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A universal coarse K-theory

Ulrich Bunke and Denis-Charles Cisinski

Abstract. In this paper, we construct an equivariant coarse homol-
ogy theory with values in the category of non-commutative motives of
Blumberg, Gepner and Tabuada, with coefficients in any small additive
category. Equivariant coarse K-theory is obtained from the latter by
passing to global sections. The present construction extends joint work
of the first named author with Engel, Kasprowski and Winges by pro-
moting the codomain of the equivariant coarse K-homology functor to
non-commutative motives.
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1. Introduction

In this paper we introduce a universal K-theory-like equivariant coarse
homology theory associated to an additive category.

Equivariant coarse homology theories have been introduced in [BEKWa,
Def. 3.10] as the basic objects of equivariant coarse homotopy theory. Equi-
variant coarse homology theories give rise to Bredon-type equivariant ho-
mology theories by a construction which we will explain in the Remark
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2 ULRICH BUNKE AND DENIS-CHARLES CISINSKI

1.5 below. Such a presentation of equivariant homology theories plays an
important role in the proofs of isomorphism conjectures, see e.g. [CP95],
[BFJR04],[BLR08]1.

As an example of an equivariant coarse homology theory, an equivariant
coarse K-homology functor KXGA associated to an additive category A is
constructed in [BEKWa, Sec. 8]. It is defined as a composition of functors

KXGA : GBornCoarse
VG

A→ Add
K→ Sp . (1.1)

In this formula GBornCoarse denotes the category of G-bornological coarse
spaces, and VG

A is a functor which associates to a G-bornological coarse

space X the additive category of equivariant X-controlled A-objects VG
A(X).

The functor K is a non-connective K-theory functor from additive categories
to spectra [PW85].

In [BGT13] Blumberg, Gepner, and Tabuada interpret algebraic K-theory
as a localizing invariant of small stable ∞-categories. They construct a
universal localizing invariant

Uloc : Catex∞ →Mloc , (1.2)

where Catex∞ denotes the ∞-category of small stable ∞-categories.
The goal of the present paper is to construct a factorization of KXGA

over Uloc. To find such a factorization is very much in spirit of the ideas
of Balmer-Tabuada [BT08] and might be helpful in an approach to the
“Mother Isomorphism Conjecture”. It also leeds to further new examples of
equivariant coarse homology theories, see Example 1.2.

In Section 2 we construct the functor Chb(−)∞ : Add → Catex∞ which

sends a small additive category A to the small stable ∞-category Chb(A)∞
obtained from the bounded chain complexes over A by inverting homotopy
equivalences. We then analyse the composition

UK : Add
Chb(−)∞→ Catex∞

Uloc→ Mloc .

In Section 3 we first review bornological coarse spaces and define the category
BornCoarse. We furthermore recall the notion of an equivariant coarse
homology theory, and the definition of the categories of X-controlled A-
objects VG

A(X). Then we continue and define, in analogy to (1.1), the
functor

UKXGA : GBornCoarse
VG

A→ Add
UK→ Mloc . (1.3)

From this functor we can recover the usual coarse algebraic K-homology
functor (1.1) by

KXGA (−) ' mapMloc
(Uloc(Sω∞),UKXGA (−)) , (1.4)

where Sω∞ denotes the small stable ∞-categories of compact spectra.
Our main theorem is:

1These are only some papers of a vast list we will not try to review here.
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Theorem 1.1 (Theorem 3.5). The functor UKXGA is an equivariant coarse
homology theory.

The arguments for the proof are very similar to the case of usual K-theory
and essentially copied from [BEKWa].

From the universal coarse homology theory UKXGA associated to A one
can derive new coarse homology theories which have not been considered so
far.

Example 1.2. An example is topological Hochschild homology THH. In
[BGT13] topological Hochschild homology was characterized as a localizing
invariant

THH : Catex∞ → Sp .

By the universal property of the morphism (1.2) there is an essentially unique
factorization

Catex∞

Uloc $$

THH // Sp

Mloc

THH∞

<<
.

This allows to define an equivariant coarse homology theory

THHXGA : GBornCoarse
UKXG

A→ Mloc
THH∞→ Sp .

�

In Section 3.5 we package the coarse homology functors UKXHA for the
subgroups H of G together into a functor

UKXA : GBornCoarse→ Fun(Orb(G)op,Mloc) .

We want to stress the following point. In order to define the functor UKXA

(Definition 3.14) it is not necessary to know how to construct equivariant
coarse homology theories. In our case one only needs the non-equivariant
version UKXA and a decomposition

UKXA ' K ◦ V .

Here V : BornCoarse → Add+
∞ sends a bornological coarse X space

to the marked additive category of X-controlled objects and controlled
morphisms, marked by the diag(X)-controlled isomorphisms, and the functor
K : Add+

∞ →Mloc is the universal K-theory functor (see Subsection 3.5 for
details). Equivariance is built in using the coinduction functor

Coind : Fun(BG,Add+
∞)→ Fun(Orb(G)op,Add+

∞) .

Viewing G-bornological coarse spaces as particular bornological coarse spaces
with a G-action the functor V naturally provides a functor

Veq : GBornCoarse→ Fun(BG,Add+
∞) .



4 ULRICH BUNKE AND DENIS-CHARLES CISINSKI

In Definition 3.14 we set

UKXA := K ◦ Coind ◦ Veq .
This idea might be helpful in other cases where the non-equivariant version
of a coarse homology is already known, while the details of a construction of
an equivariant versions are not yet fixed.

Our main result here, besides of the construction of UKXA, is:

Theorem 1.3 (Theorem 3.15). UKXA is an equivariant coarse homology
theory.

Remark 1.4. Coarse homology theories play an important role in the
approach to injectivity results for assembly maps developed [BEKWc], but
in contrast to equivariant coarse K-homology KXGA the universal theory

UKXGA considered in the present paper does seem to usable there. To
be useful for [BEKWc] the equivariant homology theory must in addition
be strongly additive [BEKWa, Def. 3.12]. The strong additivity of KXGA
depends on the fact that the algebraic K-theory functor K preserves products.
Carlsson [Car95] has shown that the connective algebraic K-theory functor
K≥0 : Add → Sp≥0 preserves products, and this result extends to the
non-connective K-theory, but probably not to the functor UK. We refer to
[KW] and [KW19] for related results.

Remark 1.5. By Elmendorff’s theorem the category Fun(Orb(G)op,Spc)
can be considered as the home of G-equivariant homotopy theory. Bredon-
type G-equivariant C-valued homology theories are then represented by
objects in the category Fun(Orb(G), C), see Davis-Lück [DL98]. The values
of the functor UKXA must not be confused with such homology theories
since UKXA takes values in contravariant functors instead of covariant ones.
The Davis-Lück type equivariant homology theories can be recovered as
follows.

