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Eventually stable quadratic
polynomials over Q
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Abstract. We study the number of irreducible factors (over Q) of the
nth iterate of a polynomial of the form fr(x) = x2 + r for r ∈ Q.
When the number of such factors is bounded independent of n, we call
fr(x) eventually stable (over Q). Previous work of Hamblen, Jones,
and Madhu [8] shows that fr is eventually stable unless r has the form
1/c for some c ∈ Z \ {0,−1}, in which case existing methods break
down. We study this family, and prove that several conditions on c of
various flavors imply that all iterates of f1/c are irreducible. We give an
algorithm that checks the latter property for all c up to a large bound
B in time polynomial in logB. We find all c-values for which the third
iterate of f1/c has at least four irreducible factors, and all c-values such
that f1/c is irreducible but its third iterate has at least three irreducible
factors. This last result requires finding all rational points on a genus-2
hyperelliptic curve for which the method of Chabauty and Coleman does
not apply; we use the more recent variant known as elliptic Chabauty.
Finally, we apply all these results to completely determine the number
of irreducible factors of any iterate of f1/c, for all c with absolute value

at most 109.
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1. Introduction

Let K be a field with algebraic closure K, f ∈ K[x], and α ∈ K. For
n ≥ 0, let fn(x) be the nth iterate of f (we take f0(x) = x), and f−n(α)
the set {β ∈ K : fn(β) = α}. When fn(x)− α is separable over K for each
n ≥ 1, the set Tf (α) :=

⊔
n≥0 f

−n(α) acquires the structure of a rooted tree

(with root α) if we assign edges according to the action of f .
A large body of recent work has focused on algebraic properties of Tf (α),

particularly the natural action of Gal (K/K) on Tf (α) by tree automor-

phisms, which yields a homomorphism Gal (K/K) → Aut(Tf (α)) called
the arboreal Galois representation associated to (f, α). A central ques-
tion is whether the image of this homomorphism must have finite index
in Aut(Tf (α)) (see [12] for an overview of work on this and related ques-
tions). In the present article, we study factorizations of polynomials of the
form fn(x)− α in the case where α = 0.

Definition 1.1. Let K be a field and f ∈ K[x], and α ∈ K. We say (f, α)
is eventually stable over K if there exists a constant C(f, α) such that
the number of irreducible factors over K of fn(x)−α is at most C(f, α) for
all n ≥ 1.

We say that f is eventually stable over K if (f, 0) is eventually stable.

Apart from its own interest, eventual stability has proven to be a key
link in at least two recent proofs of finite-index results for certain arboreal
representations [4, 3]. This is perhaps surprising given that eventual stability
is, a priori, much weaker than finite index of the arboreal representation
– the former only implies that the number of Galois orbits on f−n(α) is
bounded as n grows, which is an easy consequence of the latter. There are
other applications of eventual stability as well; for instance, if f ∈ Q[x] is
eventually stable over Q, then a finiteness result holds for S-integer points
in the backwards orbit of 0 under f (see [13, Section 3] and [18]).

The paper [13] provides an overview of eventual stability and related ideas.
That article defines a notion of eventual stability for rational functions,
gives several characterizations of eventual stability, and states some general
conjectures on the subject, all of which remain wide open. For example,
a special case of [13, Conjecture 1.2] is the following: if f ∈ Q[x] is a
polynomial of degree d ≥ 2 such that 0 is not periodic under f (i.e. fn(0) 6= 0
for all n ≥ 1), then f is eventually stable over Q. Theorems 1.3 and 1.7 of [13]
also provide some of the few reasonably general results currently available
on eventual stability. The proofs rely on generalizations of the Eisenstein
criterion, and crucially assume good reduction of the rational function at
the prime in question.

In this article, we address some of the conjectures in [13] in cases where
Eisenstein-type methods break down. One of our main results is the follow-
ing:
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Theorem 1.2. Let K = Q and fr(x) = x2 + r with r = 1/c for c ∈
Z\{0,−1}. If |c| ≤ 109, then fr is eventually stable over Q and C(fr, 0) ≤ 4.
More precisely, Conjecture 1.7 below holds for all c with |c| ≤ 109.

The family x2 + (1/c), c ∈ Z \ {0,−1}, is particularly recalcitrant. Even-
tual stability in this family (with α = 0) is conjectured in [13, Conjecture
1.4], and it is the only obstacle to establishing eventual stability (with α = 0)
in the family x2 + r, r ∈ Q. This is because [13, Theorem 1.7] handles the
case when there is a prime p with vp(r) > 0. Moreover, [13, Theorem 1.3]
uses p = 2 to establish eventual stability for x2 + 1/c when c is odd, but
when c is even x2 + 1/c has bad reduction at p = 2, and Eisenstein-type
methods break down completely.

We turn to methods inspired by [10], in particular various amplifications
of [10, Proposition 4.2] and [11, Theorem 2.2], which state that the irre-
ducibility of iterates can be proven by showing a certain sequence contains
no squares. We prove the following theorem, which plays a substantial role
in the proof of Theorem 1.2. For the rest of the article, we establish the
following conventions:

all irreducibility statements are over Q;

r = 1/c, where c is a non-zero integer.

Also, we denote by Z \ Z2 the set of integers that are not integer squares.

Theorem 1.3. Let fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}. Then
fnr (x) is irreducible for all n ≥ 1 if c satisfies one of the following conditions:

(1) −c ∈ Z \ Z2 and c < 0;
(2) −c, c+ 1 ∈ Z \ Z2 and c ≡ −1 mod p for a prime p ≡ 3 mod 4;
(3) −c, c+1 ∈ Z\Z2 and c satisfies one of the congruences in Proposition

3.5 (see Table 1).
(4) −c ∈ Z \ Z2 and c is odd;
(5) −c ∈ Z \ Z2, c is not of the form 4m2(m2 − 1),m ∈ Z, and∏

p:2-vp(c)
pvp(c)∏

p:2|vp(c)
pvp(c)

>
1.15

|c|1/30
.

This holds whenever c is squarefree.
(6) c = k2 for some k ≥ 2 and∏

p:p6≡1 mod 4

pvp(c)∏
p:p≡1 mod 4

pvp(c)
>

1.15

|c|1/30
.

(7) c is not of the form 4m2(m2 − 1) with m ∈ Z and 1 ≤ c ≤ 101000.
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Our next result gives an explicit and relatively small bound for m such
that the irreducibility of fm implies the irreducibility of all fn (see Corol-
lary 4.6). In the following, ε(c) is a function bounded above by 4 and
decreasing monotonically to 2 as c grows; for a precise definition, see p. 550
in Section 4.

Theorem 1.4. Let fr(x) = x2 + r with r = 1/c for c ∈ Z with c ≥ 4. If fm

is irreducible for

m = 1 +
⌊
log2

(
1 +

log 4 + ε(c)/
√
c

log(1 + 1/
√
c)

)⌋
,

then all fn are irreducible.

