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Heegner cycles and congruences between

anticyclotomic p-adic L-functions
over CM-extensions
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ABSTRACT. Let E be a CM-field, and suppose that f,g are two prim-
itive Hilbert cusp forms over ET of weight 2 satisfying a congruence
modulo A". Under appropriate hypotheses, we show that the complex
L-values of f and g twisted by a ring class character over F, and di-
vided by the motivic periods, also satisfy a congruence relation mod A"
(after removing some Euler factors). We treat both the even and odd
cases for the sign in the functional equation — this generalizes classi-
cal work of Vatsal [23] on congruences between elliptic modular forms
twisted by Dirichlet characters. In the odd case, we also show that the
p-adic logarithms of Heegner points attached to f and g satisfy a con-
gruence relation modulo A", thus extending recent work of Kriz and Li
[17] concerning elliptic modular forms.
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1. Introduction and results for elliptic curves
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Fix an odd prime p, and suppose A; and Ay are two elliptic curves defined
over Q. Provided that Re(s) > 3/2, their Hasse-Weil L-functions can be
expressed in the form of Dirichlet series

L(Ay,s) Z am (A1) -m™° and L(As,s) Z am(Asg) -
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Furthermore, both A; and As are known to be modular by the deep work
in [4] hence these L-functions have an analytic continuation to the whole
complex plane.

Definition 1.1. We say the elliptic curves Ay and As are congruent mod
p" if one has a system of p-adic congruences

am(A1) = am(Az) (mod p") for each m € N with ged(m, N1 N2) =1,

where N; denotes the conductor of A;/Q, and Ny denotes the conductor of
Ay /Q.

In the p-ordinary case, Vatsal proved that the Mazur-Tate-Teitelbaum
[19] p-adic L-functions LT (A;) and LMTT(A;) are congruent modulo
p"Zp[[T]], where I'¥¢ = Gal(Q®%°/Q) denotes the Galois group of the cy-
clotomic Zjy-extension. Since these p-adic L-functions Lg/ITT(Ai) interpolate
Dirichlet twists of the Hasse-Weil L-function L(A;,1,s) at s = 1, one can
view Vatsal’s result [23] as a statement about congruences between critical
L-values divided by the real Néron periods Qi‘li. It is therefore natural to
ask if this result extends to number fields other than Q?

To be more specific, let E be a CM-field that is also a solvable extension
of @, and consider the base-change of A; and Ay to E. Throughout this
article, we assume that the Leopoldt defect for E is zero. For a character
x: FE X\Ag — C* of finite order, it is reasonable to expect a congruence
between the twisted L-values

L(Al/Ea X5 1)
(@3, E

L(AQ/Ev X 1)
(25,2,
(1.1)

modulo p”, for a suitable choice of factor &,(A;/E, x) and Néron periods
0} €Cx

For example, if E is an imaginary quadratic field over which the prime
p splits then Choi and Kim [6] have established a congruence for the two-
variable p-adic L-function over E at cusp forms of different weight. Alterna-
tively, if £ = Q(upn) and r = 1, then various types of congruence have been
proved in [3, 9, 10, 22]. With the exception of [6], all these aforementioned
congruences above are purely cyclotomic in their nature, so in this paper
we shall deal exclusively with the anticyclotomic case.

Throughout we assume that 4; and Ay have good ordinary reduction at
p, which means p t ap(A1) - ap(Az) - N1 - Na (although we expect that a
version of our results should exist if one allows p to divide Ny - No, whilst
still ensuring that p { a,(A1) - a,(A2)). We shall further suppose that the
prime p splits inside E. Let 'y = Gal(E«/E) be the Galois group of
the compositum, Fu, say, of all the Z,-extensions of F, which can then be
decomposed into I'y = I'Y¢ x T4 where I'Z¢ (resp. T'3) is the Galois
group of the cyclotomic (resp. full anti-cyclotomic) extension in Fu,.

E(AL/E, X) - and &,(A2/E, x) -
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Building on earlier results in [15, 20], for each base Hecke character xo
the work of Disegni [11, Thm 4.3.4] allows the construction of a p-adic L-
function L, (Ai, XO) € Ly [[F E]] 1/ p] interpolating the special values given in
Equation (1.1) at specialisations x = xo- x, as the character x' ranges over
Hom(T'p, Q)

OHl( EsXp ) tors
one can therefore expand each multi-variable p-adic L-function L, (AZ-, Xo)
into a Taylor series of the form

For a fixed topological generator v of IS¢ = 1 + pZ,,

—1)?
L (A x0) + L (A xa) - (0~ 1) + L2 (i) - 205

for either choice of i € {1,2}. It is therefore natural to ask whether:

Question. For every non-negative integer j, are the individual coeffi-
crents L;()])(Al,x()) and LZ()])(AQ,XO) congruent to each other modulo p" -

z, [T 7

To make a precise statement, one divides the problem into three disjoint
cases. For the rest of the Introduction, we assume that the base Hecke
character xq is trivial on F*\A%, where F = ET denotes the maximal
totally real subfield of E. We also assume that the primes of F' above p are
unramified in the extension E/F. Let ng ,r be the quadratic character of
E/F, and write S; for the set of F-places

S = {1/ : I/’OO or nE/Fﬂ,(cond(.Ai/F)) :_1}‘

Definition 1.2. (a) If the global root numbers satisfy €(1/2, 4;/E, xo) =
+1 for each ¢ € {1,2} and if #S; = #S53 = 0 (mod 2), then we call this the
even case.

(b) If the global root numbers satisfy €(1/2, 4;/E, xo) = —1 for each
i€ {1,2} and if #51 = #52 = 1 (mod 2), then we naturally refer to this as
the odd case.

(c)Ife(1/2, A1/E, x0) = —€(1/2, A2/ E, xo) or if #51 = #5541 (mod 2),
then we shall call this the mixed parity case.

In the first two cases (a) and (b), we extend Vatsal’s main result [23] as
follows.

Theorem 1.3. In the even case, if the conductor of the Hecke character
Xo is coprime to the Op-ideal [[-_, cond(A;/E), then

L% (A1 x0) = L% (Aeixo) mod p7 4 2, [13]

where po € 7Z is the largest value for which each L]()O) (Ai,x()) e pho .
Oc, [[T5"]]-



HEEGNER CYCLES AND ANTICYCLOTOMIC CONGRUENCES 499

Note that in the above result, the subscript ‘sy’ indicates that these L-
functions have been stripped of their Euler factors at the finite primes con-
tained in the set

2
Y = {1/ € Spec(Op) such that v divides disc(E/F) - H cond(Ai/F)}.
i=1
Theorem 1.4. In the odd case, if the conductor of the Hecke character xq
is coprime to [[r—, cond(A;/E) and all the primes of F above p split in E,
then
(i) L% (Ar, x0) = L, (A2, x0) =0, and
. Sox (A1) .
= 7L , _A , tt
(ii) Err (A1) p72( 1 X?) is congruent to
modulo p"H - 7, [[F"‘En“ﬂ ,

Eo,xr(As2)

1)
Eis(Az) Ly (42 x0)

where 1 € 7 is the largest value for which each Lﬁ,l)(Ai,xO) e p" .
Oc, [[F%ﬂtiﬂ, and E s (A;) s an Twasawa function interpolating the prod-
uct of Euler factors [],csy Lu(Ai/E, x, k) at each k € Z.

Recall that a quaternion algebra B is called coherent if its ramification
set Yg has even cardinality, and B is called incoherent if the set Y has
odd cardinality. In the case (c) of mixed parity, we can say nothing about
mod p" congruences as the curves A, Ay cannot be parameterised by the
same quaternion algebra B, r, otherwise B would have to be simultaneously
coherent and incoherent!