To every set S we can associate a bornological coarse space Smin,max given
by S with the minimal coarse and the maximal bornological structures. This
gives a functor

T : Set→ BornCoarse , S 7→ Smin,max ,

and hence a functor

TG : Fun(BG,Set)→ GBornCoarse .

The composition

UKG
A : Orb(G)→ Fun(BG,Set)

TG

→ GBornCoarse
UKXG

A→ Mloc

is a Bredon-type Mloc-valued equivariant homology theory. The equivariant
algebraic K associated to an additive category as considered in [DL98],
[BLR08], [BFJR04] can now be recovered in the style of (1.4) by

KG
A(−) ' mapMloc

(Uloc(Sω∞),UKG
A(−)) .
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Indeed this follows from (1.4) and the equivalence KG
A(−) ' KXGA ◦TG which

we check in [BEKWa]. �

Acknowledgement: A great part of this work is a side product of the
collaboration with A. Engel, D. Kasprovski, Ch. Winges and M. Ullmann on
various projects in equivariant coarse homotopy theory. The authors were
supported by the SFB 1085 (DFG).

2. The universal invariant of additive categories

2.1. The universal localizing invariant. Let Catex∞ denote the∞-category
of small stable ∞-categories and exact functors.

Definition 2.1.

(1) A morphism u : A→ B in Catex∞ is a Morita equivalence if it induces
an equivalence of Ind-completions Ind(u) : Ind(A)→ Ind(B).

(2) An exact sequence in Catex∞ is a commutative square of the form

A
i //

��

B

��

0 // C

in which the morphism i is fully faithful and the induced functor
B/A→ C is a Morita equivalence.

Remark 2.2. For a stable ∞-category A, the Ind-completion can be iden-
tified with the ∞-category of exact functors from the opposite of A to the
stable∞-category of spectra. The idempotent completion Idem(A) of A can
be defined as the full subcategory of compact objects in the Ind-completion
of A. Moreover, the triangulated category Ho(Ind(A)) is compactly gener-
ated (more precisely, the objects of A form a generating family of compact
generators), and the triangulated category Ho(Idem(A)) is canonically equiv-
alent to the idempotent completion (or karoubianization) of the category
Ho(A) (in the classical sense). Therefore, one can characterize Morita equiv-
alences as the exact functors A→ B inducing an equivalence of∞-categories
Idem(A)→ Idem(B).

Following [BGT13] a functor Catex∞ → C with C a presentable stable
∞-category is called a localizing invariant if it inverts Morita equivalences,
sends exact sequences to fibre sequences, and preserves filtered colimits.

In [BGT13] a universal localizing invariant

Uloc : Catex∞ →Mloc

has been constructed. The non-connective K-theory of small stable ∞-
categories is a localizing invariant. It can be derived from the universal
invariant as follows. Let Sω∞ be the small stable ∞-category of compact
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spectra and A be a small stable ∞-category. Then by [BGT13, Thm. 1.3]
the non-connective K-theory spectrum of A is given by

K(A) ' mapMloc
(Uloc(Sω∞),Uloc(A)) . (2.1)

Remark 2.3. There is also a connective K-theory spectrum KWald(A),
which is the connective cover of K(A), and whose value at π0 is the usual
Grothendieck group of the triangulated category Ho(Idem(A)).

Definition 2.4.

(1) A stable ∞-category A is flasque if there exists an exact functor
S : A→ A such that there exists an equivalence idA ⊕ S ' S.

(2) A delooping of a stable∞-category A is a collection of exact sequences
of ∞-categories of the form

Sn(A) //

��

Fn(A)

��

0 // Sn+1(A)

for all non-negative integers n, such that Fn(A) is flasque for all n,
together with a Morita equivalence A→ S0(A).

Given a delooping of a stable ∞-category A as in the definition above, we
have the following commutative squares of spectra:

KWald(Sn(A)) //

��

KWald(Fn(A))

��

0 // KWald(Sn+1(A))

.

(2.2)

Since KWald(Fn(A)) ' 0, these squares define canonical maps

KWald(Sn(A))→ Ω(KWald(Sn+1(A))) (2.3)

and hence maps

Ωn(KWald(Sn(A)))→ Ωn+1(KWald(Sn+1(A))) . (2.4)

Proposition 2.5. Given any choice of delooping of a stable ∞-category A,
there is a canonical equivalence of spectra

colimn≥0Ω
n(KWald(Sn(A))) ' K(A) .

Furthermore, for any non negative integer n, there is a canonical isomorphism

K0(Idem(Sn(A))) ∼= π−n(K(A)) ,

where K0 = π0 ◦KWald denotes the Grothendieck group functor.
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Proof. We have cofiber sequences of the form

K (Sn(A)) //

��

K (Fn(A))

��

0 // K (Sn+1(A))

whence equivalences

K (Sn(A))→ Ω(K (Sn+1(A))) (2.5)

from which we deduce an equivalence

K(A)
'−→ colimn≥0Ω

n(K (Sn(A))) . (2.6)

By naturality of the map KWald → K, we get the commutative square

KWald(A) //

��

colimn≥0Ω
n(KWald(Sn(A)))

��

K(A)
' // colimn≥0Ω

n(K (Sn(A)))

of which any inverse of the bottom horizontal map gives a map

colimn≥0Ω
n(KWald(Sn(A)))→ K(A) (2.7)

Since KWald(Sn(A)) is the connective cover of K(Sn(A)), the canonical
map from KWald

j (Sn(A)) to Kj(S
n(A)) ∼= Kj−n(A) is an isomorphism for

all non negative integers j. Since the formation of stable homotopy groups
commutes with small filtered colimits, we have canonical isomorphisms of
groups for any integer i:

πi
(
colimn≥0Ω

n(KWald(Sn(A)))
) ∼= colimn≥0πi+n(KWald(Sn(A)))

∼= colimn≥−iπi+n(KWald(Sn(A)))

∼= colimn≥−iπi+n(K(Sn(A)))

∼= colimn≥0πi+n(K(Sn(A)))

∼= πi
(
colimn≥0Ω

n(K(Sn(A)))
)

∼= Ki(A) .

Therefore, map (2.7) is a stable weak homotopy equivalence. �

2.2. A universal K-theory of additive categories. An additive cate-
gory A can be considered as a Waldhausen category whose weak equivalences
are the isomorphisms and whose cofibrations are the inclusions of direct
summands. The connective K-theory KWald(A) is defined as the Wald-
hausen K-theory of this Waldhausen category (this agrees with Quillen’s
definition, up to a functorial equivalence). This construction can be refined
in order to produce a non-connective K-theory spectrum K(A) such that
πi(K(A)) ∼= πi(K

Wald(A)) for all integers i, with i ≥ 1 (or i ≥ 0 if A is
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idempotent complete); see [PW85, Sch06]. In Proposition 2.20 below we
provide an alternative description as a specialization of a universal K-theory
for additive categories.