The methods used in the proof of this result can be used to derive a very
efficient algorithm that checks the condition in Theorem 1.4 for all c up to
a very large bound. This leads to a proof of case (7) of Theorem 1.3, which
at the same time verifies Conjecture 1.8 below for all c with |c| ≤ 101000.
This is explained in Section 5.

We also prove results on unusual factorizations of small iterates in the
family x2 + 1/c.

Theorem 1.5. Let fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}, and let
kn denote the number of irreducible factors of fnr (x). Then

(a) We have k1 = k2 = 2 and k3 = 3 if and only if c = −16. In this
case kn = 3 for all n ≥ 3.

(b) We have k3 ≥ 4 if and only if c = −(s2 − 1)2 for s ∈ {3, 5, 56}. In
this case, k1 = 2, k2 = 3, and kn = 4 for all n ≥ 3.

(c) We have k1 = 1 and k3 ≥ 3 if and only if c = 48. In this case,
k2 = 2 and kn = 3 for all n ≥ 3.

Observe that part (b) of Theorem 1.5 shows that the bound C(fr, 0) ≤ 4
in Theorem 1.2 (and also Conjecture 1.7) cannot be improved. Moreover,
a consequence of Conjecture 1.7 is that C(fr, 0) = 4 if and only if c =
−(s2 − 1)2 for s ∈ {3, 5, 56}.

To prove Theorem 1.5, we reduce the problem to finding all integer square
values of certain polynomials (see Lemma 2.2 in Section 2 for details.) The
curve that arises in this way in the proof of part (c) of Theorem 1.5 is of
particular interest, as it is a hyperelliptic curve of genus two, whose Jacobian
has rank two:

y2 = 8x6 − 12x4 − 4x3 + 4x2 + 4x+ 1. (1)

Because the genus and the rank of the Jacobian coincide, we cannot apply
the well-known method of Chabauty and Coleman. On the other hand, we
are able to use a variant of the standard method, called elliptic Chabauty
[5, 7], to prove:

Theorem 1.6. The only rational points on the curve (1) are those with
x ∈ {−2,−1, 0, 1}.
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The idea is the following:given an elliptic curve E over a number field K
and a map φ : E → P1, then one can often compute the set of points in E(K)
mapping to P1(Q) as long as the rank of E(K) is strictly less than the degree
of the extension K/Q.This method is known as elliptic Chabauty. Moreover,
in certain situations, one can use a combination of descent techniques and
elliptic Chabauty to determine the full set of rational points on a curve C
(of higher genus) defined over Q; see, for instance, the proof of Theorem
1.6. Moreover, under suitable conditions, several components of the elliptic
Chabauty method are implemented in MAGMA [2], and we make use of
these implementations here. Our code verifying the calculations in the proof
of Theorem 1.5 can be found within the file called Elliptic Chabauty at:
https : //sites.google.com/a/alumni.brown.edu/whindes/research.

The above results furnish evidence for several conjectures. The first is a
refinement of Conjecture 1.4 of [13], which states that x2 + 1

c is eventually
stable for c ∈ Z \ {0,−1}.

Conjecture 1.7. Let fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}. Then
fr is eventually stable and C(fr, 0) ≤ 4. More precisely, let kn denote the
number of irreducible factors of fnr (x). Then

(1) If c = −m2 for m > 0 with m+ 1 ∈ Z \ Z2 and m 6= 4, then kn = 2
for all n ≥ 1.

(2) If c = −16, then k1 = k2 = 2 and kn = 3 for all n ≥ 3.
(3) If c = −(s2 − 1)2 for s ∈ Z \ {3, 5, 56}, then k1 = 2 and kn = 3 for

all n ≥ 2.
(4) If c = −(s2 − 1)2 for s ∈ {3, 5, 56}, then k1 = 2, k2 = 3, and kn = 4

for all n ≥ 3.
(5) If c = 4m2(m2 − 1) for m ∈ Z, m ≥ 3, then k1 = 1 and kn = 2 for

all n ≥ 2.
(6) If c = 48, then k1 = 1, k2 = 2, and kn = 3 for all n ≥ 3.
(7) If c is not in any of the above cases, then kn = 1 for all n ≥ 1.

We remark that case (7) of Conjecture 1.7 is precisely the case where
f2r (x) is irreducible (see Proposition 2.1) and thus case (7) asserts that if
f2r (x) is irreducible, then fnr (x) is irreducible for all n ≥ 1. We state this as
its own conjecture:

Conjecture 1.8. Let fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}. If
f2r (x) is irreducible, then fnr (x) is irreducible for all n ≥ 1.

As mentioned above, we have verified this conjecture for all c with |c| ≤
101000.

Observe that Conjecture 1.7 gives a uniform bound for kn, in contrast
to Conjecture 1.4 of [13]. It would be of great interest to have a similar
uniform bound for fr(x) as r is allowed to vary over the entire set Q\{0,−1}
(as opposed to just the reciprocals of integers, as in Conjecture 1.7). We
pose here a much more general question. Given a field K, call f ∈ K[x]
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normalized (the terminology depressed is also sometimes used, especially for
cubics) if deg f = d ≥ 2 and f(x) = adx

d + ad−2x
d−2 + ad−3x

d−3 + a1x+ a0.
Note that every f ∈ K[x] of degree not divisible by the characteristic of K
is linearly conjugate over K to a normalized polynomial.

Question 1.9. Let K be a number field and fix d ≥ 2. Is there a constant
κ depending only on d and [K : Q] such that, for all normalized f ∈ K[x]
of degree d such that 0 is not periodic under f , and all n ≥ 1, fn(x) has at
most κ irreducible factors? In the case where K = Q, d = 2, and f is taken
to be monic, does the same conclusion hold with κ = 4?

It is interesting to compare Question 1.9 to [1, Question 19.5], where a
similar uniform bound is requested, but under the condition that f−1(0) ∩
P1(K) = ∅.

We close this introduction with some further comments on our methods,
as well as the statement of one additional result (Theorem 1.12) on the
densities of primes dividing orbits of polynomials of the form x2 + 1/c.

A primary tool in our arguments is the following special case of [11, The-
orem 2.2]: for n ≥ 2, fnr is irreducible provided that fn−1r is irreducible
and fnr (0) is not a square in Q. The proof of this relies heavily on the fact
that fr has degree 2, and is essentially an application of the multiplicativ-
ity of the norm map. Using ideas from [11, Theorem 2.3 and discussion
preceding], one obtains the useful amplification (proven in Section 3) that
for n ≥ 2, fnr is irreducible provided that fn−1r is irreducible and neither of

(fn−1r (0)±
√
fnr (0))/2 is a square in Q. When r = 1/c, we have

fr(0) = 1/c, f2r (0) = (c+ 1)/c2, f3r (0) = (c3 + c2 + 2c+ 1)/c4,

and so on. The numerator of fnr (0) is obtained by squaring the numerator

of fn−1r (0), and adding c2
n−1−1. We thus introduce the family of sequences

a1(c) = 1, an(c) = an−1(c)
2 + c2

n−1−1 for n ≥ 2. (2)

To ease notation, we often suppress the dependence on c, and write a1, a2,
etc. We can then translate the results of the previous paragraph to:

Lemma 1.10. Suppose that c ∈ Z \ {0}, r = 1/c, and f2r is irreducible. Let
an = an(c) be defined as in (2), and set

bn :=
an−1 +

√
an

2
∈ Q. (3)

If for every n ≥ 3, bn is not a square in Q (which holds in particular if an
is not a square in Q), then fnr (x) is irreducible for all n ≥ 1.