There is also a third situation in which one can derive p-adic congruences.
Recall that if E is an imaginary quadratic field, the work of Bertolini, Dar-
mon and Prasanna [1] produces a p-adic L-function £(A;) € Z, [T3]][1/p]
interpolating critical values of L (Ai /E, Xw, s) at character twists x,, of arith-
metic weight w € N. Liu, Zhang and Zhang have extended this to general
CM-fields E, constructing a p-adic L-function on I'#'™ interpolating the
complex Rankin-Selberg L-function of each A;, twisted by characters y,
of positive weight (see [18, Theorem 3.2.10]). The corresponding p-adic
L-functions £(.A;) and £(.Az) exist as elements of

(Lie A;‘r ®pum Lie AZ_) QM 'D(.AZ, Mth)

in the specific notation of op. cit, where D(AZ-,M Fét) is a certain (un-
bounded) distribution algebra, and FM = End(A;) ®g F = End(A2) ®¢ F.

Aside from the case where E is an imaginary quadratic field, it is not
known precisely when £(A;) arise from p-bounded measures on T2, How-
ever, if A; has good ordinary reduction at p, one might reasonably expect
£(A;) to be an Iwasawa function for each i € {1,2}.

In [17], Kriz and Li studied values of the Bertolini-Darmon-Prasanna
p-adic L-function via the p-adic logarithms of Heegner points attached to
each A;. In particular, they showed that up to appropriate Euler factors,
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these logarithms satisfy a congruence relation via Coleman integration. We
generalize their method to show that the p-adic logarithms of Heegner points
(over ring class fields for a general CM-field F) attached to A; and Ay satisfy
a similar congruence relation. This allows us to compare special values of
£(A;), and deduce the following result.

Theorem 1.5. Suppose we are in the odd case, that the primes of F' above p
split in E, and assuming that both £(A1), £(A2) are Iwasawa functions,
then _
Lx/(A1) = Lo(A2) mod p"- LY, [[34]]

where Eih,Az is the Oc,-submodule generated by the values X(Q(Al)) and
X(Q(Ag)) for x = xo - x', as the character x' ranges over the elements of
Hom (T3, Q, ).

For the remainder of the article, we will work in a more general setting
than elliptic curves and solvable CM-fields E. We consider modular abelian

varieties A, of GLo-type defined over a totally real field F', parameterised
by a common definite quaternion algebra B .

Written below is a brief but non-exhaustive summary of our terminology.

e Fis a totally real field, E' will be a CM-extension of F', and Dg/p
(resp. Dp) is the relative (resp. absolute) discriminant of E;

® ng/r is the quadratic character over F' associated to the extension
E/F;

e the symbol p will indicate a distinguished prime ideal of Op lying
over p, and we write 8 for any prime Opg-ideal above it (p needs not
split in E);

e we fix embeddings Q «— C and Q — @p, and an isomorphism C —
C, under which the Og-ideal B is sent into the maximal ideal of
Oc,;

e x always denotes a unitary Hecke character over E (usually a fi-
nite order character), which we identify with a Galois character
Gal(E®/E) % C*;

e for an integral domain R, we shall write R, for the ring extension
of R which is obtained by adjoining all the values of the character x
above;

e if M is a module equipped with a Gal(E/FE)-action, Myy=M®x
denotes the same underlying module M but with its Galois action
twisted by x;

e E¢ indicates the cyclotomic Zy-extension of E, so that the cyclo-
tomic character rcy maps F(gc = Gal(ECyC /E) onto an open sub-
group of 1 + pZyp;

e f and g denote primitive Hilbert cusp forms over F' of parallel weight
two, Nebentypus character w, and levels Ny < O and Ng < O
respectively;
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e associated to both f and g are their modular abelian varieties of
GLa-type, Af and Ag, which are defined over the same totally real
number field F

e £L=0Q, (C(n, £),C(n,g) ‘ n< (’)F) is the finite extension of Q, gen-
erated by the Fourier coefficients of f, g, and A denotes a local pa-
rameter in O;

e for an abelian group M, its (finite) adelisation is given by M =
M ®z 7 where Z := lim Z/mZ = [],yimes Zt is the profinite
completion of Z.

For example, if E is a solvable extension of Q and A;, Ay are two elliptic
curves that are congruent modulo A" = p", one can take f = BC(S( f1) and
g = BC(g(fg) as their base-changes with each f; € Sa(T'0(NV;)), so that
Ap = -Al/F and Ag = Az/F.

We shall now describe a generalisation of Definition 1.1 to modular abelian
varieties over F. Let N denote the Op-ideal lcm(Nf,Ng, Q2) where Q =
I1.nen, v- For a prime q € Spec(Or), T(q) denotes the g-th Hecke operator
if q is coprime to the level of the HMF, whilst ¢/(q) is the g-th Hecke operator
if q divides the level of the HMF (see for example [20, Chapter 4, §1.3]). We
will also require the diamond operators <m>, as well as the degeneracy maps
V(m) which act on the Fourier expansions by sending C(n, h) — C(nm~1 h)
for either choice of form h € {f,g}.

Definition 1.6. The N -depletion of f is the Hilbert cusp form f given by

£ I (=7 oV(a) +Npg@){a)ova®) J] @ —u) ov().

q|Ng, qfNg q Ne

Similarly, the N -depletion g of g is defined by the formula

gl [ (=T oV +Nrgaa)ova®)) J] @ -u@oV(a).

q|Ne, qtNg q| Ne

In particular, f,g € 82(1\7,@) with L(f,s) = Ly;n,(f,s) and L(g,s) =
LN, (8, s)-

Hypothesis. (f = g (A\")) There is an identity of depleted Hilbert cusp

forms _
f = § + )\T'ch"hj
J

with each scalar term c¢; € O, and where the h;’s denote normalised eigen-

forms of parallel weight two, level dividing into N , and with Nebentypus
character w.

To reassure the reader, if A; and Ay are two elliptic curves as before
that are congruent modulo p”, then their base-changes f = BC&( f1) and
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g = BCS (f2) automatically satisfy Hypothesis (f = g (A\")) upon choosing
the uniformizer A = p. Indeed to verify this claim, we first observe that

fl = Z am(Al) : qm and f~2 = Z am(AQ) : qm

ged(m,N1N2)=1 ged(m,N1N2)=1

satisfy fi— fo = p"- f! for some ff € Sy <F0 (lcm(Nl, No, Hl|N1N2 12))>QZ[[q]].
However, this latter module has an integral basis consisting of elements of
the type hj|V(d) where h; is a newform of level C}, and d > 1 ranges over
integers such that dC; divides the common level lcm(Nl,NQ,H” N1 Na 12);
one can therefore express

fi = fo+p"- ch-d) . hj‘V(d) where the scalars C§~d) eZ.
7,d
After base-changing each of the cusp forms fi, fo and the h;i|V(d)’s from
Q to F', we respectively obtain the HMF's ?, g and the h;’s in Hypothesis
(=g (\).

The proof of our main results (Theorems 1.3, 1.4 and 1.5) makes heavy
use of three recent spectacular but rather technical formulae, due to various
authors. To treat the even case, we use a version of the Waldspurger for-
mula from [5, 26].To treat the odd case, we apply the p-adic Gross-Zagier
formula in [11, 12]. Lastly, to prove congruences for the Liu-Zhang-Zhang
p-adic L-functions, we use the connection between its special values and the
logarithms of Heegner cycles [1, 18]. The demonstrations themselves are
written up in Sections 2, 3, and 4, respectively.

2. The even case: Waldspurger’s formula

Let B be a totally definite quaternion algebra defined over the totally real
field F'. We suppose that 7¢ and 7g are two cuspidal automorphic representa-
tions of IB%gF, associated to the Hilbert modular forms f and g respectively
under the Jacquet-Langlands correspondence on GLgy/F, with a common
central character w on Aaﬁn. Let us also consider a fixed finite order Hecke

character x defined on E*\A%, corresponding to a weight one theta-series
automorphic representation , of IB%XF.