We consider the categories Add and RelCat of small additive categories
and relative categories. We have a functor

(Chb(−),Wh) : Add→ RelCat (2.8)

which sends an additive category A to the relative category (Chb(A),Wh) of
bounded chain complexes and homotopy equivalences. We have a localization
functor

L : RelCat→ Cat∞ (2.9)

which sends a relative category (C,W ) to the localization C[W−1]. For an
additive category A we will use the notation

Chb(A)∞ := L(Chb(A),Wh) .

Remark 2.6. Assume that we model∞-categories by quasi-categories. Then
a model for the localization functor is given by

(C,W ) 7→ N((LHWC)fib) ,

where LHWC is the hammock localization producing a simplicial category

from a relative category, (−)(fib) is the fibrant replacement in simplicial
categories, and N is the coherent nerve functor which sends fibrant simplicial
categories to quasi categories.

As explained for instance in [CP97, Section 4], the category Chb(A) has
the structure of a cofibration category where

(1) weak equivalences are homotopy equivalences,
(2) cofibrations are morphisms of chain complexes which are degree-wise

split injections.

Note that if A→ B is a cofibration in Chb(A), then the quotient A/B exists.
In this case we say that A→ B → A/B is a short exact sequence.

Let
` : Chb(A)→ Chb(A)∞ (2.10)

denote the canonical morphism.

Proposition 2.7. If A is a small additive category, then Chb(A)∞ is a
small stable ∞-category. Moreover,

(1) (2.10) preserves the null object.
(2) (2.10) sends short exact sequences to cofiber sequences.

Proof. Let Wch denote the subset of Wh of homotopy equivalences which
are in addition cofibrations.

Lemma 2.8. The morphism of relative categories

(Chb(A),Wch)→ (Chb(A),Wh)

induces an equivalence L(Chb(A),Wch)→ Chb(A)∞ of ∞-categories.
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Proof. Since Chb(A) is a cofibration category, by Ken Brown’s Lemma

every morphism f : A→ B in Chb(A) has a factorization

A
f

//

i

��

B

rppC

p,'
>> ,

where i is a cofibration, p is a weak equivalence, and furthermore r is a
cofibration such that p◦ r = idB. If f is in addition a weak equivalence, then
so are i and r. So every functor from Chb(A) to an infinity category which
sends the elements of Wch to equivalences also sends the elements of Wh to
equivalences. This implies the assertion in view of the universal property of
the functor (2.10). �

By [Lur09, Thm. 2.2.0.1 and Prop. 2.2.4.1] and Lemma 2.8 the mapping

spaces of the∞-category Chb(A)∞ are represented by the simplicial mapping

sets of the hammock localization (LHWch
Chb(A))fib, see Remark 2.6. More

precisely, for objects A and B of Chb(A) we have a canonical homotopy
equivalence

MapChb(A)∞
(`(A), `(B)) ' Map(LH

Wch
Chb(A))fib(A,B) . (2.11)

The homotopy type of the simplicial mapping sets in the hammock localization
can be computed using a method first introduced by Dwyer and Kan, and
further studied by Weiss in [Wei99, Rem. 1.2]. For two objects A and B of

Chb(A) we consider the following category M(A,B):

(1) The objects are pairs (f, s), where f : A→ C is just a morphism and
s : B → C a trivial cofibration.

(2) A morphism u : (f, s) → (f ′, s′) is a commutative diagram of the
form

C

u

��

A

f 88

f ′ &&

B

sgg

s′xx
C ′

.

(3) The composition is defined in the obvious way.

Then by [Wei99, Rem. 1.2] we have a canonical weak equivalence of simplicial
sets

N(M(A,B)) ' Map(LH
Wch

Chb(A))fib(A,B) . (2.12)

We now consider a pushout square in Chb(A) of the form

A

i
��

a // A′

i′

��

B
b // B′

(2.13)
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in which the map i is a cofibration. By virtue of [Wei99, Thm. 2.1], for any

object E in Chb(A), the commutative square of simplicial sets

N(M(A,E)) N(M(A′, E))oo

N(M(B,E))

OO

N(M(B′, E))

OO

oo

(2.14)

is homotopy Cartesian. This implies, by (2.12), that

Map(LH
Wch

Chb(A))fib(A,B)(A,E) Map(LH
Wch

Chb(A))fib(A,B)(A′, E)oo

Map(LH
Wch

Chb(A))fib(A,B)(B,E)

OO

Map(LH
Wch

Chb(A))fib(A,B)(B′, E)

OO

oo

(2.15)

is a homotopy Cartesian square of Kan complexes. Consequently, by virtue
of [Lur09, Thm. 4.2.4.1] (and possibly [Lur09, Remark A.3.3.13]), the square

(2.13) is sent by ` to a pushout square in Chb(A)∞.

Similarly, for every object A of Chb(A) the simplicial set N(M(A, 0)) is
contractible since it is the nerve of a category with an initial object. Hence `
sends the null complex to a terminal object in Chb(A)∞.

Note that the opposite of an additive category is again an additive category.
Appying what precedes to the opposite category of A, we see that ` sends 0
also to an initial object in Chb(A)∞, and that any pullback square of the
form (2.13) in which the map b is a degree-wise split surjection is sent to a

pull-back square in Chb(A)∞.

The explicit description of the mapping spaces in Chb(A)∞ given by (2.11)

and (2.12) implies that, up to equivalence, all maps of Chb(A)∞ come from

maps of Chb(A). In particular, by virtue of [Lur09, Cor. 4.4.2.4] and its

dual version, we have proved that the ∞-category Chb(A)∞ has finite limits
and finite colimits, and that 0 = `(0) is a null object.

Since, up to equivalence, any morphism in Chb(A)∞ is the image under `

of a cofibration, any cofiber sequence of Chb(A)∞ is the image under ` of a
pushout square of the form

A
i //

��

B

p

��

0 // C

in which i is a cofibration. But such a square also is a pullback square, with
p a degree-wise split surjection, and therefore, the functor ` sends such a
square to a fiber sequence. In other words, any cofiber sequence in Chb(A)∞
is a fiber sequence. Replacing A by its opposite category, we see that we also
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proved the converse: any fiber sequence in Chb(A)∞ is a cofiber sequence.