We make the following conjecture, which by Lemma 1.10 immediately
implies Conjecture 1.8:

Conjecture 1.11. Let bn = bn(c) be defined as in (3). If c ∈ Z \ {0,−1},
then bn is not a square in Q for all n ≥ 3.
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Conjecture 1.11 also has strong implications for the density of primes
dividing orbits of fr. We define the orbit of t ∈ Q under fr to be the
set Ofr(t) = {t, fr(t), f2r (t), . . .}, and we say that a prime p divides Ofr(t) if
there is at least one non-zero y ∈ Ofr(t) with vp(y) > 0. The natural density
of a set S of prime numbers is defined to be

D(S) = lim
B→∞

#{p ≤ B : p ∈ S}
#{p ≤ B}

.

Note that the elements of Ofr(t) also form a nonlinear recurrence sequence,
where the relation is given by application of fr. The problem of finding the
density of prime divisors in recurrences has an extensive literature in the
case of a linear recurrence; see the discussion and brief literature review in
[10, Introduction]. The case of non-linear recurrences is much less-studied,
though there are some recent results [8, 10, 17]. The following theorem is
an application of [8, Theorem 1.1, part (2)].

Theorem 1.12. Let c ∈ Z, let r = 1/c, suppose that −c and c + 1 are
non-squares in Q, and assume that Conjecture 1.11 holds for c. Then

for any t ∈ Q we have D({p prime : p divides Ofr(t)}) = 0. (4)

We remark that in each of the cases of Theorem 1.3, we show that Con-
jecture 1.11 holds for c. Hence, in cases (2), (3), and (6) of Theorem 1.3
and also in cases (1), (4), and (5), with the additional hypothesis that c+ 1
is not a square in Q, we have that (4) holds. We also note that when the
hypotheses of Theorem 1.12 are satisfied, we obtain certain information on
the action of GQ on Tf (0) =

⊔
n≥0 f

−n(0); see Section 6.
A complete proof of Conjecture 1.11 appears out of reach at present. One

natural approach is to prove the stronger statement that an is not a square
for each n ≥ 3, or equivalently that the curve

Cn : y2 = an(c) (5)

has no integral points with c 6∈ {0,−1} for any n ≥ 3. It is easy to see that
an(c) is separable as a polynomial in c (one considers it as a polynomial in
Z/2Z[c], where it is relatively prime to its derivative), and because the degree
of an(c) is 2n−1−1, it follows from standard facts about hyperelliptic curves
that the genus of Cn is 2n−2−1. Siegel’s theorem then implies that there are
only finitely many c with an(c) a square for given n ≥ 3. However, the size of
the genus of Cn prevents us from explicitly excluding the presence of integer
points save in the cases of n = 3 and n = 4 (see Proposition 3.3). One idea
that has been used to show families of integer non-linear recurrences contain
no squares (see e.g. [19, Corollary 1.3] or [10, Lemma 4.3]) is to show that
sufficiently large terms of each sequence are sandwiched between squares:
they are generated by adding a small number to a large square. In the case

of the family an(c), however, the addition of the very large term c2
n−1−1

to the square a2n−1 ruins this approach. A similar problem is encountered
in a family of important two-variable non-linear recurrence sequences first
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considered in [14] (see [14, Theorem 1.8]). The main idea used in [14] to show
the recurrence contains no squares is to rule out certain cases via congruence
arguments. This is the essence of our method of proof for cases (2) and
(3) of Theorem 1.3. Subsequently, Swaminathan [22, Section 4] amplified
these congruence arguments and gave new partial results using the idea of
sandwiching terms of the sequence between squares. In the end, each of
these methods succeeds in giving only partial results, applicable to c-values
satisfying certain arithmetic criteria. It would be of great interest to have a
proof of Conjecture 1.11 for c-values satisfying some analytic criterion, e.g.,
for all c sufficiently large. Case (1) of Theorem 1.3 provides one result with
this flavor, but at present no other results are known.

Acknowledgements: We thank Jennifer Balakrishnan for conversations
related to the proof of Theorem 1.6, and the anonymous referee for many
helpful suggestions.

2. The case where fr(x) or f2
r (x) is reducible

We begin by studying the factorizations of iterates of fr(x) when either
fr(x) or f2r (x) is reducible. The behavior of higher iterates becomes harder
to control because of the presence of multiple irreducible factors of the first
two iterates, but we are still able to give some results. At the end of this
section we prove Theorem 1.5, which gives a complete characterization of
certain subcases.

Proposition 2.1. Let fr(x) = x2+r with r = 1/c for c ∈ Z\{0,−1}. Then
fr(x) is reducible if and only if c = −m2 for m ∈ Z. If fr(x) is irreducible,
then f2r (x) is reducible if and only if c = 4m2(m2 − 1) for m ∈ Z.

Proof. The first statement is clear. Assume now that fr(x) is irreducible
over Q. Let α be a root of f2r (x), and observe that fr(α) is a root of
fr(x), and by the irreducibility of fr(x), we have [Q(fr(α)) : Q] = 2. Now
f2r (x) is irreducible if and only if [Q(α) : Q] = 4, which is equivalent to
[Q(α) : Q(fr(α))] = 2. But α is a root of fr(x) − fr(α) = x2 + r − fr(α),
and so [Q(α) : Q(fr(α))] = 2 is equivalent to fr(α) − r not being a square
in Q(fr(α)).

Without loss of generality, say fr(α) =
√
−r. Then fr(α)− r is a square

in Q(fr(α)) if and only if there are s1, s2 ∈ Q with

−r +
√
−r = (s1 + s2

√
−r)2 = s21 − rs22 + 2s1s2

√
−r.

This holds if and only if 2s1s2 = 1 and s21 − rs22 = −r. Substituting s2 =
1/(2s1) into the second equation and multiplying through by s21 gives s41 +
rs21 − r/4 = 0, which by the quadratic formula holds if and only if

s21 =
−r ±

√
r2 + r

2
(6)

or equivalently, 2c(−1±
√

1 + c) is an integer square (here we have written
1/c for r and multiplied both sides of (6) by 4c2). If c < −1, then

√
1 + c is
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irrational, so we may assume c > 0. We may then discard the − part of the
±, since integer squares are positive. Writing c = k2 − 1 for k > 0, we then
obtain that 2(k2−1)(−1 +k) = 2(k+ 1)(k−1)2 is a square, whence k+ 1 =
2m2 for some integer m. Thus c = k2 − 1 = (2m2 − 1)2 − 1 = 4m4 − 4m2,
as desired. �

We now give a lemma, closely related to [10, Proposition 4.2], which we
will use often in the sequel.