Hypothesis. (Even) The product w - X‘ ,x s trivial, the three finite sets
F

Sne = {1/ : v|oo or T]E/Fﬂj(Nf) :—1}

Sng = {v : vloo or ng/p,(Ng) = —1}

Sy = {v : vlooor nE/FVV(]\Nf) = -1}
each have even cardinality, and for all places v of F

6(1/2,71}'7,,,75(’1,) - 6(1/277Tg7l/77rx,1/) = XV(_1> 'nE/F,V(_l) 'f(By)
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where the sign f(IB%V) = —1 if B, is a division algebra, and f(IB%V) = +1
otherwise.

Here we have written 6(1 /2, T, WX,V) for the local root number associ-
ated to the complex tensor product L-series L(s, Ty X 7TX), for each choice
of x € {f,g}. The above hypothesis then implies that both the
global root numbers 6(1/2,7Tf,7TX) and 6(1/2,7rg,7rx) in the Rankin
L-functions are equal to +1, and there is an F-embedding of F into B
that identifies F* with a sub-torus in B*.

Proposition 2.1. If the Hypotheses (f = g (\")) and (Even) both hold,
and if f, := cond(x) is coprime to NgNg - Op, there is a congruence of
p-integral elements

JIDg] e 22T X ™)
E X Qaut,(()) (f) -

o0, K
Ly (1/2
sl e 2T X T g oy,
Qo k (8)

where ¢ is the largest Op-ideal so that x is trivial on chx OE’V X HV|c (1 +

Oky), lex| denotes the norm Ngjg(cy), the finite set X consists of the

places of F' dividing N¢-Ng-Dg/p-cy - 00, and Qi;l,%o) (%) is the automorphic

period (see Equation (2.1)) associated to each x € {f,g}.
Proof. The key ingredient is the generalised Waldspurger formula in [5,

26]. In particular, we shall take as our common level structure N :=
lcm(Nf,Ng, Qz) where Q = HV|Nng v < Op. Firstly, one defines a finite
subset of Spec(OF) by

Y = { V|N where ng,p(v) = —1 and ord,(cy) < ordy(ﬁ)}

and next constructs a pair of Op-ideals via

cl = H pordv(e)  and Ny = H Vord”(]v).

v]ex, v|N,

v &3 v g
Now let R be an admissible Op-order for the pairs (7, x) and (7g, x) in the
sense of [5, Sect 1], so that in addition R has discriminant Nand RNE =
OF + ¢10p. We shall also fix a compact open subgroup U =[], U, C IBSAXXF
such that U, = RS at all finite places v of F', and moreover if the place v|N;

then B, must be split. The (zero-dimensional) Shimura variety X = X7(B)
is then defined by

Xy(B) == BX\B*/U

and let g1,...,9n € BX be a complete set of representatives for X, so that
[gi} e X.
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If Z[X] denotes the free Z-module consisting of formal sums ). a;[g:],
then there is a height pairing [—,—]X » Z[X] x Z[X] — C[X] from [14],
sending each pair (Zl ailgil,>; bi [gz]) to the element ), a;b;w; with w; =
#(IB%X N gﬂixg; 1) / Oj.. There exists a canonical direct sum decomposition

ZX] = P z[X]

ceCy

where X is the preimage of ¢ € Cy = F \13 */ (7)\; under the natural

surjection Xy (B) = IB%X\IE%X/ﬁ - F \ﬁ’%@; One may also consider

the submodules Z[XC}O

ZIX] = D e, Z[Xe)".
For each choice of x € {f,g}, let V(m,,x) indicate the space of ‘test

vectors’ in the sense of [5, Defn 3.6]. Because we are working at level N
rather than level Ny, it is no longer true in general that V(my,x) is one-
dimensional over C; in fact

C Z[XC] containing degree zero classes, and set

dime (V(me,x)) = [] (1 + ordy (N) — ord, (N*)>
v|N

(of course, if N = Ng = Ng then both V (e, x) and V(7mg, x) correspond to
C-lines). There are injections V (7, x) — Z[X]° ® C obtained from ® +
> @([gi])wfl[gi], which respect the natural action of the Hecke algebra on
both C-vector spaces.

Remarks. (a) Considering the N-depletions ?,’gv €S (Kf ,w) in Definition
1.6, the images of C - f and C - g inside Z[X]° ® C define unique dimension
one subspaces.

(b) The action of the Hecke operators T'(n) on C - f (resp. C - g) coincide
with their action on C - f (resp. C - g) if n is coprime to N , whilst the
U(q)-operators annihilate both of the depleted lines C .f and C- g whenever
ged(q, N) # Op.

(¢) In the notation of [5, Thm 1.9], we can take as test vectors any f, f} €
Cf (resp. f1, f4 € C-g) viewed inside Z[X]°®C, and then apply the variation
of Waldspurger’s formula to f{ € V (7, X), fo € V(m),x™1) for x = f (resp.
* = g).

We now relate the Rankin L-function to twisted CM-cycles living in
Oxx[X]%. Recall the fixed embedding E < B induces a group homo-
morphism Pic(O, ) — X sending ¢ + z; where O, denotes the order
OF + ¢, O, with ¢, < Of indicating the largest Op-ideal such that x be-
comes trivial on HWCX O, X HVICX (1 + ¢,Op,). One defines a pair of
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(]v -depleted) CM-cycles by
P(f) == Y x7'(0)-f(@) and Pg) = Y x7'(1)-8w)

tePic(Oc, ) tePic(Oc, )
which & priori lie inside Ok, [X]. However, if x is a non-trivial character

then ZtePiC(OCX) x~1(t) = 0, so clearly lgx(f),PX(g) € Ok x[X]° both have

degree zero'.

We initially focus on the HMF f, and its depleted CM-cycle ﬁx(f) €
Oxx[X]°. Viewing f as a holomorphic function ¢ : HIEQA 5 C, let us
denote by (¢pf, r)pet the Petersson self-product of ¢¢, computed using the
invariant measure induced on

PGLy(F)\ KU x PGLy(Argn) /U (N)

from the standard hyperbolic volume dzdy/y? on the extended upper half-
plane. Applying Waldspurger’s formula in the format of [5, Thm 1.9] and
[26, Thm 7.1],

(Sﬂz)[F:Q] . %VOI(XUO(]V)) (g, D) Pet

u?/IDg| - fex[?

Lyy (1/2,m¢ x my) =27#¥D.

- [Po(£), Pe(f)]
where Y’ consists of those primes dividing gcd(Nf “Ng, ¢y - Dpy F) - 00 such
that if 1/”]\7 then v { D/ p, whilst ¥p denotes the set of primes of I’ dividing
gcd(]\Nf,DE/F).

Furthermore, we claim that u := #Ker (Pic(Op) — Pic(O, )) x [0+ OF]
is always a p-adic unit. To see why this is so, observe that Ker (Pic(OF) —
Pic(O,)) is either 1 or 2 by [24, Theorem 10.3]. Writing W for the roots
of unity of E, then [WgOj : Of] is coprime to p as the primes of I above
p are unramified in E. Moreover [Of : WgOj]| is either 1 or 2 by [24,
Theorem 4.12], consequently both [OF : Of] and hence [OF : Of] are
coprime to p.

