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Rigidity of a family of spherical
conical metrics

Xuwen Zhu

Abstract. We study the deformation of spherical conical metrics with
at least some of the cone angles larger than 2π. We show in this note
via synthetic geometry that for one family of such metrics, there is
local rigidity in the choice of cone positions if angles are fixed. This
gives evidence of the analytic obstruction considered in recent works of
Mazzeo and the author [20, 21].
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1. Introduction

The study of constant curvature metrics with singularities has seen a long
and rich history, where a lot of interesting questions are still not completely
answered. Among them is the following singular uniformization question:
given a compact Riemann surface M , a collection of distinct points p =
{p1, . . . , pk} ⊂ M and a collection of positive real numbers β1, . . . , βk, is it
possible to find a metric g on M with constant curvature and with conic
singularities with prescribed cone angles 2πβj at the points pj? Here, the
sign of its curvature is determined by the ‘conic’ Gauss-Bonnet formula

1

2π

∫
M
K dA = χ(M, ~β) := χ(M) +

k∑
j=1

(βj − 1). (1)

When χ(M, ~β) ≤ 0, the existence and uniqueness of such solutions are
proved by McOwen [22]. In the spherical K = 1 case with all cone angles
less than 2π, Troyanov [28] gave a set of linear inequalities on the βj ’s which
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are necessary and sufficient for existence; Luo and Tian [18] later proved
uniqueness of the solution in this angle regime.

For all the above cases, there is no restriction on the position of cone
points. Deformation theory for these cases has been studied by Mazzeo and
Weiss [19] and it is shown that the metrics have smooth dependence on cone
angles and positions.

When K = 1 with at least some of the cone angles bigger than 2π, the
story is much more complicated. Recently, Mondello and Panov [23] discov-
ered that when M = S2 the cone angles are constrained by a set of linear
inequalities

d1(~β −~1,Zkodd) ≥ 1, (2)

and showed the existence when the strict inequality holds; the boundary
cases have been considered in [10, 17, 12]. The same two authors [24] also

showed that when M 6= S2, the condition χ(M, ~β) > 0 is sufficient for
existence. In either case, one is unable to specify the marked conformal
class, i.e., the location of the points p.

In this paper, we consider the deformation of the following metrics with
four conical points on S2:

2π~β = (α, β, α+ β, 4π), α, β, α+ β /∈ {2πZ, π + 2πZ}, (3)

and show that there is local rigidity in the location of cone points. Here,
“local rigidity” means that for any small deformation of this metric inside
the class of spherical conical metrics with the same cone angle combination,
the underlying pointed conformal structure does not change. Note here that
equation (3) satisfies the equality in equation (2), and such angle combina-
tions lie on the codimension-two boundary of the admissible region.

For any fixed ~β satisfying (3), there exists a real one-parameter family of
cone point positions {pt, 0 < t < π} on S2 such that there exists a spherical

conical metric gt with angles 2π~β on (S2, pt). The geometric realization of
such metrics is obtained by gluing two spherical footballs of angles α and
β along part of a meridian with one end at the south pole (see Figure 1)
where t parametrizes the length of the cut.

In this note, we approach the rigidity of such metrics via synthetic geome-
try. We decompose the surface along geodesics to get four spherical triangles
(see Figure 2).

Definition 1.1. A triangulated metric is defined to be a spherical conical
metric with the same geodesic decomposition as in Figure 2 (not necessarily
with the same cone angles or geodesic lengths). For two triangulated metrics
h and g, h is called close to g if lengths of all boundaries of the four geodesic
triangles of h are close to the corresponding ones of g.

In most cases, a small perturbation of metrics preserve the geodesic de-
composition. Hence we expect all nearby spherical conical metrics to be
triangulated and close to each other in the sense defined above.
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A = α
B = β

C = 4π

D = α + β
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B

D1 D2

C1 C2

α

α

β

β

t t

Figure 1. A spherical metric with cone angles α, β, α+β, 4π
can be obtained by gluing together two spherical footballs
along a slit of length t. We cut open each football along a
geodesic of length t, and glue points C1 with C2 to get a
cone point C with angle 4π, D1 with D2 to get the point D
with angle α+β, and glue the two pairs of geodesics between
C1D1 and C2D2.