Lemma 2.2. Let K be a field of characteristic not equal to 2, let g ∈ K[x]
be monic of degree d ≥ 1 and irreducible over K, and let f(x) be monic and
quadratic with critical point γ. If no element of

{(−1)dg(f(γ))} ∪ {g(fn(γ)) : n ≥ 2}
is a square in K, then g(fn(x)) is irreducible over K for all n ≥ 1.

Proof. Let f(x) = x2 + bx+ c, so that γ = −b/2. We proceed by induction
on n, with the n = 0 case covered by the irreducibility of g(x). Assume then
that g(fn−1(x)) is irreducible over K for some n ≥ 1, and let d1 be the degree
of g(fn−1(x)). By Capelli’s Lemma ([6, Lemma 0.1]), g(fn(x)) is irreducible
over K if and only if for any root β of g(fn−1(x)), we have f(x) − β is
irreducible over K(β), or equivalently (because K has characteristic different
from 2), Disc(f(x)− β) = b2 − 4c+ 4β is not a square in K(β).

This must hold if NK(β)/K(b2− 4c+ 4β) is not a square in K. The Galois

conjugates of b2−4c+ 4β are precisely b2−4c+ 4α as α varies over all roots
of g(fn−1(x)). Thus

NK(β)/K(b2 − 4c+ 4β) = (−4)d1
∏

α root of g ◦ fn−1

[(
−b

2

4
+ c

)
− α

]
= (−4)d1 · g(fn−1(−b2/4 + c))

= (−4)d1 · g(fn−1(f(γ))),

where the second equality holds because g(fn−1(x)) is monic. Now d1 is odd
if and only if n = 1 and d is odd, which proves the Lemma. �

2.1. The case of fr reducible. When c = −m2 for some m ≥ 1, we fix
the notation

g1(x) = x− 1

m
and g2(x) = x+

1

m
, (7)

so that fr(x) = g1(x)g2(x). We exclude the case m = 1 in what follows,
as in that case fr(x) is not eventually stable (see [13, discussion following
Corollary 1.5]).

Proposition 2.3. Let r = 1/c and c = −m2 for m ≥ 2. Let g1 and g2 be
as in (7). Then the following hold.

(1) We have g2(fr(x)) irreducible, while g1(fr(x)) factors if and only if
m+ 1 is a square in Q.
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(2) If g1(fr(x)) is irreducible, then g1(f
n
r (x)) is irreducible for all n ≥ 2.

(3) If every term of the sequence {g2(f ir(0))}i≥2 is a non-square in Q,
then g2(f

n
r (x)) is irreducible for all n ≥ 2.

Proof. The first item follows from observing that g1(fr(x)) = x2 − m+1
m2

and g2(fr(x)) = x2 + m−1
m2 . The latter is irreducible because m ≥ 2 implies

(m − 1)/m2 > 0. Item (3) is an immediate consequence of item (1) and
Lemma 2.2 (with g = g2 ◦ fr and f = fr). To prove item (2), observe that
g1(f

n
r (0)) = fnr (0) − 1

m . However, one easily checks that x2 − 1
m2 maps the

interval (−1/m, 0) into itself, and in particular, fnr (0) < 0 for all n ≥ 1.
Thus g1(f

n
r (0)) < 0 as well, and hence cannot be a square in Q. Item (2)

now follows from Lemma 2.2 with g = g1 ◦ fr and f = fr. �

Proposition 2.4. Let r = 1/c and c = −m2 for m ≥ 2, and let g1 and g2 be
as in (7). Then g2(f

2
r (0)) is a square in Q if and only if m = 4. Moreover,

g2(f
2
r (x)) is reducible if and only if m = 4.

Proof. Observe that

g2(f
2
r (0)) =

m3 −m2 + 1

m4
,

and hence g2(f
2
r (0)) is a square in Q if and only if the elliptic curve y2 =

x3 − x2 + 1 has an integral point with x = m. This is curve 184.a1 in
the LMFDB [16], and has only the integral points (0,±1), (1,±1), (4,±7).
Because m ≥ 2, the only m-value for which g2(f

2
r (0)) is a square is m = 4. If

m 6= 4, then [10, Proposition 4.2] (or the proof of Lemma 2.2, with g = g2◦fr
and f = fr) shows that g2(f

2
r (x)) is irreducible. On the other hand, if m = 4,

then

g2(f
2
r (x)) = (x2 − x+ 7/16)(x2 + x+ 7/16),

showing that g2(f
2
r (x)) is reducible. We return to the analysis of the case

m = 4 in Proposition 2.10. �

We now seek to give congruence conditions on m that ensure the sequence
(g2(f

n
r (0)))n≥2 contains no squares in Q. Prime factors of the numerators

of the terms of this sequence are often related to each other. To formalize
this, we require the following definition.

Definition 2.5. A sequence (sn)n≥1 is a rigid divisibility sequence if for all
primes p we have the following:

(1) if vp(sn) = e > 0, then vp(smn) = e for all m ≥ 1, and
(2) if vp(sn) > 0 and vp(sj) > 0, then vp(sgcd(n,j)) > 0.

Remark 2.6. If (sn)n≥1 is a rigid divisibility sequence and s1 = 1, then from
(2) it follows that if p | gcd(sn, sn−1) then p | s1 = 1, which is impossible.
Hence, gcd(sn, sn−1) = 1 for all n ≥ 2. A similar argument shows that for q
prime we have gcd(sq, si) = 1 for all 1 ≤ i < q.
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Proposition 2.7. Let r = 1/c and c = −m2 for m ≥ 2, and let g2 be as in
(7). Then g2(f

n
r (x)) is irreducible for all n ≥ 2 provided that m 6= 4 and at

least one of the following holds:

m ≡ 3 (mod 4) m ≡ 3 (mod 5)

m ≡ 2, 5, 6 (mod 7) m ≡ 4, 6, 7 (mod 11)

m ≡ 8, 10 (mod 13) m ≡ 2, 4, 7, 8, 9, 11, 15 (mod 17)

m ≡ 3, 5, 11 (mod 19) m ≡ 9, 11, 14, 15, 18, 20, 21, 22 (mod 23)

m ≡ 3, 19, 26 (mod 29) m ≡ 2, 12, 30 (mod 31)

m ≡ 6, 20 (mod 37) m ≡ 12, 14, 27, 29 (mod 41)

m ≡ 15, 21, 30 (mod 43) m ≡ 9, 22, 38, 46 (mod 47)