In other words, the ∞-category Chb(A)∞ is stable in the sense of [Lur17,
Def. 1.1.1.9], and we have proved the proposition. �

Remark 2.9. For an additive category A the category Chb(A) has a natural

dg-enriched refinement Chb(A)dg. By [Lur17, Thm. 1.3.1.10] we can thus

form a small ∞-category Ndg(Chb(A)dg). It is easy to check that this
category is pointed by the zero complex, has finite colimits (sums and push-
outs exist), and that the suspension is represented by the shift. Consequently,

Ndg(Chb(A)dg) is a stable ∞-category. In fact, [Lur17, 1.3.2.10] asserts this
for the dg-nerve Ndg(Ch(A)dg) of the dg-category of not necessarily bounded

chain complexes. We can consider Ndg(Chb(A)dg) as a full subcategory of
Ndg(Ch(A)dg) which is stable under finite colimits.

By the universal property of the localization functor (2.9) the natural

morphism Chb(A)→ Ndg(Chb(A)dg) factorizes through a morphism

Chb(A)∞ → Ndg(Chb(A)dg) . (2.16)

This morphism induces an equivalence of homotopy categories

Ho(Chb(A)∞)
'→ Ho(Ndg(Chb(A)dg)) .

Proposition 2.7 is now equivalent to the fact that the functor (2.16) is an
equivalence of ∞-categories. �

Let A be an object of Chb(A).

Corollary 2.10. We have the relation Σ(`(A)) ' `(A[1]).

Proof. Let A be an object of Chb(A). By Proposition 2.7, the functor `
sends the short exact sequence

A→ Cone(idA)→ A[1]

to the cofiber sequence

`(A) //

��

`(Cone(idA))

��

0 // `(A[1])

Since 0→ Cone(idA) is a chain homotopy equivalence, this cofiber sequence

exhibits `(A[1]) as the suspension of `(A) in Chb(A)∞. �

Proposition 2.11. The functor Chb(−)∞ has a natural factorization

Catex∞

��

Add //

Chb(−)∞
66

Cat∞

.
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Proof. By Proposition 2.7, the functor Chb(−)∞ takes values in stable
∞-categories. We must show that it send a morphism f : A→ A′ between
additive categories to an exact functor. By [Lur17, Cor. 1.4.2.14] we must

show that Chb(f)∞ preserves the zero object and suspension. It clearly
preserves the zero object (represented by the zero complex). By Corollary

2.10 in the domain and target of Chb(f)∞ the suspension is represented

by the shift and Chb(f) clearly preserves the shift, Chb(f)∞ also preserves
suspension. �

Definition 2.12. We define the functor UK : Add→Mloc as the composi-
tion

UK : Add
Chb(−)∞→ Catex∞

Uloc→ Mloc .

2.3. Properties of the universal K-theory for additive categories.
Recall that a morphism between additive categories is a functor between the
underlying categories which preserves finite coproducts. It is an equivalence
if the underlying morphism of categories is an equivalence. More generally, it
is a Morita equivalence if it induces an equivalence of idempotent completions.
Finally, recall the similar Definition 2.1 (in conjuction with Remark 2.2) for
morphisms between stable ∞-categories.

Let A be an additive category.

Lemma 2.13. The morphism A→ Idem(A) induces a Morita equivalence

Chb(A)∞ → Chb(Idem(A))∞ .

Proof. In view of Definition 2.1 and Remark 2.2 we must show that the
induced morphism

c : Idem(Chb(A)∞)→ Idem(Chb(Idem(A))∞)

is an equivalence. We first observe that for any additive category B
the natural morphism B → Idem(B) induces a fully faithful embedding

Chb(B)∞ → Chb(Idem(B))∞. This is obvious if we use the description of
the ∞-categories of chain complexes via dg-nerves as discussed in Remark
2.9. We now have a commuting diagram

Chb(A)∞ //

��

Chb(Idem(A))∞

i
��

Idem(Chb(A)∞)
c // Idem(Chb(Idem(A))∞)

.

Since the vertical morphisms and the upper horizontal morphism are fully-
faithful, so is c. It remains to show that c is essentially surjective. We note
that the morphism i identifies Chb(Idem(A))∞ with the smallest full stable

subcategory of Idem(Chb(Idem(A))∞) containing the objects in the image
of the composition

Idem(A)
[0]→ Chb(Idem(A))

`→ Chb(Idem(A))∞ . (2.17)
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In view of the commuting diagram

Chb(Idem(A))∞

i

**

Idem(A)

(2.17)
77

Idem(`◦[0])

''

Idem(Chb(Idem(A))∞)

Idem(Chb(A)∞)

c
44

every object in the image of the composition i ◦ (2.17) also belongs to the
essential image of c. Hence c is essentially surjective and we have shown the
lemma �

Remark 2.14. A particular case of a result of Balmer and Schlichting [BS01,
Thm. 2.8] states that, for any small idempotent complete additive category A,

the triangulated category Ho(Chb(A)∞) is idempotent complete. Applying
this result to i and the proof of Lemma 2.13 to c we conclude that for any
small additive category A, the natural functors

Idem(Chb(A)∞)
c→ Idem(Chb(Idem(A))∞)

i← Chb(Idem(A))∞

are equivalences of ∞-categories.

Lemma 2.15. The functor UK : Add →Mloc sends Morita equivalences
of additive categories to equivalences in Mloc.

Proof. Since the functor Uloc sends Morita equivalences of stable∞-categories
to equivalences of spectra, it is sufficient to prove that the functor A 7→
Chb(A)∞ sends Morita equivalences of additive categories to Morita equiva-
lences of ∞-categories.

First of all, this functor sends equivalences of additive categories to equiv-
alences of ∞-categories because the functor A 7→ Chb(A) preserves equiva-
lences of categories, and because the localization functor (2.9) sends equiva-
lences of (relative) categories to equivalences of ∞-categories.

For an additive category A the morphism A→ Idem(A) is a Morita equiv-
alence of additive categories. By Lemma 2.13 we get a Morita equivalence of
stable ∞-categories Chb(A)∞ → Chb(Idem(A))∞.

Any Morita equivalence f : A→ A′ between additive categories fits into
a commutative square of the form

A
f

//

��

A′

��

Idem(A)
Idem(f)

// Idem(A′)

in which the functor Idem(f) is an equivalence of categories. By the obser-

vations made above the functor Chb(−)∞ sends the two vertical and the
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lower horizontal morphism to equivalences. This readily implies that the
map UK(f) is an equivalence from Chb(A)∞ to Chb(A′)∞. �

Let A be an additive category.

Definition 2.16. A full additive subcategory C of A is a Karoubi-filtration
if every diagram

X → Y → Z

in A with X,Z ∈ C admits an extension

X

��

// Y //

∼=
��

Z

U
incl// U ⊕ U⊥

pr
// U

OO

with U ∈ C.

In [Kas15, Lemma 5.6] it is shown that Definition 2.16 is equivalent to the
standard definition of a Karoubi filtration as considered in [CP97].