A = α
B = β

C = 4π

D = α + β

A B

C2 C3

C1 C4

D1 D2

α β

β1 β2
(a) (b)

Figure 2. The process of cutting the surface into four spher-
ical geodesic triangles (here geodesics with the same color
glue together): (a) cut along geodesics AC,BC and two
geodesics connecting CD to get two surfaces, each with four
sides, where C1−C4 glue back to cone point C and D1−D2

glue to cone point D; (b) further cut along two geodesics
C1C2 and C3C4 to obtain four triangles.

The space of triangulated metrics are parametrized by six (independent)
lengths as long as they satisfy spherical triangle inequalities, see Figure 2 for
the color-coded geodesic pairs. If we restrict to such metrics with four fixed
cone angles, which imposes four equations on six parameters, then the space

of all such metrics is two dimension for a generic angle set ~β. We remark here
that the conformal class of four marked points on a sphere is determined
by the (complex) cross ratio which also gives a (real) two-dimension space.

Therefore, for a generic angle set ~β, we expect that the neighborhood of
triangulated metrics gives all nearby spherical conical metrics with the same
cone angle data.
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We will show that for ~β as in (3), the glued footballs are the only possible
triangulated metrics under perturbation, hence all such metrics form a one-
dimensional space. This gives the local rigidity in the geometric sense.

Theorem 1.2. For any fixed ~β as in (3) and t ∈ (0, π), if (S2, h) is a
triangulated spherical metric with the same cone angles and h is close to gt,
then h is isometric to gs for some s.

Such geometric rigidity has appeared in the case of a spherical football
with noninteger cone angles. By the classical proof of Troyanov [29], the
only possible configuration in this case is when all the geodesics connecting
two cone points are of length π. By the perturbation argument in [19], the
spherical football is the only metric with rigidity when all cone angles are
less than 2π. However, when there are more than three cone points with
some of angles bigger than 2π, such rigidity is far from clear. This note
intends to give a family of explicit metrics in this regime.

The angle combination (3) was discussed by Chen, Wang, Wu and Xu [8,
Example 4.7]. It was shown that if such a metric has reducible monodromy,
then the positions of cone points with the first three angles α, β, α + β
determine the position of the 4th pointand there is a real 1-parameter family
of such metrics where the parameter comes from the scaling of the character
1-form. We remark here that this parameter is exactly the length of the cut
(denoted by t above). Since such angle combination lies on the boundary of
the admissible region of (2), from [23, Corollary 2.25(I)], this implies that the
monodromy of such conical metrics is necessarily reducible. In particular,
this implies that there is rigidity in the conformal class of the quadruply
punctured sphere for this angle combination.

This note intends to give a geometric realization of such rigidity, and to
our knowledge, this is the first proof using elementary spherical geometry.

We also hope to give more insight in understanding the rigidity of cone
metrics as solutions to the curvature equation with prescribed singularities.
We observe that if we write the metrics on a football with angle 2πα in
geodesic coordinates as

dr2 + α2 sin2 rdθ2,

then cos r is an eigenfunction of its Laplacian with eigenvalue 2. Moreover,
when two footballs (not necessarily with same angles) glue together, this
eigenfunction also glue to give a global one. Therefore, the metrics we
consider here all satisfy the condition that number 2 lies in the Friedrichs
extension of the Laplacian, hence from [21], such partial rigidity in cone
positions is expected as a result of the obstruction in solving the curvature
equation.

The study of constant curvature conical metrics has seen a lot of recent
development. One approach is through complex analysis (see [13, 14, 15,
30]). The angle combination discussed here was also studied in detail as
the solutions to Fuchsian equations in [16, 25]. For metrics with special
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monodromy which is of particular interest of this note, see the works of
Xu and collaborators [8, 26, 27] and Eremenko [12]. We also mention here
the variational approach by Malchiodi and collaborators [1, 2, 3, 4] and the
Leray-Schauder degree counting method by Chen and Lin [5, 6]. We refer
the readers to [21] for a more comprehensive overview. We also mention here
another type of closely related objects called HCMU metrics. This exhibit
a similar obstruction in existence [9], and geodesic decomposition was used
to analyze such metrics [7].