It is also easy to check that there is an inclusion of sets of finite places

Y — ¥. If we now attach a (complex) automorphic period to f over K by
setting

sz,tigo)(f) = (8x%)IF 'VOI(XUO(N)) (@£, Of) Pet (2.1)
then rearranging Waldspurger’s formula yields the equality

~ ~ Ly (1 2,7Tf X T
B0 RD)] = 225070 /D] o 2 2200 B o |

oo, K

1f y is trivial then one takes instead [lgx(f) — deg(Py) - ¢, [ﬁx(g) — deg(Py) - ¢l e
Pic(X) ® C, where £ denotes the absolute Hodge class [26, Eqn (6.8)] which has degree

one on each component.
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An entirely similar argument, applied to g and ng(g) € Ok [X]°, estab-
lishes that

P P Lx/(1/2
[Pyle) Py = 2250 x /il ey 2 D02 X0
02" ,(0) g

oo, i (8)

Crucially, for each eigenform h lying in the (f, g)-isotypic component, the

depleted cycles ]Bx(h) belongs to the dual lattice (OK%[X]O)V under the
pairing [—, —|x. Using the O ,-bilinearity of this pairing, it therefore suf-
fices to show that

ﬁx(f) = ﬁx(g) + A" Q for some Q € O [X]°

because if this is indeed the case, then as a direct corollary,

[P0, Py = [Pol) Pu@)]x+A" % (2 [P(e), Q) x + V- [Q.Q)x )
so that [Py(f), Py(f)] x = [Py(g). P(g)]x mod .

We now exploit the relation between f and g given in Hypothesis (f =
g (\")), observing that this relation is preserved when we apply the Jacquet-
Langlands correspondence and shift to the quaternion algebra B. One
thereby deduces that

P(f) = > x7Mt)-f(m)

tePic(Oc, )

= > X' [8@)+ A Y e hylw)

tePic(Oc, ) J

P(g) + A i > xTHE) - hy(a),
J

tePic(Oc, )

and setting @ =3¢ - >, X Ht) - hy(2e) € Ok, [X]° the result follows at
once. g

Let E denote the maximal Z,-power extension of E unramified outside

p,s0 ' = Gal(Ex/FE) = Z};HF:Q]M where 6 > 0 is the defect in Leopoldt’s
conjecture. If we choose a base character xg such that w - X0| A is trivial, it
F

follows that the family of characters { xo-x! ‘ e F%nti — ,upoo} also satisfies
Hypothesis (Even). Henceforth we define pg := Ind¥(xo) : Gr — GLa(Oy)
which is a two-dimensional Artin representation, as are p, := Ind%(x) for
every character y = xo - x! as above. For the rest of this section, we
shall assume that all the primes of F' lying above p split in the
CM-extension E.

Remarks. (a) Building on earlier work of Hida and Panchishkin [15, 20] for
the cyclotomic deformation, Disegni [12] has attached p-adic L-functions to
GLy x GLy interpolating the Rankin product L-functions L(s, ¢ x my) and
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L(s,mg x my) at the critical point s = 1/2: since we are taking the unita-
rizations, let us identify these L-values (respectively) with L(f ®IndL(y), s)
and L(g ® Indf;(x), s) at s = 1.

(b) Let T3 denote the Galois group of the anticyclotomic extension
of F inside Fo, which by definition is the (—1)-eigenspace of the com-
plex conjugation ¢ € Gal(E/F) inside I'g. For a topological generator
Y of 'Y and the particular choice x = f say, one expands the (1 +
[F: Q])—Variable Disegni-Hida-Panchishkin p-adic L-function Ly, x; (f , po) €
Ok [[Te]l[1/A] into a Taylor series of the form

1

Whevre Lz(:i)E (£,p0) € Ox[[I3"]][1/A] under the decomposition I'y = 'Y x
ramti Here the subscript ‘s’ above indicates that the p-adic L-function
L, (f ) po) has been completely stripped? of its Euler factors at those finite
places v € ¥, v 1 p.

(c) Note also the condition (Even) implies either ng (f,p0) # 0, or
instead that L;(;(,))E (f,po) = LS)Z (f, po) = 0, because the global root number
6(1 /2, g, 7TX) is equal to +1 under our assumptions.

If x = x0 - x| where ' is anticyclotomic, then

X (Lo (£, 00)) = X" (LLS(E, p0))

as xT(y — 1) = 0. The exact interpolation rule from [11, Thm 4.3.4] states
that

x(df) - G(x) - \/NF/Q(DE/F +Ner(fy)) - X(Dpyr)
Hp\p o (£)orde WNe/r(x)

X _X(®) % Ly (pipy (f @ Ind (%), 1)
g g <1 ap(f)> Qiél,tﬁo)(f) :

x! <Lp,2(f7p0)) =

(2.2)

An analogous formula holds for the value of L), x; (g, po) at each twist y =
ot
X0 X' -

Theorem 2.2. Assuming Hypothesis (f = g (\")), and that Hypothesis
(Even) for the base character xo holds true with the conductor of xo coprime

2We have deliberately removed the Euler factors from Ly 5 (f , po) at the finite places
in ¥, so that we can obtain a congruence modulo A\"; it follows that the p-adic L-functions
we are considering correspond to Y-imprimitive versions of the Disegni-Hida-Panchishkin
construction.
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to NeNg - O, there is a congruence of p-adic L-functions
Lb(F ) = Tk ( ) mod X O[]

If either \" 1 ceo.0)-Ly(fpo) (). pr 1 cleo-0) Ly (:p0) ¢, €(po, s) the e-factor

20k (F) 225 (g)

for po, then both sides of this anticyclotomic congruence must be non-trivial
modulo \".

Proof. To establish this p-adic congruence, clearly it is sufficient to prove
that T (L;?)E (f, p0)> and x T (L](f)E (g, p0)> are congruent modulo A", at y =
xo - X! where x! ranges over ﬁnite order characters on the anticyclotomic

t - -1/2_ —-1/2 .

component [, Because |G(X ‘ ‘NE/Q(fX)‘p = |”CX|HP , the ratio
of algebraic numbers

(@) - G(X) -\ Neyo(Dryr - Nor(i) - X(Dgyr)

1Dl lex?

is a p-adic unit, independent of choosing * € {f,g} but dependent on x
obviously. From the interpolation in Equation (2.2), and after replacing
the Hecke character x by its dual y, one can reinterpret the congruence in
Proposition 2.1 as the statement:

Ty =

Hp\ ( )Ordp(NE/F(fx)) B )
I1 p [ (1 X%) o (L))
plp LL1Bp ap(f)

ordp (Ng/r(fx))
le% p / X
= lep p(g) & % TX (L( ) (g p0)> mod N\ - O’C,X'
Mo Ty (1 - 23

However, for x € {f, g}, we can identify ay(x) with the eigenvalue of Frob,
acting on the maximal unramified quotient of Ta,(A4) as a G'r,-module, in
which case ap(f) = ap(g) mod X - Ok, since Tay,(Ag) /A" = Tay(Ag) /A"
as G'p,-modules. Consequently, the reciprocals of these extra terms satisfy

T, p cup (£ ) -

I Hamp( - i‘%)

ordp(Ng/r(fx))
o p / X
= lep (&) mod A" - Oy,

XB)
[Ty [y <1 - ap<g>)

which completes the proof of the main congruence.

-1

Finally, identifying G(%,) - \/NF/@ (Dg/r - Nigyp(fyo)) with the factor
€(po,0), the non-triviality of either x| <L](D?)Z (f, po)) or x' <L](D )Z (g, po)) mod
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X at xI = 1, directly implies L;?)E(f,po) = L;?)E(g,po) Z 0 mod \" -
Ox [T ]]- N

3. The odd case: p-adic Gross-Zagier formula

We now treat the opposite situation, where
6(1/2,7Tf,71'x) = 6(1/2,7Tg,ﬂ'x) =-1.
In particular Lz(ﬂ?)E (*, po) is identically zero, whence

Lp,E (*7 PO)
7 — 1

s—1
so that xf (L;I)E (%, p0)> = (logp /<;Cy(’y0))71 xt (%;M) ‘ for x €

1
= Lg)z (*:p0) + 5 Lp?)z (*,00) - (0 —1) + O((0—1)?)