If, in addition, m − 1 is not a square in Q, then the following congruences
also suffice:

m ≡ 2 (mod 3) m ≡ 5 (mod 8)

m ≡ 10 (mod 11) m ≡ 18 (mod 19)

m ≡ 2, 13 (mod 23) m ≡ 8, 10, 14 (mod 29)

m ≡ 9, 26 (mod 31) m ≡ 13, 31 (mod 37)

m ≡ 3, 11, 19, 37, 38 (mod 41) m ≡ 22, 36, 39, 42 (mod 43)

m ≡ 3, 10 (mod 47)

Proof. By part (3) of Proposition 2.3, it suffices to show that g2(f
n
r (0)) is

not a square in Q for all n ≥ 2. Note that for each n ≥ 1, g2(f
n−1
r (0)) is a

positive rational number with denominator m2n−1
, and numerator prime to

m. We take wn to be the numerator of g2(f
n−1
r (0)). We first observe that

the proof of [10, Proposition 5.4] shows that the sequence (wn)n≥1 is a rigid
divisibility sequence. In particular, if w2 is not a square in Q, then because
w2 > 0 we must have some prime p dividing w2 to odd multiplicity, and the
rigid divisibility condition implies that w2j is not a square for all j ≥ 2. A
similar argument shows that if w3 is not a square in Q, then neither is w3j

for all j ≥ 1.
By Proposition 2.4 and our assumption thatm 6= 4, we have that g2(f

2
r (0))

is not a square in Q. It follows that w3j is a non-square for all j ≥ 1.
Now, for a given modulus k andm 6≡ 0 mod k, the sequence (g2(f

n
r (0)) mod

k)n≥1 eventually lands in a repeating cycle, and we search for values of
k and congruences classes of m modulo k such that g2(f

n
r (0)) mod k fails

to be a square for all n ≥ 2. Note that this method works even when

g2(f
3j−1
r (0)) mod k is a square for all j ≥ 1, since we have shown in the

previous paragraph that w3j is a non-square for all j ≥ 1. A computer
search yields the congruences given in the first part of the proposition. If,
in addition, m − 1 is a non-square in Q, then we have w2j not a square in
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Q for all j ≥ 1, and the congruences in the second part of the proposition

show that w2j+1 = g2(f
2j
r (0)) mod k is a non-square for all j ≥ 1. �

Proposition 2.8. Let r = 1/c and c = −m2 for m ≥ 2, and let g2 be as in
(7). If m ≡ −1 mod p for a prime p ≡ 7 mod 8, then g2(f

n
r (x)) is irreducible

for all n ≥ 2. The same conclusion holds if m− 1 is not a square in Q and
m ≡ −1 mod p for a prime p ≡ 3 mod 8.

Proof. By part (3) of Proposition 2.3, it suffices to show that g2(f
n
r (0))

is not a square in Q for all n ≥ 2. We have c = −m2 ≡ −1 mod p, and
so (fnr (0) mod p)n≥0 is the sequence 0,−1, 0,−1 . . .. Thus (g2(f

n
r (0)) mod

p)n≥0 is the sequence −1,−2,−1,−2,−1, . . .. If p ≡ 7 mod 8, then both −1
and −2 are non-squares modulo p, and the proof is complete. If p ≡ 3 mod 8,
then −1 is a non-square modulo p but −2 is a square, meaning we can only

conclude that g2(f
2j
r (0)) is a non-square in Q for j ≥ 1. However, as in the

proof of Proposition 2.7, this implies that b2j+1 is a non-square for all j ≥ 1.
If in addition m − 1 is not a square, then b2j is not a square for all j ≥ 1,
completing the proof. �

Propositions 2.7 and 2.8 allow us to prove a case of Theorem 1.2. Recall
that g1(f

n
r (x))g2(f

n
r (x)) = fn+1

r (x).

Corollary 2.9. Let r = 1/c and c = −m2 for m ≥ 2, and let g2 be as in
(7). Suppose that m 6= 4 and m2 ≤ 109. Then g2(f

n
r (x)) is irreducible for

all n ≥ 1. If in addition m+ 1 is not a square in Q, then fnr (x) is a product
of two irreducible factors for all n ≥ 1.

Proof. By part (3) of Proposition 2.3, it suffices to show that g2(f
n
r (0))

is not a square in Q for all n ≥ 2. Because m 6= 4, we may apply both
Propositions 2.7 and 2.8. The first group of congruences in Proposition 2.7
applies to all m with 2 ≤ m ≤ 109/2 except for a set of 1326 m-values. After
applying the first part of Proposition 2.8, that number decreases to 1021.
Of these, 13 have the property that m− 1 is a square. We apply the second
group of congruences in Proposition 2.7 and the second part of Proposition
2.8 to the remaining 1008 values, and only 196 survive. This leaves 209
values of m that we must handle via other methods.

To do this, we employ a new method to search for primes p such that
g2(f

n
r (0)) is a non-square modulo p for all but finitely many n. We search

for p such that:

the sequence (g2(f
n
r (0)) mod p)n≥0 eventually assumes

a non-square constant value or eventually cycles between two distinct

values, both of which are non-squares modulo p. (8)

If we find such a p, it implies that all but finitely many terms of the sequence
(g2(f

n
r (0)))n≥2 are non-squares in Q. We then reduce modulo other primes

to show that the remaining terms are non-squares.
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The method proves quite effective. Of the 209 m-values left over from
the first paragraph of this proof, all have a prime p < 500 that satisfies
(8). For each such m and p, we take the finitely many terms of the sequence
(g2(f

n
r (0)))n≥2 that have still not been proven non-square by (8), and reduce

modulo small primes until all have been proven non-square. The m-value
producing the largest number of such terms is m = 4284, where we must
check that each of g2(fr(0)), g2(f

2
r (0)), . . . , g2(f

34
r (0)) is a non-square. In

all cases the desired result is achieved by reducing modulo primes less than
100. �

We now consider the case m = 4. As shown in Proposition 2.4, it is the
only one with m ≥ 2 for which g2(f

2
r (x)) is reducible; indeed, we have

g2(f
2
r (x)) = (x2 − x+ 7/16)(x2 + x+ 7/16) =: g21(x)g22(x), (9)

and we note that both g21(x) and g22(x) are irreducible.

Proposition 2.10. Let r = −1/16 and let g21 and g22 be as in (9). For
all n ≥ 1, both g21(f

n
r (x)) and g22(f

n
r (x)) are irreducible for all n ≥ 1. In

particular, fnr (x) has precisely three irreducible factors for all n ≥ 3.