A morphism in A is called completely continuous (c.c.) if it factorizes
over a morphism in C. We can form a new additive category A/C with the
same objects as A and the morphisms

HomA/C(A,A′) := HomA(A,A′)/c.c. .

Assume that C is a Karoubi filtration in an additive category A.

Lemma 2.17. The sequence of stable ∞-categories

Chb(C)∞ → Chb(A)∞ → Chb(A/C)∞

is exact.

Proof. As observed in Lemma 2.13, for any additive category B, the
natural functor Chb(B)∞ → Chb(Idem(B))∞ is a Morita equivalence of
stable ∞-categories. Furthermore the canonical functor Idem(A/C) →
Idem(Idem(A)/Idem(C)) is an equivalence of categories, because the functor
Idem (being a left adjoint) sends pushouts of additive categories to pushouts
in the category of idempotent complete additive categories. Therefore, the
canonical functor

Chb(A/C)∞ → Chb(Idem(A)/Idem(C))∞

is a Morita equivalence of stable ∞-categories.
All this means that, without loss of generality, it is sufficient to prove the

case where C is idempotent complete (since we may replace A and C by
their idempotent completions at will). By [BGT13, Prop. 5.15] it suffices to
show that, under this extra assumption on C,

Ho(Chb(C)∞)→ Ho(Chb(A)∞)→ Ho(Chb(A/C)∞)

is exact. In view of Example [Sch04, Ex. 1.8] this is shown in [Sch04, Prop.
2.6]. �
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Assume that C is a Karoubi filtration in an additive category A.

Proposition 2.18. We have the following fibre sequence in Mloc.

UK(C)→ UK(A)→ UK(A/C)

Proof. This immediately follows from Lemma 2.17, Definition 2.12, and the
fact that Uloc sends exact sequences to fibre sequences. �

Definition 2.19. An additive category A is called flasque if there exists an
endo-functor S : A→ A such that idA ⊕ S ' S.

Let A be a small additive category. By K(A), we denote Schlichting’s non-
connective K-theory spectrum. Its stable homotopy groups in non-negative
degrees i agree with Quillen’s K-theory groups of Idem(A) denoted above by
KWald
i (Idem(A)), and with the K-theory groups defined by Pedersen and

Weibel in negative degrees.
Let A be a small additive category.

Proposition 2.20. There is a canonical equivalence of spectra

K(A) ' mapMloc
(Uloc(Sω∞),UK(A)) .

Proof. Using Lemma 2.13 and the fact that Uloc sends Morita equivalences to
equivalences, Formula (2.1) expresses mapMloc

(Uloc(Sω∞),UK(A)) as the non-

connective K-theory spectrum K(Chb(Idem(A))∞). By virtue of [BGT13,

Cor. 7.12] the connective cover of K(Chb(Idem(A))∞) agrees with Wald-

hausen’s K-theory of Chb(Idem(A)), which in turns agrees with Quillen’s
K-theory of Idem(A) by the Gillet-Waldhausen theorem (as shown in [TT90]).
There is a construction, due to Karoubi, and recalled in [PW85, Example
5.1], which associates functorially, to any small additive category A, a flasque
additive category C(A), together with an additive full embedding A→ C(A)
which turns A into a Karoubi filtration of C(A). The suspension S(A) of
A is then defined as the quotient C(A)/A. Iterating this construction, we
see with Lemma 2.17 that we have a delooping of the stable ∞-category
Chb(A)∞, of the form

Chb(Sn(A))∞ //

��

Chb(C(Sn(A)))∞

��

0 // Chb(Sn+1(A)∞)

This delooping exists at the level of Waldhausen categories

Chb(Sn(A)) //

��

Chb(C(Sn(A)))

��

0 // Chb(Sn+1(A))
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By naturality of the comparison maps KWald(Chb(A))→ KWald(Chb(A))
(where the left hand denotes the usual Waldhausen construction associated

with the cofibration category Chb(A)), we obtain a natural morphism of
spectra:

colimn≥0Ω
n(KWald(Chb(Sn(A)))→ colimn≥0Ω

n(KWald(Chb(Sn(A)))∞) .

By virtue of Proposition 2.5, the codomain of this map is the non-connective
spectrum K(Chb(A)∞). The domain of this map is precisely Schlichting’s
definition [Sch06, Def. 8] of the non-connective K-theory of A. Since both
side agree canonically on connective covers, to prove that this comparison
map is a stable weak homotopy equivalence, it is sufficient to prove that it
induces an isomorphism on stable homotopy groups in non positive degree.
But this map induces an isomorphism on π0 for any A. Therefore, replacing
A by Sn(A), for positive integers n, we see that it induces an isomorphism
in degree −n, because both sides are canonically isomorphic to

K−n(A) = K0(Idem(Sn(A))) ∼= K0(Idem(Chb(Sn(A))))

(this is proved in Theorem [Sch06, Theorem 8, p. 124] for the left-hand
side, and follows from the last assertion of Proposition 2.5 for the right-hand
side). �

Let A be an additive category.

Proposition 2.21. If A is flasque, then UK(A) ' 0.

Proof. Let B be an additive category. We define a new additive category
D(B) by:

(1) An object of B is a triple (B,B0, B1) of an object B of B with two
subobjects such that the induced morphism B0 ⊕ B1 → B is an
isomorphism.

(2) A morphism (B,B0, B1) → (B′, B′0, B
′
1) is a morphism B → B′

preserving the subobjects.

We have a sequence

B
i→ D(B)

p→ B

where the first morphism i sends the object B in B to the object (B,B, 0)
of D(B), and the second morphism p sends the object (B,B0, B1) of D(B)
to the object B1 of B. The morphism i is fully faithful and determines a
Karoubi filtration on D(B), and the morphism p is the projection onto the
quotient. It has a left-inverse j : B→ D(B) given by B 7→ (B, 0, B).

We finally have a functor s : D(B)→ B which sends (B,B0, B1) to B.
Let f, g : A→ B be two morphisms between additive categories. Then we

can define a morphism (f, g) : A→ D(B) by A 7→ (f(A)⊕ g(A), f(A), g(A))
which is uniquely determined by the choice of representatives of the sums.
We now consider the composition

h : A
(f,g)→ D(B)

s→ B .
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Note that Mloc is stable so that it makes sense to add morphisms. We have

UK(f),UK(g),UK(h) ∈ π0(MapMloc
(UK(A),UK(B))) .

Lemma 2.22. We have UK(h) ' UK(f) + UK(g).