{f,g}. Therefore, our goal is to establish a congruence modulo )\T-lo_gp Key(70)

dﬂ§§1Lp,2(f»Po)> (dﬁ§§1Lp,E(g,po)>
ds

and ! under Hypoth-

s=1 s=1

esis (f = g (\")). Again B denotes a totally definite quaternion algebra
over F', with the property that the automorphic representations m¢ and g
are both parameterised by By . Likewise x : E*\Af — C* will be a fixed
Hecke character of finite order, as before.

ds

between ' <

Hypothesis. (Odd) The product w - X‘AX is trivial, the three finite sets
F

Sne = {1/ : v|oo or nE/Fﬂj(Nf) = —1}
SNg = {V : V|oo or ng sk, (Ng) = —1}
S]V = {U : v|oo or UE/F,V(N) = —1}
each have odd cardinality, and for all places v of F
€(1/2,mep, ) = €(1/2, g0, Tw) = xu(=1)- WE/F,V(—l)'é(BV)'
The above hypothesis implies that both the global root numbers
6(1/2, T, 7TX) and 6(1/2, T, 7TX) in the Rankin L-functions are equal to
—1, and that the quaternion algebra B is incoherent. Henceforth,

we shall further assume that all primes of ' above p split inside
the extension FE.

As explained in [12, Sect 1.1], one can interpret the modular parameteri-
zations of the abelian varieties A¢ and Ag in terms of Shimura curves. For a
compact open subgroup U of BKF, the complex points of the algebraic curve
Xy are given by

Xy(C) = B\H* x B*/U.
In fact, there exists an infinite tower of Shimura curves {XU}U indexed by
the compact open subgroups U C BXF, and we shall set X(B) := @U Xy.
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The canonical Hodge class &y € PiC(XU) ® Q which has degree one on

tg
each component induces an embedding Xy <4 JacXy. Because the HMFs
f and g are parameterised by IB%XF, the End"(A,)-vector spaces

lig HomgU (JacXU, Af) and hﬂ HomgU (JacXU, Ag)
U U

are both non-empty; let m4, € @U Hom? (JacXU, A*) be the smooth irre-
ducible representation of IBSXF corresponding to m,, for each choice of cusp
form * € {f,g}. Taking Us = Uy(N¢), Ug = Up(Ng) and U = Uy(N), there
exists a factorisation

- JacXUf —» Af

- JacXy, — Ag (3.1)

~ L
X(B) — lim Xy BN imJacXy — JacXpy
U U
and the top sequence of maps yields 74, o ¢, whilst the bottom maps yield
TAg O Le- B
Before we state our main result below, for each choice of HMF % € {f, g}
let us introduce the ratio of Euler factors

Lq(* ® Ind%(x),s — 1
gﬁ(*7X) — H CI( E(F) )
oI N Lq(* @ Indj(x), 5)

s=1

Whilst the denominator can never vanish, the numerator can sometimes
vanish (for example, if ¢| N, and C(q,*) = x(Q) for some place  of F lying
above (). Furthermore, these algebraic values can be interpolated by the
ratio of two elements of Ok [[T#"]], denoted by & 5(*) and & (%), so
that

_ H Lq(* ® Ind%(x), 0)

NG B F O SACHRY

for all characters y = xo - x' in the standard formulation above.

Theorem 3.1. Assume Hypothesis (f = g (\")), and that Hypothesis
(0dd) for the base character xo holds true with the conductor of xo co-
prime to NyNg - Op. Then one has the twin relations

(i) L;(;)%) (f7p0) = L;(’)%) (g,po) =0, and
& ~(f & ~(g
(ii) O,N( )Lz(,l)g( : ) — O,N( )LI(}%
gl,ﬁ(f) 517ﬁ(g) ’
Here 1o := 2+ Sy, ords (#4.(On /%)) with » € {f,8)°, while 6 € Q*

depends on the CM-extension E/F but does not depend on either f,g, nor
on the prime p.

(g, p0) mod X~ +0F log,, key (Y0).

3Note that A (Op/PB)[\"] 2 Ag(Op/P)[\"] since we are assuming (f = g (A")) holds
here.
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Before supplying the proof, we first need to establish some preliminary
results. For a CM-point x € XZ™, we begin by considering the Heegner
points

P(f,x) := Z X(t) - ma, (Lé(t -x)) and
tePic(Oc, )

Ple.x) = Y. x(t) ma (et -x)),
tePic(Oc, )

Gal(E?"/E) Gal(E?"/E) ro-

which lie inside (A4¢(E*) ® x) and (Ag(E*™) ® x)
spectively. In general, we do not expect their pre-images in JacXy to be
congruent modulo A" so instead work with their N -depletions, for which we
do expect congruences.

Fix a choice of cusp form x € {f,g}. At each Op-ideal a such that
N C a- N,, we write V(a) : JacXy, — JacXp for the degeneration map
induced on jacobians. Clearly, V(a) induces a p-integral map on the ordinary
components

V(a)’ : Ta, (JacXy, )™ — Ta, (JacXﬁ)ord

where Ta,(J) := lim J[p™] and Ta,(J)" = Tap(J)‘ limy o0 U (pOF)™.

For every finite place q € Spec(OF), there are associated Hecke correspon-
dences T(q) and (q) (resp. U(q)) if ¢+ N = Op (resp. if g+ N, # Op)
[25, Section 1.4]. Using these correspondences, one constructs a depletion
map on Jacobian varieties

depg* s JacXy, — JacXpy
sending a point Py, € JacXy, to its N-depleted version (cf. Definition 1.6)

[T (=T oV +Npg@ - (a)oVa®) -] (1-u@)oV(a).

q|N, atN« ql N«

Py

*

In particular, under the composition Tj.cx,,, ot¢ : X (B) — JacXy, one may
define P(x, x) to be

=~ ab
depg*( Z X(t) - Tyacxy, (Lé(t . x))) € (JacXﬁ(Eab) ® X) Cal(E*>/B)
tEPic(OcX)

Our strategy in proving Theorem 3.1 is to initially establish that:

(I) the pair of Heegner points P(f, x) and P(g, x) are congruent modulo
AT

(II) their projections to (A, ® x(E))Q equal P(x,x), up to some Euler
factors;

(ITI) their p-adic heights equal X (W)
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Let us begin with the middle task (II), and then deal with (I) and (III)
afterwards.

Lemma 3.2. For each x € {f,g}, if we factorise w4, into prg* ° MjacXy

where prz* s JacXy — Ay, then inside A, @ X(E) we have the identities:
pill, (PEx)) = T (1 - Cla Hx(Q) + 2 (Q)wla) - Niyol@) - PIE,X),

qlN

i, (Plex)) = T (1 - Cla,8)x(9) + 33 (Q)w(a) - Niryo(a) - Ple, 0)-

q|lN

N.B. Here for each q\ﬁ, we have fized a choice of prime Og-ideal Q lying
above q.

Proof. To simplify the exposition, we will focus exclusively on the HMF
% = f. Throughout we write ¢ for c,, and fix a lift of the level structure
M < Op such that (’)E/‘Yt = (’)F/Kf ; without loss of generality, we may
represent ¢ € Pic(O,) with ideals coprime to 1.

Following Katz [16, Section 1], for a ring R C C one can view the R-points
of X as a triple (A4,C,w) where A is a €-polarized Hilbert-Blumenthal
abelian variety over R, the finite group C' denotes a cyclic R-subscheme of
A [‘ﬁ}, w is a nowhere vanishing differential form on A, and € runs through
a set of coset representatives for the narrow class group of F. We denote
the natural action of t € Pic(O,) on the R-points of X by (A,C, @)
tx (A C w).