Proof. Because m+1 is not a square, Proposition 2.3 shows that g1(f
n
r (x))

is irreducible for all n ≥ 1. By Lemma 2.2 and the fact that g21 and g22
have even degree, it suffices to prove that neither g21(f

n
r (0)) nor g22(f

n
r (0))

is a square in Q for all n ≥ 1. Observe that fnr (0) ≡ 5 mod 11 for n ≥ 3,
and g21(5) ≡ 6 mod 11. Because 6 is a non-square modulo 11, we must only
verify that neither of g21(fr(0)) or g21(f

2
r (0)) is a square in Q. The former

is 129/256 and the latter is (19 · 1723)/216, neither of which is a square in
Q. For g22(f

n
r (0)) we have a simpler argument using p = 5: observe that

g22(0) ≡ g22(−1) ≡ 2 mod 5 and fnr (0) ≡ 0 or −1 mod 5 for all n ≥ 1. �

We now consider the case where m+ 1 is a square. Say m+ 1 = s2 with
s ≥ 2, so that fr(x) = x2 − 1/m2 = x2 − 1/(s2 − 1)2. We have

g1(fr(x)) = x2 − m+ 1

m2
=

(
x− s

s2 − 1

)(
x+

s

s2 − 1

)
=: h1(x)h2(x).

(10)

Now, h1(fr(x)) = x2− s3−s+1
(s2−1)2 . Thus, h1(fr(x)) is irreducible unless s is the

x-coordinate of an integral point on the elliptic curve y2 = x3 − x+ 1. This
is curve 92.a1 in LMFDB, and has an unusually large number of integral
points: (0,±1), (1,±1), (−1,±1)(3,±5), (5,±11), (56,±419). We assume for
a moment that s 6∈ {3, 5, 56}, so that h1(fr(x)) is irreducible. Observe that
x2− 1

m2 maps the interval (−1/m, 0) into itself, and in particular, fnr (0) < 0
for all n ≥ 1. Thus, h1(f

n
r (0)) < 0 as well, and hence cannot be a square in

Q. Then Lemma 2.2 (with g = h1 ◦ fr and f = fr) proves that h1(f
n
r (x)) is

irreducible for all n ≥ 2. Thus, for s 6∈ {3, 5, 56}, we have that h1(f
n
r (x)) is

irreducible for all n ≥ 1. We now present a result that builds on Corollary
2.9.
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Corollary 2.11. Let r = 1/c and c = −(s2−1)2 for s ≥ 2, and let g2 be as in
(7) and h1, h2 as in (10). Suppose that (s2−1)2 ≤ 109. Then for all n ≥ 1 we
have g2(f

n
r (x)) and h2(f

n
r (x)) irreducible. If, in addition, s 6∈ {3, 5, 56} then

for all n ≥ 1 we have h1(f
n
r (x)) irreducible. In particular, if (s2− 1)2 ≤ 109

and s 6∈ {3, 5, 56}, then fnr (x) is a product of three irreducible factors for all
n ≥ 2.

Proof. Observe that (s2 − 1)2 ≤ 109 if and only if s ≤ 177. We have
shown in Corollary 2.9 that g2(f

n
r (x)) is irreducible for all s with 2 ≤ s ≤

177. In the paragraph preceding the present corollary, we showed that s 6∈
{3, 5, 56} implies that h1(f

n
r (x)) is irreducible for all n ≥ 1. To show that

h2(f
n
r (x)) is irreducible for n ≥ 1, it suffices by Lemma 2.2 to show that

{−h2(fr(0))} ∪ {h2(fnr (0)) : n ≥ 2} contains no squares in Q. Note that

−h2(fr(0)) = − s3−s−1
(s2−1)2 , and we have s3 − s − 1 > 0 for s ≥ 2. Hence,

h2(fr(0)) is not a square in Q. To verify that h2(f
n
r (0)) is a non-square in

Q for all n ≥ 2, we search for primes p satisfying the condition (8), with h2
replacing g2. We find that there exists a prime p ≤ 500 with the desired
property for all s with 2 ≤ s ≤ 177 except for s = 153. For that s-value, the
prime p = 1051 suffices.

For each such s and p, we take the finitely many terms of the sequence
(h2(f

n
r (0)))n≥2 that have still not been proven non-square, and reduce mod-

ulo small primes until all have been proven non-square. Unsurprisingly, the
s-value producing the largest number of such terms is s = 153, where we
must check that each of h2(fr(0)), h2(f

2
r (0)), . . . , h2(f

67
r (0)) is a non-square.

In all cases the desired result is achieved by reducing modulo primes less
than 100. �

Finally, we handle the case of s ∈ {3, 5, 56}. These are precisely the s-
values for which s3 − s + 1 is a square. In this case, h1(f(x)) is no longer
irreducible; indeed, we have

h1(f(x)) =

(
x−
√
s3 − s+ 1

s2 − 1

)(
x+

√
s3 − s+ 1

s2 − 1

)
=: h11(x)h12(x).

(11)

Proposition 2.12. Let r = 1/c and c = −(s2−1)2 for s ∈ {3, 5, 56}. Let g2
be as in (7), h2 as in (10), and h11 and h12 as in (11). Then for all n ≥ 1
we have g2(f

n
r (x)), h2(f

n
r (x)), h11(f

n
r (x)), and h12(f

n
r (x)) irreducible; in

particular, fnr (x) is a product of four irreducible factors for all n ≥ 3.

Proof. Corollary 2.11 shows that for s ∈ {3, 5, 56}, we have g2(f
n
r (x)) and

h2(f
n
r (x)) irreducible for all n ≥ 1. To show that h11(f

n
r (x)) and h12(f

n
r (x))

are irreducible for n ≥ 1, it suffices by Lemma 2.2 to show that none of

{−h11(fr(0))}∪{−h12(fr(0))}∪{h11(fnr (0)) : n ≥ 2}∪{h12(fnr (0)) : n ≥ 2}
is a square in Q. Note that −h11(fr(0)) = ((s2− 1)(

√
s3 − s+ 1) + 1)/(s2−

1)2. For s = 3, 5, 56 respectively, the prime factorization of the numerator



540 DEMARK, HINDES, JONES, MISPLON, STOLL AND STONEMAN

of −h11(fr(0)) is 41, 5 · 53, 2 · 656783, none of which is a square. Moreover,
−h12(fr(0)) < 0, and hence cannot be a square. Also, one readily sees
that h11(f

n
r (0)) < 0 for all n ≥ 2. For s = 3, we reduce the sequence

(h12(f
n
r (0))n≥2 modulo 29 and find that it cycles among the four values

17, 15, 26, 21, none of which is a square modulo 29. For s = 5, we reduce
modulo 23 and find that the sequence in question cycles between 10 and 11,
which are both non-squares modulo 23. For s = 56, we reduce modulo 31
and find that the sequence takes only the value 6, i.e. h12(f

n
r (0)) ≡ 6 mod 31

for all n ≥ 2. But 6 is non-square modulo 31. �

2.2. The case of fr irreducible, f2
r reducible. Assume now that c =

4m2(m2 − 1) for some m ≥ 2, in which case we have

f2r (x) =

(
x2 − 1

m
x+

2m2 − 1

4m2(m2 − 1)

)(
x2 +

1

m
x+

2m2 − 1

4m2(m2 − 1)

)
. (12)

Let q1(x) = x2− 1
mx+ 2m2−1

4m2(m2−1) and q2(x) = x2 + 1
mx+ 2m2−1

4m2(m2−1) . We note

that q1 and q2 both have discriminant −1/(m2 − 1), and so are irreducible.
Observe that for m = 2 we have the factorization

q2(fr(x)) = (x2 − (1/2)x+ 19/48)(x2 + (1/2)x+ 19/48). (13)

However, this is the only m-value for which such a factorization occurs, as
the next two results show.