This paper is organized as follows. In §2 we consider the case when α = β,
for which the computation is simpler but keeps the essential feature of the
proof. In §3 we give the proof of the general case.

Acknowledgement: The author would like to thank Rafe Mazzeo and Bin
Xu for many helpful discussions and suggestions, Alexandre Eremenko for
giving insightful comments. The author is also grateful for the anonymous
referee for comments. The author is partially supported by the NSF grant
DMS-1905398.

2. The case α = β

We start with the example when α = β to simplify the computation. We
first show that by assuming some symmetry, the only possibility would be
the glued footballs.

Lemma 2.1. If β1 = β2(= β), then h is equal to gs for some s.

Proof. In the proof we focus on the intermediate step of the triangulation
given in Figure 2, where we have two pieces, each of which is a spherical
domain with four sides. First connect C1C2 and C3C4 by geodesics and
consider their lengths, see Figure 3.

A B

C2 C3

C4

D1 D2

β β

C1

`1

`1

`2

`2

`5 `6

`3

`4 `4

`3

β
β

Figure 3. When β1 = β2, we show that the two pieces
should be two identical spherical bigons.

If β1 = β2 = β, then `5 = `6 by spherical cosine law

cos `5 = cos `3 cos `4 + sin `3 sin `4 cosβ = cos `6. (4)
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Hence for the two spherical triangles A1C1C2 and BC3C4, there are two
possibilities: (a) they are identical; (b) they are not identical but piece
together to a spherical bigon.

We first show that case (b) is not possible. If `1 6= `2, then we have
sin `1 6= 1 since `1 + `2 = π. Applying spherical cosine law again, we have

cos `5 = cos `6 = (cos `i)
2 + (sin `i)

2 cosβ = 1 + (cosβ − 1)(sin `i)
2, i = 1, 2.

Therefore, we know that
cos `5 − 1

cosβ − 1
< 1. (5)

In this case we also have AC1C2 = AC2C1 = π−BC3C4 = π−BC4C3 6= π/2.
Since AC2D1 + AC1D1 + BC3D2 + BC4D2 = 4π and the two spherical
triangles C1C2D1 and C3C4D2 are identical, we have

C1C2D1 + C2C1D1 = π(= C3C4D2 + C4C3D2).

Then denoting angle C2C1D1 = α, by cosine law for the triangle C1C2D1

we have

cosβ = − cosα cos(π − α) + sinα sin(π − α) cos `5 = 1 + (cos `5 − 1)(sinα)2

hence
cosβ − 1

cos `5 − 1
≤ 1

which contradicts (5). Therefore, this shows that case (b) is not possible.
We now consider case (a) and show this gives h = gs for some s. Since

`1 = `2, the two 4-sided surfaces in Figure 3 are identical. So we have the
following relations of angles:

AC2D1 = BC3D2, AC1D1 = BC4D2.

Since these four angles add up to 4π, this means that

AC2D1 +AC1D1 = 2π, BC3D2 +BC4D2 = 2π. (6)

Note that when AC2D1 = AC1D1 = BC3D2 = BC4D2 = π, and `3 =
`4 = π − `1, we have two bigons which satisfy (6). We now prove that
this is the only possibility. If `3 6= `4, then the sum of the two angles
C1C2D1+C2C1D1 will be either less than or bigger than the symmetric case
by using Lemma 2.3, which will make the total sum AC2D1 +AC1D1 < 2π
or > 2π. Therefore, we must have `3 = `4. This way we get two bigons,
which piece together to give gs where s = `3 = `4. �

We next show that if β1 6= β2, then the angle combination ~β cannot be
realized.

Lemma 2.2. If β1 6= β2, then AC2D1 + AC1D1 + BC3D2 + BC4D2 6= 4π
in Figure 2.
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Proof. Without loss of generality, we assume β1 = β−2ε, β2 = β+2ε, ε > 0.
With these assumptions, for any fixed `1 and `2, we will show that no

choice of `3 and `4 would give the combination of 4π. In fact, we will show
that the total sum of the four angles is strictly less than (or bigger than) 4π
depending on the length of `1 and `2.