Proof. We have a fibre sequence UK(B)
UK(i)→ UK(D(B))

UK(p)→ UK(B)
which is split by UK(j). We have a commutative diagram

UK(A)

UK(f)+UK(g)

''UK(f)⊕UK(g)
// UK(B)⊕UK(B)

UK(i)◦pr0+UK(j)◦pr1
'

//

��

UK(D(B))
UK(s)

// UK(B)

UK(A)

UK(h)

77

UK(f,g)
// UK(B⊕B)

UK(i,j)
// UK(D(B))

UK(s)
// UK(B)

.

The dashed arrow is induced by the two embeddings B → B ⊕ B and the
universal property of the sum. �

Let S : A → A be the endo-functor such that idA ⊕ S ' S. We get
the equivalence UK(idA) + UK(S) ' UK(S) and this implies UK(idA) ' 0,
hence UK(A) ' 0. �

Proposition 2.23. The functor UK preserves filtered colimits.

Proof. The functor (2.8) clearly preserves filtered colimits. The localization
functor (2.9) preserves filtered colimits. In order to see this we could use
the model given in Remark 2.6 and observe that hammock localization
preserves filtered colimits, a filtered colimit of Kan-complexes is again a
Kan complex, and the coherent nerve functor preserves filtered colimits, and
finally that a filtered colimit of quasi-categories is a filtered colimit in the
∞-category Cat∞. The inclusion Catex∞ → Cat∞ preserves filtered colimits.
And finally, by definition the universal localizing U∞ invariant preserves
filtered colimits. �

3. A universal equivariant coarse homology theory

3.1. Coarse homology theories. Following [BE16] a bornological coarse
space is a triple (X, C,B) of a set X with a coarse structure C and a bornology
B which are compatible in the sense that every coarse thickening of a bounded
set is again bounded. A morphism f : (X, C,B) → (X ′, C′,B′) between
bornological coarse spaces is a controlled and proper map. We thus have a
category BornCoarse of bornological coarse spaces and morphisms.
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For a group G a G-bornological coarse space is a bornological coarse
space (X, C,B) with an action of G by automorphisms such that its set of G-
invariant entourages CG is cofinal in C. A morphism between G-bornological
coarse spaces is an equivariant morphism of bornological coarse spaces. In
this way we have defined a full subcategory

GBornCoarse ⊆ Fun(BG,BornCoarse)

of G-bornological coarse spaces and equivariant morphisms.
The category GBornCoarse has a symmetric monoidal structure which

we denote by ⊗. It is defined by

(X, C,B)⊗ (X ′, C′,B′) := (X ×X ′, C〈C × C′〉,B〈B × B′〉) ,

where G acts diagonally on the product set, C〈C × C′〉 denotes the coarse
structure generated by all products U × U ′ of entourages of X and X ′, and
B〈B×B′〉 denotes the bornology generated by all products B×B′ of bounded
subsets of X and X ′.

In [BE16] we axiomatized the notion of a coarse homology theory. The
equivariant case will be studied throughly in [BEKWa]. In the following
definition and the text below we describe the axioms.

Let C be a stable cocomplete ∞-category and consider a functor

E : GBornCoarse→ C .

Definition 3.1 ([BEKWa, Def. 3.10]). E is an equivariant C-valued coarse
homology theory if it satisfies:

(1) coarse invariance.
(2) excision.
(3) vanishing on flasques.
(4) u-continuity.

The detailed description of these properties is as follows:

(1) (coarse invariance) We require that for every G-bornological coarse
space X the projection {0, 1}max,max⊗X → X induces an equivalence

E({0, 1}max,max ⊗X)→ E(X) .

Here for a set S we let Smax,max denote the set S equipped with the
maximal coarse and bornological structures.

(2) (excision) A big family in a G-bornological coarse spaces X is a
filtered family (Yi)i∈I of invariant subsets of X such that for every i
in I and entourage U of X there exists j in I such that U [Yi] ⊆ Yj .
We define E(Y) := colimi∈IE(Yi). We furthermore set

E(X,Y) := Cofib(E(Y)→ E(X)) .

A complementary pair (Z,Y) consists of an invariant subset Z of X
and a big family such that there exists i in I such that Z ∪ Yi = X.
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Note that Z ∩ Y := (Z ∩ Yi)i∈I is a big family in Z. Excision then
requires that the canonical morphism

E(Z,Z ∩ Y)→ E(X,Y)

is an equivalence. Here all subsets of X are equipped with the induced
bornological coarse structure.

(3) A G-bornological coarse space X is flasque if it admits an equivariant
selfmap f : X → X (we say that f implements flasquenss) such that
(f × id)(diagX) is an entourage of X, for every entourage U of X,
the subset

⋃
n∈N(fn × fn)(U) of X ×X is again an entourage of X,

and for every bounded subset B of X there exists an n in N such
that fn(X) ∩B = ∅. Vanishing on flasques requires that

E(X) ' 0

if X is flasque.
(4) For every invariant entourage U of X we define a new bornological

coarse space XU . It has the underlying bornological space of X and
the coarse structure C〈U〉. The condition of u-continuity requires
that the natural morphisms XU → X induce an equivalence

colimU∈CGE(XU )
'→ E(X) .

3.2. X-controlled A-objects. In this section we associate in a functorial
way to every additive category and bornological coarse space a new additive
category of controlled objects and morphisms. This construction is taken
from [BEKWa, Sec. 8.2].

Let A be an additive category. Let furthermore X be a G-bornological
coarse space with bornology B. We will consider B as a poset. The group
G acts on Fun(B,A) in the natural way such that g in G sends the functor
A : B → A to the obvious functor gA : B → A defined on objects by
gA(B) := A(g−1B).

Definition 3.2. An equivariant X-controlled A-object is a pair (A, ρ) con-
sisting of a functor A : B → A and a family ρ = (ρ(g))g∈G of natural
isomorphisms ρ(g) : A→ gA satisfying the following conditions:

(1) A(∅) ∼= 0.
(2) For all B,B′ in B, the commutative square

A(B ∩B′) //

��

A(B)

��

A(B′) // A(B ∪B′)

is a pushout.
(3) For all B in B, there exists a finite subset F of B such that the

induced morphism A(F )→ A(B) is an isomorphism.
(4) For all pairs of elements g, g′ of G we have ρ(gg′) = gρ(g′) ◦ ρ(g).
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Let (A, ρ), (A′, ρ′) be equivariant X-controlled A-objects and U be an
entourage in C.

Definition 3.3. An equivariant U -controlled morphism f : (A, ρ)→ (A′, ρ′)
is a natural transformation

f : A(−)→ A′(U [−]) ,

such that ρ′(g) ◦ f = (gf) ◦ ρ(g) for all elements g of G.

We let MorU ((A, ρ), (A′, ρ′)) denote the set of equivariant U -controlled
morphisms. We then define the set of controlled morphisms from (A, ρ) to
(A′, ρ′) by

HomVG
A(X)((A, ρ), (A′, ρ′)) := colimU∈CMorU ((A, ρ), (A′, ρ′)) .