At a prime Op-ideal q such that Q“fl lies over it and for a class t €
Pic(O,), the map V(q") sends a point ¢ * (4, C, @) to the point (Q _Tt) *
(4, CﬂA[‘ﬁQ*’"], w). Consequently, for either choice of exponent r € {1,2},

the image V(q") (Ztepic(ocx(t) (tx (A, C, w))) is equal to
S xt) - @ )« (AT, @)

tePic(O.)
= Z x(tQ") - (t* (A,C[“YIQ#],W))
tePic(O.)
=x(Q)" D x(t)- (tx(4,C,m)
tePic(O,)

since {ﬁrt} tePic(0y) also yields a complete set of representative classes for
Pic(O,). It follows that

Pu (£, X)‘V(qr) = x(Q)"-Pz(f,x) at each r € {1,2}. (3.2)

On the other hand, the projection prgff : JacXy, — Ag is obtained via
quotienting by the elements 7(q) — C(q,f) and (q) — w(q) if ¢ + N¢ = Op,
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and by U(q)—C(q,f) if g+ N¢ # Op. As an immediate corollary, one obtains
the corresponding relations

P(£,)| T(a) or Ula) = C(a,£)-P(£,x) and  P(£,x)|(a) = w(a)-P(E, ).

(3.3)
Combining the various identities in (3.2) and (3.3) together, one thereby
deduces

v, (P(EY))

= prgf o depgf ( Z X(t) * MJacXy, (Lé(t ’ X)))

tePic(O;)
= prgf ( Z X(t) : ﬂJacXUf (Lé(t ' X)) H (1 - U(q) © V<q))
t€Pic(O;) ql N,
[T (=7 oV +Nrga):(a)oV(a®) )

alN, gt N,
= Z X(t) - mag (e(t - %))

tePic(O.)

X H (1-C@@,H)x(Q) + X*(Qw(a) - Npyg(q)) -

qlN

Not surprisingly, the argument for the other HMF + = g is almost identical.
O

We shall now establish statements (I) and (IIT) mentioned in our strategy
above. For a compact open subgroup U of IB%XF, there are group homomor-
phisms

(JacXy ® x)(B) =2 (JacXy ® ) (E)®Z, —>

Hj (E®Qp, Ta,(JacXy) @ ),
where

H} (E X Qp, T) = Ker <H1 (E & Qp, T) l®1> Hl (E & va T ®Zp Bcris)) )

and the right-hand arrow 0 is the Kummer map — see [2, Section 3| for
further details. We shall label the composition of this whole sequence as
naUa'

Now set U :=U = Uy (N): the depleted points P(f, x) and P(g, x) each
belong to (JacXﬁ ® X) (E), so we can apply the mapping 95 to them. In
fact Oy (75(f, X)) and 0 (;ﬁ(g, X)) lie inside H} (E®Qp, Ta, (Jacxﬁ)ord@)()7
since f and g are both p-ordinary Hilbert cusp forms.
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Remark. Disegni’s normalisation of the p-adic L-function in [12, Theorem
A] is slightly different to that of Ly » (*, po), for each x € {f, g} and set of
places ¥. Note that his interpolation formula is almost the same as that
in Equation (2.2), except that the automorphic period Qi;lfl’go) (%) is instead

replaced by
2+ L(Lniyr) - L(L,ad(x))

Qaut,(l) %) =
00, K (%) 2P . | Dp|1/2
We will write
Qaut[,g()) (*)
LDiS(* ):700’ x L (* )
p,> » PO aut, (1 D, ,P0 )5
Q5 ()
) Qaut,(O) (*)
while LP#® (*, po) =k Vo @(*, po) denotes the primitive p-adic L-
p.0 Qaut[,gl) (%) P,

function in Theorem A of op. cit., which has not yet had its Euler factors
at q € X removed.

Lemma 3.3. Recall under Hypothesis (Odd) that LI;E’(O) (*, pg) is always
zero.

(a) Assuming that Hypothesis (f =g (\")) holds true as well, there exists
a crystalline 1-cocycle Q(f, g, x) € H} (E ® Qp,Tap(JacXﬁ)ord@) X) such
that
05 (P(£,x) = 95(P(&.x)) + A" Q(f,8,%)-
(b)TFor either choice of HMF x € {f,g} and at the Hecke character x =
X0 X",

1 <dﬁg;1L];,1§J (*’ pO))
X d
S

s=1

X (@) G (%) \/Nrya (DN (1) XDy )

- - -1
- Hp‘p Qp (*)Ordp WNe/r(fx)) x Ex(x:X)

'HH(l—

plp Blp

) x = 95 (P(x,x)) » 65(P(*’X_1))>I7,E

CE

X(B)
ap (%)

Cr(2)
(m/2)WF DRV 2L g/ p

where the scalar cp := j =% 0 is independent of x and

X, and

(— _))(7,13 :

H} (E ® Qp, Tay, (JacXﬁ)ord rd

(x)) X H} (E ) Qp,Tap(JacXﬁ)?X,IO — Qp

denotes the p-adic height pairing of Perrin-Riou et al (e.g. see [21, Section
1.2]).
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Before giving the demonstration of this result, it is important to point
out that for a p-ordinary G g-lattice T, the p-adic height pairing is between
H} (E®Qp, T) and H} (E®Qp, T*(l)). In particular, if T = Ta,, (JacXﬁ) XX
then its Kummer dual is isomorphic to Ta, (J acX (7) ®x ! because Jacobian
varieties are auto-dual; therefore, cutting out the ordinary parts, the height
pairing reduces to the above.

Proof. We begin with the first assertion. Let us write
b = b (Uo(N); O)

for the Hecke algebra acting on the ordinary part of the jacobian of XU0 ()
taking coefficients in Ox. In particular for x € {f, g}, the composition of
the projection map from JacXy to A, with the homomorphism depg* from
A, back up to JacXj is obtained by tensoring (over f)%rd) by the integral
domain h%rd / I, where the ideal

I, := [T(q) — C(q,%), (@) —w(a) if g+ N = Op, and U(q) if g + N # OF]

In other words, J5 (ﬁ(*, X)) € H} (E ®Qp, Ta, (JacXﬁ)ord@) X) will coincide

exactly with the image of 3, cpic(0.) X(t) - Tyacx (te(t-x)) ®1 under 5 in
. - . rd — T

the specialisation H} (E ® Qp, Tay, (JacXﬁ)o ® X) ®h‘§'d h%d/ﬂ*.

To establish the congruence between 0 (P(f,x)) and O (ﬁ(g, x)) mod-
ulo A", we introduce the ideals ‘I, \»’ generated over [)%rd by I, and the
element A" € Ok. For the HMF x = f, this alternative description for the
image of J5 (75(f, X)) above means that J; (75(f, x)) mod A" is equal to

Z X(t)aﬁ O TJacXy (Lé(t . X)) ®1
tePic(O¢)
ord

1 d
€ H} (E ® Qy, Ta, (Jacxﬁ)(x)) Dy B2 /e

Likewise for the HMF x = g, the 1-cocycle 0 (P(g, X)) mod A" equals

Z X(t)aﬁ © 71-JacXﬁ (Lé(t : X)) ®1
tePic(O.)