Proposition 2.13. Let r = 1/c and c = 4m2(m2 − 1) for m ≥ 2. If f3(x)
has strictly more than two irreducible factors, then either

8m6−12m4+4m3+4m2−4m+1 or 8m6−12m4−4m3+4m2+4m+1

is a square in Q.

Proof. Observe that f3r (x) has strictly more than two irreducible factors if
and only if qi(fr(x)) is reducible for at least one i ∈ {1, 2}. Assume that
qi(fr(x)) is reducible, let α be a root of qi(fr(x)), and observe that fr(α) =: β
is a root of qi(x). By the irreducibility of qi(x), we have [Q(β) : Q] = 2.
Because qi(fr(x)) is reducible, we have [Q(α) : Q] < 4, which implies [Q(α) :
Q(β)] = 1, and thus α ∈ Q(β). But α is a root of fr(x) − β = x2 + r − β,
and so α ∈ Q(β) is equivalent to β − r being a square in Q(β). Letting β′

be the other root of qi(x), we have

NQ(β)/Q(β − r) = (β − r)(β′ − r) = qi(r)

=
8m6 − 12m4 ∓ 4m3 + 4m2 ± 4m+ 1

(4m4 − 4m2)2

The multiplicativity of the norm map implies that the rightmost expression
is a square in Q. �

We now prove Theorem 1.6, which we restate here.
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Theorem 2.14. The only rational points on the curve y2 = 8x6 − 12x4 −
4x3 + 4x2 + 4x+ 1 are those with x ∈ {−2,−1, 0, 1}.

Proof. We note first that the map (x, y) → (1/x, y/x3) gives a birational
transformation from the curve y2 = 8x6 − 12x4 − 4x3 + 4x2 + 4x+ 1 to the
curve

C : y2 = F (x) = x6 + 4x5 + 4x4 − 4x3 − 12x2 + 8.

Therefore, it suffices to find all rational points on C. Next, we see that
the polynomial F (x) factors over a small extension of Q. Fix an algebraic
number β satisfying β3 − 8β2 + 20β − 8 = 0, and observe that F (x) factors
as(
x2+(−β+4)x+1/2(β2−6β+8)

)(
x4+βx3+1/2(β2−2β)x2−4x−2β+4

)
.

Let K = Q(β), a number field of class number 1. Therefore, if (x, y) is a
rational point on C, then there exist y1, y2, α ∈ K such that

αy21 = F1(x) = x2 + (−β + 4)x+ 1/2(β2 − 6β + 8)

αy22 = F2(x) = x4 + βx3 + 1/2(β2 − 2β)x2 − 4x− 2β + 4
(14)

simultaneously; this follows from the fact that F1(x) and F2(x) lie in the
same square-class in K. Moreover, we may assume that α is in the ring
of integers OK of K and that the ideal αOK is not divisible by the square
of an ideal in OK . On the other hand, since the degrees of F1 and F2 are
not both odd (see Example 9 and Theorem 11 of [20]), if p is a prime in
OK that divides α and is coprime to 2, then p must divide the resultant
R = 36β2 − 240β + 400 of F1 and F2. Therefore, we may write

α = (−1)e0 · 2e1 ·
(β2

4
− 3β

2
+ 2
)e2
·
(3β2

4
− 4β + 5

)e3
(15)

for some ei ∈ {0, 1} and 0 ≤ i ≤ 3; here we use Sage to factor the fractional

ideal generated by R and find generators −1 and β2

4 −
3β
2 + 2 of the unit

group of K. In particular, we have deduced that if (x, y) ∈ C(Q), then
(x, y2) is a K-point on

Vα : αy2 = F2(x),

for some y2 ∈ K and some α in (15). In particular, for such α it must be
the case that Vα(Kv) is non-empty for every completion Kv/K. However,
we check with MAGMA that only the curves Vα corresponding to α = 1

and α = β2

4 −
3β
2 + 2 have points everywhere locally. On the other hand,

Vα(K) is non-empty for both of these choices of α. Therefore, there exist
computable elliptic curves E1 and E2 (in Weierstrass form) together with
birational maps φ1 : E1 → V1 and φ2 : E2 → Vβ2

4
− 3β

2
+2

all defined over K.

In particular, it suffices to compute the sets

Si =
{
P ∈ Ei(K) : x(φi(P )) ∈ P1(Q)

}
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for i ∈ {1, 2}, to classify the integral points on C. However, E1(K) and
E2(K) both have rank 2. In particular, rank(E1(K)) and rank(E2(K)) are
both strictly less than [K : Q] = 3. Therefore, S1 and S2 are finite sets,
and we may use the elliptic Chabauty method to describe them; see, for
instance, [5, §4.2]. Moreover, since both E1 and E2 are in Weierstrass form
and we succeed in finding explicit generators for their Mordell-Weil groups,
we may use an implementation of the elliptic Chabauty method in MAGMA
to describe S1 and S2; see the file named Elliptic Chabauty at the website
above for the relevant code. In particular, we deduce that

C(Q) = {∞+,∞−, (±1,±1), (−1/2,±19/8)},
from which Theorem 2.14 easily follows. �

Corollary 2.15. Let r = 1/c and c = 4m2(m2 − 1) for m ≥ 2. Then f3r (x)
has more than two irreducible factors if and only if m = 2.

Proof. The sufficiency is clear from (13). To see that m = 2 is also nec-
essary, assume that f3r (x) has more than two irreducible factors. From
Proposition 2.13, we have that m or −m is the x-coordinate of an integral
point on the curve y2 = 8x6−12x4−4x3 +4x2 +4x+1. It then follows from
Theorem 2.14 that ±m ∈ {−2,−1, 0, 1}. Since m ≥ 2, the only possibility
is m = 2. �

We have now assembled enough ingredients to prove Theorem 1.5.

Proof of Theorem 1.5. Part (a) is proven in Propositions 2.4 and 2.10.
Part (b) follows from Proposition 2.12 and the remarks after (10).