One can compose controlled morphisms in the obvious way. We denote the
resulting category of equivariant X-controlled A-objects and equivariant
controlled morphisms by VG

A(X). It is additive by [BEKWa, Lemma 8.7]
Let φ : (X,B, C) → (X ′,B′, C′) be a morphism of G-bornological coarse

spaces. We define a functor φ∗ : VG
A(X)→ VG

A(X ′) as follows:

(1) For an object (A, ρ) of VG
A(X) define φ∗(A, ρ) := (φ∗A, φ∗ρ) in

VG
A(X ′) by:

(a) φ∗A(B′) := (B′ 3 B′ 7→ A(φ−1(B′)) ∈ A).
(b) φ∗ρ(γ)(B′) = ρ(γ)(φ−1(B′)) for all g in G and B′ in B′.

(2) For a U -controlled morphism f : (A, ρ)→ (A′, ρ′) in VG
A(X) we define

the V -controlled morphism

φ∗f := {fφ−1(B′) : φ∗A(B′)→ φ∗A(V [B′])}B′∈B′ ,

in VG
A(X ′), where V := (φ× φ)(U).

We have thus defined a functor

VG
A : GBornCoarse→ Add .

If G is the trivial group, then we omit G from the notation.

3.3. The universal equivariant coarse homology theory. Let A be
an additive category.

Definition 3.4. We define the functor

UKXGA := UK ◦VG
A : GBornCoarse→Mloc .

Theorem 3.5. The functor UKXGA is an equivariant coarse homology theory.

Proof. In the following four lemmas we verify the conditions listed in
Definition 3.1. We keep the arguments sketchy as more details are given in
[BEKWa, proof of Thm. 8.9].

Lemma 3.6. UKXGA is coarsely invariant.
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Proof. If X is a G-bornological coarse space, then we claim that the projec-
tion p : {0, 1}max,max⊗X → X induces an equivalence of additive categories
VG

A({0, 1}max,max ⊗ X) → VG
A(X). Since UK preserves equivalences the

claim implies the Lemma.
We now show the claim. Let i : X → {0, 1}max,max ⊗ X denote the

inclusion given by the element 0 of {0, 1}. Then p ◦ i = idX and therefore
VG

A(p) ◦VG
A(i) ∼= idVG

A(X). Furthermore, the composition i ◦ p is close to

the identity of {0, 1}max,max ⊗X. By [BEKWa, Lemma 8.11] we have an
isomorphism VG

A(i) ◦VG
A(p) ∼= idVG

A({0,1}max,max⊗X). �

Lemma 3.7. UKXGA is excisive.

Proof. Let X be a G-bornological coarse space and Y := (Yi)i∈I be a big
family on X. Then

VG
A(Y) := colimi∈IV

G
A(Yi)

is a Karoubi-filtration in VG
A(X). Since UK commutes with filtered colimits

we have an equivalence

UKXGA (Y) ' UK(VG
A(Y)) .

By Proposition 2.18 we get a fibre sequence

UKXGA (Y)→ UKXGA (X)→ UK(VG
A(X)/VG

A(Y)) .

We conclude that

UKXGA (X,Y) ' UK(VG
A(X)/VG

A(Y)) . (3.1)

Let now (Z,Y) be a complementary pair. Then we get a similar sequence

UKXGA (Z ∩ Y)→ UKXGA (Z)→ UK(VG
A(Z)/VG

A(Z ∩ Y)) .

One now checks that there is a canonical equivalence of additive categories

ψ : VG
A(Z)/VG

A(Z ∩ Y)→ VG
A(X)/VG

A(Y)

induced by the inclusion i : Z → X. We refer to the proof of [BEKWa, Prop.
8.15] for the verification. Using the equivalence (3.1) twice we see that the
natural morphism

UKXGA (Z,Z ∩ Y)→ UKXGA (X,Y)

is an equivalence. �

Lemma 3.8. UKXGA vanishes on flasques.

Proof. Assume that X is a flasque G-bornological coarse space. We claim
that then VG

A(X) is a flasque additive category so that the Lemma follows
from Proposition 2.21.

Let f : X → X be the selfmap implementing flasqueness. We can then
define an exact functor

S : VG
A(X)→ VG

A(X)
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by

S(A, ρ) :=
(⊕
n∈N

A ◦ (fn)−1,⊕n∈Nρ ◦ (fn)−1
)
.

One checks that S is well-defined (e.g., that the evaluation of the first entry
at a bounded subset of X involves a finite sum of non-trivial summands,
only) and that

VG
A(f) ◦ S ' idVG

A(X) ⊕ S .

Since f is close to the identity of X we have an isomorphism VG
A(f) ∼=

idVG
A(X) by [BEKWa, Lemma 8.11]. Consequently,

S ' idVG
A(X) ⊕ S

as required. �

Lemma 3.9. UKXGA is u-continuous.

Proof. Let X be a G-bornological coarse space. Then by an inspection of
the definitions we have an isomorphism of additive categories

VG
A(X) ∼= colimU∈CGVG

A(XU ) .

The lemma now follows from Proposition 2.23. �

�

3.4. Continuity. In this section we verify an additional continuity property
of the coarse homology UKXGA . The property plays an important role in the
comparison of assembly and forget control maps discussed in [BEKWa, Sec.
11].

Let X be a G-bornological coarse space.

Definition 3.10 ([BEKWa, Def. 5.6]). A filtered family of invariant subsets
(Yi)i∈I of X is called trapping if every locally finite subset of X is contained
in Yi some index i in I.

Definition 3.11 ([BEKWa, Def. 5.15]). An equivariant C-valued coarse
homology theory E is continuous if for every trapping exhaustion (Yi)i∈I of a
G-bornological coarse space X the natural morphism colimi∈IE(Yi)→ E(X)
is an equivalence.

Proposition 3.12. The coarse homology theory UKXGA is continuous.

Proof. Let X be a G-bornological coarse space. If (A, ρ) is an equivariant
X-controlled A-object, then its support supp(A, ρ) := {x ∈ X |A({x}) 6= 0}
is locally finite.

Let (Yi)i∈I be a trapping exhaustion of X. Then there exists i in I such
that (A, ρ) is supported on Yi. Consequently we have an isomorphism

colimi∈IV
G
A(Yi) ∼= VG

A(X) .

By Proposition 2.23 we now get colimi∈IUKXGA (Yi) ' UKXGA (X). �
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3.5. Functors on the orbit category. In this section we package the
equivariant homology theories UKXHA for all subgroups H of G together into
one object. We furthermore give an alternative construction of the equivariant
coarse homology theories from the non-equivariant coarse homology theory.