1 ord rd
€ H}(E @ Q) Tay (JacXy) () ) Dy B /Ty

But, Hypothesis (f = g (\")) implies that C(q,f) = C(q,g) mod A" at all
primes q < Of satisfying q + N = Op, in which case I » and Ig \r are

the same. Thus, 05 (ﬁ(f,x)) and 85 (P(g, x)) must be congruent mod X",
which proves (a).
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To show that assertion (b) is true, a simple direct calculation reveals that
(95 (P()), 95 (Pt X))
— (1Y, 095(P(x,X)) , prY. 0 95 (P(x, X ).
= (9.0 Y, (P(x.X) » du. 0%, (P(+. X)),
and then applying Lemma 3.2:
.oy, (ﬁ(* x))
= [1(1 - Cla%)x(Q) + x*(Qw(@) - Nro(@) 0. (P(x,x)), and

qlN

dv.o pra, (P(*,%))
= [Tt = Cla.)x(Q%) + x*(Q%)w(a) - Niryg(a) - du. (P(%,X)).

q|N
The product of these two sets of Euler factors above yields the (degree four)
factor L g (%, x,0) = qu Ly (x ®Ind}(x), Neg(a)™®) L:O, which therefore
implies
(95 (P, ). 05 (P x ™)) = Lz (5:x:0) x (Pl x). Pox ™) 4.
Writing out in full the p-adic Gross-Zagier formula from [12, Theorem B],
drg "L (x, Po))

(P20 Plox ), = 5 25007 % x*(

* 2 ds ’
s=1
where
Zy(x)
X(d \/NF/Q DE/FNE/F(fx)) DE/F H H( >
- ordp (N, X
[Tyjp o ()" W () oo Bl

As an immediate consequence, one deduces that

(95 (P X)), 05 (P(x:x"))5
_ Ly (*,x,0) . (dm—s i VG p0)>
2-Z2(x) ds

s=1
If we switch between ¥ and the empty set (), the interpolation rule in Equa-
tion (2.2) yields the identity

+<dmé;lL235<*7 po>> T(dméﬂ%ﬁ%w po>>
X = X d
s=1 5

ds
where L) (%, x, 1) = [T 5 Lq(* ®Ind§(x),/\/'p/@(q)’s)‘

-1

L(ﬁ) (*7 X7 1)
s=1

s:l'



HEEGNER CYCLES AND ANTICYCLOTOMIC CONGRUENCES 517

(N)( :X:0)

Lastly, observing that &) D)

= E5(*, x), the proof of (b) is complete.
([

We are now ready to give the demonstration of the main result in this
section. We will also indicate how Theorems 2.2 and 3.1 imply (as special
cases) the results stated in the Introduction, for the congruent elliptic curves
Ay and Ay over Q.

Proof of Theorem 3.1. Statement (i) follows immediately from the sim-
ple observation that if the base character y( satisfies Hypothesis (Odd),
then so does x = xo - x| for any choice of anticyclotomic (and finite order)
character x' on I'g.

To show statement (ii), recall from [21, p167] that the p-adic height takes
values in log,(70) - [y, #A,(Op/P)"2-Z, C Qp, and is naturally a Z,-
bilinear pairing. Applying Lemma 3.3(a) to P(x,x) and P(x,x '), one
immediately deduces that (95 (P(f X)), 0 (P(f X 1))))(7E is equal to

(05 (P(g. %)), 05 (Pex ™ ))gp+ N+ ((95 (P&, ), Q(F.8. X))
+(QF.8%). 9 (PEX™))pm+ X (QE.8.X), Q8. X7)) 5 1)
which means that (05 (77(* X)), O (77(* X 1))))[77]3 modulo log, (7o) - A"~

must be independent of the choice of HMF * € {f, g}.

Now by applying Lemma 3.3(b), one obtains the following congruence for
the period-modified p-adic L-functions:

dﬁs lLDls (f pO)
5]\7(f7X)'XT< =

dlis lLDls (g PO)
Ex(8, %) -x*( P

s=1

2
mod — -log,(70) - A" - Ok
s=1 cE

since for each choice of HMF % € {f, g}, the p-adic multiplier term
Zy(x,x) =

X(d \/NF/Q DE/FNE/F(fx DE/F

lep o (% %) 0" dp N/ p (%)) H H< (%) >

plp Blp

is an algebraic number satisfying the congruence Zp (f, x) = Z;(g, x) modulo
Qaut,(l) (*)
00, K

i)

A", However, Lp,g(*, po) = X LB}%(*, po), so defining g :=
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aut,(1)
Qo i (%)

cm aut,(0),
e 0050 (%)
thereby concludes

which does not depend on the choice* of cusp form %, one

d; 'Ly (£, p0)
_(Fy) At ey TR _
EN( ’X) X ( ds |
dl{"’chilL E(g7p0) -
Eﬁ(g)x) . XT( Y g’s mod 5E . 1ng(’yo) . )\T‘ To O/C,X
s=1
thus completing the proof of Theorem 3.1(ii). O

Remarks. (a) We should point out that the special values of the derivatives of
the p-adic L-functions Ly s:(f, po) and Ly, »(g, po) lie inside d-log,(70)- A7,
so we should get a non-trivial congruence. If we want to swap the automor-
phic periods with motivic periods, we consequently obtain a congruence
modulo \" - L¢ o where the lattice Lg g C C, is generated by the values of
the motivic p-adic L-functions.

(b) Suppose we are in the situation of the Introduction, so that .4; and
As are congruent elliptic curves modulo p”. In the odd case, applying The-
orem 3.1 to the base-change f of A; and base-change g of As, yields a

congruence mod p" - ESE A, Where Eiz A, contains the special values of each

LI(})(.Ai/E,X) (see Theorem 1.4).

(c) Likewise in the even case, applying Theorem 2.2 to the base-change
cusp forms f and g as in (b), this time we obtain a congruence modulo

p"- CS‘?’ A, Where Ei(l?, 4, contains the values of L}(,O) (A;/E, x) for each i €
{1,2} (see Theorem 1.3).

4. Logarithm maps and Coleman integration

In this section, we continue to assume Hypotheses (f = g (A\")) and (Odd)
hold. We also assume that p splits in E. Generalizing the work of Bertolini-
Darmon-Prasanna [1], Liu, Zhang and Zhang have constructed a p-adic L-
function on F%nti interpolating the complex Rankin-Selberg L-function of x
twisted by characters on ' of positive weight, for each x € {f, g} (see in
particular [18, Theorem 3.2.10]). At every finite order character y, the value
of this p-adic L-function is related to the logarithm of the corresponding -
twisted Heegner point P(x, x) attached to either HMF * € {f, g}, as given
by Theorem 3.3.2 in op. cit.

4For the record, the explicit form of the factor g € Q* can be calculated via the
formula o ) ,
5, = ADs] 2 Cr(2) T L1, p)? - L(1,ad (%)) - P
|Dp|1/2 . (1673)F:Q 'VOI(XUO(N)) Abs, i) Pet
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Following the strategy of [17], we shall show that these special values
satisfy a congruence relation under (f = g (\")) via Coleman integration.
However, at present, we do not know whether the p-adic L-function of Liu-
Zhang-Zhang is an Iwasawa function, so it is unclear to us whether an ana-
logue of Theorem 2.2 holds.

We first recall the notion of Coleman primitives from [7]. Let K be a local
field contained in C,, X a quasiprojective scheme over K and U C X g an
affinoid domain with good reduction. We assume w is a closed rigid analytic
1-form on U. Suppose that there exists a Frobenius endomorphism ¢ on U
(that is, it becomes a power of the Frobenius map on the reduction of U), a
locally analytic function F, on U, and a polynomial P(X) € C,[X] whose
zeroes are not roots of unity, satisfying the twin conditions:

o dF, = w;

e P(¢*)F, is rigid analytic.
Then F,, is called a Coleman primitive of w. Furthermore, it is indepen-
dent of the polynomial P(X), and is uniquely determined up to an additive
constant.

We will require the following technical result of Liu-Zhang-Zhang.

Proposition 4.1 ([18], Proposition A.0.1). Let K, U and X be given as
above. Assume A is an abelian variety over K which either has totally
degenerate reduction or potentially good reduction. Then for a morphism
f: X — A and a differential form w € QY(A/K), the restriction to U of
the pullback f*w admits f*log, ‘U as a Coleman primitive, where log,, :
A(Cp) — C, denotes the p-adic logarithmic attached to w.

We next briefly review the definition of p-adic HMFs. Let R be a ring
which is complete and separated in its p-adic topology, and € is a fractional
ideal of Op. Then a p-adic &-HMF over R is a rule h, which assigns to
every isomorphism class of triples (A, C,w) a value in R, and satisfies some
standard automorphy conditions (we refer the reader to [16, §1.9] and [13,
Chapter 5, §6] for the precise details). Here A is a €-polarized HBAV over
R equipped with real multiplications by F', C' denotes a level structure on
A, and w is a nowhere vanishing differential on A.