Since we are considering perturbation of a metric gt, `1 and `2 are both
close to π−t. Therefore, unless t = π/2, we can assume (`1−π/2)(`2−π/2) >
0. We will discuss the case of t = π/2 near the end of this proof.

We first look at the case when `1, `2 < π/2. In this case `3, `4 > π/2. We
will show that even in the case when ` = `3 = `4 > π/2 (which will give
the maximal possible angle sum by Lemma 2.3), the total sum of the four
angles in question is still less than 4π.

When `3 = `4, the two pieces each have a Z2 symmetry. Therefore, we
can consider a half of each piece, which give us two spherical triangles. See
picture 4.

`1 `2

` `

β
2

β
2

β
2
− ǫ β

2
+ ǫ

α1 α2

Figure 4. The two half pieces

By spherical sine rule we have

sin `1

sin β1
2

=
sin `

sin β
2

,
sin `2

sin β2
2

=
sin `

sin β
2

(7)

In particular, since sin β2
2 > sin β

2 > sin β1
2 this implies that `1 < π − ` < `2.

By Napier’s analogies,

cot(
1

2
α1) =

tan(β2 −
β1
2 ) sin[12(`1 + `)]

sin[12(`− `1)]
,

and

cot(
1

2
α2) =

tan(β2 −
β2
2 ) sin[12(`2 + `)]

sin[12(`− `2)]
.

Since β
2 −

β1
2 = −(β2 −

β2
2 ) = ε, if we can show

sin[12(`1 + `)]

sin[12(`− `1)]
>

sin[12(`2 + `)]

sin[12(`− `2)]
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then this would imply α1 + α2 < 2π, or equivalently AC2D1 + AC1D1 +
BC3D2 + BC4D2 < 4π. Now to show the above inequality holds, we just
need to expand it and see that after cancellation it is equivalent to

sin ` cos ` sin[
1

2
(`1 − `2)] > 0 (8)

which is true by our assumption ` > π/2 and `1 < `2.
Now, consider the other case when `1, `2 > π/2. In this case, we show that

even in the minimum ` = `3 = `4 < π/2 that the total sum is still greater
than 4π. Note here that we have `1 > π − ` > `2. To show α1 + α2 > 2π,
we need to have

−
sin[12(`1 + `)]

sin[12(`− `1)]
> −

sin[12(`2 + `)]

sin[12(`− `2)]

and we arrive at the same inequality (note here sin[12(`− `i)] < 0)

sin ` cos ` sin[
1

2
(`1 − `2)] > 0

which holds this time since ` < π/2 and `1 − `2 > 0. This shows that even
in the minimum case we still have α1 + α2 > 2π. Therefore, the sum of the
four angles is always bigger than 4π in this case cannot be realized.

Finally, we show that in the case when t = π/2, there is still no possible
choice of perturbation. It is easy to show that `1 cannot be equal to π/2.
If `1 = π/2 which implies cos `5 = cosβ, then by applying cosine law to the
triangle C1C2D1 one gets cosβ = (cos `1)

2 + (sin `1)
2 cos(β − 2ε) and this

will force (cos `1)
2 < 0, which is impossible. Therefore, either `1 < π/2 or

`1 > π/2. Using the same sine rule (7), we will have either `1 < π − ` <
`2 ≤ π/2 or `1 > π − ` > `2 ≥ π/2. In particular, we also have ` 6= π/2.
The same computation for (8) would follow on both cases and we see that
either α1 + α2 < 2π or α1 + α2 > 2π.

This completes the proof.
�

We now prove the fact we have used in the proofs above, that for a
spherical triangle, if the length of one side and its opposite angle are fixed,
then the extremal of the sum of its three angles is achieved by an isosceles
spherical triangle. Note that for a fixed ` and β with cos ` 6= cosβ, there are
two different isosceles triangles, one with angle α < π/2 and the other with
α′ > π/2. See picture 5.

