T. Para-accretive functions, the weak bounded-
ness property and the Tb theorem. Rev. Mat. Iberoamericana 6 (1990), no. 1-2, 17–41.
MR1086149, Zbl 0723.42005, doi: 10.4171/RMI/93. 1451

[21] Hart, Jarod. A bilinear T(b) theorem for singular integral operators. J. Funct.
Anal. 268 (2015), no. 12, 3680–3733. MR3341962. Zbl 1317.42014, arXiv:1306.0385v2,
doi: 10.1016/j.jfa.2015.02.008. 1440

[22] Journé, Jean-Lin. Calderón–Zygmund operators on product spaces. Rev.
Mat. Iberoamericana 1 (1985), no. 3, 55–91. MR0836284, Zbl 0634.42015,
doi: 10.4171/RMI/15. 1439

[23] Lee, Ming-Yi. Boundedness of Calderón–Zygmund operators on weighted prod-
uct Hardy spaces. J. Operator Theory 72 (2014), no. 1, 115–133. MR3246984, Zbl
1349.42022, doi: 10.7900/jot.2012nov06.1993. 1441

[24] Lee, Ming-Yi; Lin, Chin-Cheng. Carleson measure spaces associated to para-
accretive functions. Commun. Contemp. Math. 14 (2012), no. 1, 1250002, 19 pp.
MR2902292, Zbl 1254.42031, doi: 10.1142/S0219199712500022. 1441, 1445, 1451
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