In particular, such p-adic €-Hilbert modular forms have g-expansions in-

dexed by totally positive elements in ab where € = {. Recall that we are

in the odd case, so again B, denotes the incoherent quaternion algebra
from Section 3, and for each compact open subgroup U C BXF the algebraic

curve Xy has as its complex points Xy (C) = B\H* x BX/U. The space
of p-adic modular forms over Xy is then given by the direct sum of p-adic
¢C-HMFs, as € runs through a complete set of coset representatives for the
narrow class group of F.

Let h be a parallel weight-two p-adic HMF over Ok on X in the sense
of [16]. Because it has weight 2, we may identify h with a differential



520 DANIEL DELBOURGO AND ANTONIO LEI

wh € HO(Xﬁ,Q}(ﬁ). Let v : Xi — JacXy be the Abel-Jacobi map: we

shall write w# et . X5 for the differential satisfying Z*wf = Wh.

Let © be the Atkin-Serre differential operator of [18, Definition 2.4.7] —
this corresponds to the composition of #(o) as o runs through all embeddings
F < Q, where (0) is defined as in [16, Corollary 2.6.25]. The ©-operator
shifts the weight of a HMF by exactly 2, i.e. the weight of ©(h) equals
(ko + 2),.p,g if the weight of h is (ks),.p.,5- On g¢-expansions it has
the effect C(q,0(h)) = Np/g(q)C(q,h) for all q (see [16, (2.6.27)]). If h
is of parallel weight two, let F} denote the Coleman primitive of wy €
HO(Xﬁ,Qﬁ(N) as given by Proposition 4.1. In particular, dF, = wp. On
comparing g—expansions, we see that and ©F, = h. Note that Fy, is a
HMF of parallel weight zero since h is of parallel weight two. Applying
Proposition 4.1 above, we obtain the following important consequence.

Corollary 4.2. If P € X5(C,), then
Ja8 ('P) = 10gw# (’P) .

Proof. We simply take f, X, A and w in Proposition 4.1 to be 7, X, JacX

and wﬁé respectively, and the rest follows immediately. O

We shall regard f and g as p-adic HMFs on Xy, and Xy, respectively,
as well as on X of course. If one makes a choice of HMF % € {f,g}, then
recall from Definition 1.6 the notation * refers to the depleted form on Xy,
obtained from x. For a p-adic HMF h and an Opg-ideal Z, we denote the
Z-depletion of h by h®).

Lemma 4.3. The Hypothesis (f =g (\")) implies that
Fry = Fgn + N =Y ¢ Fo.
. J
J

Proof. We follow [17, proof of Theorem 3.9]. Since the operator © is O-
linear, one immediately deduces that

e"f”) = omg® + A" Y ¢; - omh (4.1)
J
for all integers n > 1. Note that ©" : ¢"* — m"q¢™ within the g-expansion
of h(®)| and recall from [13, Corollary 5.1] that the g-expansion map over C
is injective. Because we have p-depleted our HMF's and the map n +— m" is
continuous in the p-adic topology whenever p t m, the HMFs ©"h(® varies
p-adically continuously in n. If we define
0~ 'h® = lim ©"h®
n——1

where the limit is taken under the p-adic topology, then @ 'h® = Fo

on comparing g-expansions. Thus, our result follows on letting n — —1 in
(4.1). O
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Theorem 4.4. Under the Hypothesis (f = g (X)), we have the congruence

_ W) P@Qw@ )
qlgv <1 C(q,f)NF/Qm) - NF/Q(q) > lgAf (P(f,X)) =

- X(Q) XQ(Q)W(q) -lo mo T
ql;][v (1 C(q’g)NF/Q(q) + NF/Q(q) > 1 gAg (p(g,x)) d )\ OIC,X-

Proof. The Hypothesis (f = g (\")) together with Lemma 4.3 tell us that

Ff(p M) and Fg(;p M) must be congruent mod A", as weight-zero p-adic HMFs
on Xg. In particular,

FPOP) = RV (P) mod N O, (42)

for every P € X5 (Cp).

Let x = (A,C,w) € X be any CM-point, and consider ¢ € Pic(Oy) as in
§3. If h is a weight-zero p-adic HMF on X with central character w, recall
that

(@)V(q)

h® = <1 — T(9)V(q) + ) h if q € Spec(OF) with q + Ny = Op;
NF/Q(CI)

otherwise, it is given by (1—4(q)oV(q))h if g+ Ny # Op. Our calculations
on the images of x under these operators, which are described in the proof
of Lemma 3.2, directly imply that

Z X(t)h(pﬁ)(t*x) w3
tePic(Oc, )
2
_ |~ Olq by () + L) .
qg( (9, h)x(9Q) + Nr o) >xtEP§9fX)X(t) (t % %)

(see also [17, Lemma 3.6] for the same result for p-adic elliptic modular
forms).
Recall once more that © : ¢ — mgq"™ on g-expansions, so for either
( ~

* € {f, g} we have C(q, Fy) = % at each q|p/N. Hence, we may rewrite

Equation (4.3) as:

Z X(t)F*(pm (t *x)

tePic(Oc, )

2 w

alpN tePic(Oc, )
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and upon combining this with (4.2), one therefore deduces

I (1-can™ +X2(Q)°"(q)) S OF ()

i Nrga)  Nrjgla) 1ePiO0,)
_ () XQ(Q)W(Q)>
=11 (1-Cla.gF—+ S X Fg(t+x)
ke Nro(a)  Nejgla) (ePIcOs,)
mod A" - Ok y.

Finally, Corollary 4.2 informs us that

v ) @)Y
IT (- Con g 0+ Rt ) o PO

alpN
= - XQ) L X@Qw@)
_qgv <1 C(q’g)NF/Q(CI) " Nryg(q) > log,,# (P(g, X))

mod A" - O y.
However, log_» = log,, by their definition, so the proof is now complete. [

Remarks. (a) For those readers familiar with the notation of Liu-Zhang-
Zhang in [18, Theorem 3.3.2], their p-adic Waldspurger formula states that

log 4+ (P(x,x)) -log 4— (P x™ "))
= (Euler factor at p) - X (£(A4)) - o (frrts fr)
where £(A,) denotes the p-adic L-function attached to % in [18, Theorem
3.2.10], and ay, ( fets f*7_) is a distinguished generator for the K-line
Hoonon (H;F ® X,IC) ®x HOonEoX (H*_ ® X_l,lC) .

(b) Applying Theorem 4.4 directly to log 4, (73(*, Xil)), a simple calcula-
tion reveals that

gl,p]\N/'(f) X 1OgAf (P(fa X)) : 1OgAf (P(fa X_l))
= & ,5(8) xloga, (P(g.x)) -loga, (P(g,x™")) mod A" O.

(c) Under the strong assumption that £(Af) and £(Ag) correspond to
bounded Iwasawa functions (which is so far only known over F' = Q),
as a corollary (b) yields a congruence modulo A" linking together the -
imprimitive p-adic L-functions £x(Af) and £x(Ag), for suitably chosen iso-
morphisms ¢, between the local field IC and the lines

Hom, ecx (IIf @ x,K) @k Hom, ecx (I, @ x,K)
Qpm (Lie(Af) Qpm Lie(A:)).

(d) If A; and Az are congruent elliptic curves mod p" as in §1, one
thereby obtains a congruence between £5(A;) and £5(Az2) modulo p" -



HEEGNER CYCLES AND ANTICYCLOTOMIC CONGRUENCES 523

ﬁih A [Manti]], again assuming that £(A;) for i = 1,2 correspond to bounded
Iwasawa functions, and where ﬁih A, 1s the Oc rsubmodule generated by the

values x (£(A1)) and x(£(Az2)) as x' ranges over Hom(F%nti,@;) — we refer
the reader to Theorem 1.5 for the precise statement.
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