Lemma 2.3. For the spherical triangle ABC in Figure 6, if angle ACB = β
and length AB = ` /∈ 2πZ are fixed and they satisfy cos ` 6= cosβ, then the
sum of two angles CAB + CBA reaches its minimum and maximum when
AC = BC. Denoting angle CAB = α, the minimum is achieved when
α < π/2, and the maximum is achieved when α > π/2.
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β

β

α α
`

α0 α0

Figure 5. Two spherical isosceles triangles sharing one side
and having the same opposite angle

`

β

β

A B

C

C 0

α

Figure 6. The extremal value of the total angle sum is
achieved by an isosceles triangle

Proof. Let s be the sum of the two angles CAB + CBA, and let α be the
angle CAB. Using the spherical cosine law, we have

cosβ = − cosα cos(s− α) + sinα sin(s− α) cos `

Here we treat s as an implicit function of α. Differentiating the two sides
with respect to α, we get

0 = sinα cos(s− α) + cosα sin(s− α) cos `

+ (s′ − 1)[cosα sin(s− α) + sinα cos(s− α) cos `]

The critical point of s is obtained when s′ = 0, which corresponds to

(1− cos `) sin(2α− s) = 0.

With the conditions α > 0 and s− α > 0, we obtain that the critical point
satisfies α = s/2, i.e. it is an isosceles triangle.

On the other hand, by analyzing the sign of

s′ = 1− sinα cos(s− α) + cosα sin(s− α) cos `

cosα sin(s− α) + sinα cos(s− α) cos `
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we obtain the following two cases:

• When α0 = s/2 > π/2, we have s′ > 0 when α < α0 and s′ < 0
when α > α0, hence it is a maximum point.
• When α0 = s/2 < π/2, the signs are reversed and hence it is a

minimum point for s.

�

Remark. When cosβ = cos `, the critical point corresponds to the triangle
with angles β, π/2, π/2 (so the two extremal triangles are identical). How-
ever, in this case this point is neither minimum nor maximum, as the family
of triangles are given by any combination of α = π/2 and s − α ∈ (0, π).
The proofs of lemma 1 and lemma 2 do not need to use this fact.

3. Proof of Theorem 1.2

Now we give the proof of our main result.

Proof of Theorem 1.2. When α = β, we combine Lemmas 2.1 and 2.2,
and see that the only possibility is the gluing of two footballs.

When α 6= β, by replacing the statement β1 = β2 to

β1 = α, β2 = β,

the proof is similar. We list out the steps as follows.
Step 1: The only possible case is α = β1, β = β2.

Assuming β1 = α − 2ε and β2 = β + 2ε for some small ε. Similar to
Lemma 2.2, we look at the extremal case which is achieved when `3 = `4 by
Lemma 2.3. In this case we get a similar picture as Figure 4 except the one
of the two angles β/2 is replaced by α/2. Using the same computation of
Napier’s analogies, we get that the sum of α1 + α2 is either strictly bigger
than 4π in the minimal case or strictly smaller than 4π in the maximal case.
Hence this is not possible when ε 6= 0.
Step 2: When α = β1, β = β2 we get gs for some s.

We then show that when α = β1, β = β2 in Figure 7, the only possible
configuration is indeed the gluing of two footballs.

When α 6= β, one no longer has `5 = `6 as in the proof of Lemma 2.1.
However, by Lemma 2.3, one can see that only the case of `3 = `4 would
give the possible sum of 4π (otherwise it would either be bigger or smaller
than 4π). Then again by symmetry, we can see that the only possible case
is when two spherical triangles AC1C2 and C1C2D1 (similarly, BC3C4 and
C3C4D2) piece together to a bigon, which corresponds to the gluing of two
footballs. �
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A = α
B = β

C = 4π

D = α + β

A B

C2 C3

C1 C4

D1 D2

α β

β1 β2

`1

`1

`2

`2

`3 `3

`4 `4

`5
`6

Figure 7. Cutting the manifold into two pieces, each is a
surface with 4 sides. A priori they do not need to be spherical
bigons as in the glued football construction.
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