The orbit category Orb(G) of G is the category of transitive G-sets and
equivariant maps. Every object of the orbit category is isomorphic to one of
the from G/H with the left G-action for a subgroup H of G. In particular
we have the object G with the left action. The right action of G induces
an isomorphism of groups AutOrb(G)(G) ∼= Gop. Hence we have a functor
i : BG → Orb(G)op which sends the unique object of BG to G. If C is a
presentable ∞-category, then we have an adjunction

Res : Fun(Orb(G)op, C) � Fun(BG, C) : Coind ,

where Res is the restriction along i.
For every subgroup H of G we have an evaluation

Fun(Orb(G)op, C)→ C , E 7→ E(H)

at the object G/H. The family of all these evaluations detects limits, colimits,
and equivalences in Fun(Orb(G)op, C).

We consider the relative category (Add,W ), where W are the equivalences
of additive categories. Applying the localization functor (2.9) we then obtain
an ∞-category Add∞ := L(Add,W ). We furthermore have a morphism
` : Add → Add∞ where we secretly identify ordinary categories with
∞-categories using the nerve functor.

A marked additive category is a pair (A,M) of an additive category A and
a collection M of isomorphisms in A (called marked isomorphisms) which is
closed under composition and taking inverses. A morphism between marked
additive categories (A,M)→ (A′,M ′) is an exact functor A→ A′ which in
addition sends M →M ′. We get a category Add+ of small marked additive
categories and morphisms. A marked isomorphism u : F → F ′ between two
functors F, F ′ : (A,M)→ (A′,M ′) between marked additive categories is an
isomorphism of functors such that for every object A of A the isomorphism
uA : F (A)→ F (A′) is a marked isomorphism.

A morphism between marked additive categories is called a marked equiv-
alence if it is invertible up to marked isomorphism. We consider the relative
category (Add+,W+), where W+ are the marked equivalences. We define
Add+

∞ := L(Add+,W+) and let `+ : Add+ → Add+
∞ denote the canonical

localization functor.
The functor F : Add+ → Add which forgets the marking induces a

commuting square

Add+ F //

`+

��

Add

`
��

Add+
∞

F∞ // Add∞

(3.2)
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of ∞-categories.
In [BEKWb] it is shown that Add+

∞ is a presentable ∞-category. Conse-
quently we have an adjunction

Res : Fun(Orb(G)op,Add+
∞) � Fun(BG,Add+

∞) : Coind .

Example 3.13. We consider a marked additive category A+ with an action
of G, i.e., an object of Fun(BG,Add+). Then we can form the object
Coind(`+(A+)) in Fun(Orb(G)op,Add+

∞). In order to understand this

object we calculate the evaluation Coind(`+(A+))(H) for a subgroup H of
G. As a first step we have

Coind(`+(A+))(H) ' limBH`
+(A+) .

We now analyse the right-hand side. We consider the following marked
additive category Â+,H :

(1) The objects of Â+,H are pairs (M,ρ), where M is an object of A+ and
ρ = (ρ(h))h∈H is a collection of marked isomorphisms ρ(h) : M →
h(M) such that h(ρ(h′)) ◦ ρ(h) = ρ(h′h) for all pairs of elements h′, h
in H.

(2) A morphism A : (M,ρ)→ (M ′, ρ′) in Â+,H is a morphism A : M →
M ′ in A+ such that h(A) ◦ ρ(h) = ρ′(h) ◦ A for every h in H. The
composition of morphisms is induced by the composition in A+.

(3) The marked isomorphisms in Â+,H are the isomorphisms given by
marked isomorphisms in A+.

In [BEKWb] it is shown that we have a natural equivalence

limBH`
+(A+) ' `+(Â+,H) .

As a final result we get the equivalence

Coind(`+(A+))(H) ' `+(Â+,H) . (3.3)

It follows from (3.2), the universal property of the localization `, and
Lemma 2.15 that we have a factorization

Add+ F //

`+

$$

Add
UK //

`

$$

Mloc

Add+
∞

F∞ // Add∞

UK∞
::

. (3.4)

We refine the functor VA : BornCoarse→ Add described in Section 3.2
to a functor V+

A : BornCoarse→ Add+ by defining

V+
A(X) := (VA(X),M) ,

where the set of marked isomorphisms M is the set of diag(X)-controlled
isomorphisms in VA(X).
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Definition 3.14. We define the functor

UKXA : GBornCoarse→ Fun(Orb(G)op,Mloc)

as the composition

GBornCoarse→ Fun(BG,BornCoarse)
V+

A→ Fun(BG,Add+)

`+→ Fun(BG,Add+
∞)

Coind→ Fun(Orb(G)op,Add+
∞)

F∞→ Fun(Orb(G)op,Add∞)
UK∞→ Fun(Orb(G)op,Mloc)

Theorem 3.15. UKXA is an equivariant coarse homology theory.

Proof. Since the conditions listed in Definition 3.1 concern equivalences or
colimits and the collection of evaluations UKXA

(H) : GBornCoarse→Mloc

detect equivalences and colimits it suffices to show that

UKXA
(H) : GBornCoarse→Mloc

are equivariant coarse homology theories for all subgroups H of G.
We now note that if E : HBornCoarse → C is a H-equivariant C-

valued coarse homology theory, then E ◦ ResGH : GBornCoarse → C is a
G-equivariant C-valued coarse homology theory, where ResGH denotes the
functor which restricts the action from G to H.

The theorem now follows from the following Lemma and Theorem 3.5
(applied to the subgroups H in place of G). �

Lemma 3.16. We have an equivalence of functors from GBornCoarse to
Mloc

UKXA
(H) ' UKXHA ◦ ResGH .

Proof. Let X be a G-bornological coarse space. By (3.3) we have an
equivalence

Coind(`+(V+
A(X)))(H) = `+(V̂+

A(ResGH(X))H) .

Hence we have an equivalence

UKXA
(H)(X) ' UK∞(F∞(`+(V̂+

A(ResGH(X))H)))

(3.4)
' UK(F(V̂+

A(ResGH(X))H)) . (3.5)

By a comparison of the explicit description of V̂A(ResGH(X))H given in
Example 3.13 with the definition of VH

A(ResGH(X)) given in Section 3.2, and
using that ρ(g) is diag(X)-controlled (i.e., marked), one now gets a canonical
isomorphism (actually an equality) of additive categories

F(V̂+
A(ResGH(X))H) ∼= VH

A(ResGH(X)) .

In view of Definition 3.4 we have an equivalence

UK(F(V̂+
A(ResGH(X))H)) ' UKXHA (ResGH(X)) .



26 ULRICH BUNKE AND DENIS-CHARLES CISINSKI

Together with (3.5) it yields the equivalence

UKXA
(H)(X) ' UKXHA (ResGH(X)) .

as desired. �
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