The first assertion of part (c) is proven in Corollary 2.15. To prove the
second assertion, let m = 2, let q1 and q2 be as in (12), and set v1(x) =
x2 − (1/2)x + 19/48 and v2(x) = x2 + (1/2)x + 19/48, so that q2(fr(x)) =
v1(x)v2(x). We must show that q1(f

n
r (x)) and vj(f

n
r (x)) (j ∈ {1, 2}) are

irreducible for all n ≥ 1. Because q1, v1, and v2 have even degree, by Lemma
2.2 it suffices to prove q1(f

n
r (0)) and vj(f

n
r (0)) are not squares in Q for all

n ≥ 1.
We now search for primes p satisfying the condition (8), with q1 and vj

replacing g2. We reduce the sequence q1(f
n
r (0)) modulo 239, and find that

it only takes the non-square value 13 for n ≥ 7. For n with 1 ≤ n ≤ 6,
one verifies directly that q1(f

n
r (0)) is not a square. We reduce the sequence

v1(f
n
r (0)) modulo 239, and find that it only takes the non-square value 73

for n ≥ 7. For n with 1 ≤ n ≤ 6, one verifies directly that v1(f
n
r (0)) is not a

square. We reduce the sequence v2(f
n
r (0)) modulo 41, and find that it only

takes the non-square value 24 for n ≥ 7. For n with 1 ≤ n ≤ 6, one verifies
directly that v2(f

n
r (0)) is not a square. �

We close this section with a proof of one case of Theorem 1.2.

Proposition 2.16. Let r = 1/c and c = 4m2(m2− 1) for m ≥ 3, and let q1
and q2 be as in (12). Suppose that 4m2(m2 − 1) ≤ 109. Then for all n ≥ 1
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we have q1(f
n
r (x)) and q2(f

n
r (x)) irreducible. Hence, fnr (x) is a product of

two irreducible factors for all n ≥ 2.

Proof. Observe that 4m2(m2 − 1) ≤ 109 if and only if m ≤ 125. Because
q1 and q2 have even degree, by Lemma 2.2 it suffices to prove q1(f

n
r (0))

and q2(f
n
r (0)) are non-squares in Q for all n ≥ 1. We search for primes p

satisfying the condition (8), with q1 and q2 replacing g2.
For q1(f

n
r (0)), we find that there exists a prime p ≤ 500 (indeed, p ≤ 337)

with the desired property for all m with 3 ≤ m ≤ 125. For q2(f
n
r (0)), we

also find that there exists a prime p ≤ 500 with the desired property for all
m with 3 ≤ m ≤ 125.

For each such m and p, we take the finitely many terms of the sequence
(q1(f

n
r (0)))n≥2 (resp. (q2(f

n
r (0)))n≥2) that have still not been proven non-

square, and reduce modulo small primes until all have been proven non-
square. �

3. The proof of cases (1)-(4) of Theorem 1.3

In the last section, we saw the primary importance of whether or not
p(fnr (0)) is a square, for various polynomials p(x). For the remainder of this
article, we use similar ideas to study the irreducibility of fr(x) in the case
where f2r (x) is irreducible. However, we use a refinement of [10, Proposition
4.2], similar to [11, Theorem 2.3], that is more powerful; see Lemma 1.10
(restated as Lemma 3.2 below).

Recall from the introduction that r = 1/c, and that fnr (0) is a rational

number with denominator c2
n−1

. We define an(c) to be the numerator of
fnr (0). Hence, an(c) is described by the recurrence

a1(c) = 1, an(c) = an−1(c)
2 + c2

n−1−1 for n ≥ 2. (16)

To ease notation, we often suppress the dependence on c, and write a1, a2,
etc. Recall also that we define

bn :=
an−1 +

√
an

2
∈ Q. (17)

Proposition 3.1. If c < 0, then an is not a square in Q for all n ≥ 2.

Proof. Let r = 1/c and fr(x) = x2 + r, and consider the image of the
interval I = (−

√
−r, 0) under fr : R → R. We have fr(−

√
−r) = 0 and

fr(0) = r ∈ I, so as fr is a continuous function with no critical points in I,
it follows that fr(I) ⊂ I. As fr(0) = r ∈ I, inductively, fnr (0) ∈ I for all
n ≥ 1. Hence, 0 > fnr (0) = an/c

2n , and hence an < 0 for n ≥ 1, proving
that an is not a square in Q. �

We now prove Lemma 1.10, which we restate here.

Lemma 3.2. Suppose that c ∈ Z \ {0}, r = 1/c, and f2r is irreducible. Let
an = an(c) and bn be defined as in (16) and (17), respectively. If for every
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n ≥ 3, bn is not a square in Q (which holds in particular if an is not a square
in Q), then fnr (x) is irreducible for all n ≥ 1.

Proof. This proof is essentially the same as the proof of [11, Theorem 2.3],
but for completeness we give the argument here. By hypothesis f2r (x) is
irreducible; assume inductively that fnr (x) is irreducible for some n ≥ 2. Let
α be a root of fn+1

r (x), and observe that fr(α) =: β is a root of fnr (x). By our
inductive assumption, we have [Q(β) : Q] = 2n. Now fn+1

r (x) is irreducible
if and only if [Q(α) : Q] = 2n+1, which is equivalent to [Q(α) : Q(β)] = 2.
This holds if and only if fr(x) − β is irreducible over Q(β), i.e. β − r
is not a square in Q(β). Now factor fnr (x) over K1 := Q(

√
−r). We have

fnr (x) = (fn−1r (x)−
√
−r)(fn−1r (x)+

√
−r), and because [Q(β) : Q] = 2n, we

must have [Q(β) : K1] = 2n−1, which implies that the minimal polynomial
of β over K1 is one of fn−1r (x)±

√
−r. It follows that NQ(β)/K1

(β− r) is the

product of (β′ − r), where β′ varies over all roots of fn−1r (x) ±
√
−r; this

product is just fn−1r (r) ±
√
−r (here we use that n ≥ 2, so the degree of

fn−1r (x) is even and we may replace the product of (β′−r) with the product
of (r − β′)). To summarize, we have

NQ(β)/K1
(β − r) = fn−1r (r)±

√
−r = fnr (0)±

√
−r.

Suppose now that fn+1
r (x) is reducible, and hence β− r is a square in Q(β).

Because the norm map is multiplicative, this implies NQ(β)/K1
(β − r) is a

square in K1, i.e. there exist s1, s2 ∈ Q with (s1 + s2
√
−r)2 = fnr (0)±

√
−r.

Elementary calculations show this last equality implies s2 = 1
2s1

and s21 −
rs22 = fnr (0), whence

s21 =
fnr (0)±

√
fn+1
r (0)

2
=
an ±

√
an+1

2c2n−1 .

Now n ≥ 2, and hence we have that one of (an±
√
an+1)/2 is a square in Q.

If c < 0, then this is impossible by Proposition 3.1. Hence, suppose c > 0.
As an+1 = a2n+ c2

n−1 > a2n > 0, we have (an−
√
an+1)/2 < 0, implying that

(an +
√
an+1)/2 is a square in Q. But this is contrary to the hypotheses of

the lemma, and we thus conclude that fn+1
r (x) is irreducible. �

Proposition 3.3. Let c ∈ Z \ {0,−1}. Then neither a3 nor a4 is a square
in Q.

Proof. We have a3(c) = c3 + c2 + 2c + 1, and so if a3(c) = y20 for y0 ∈ Q,
then necessarily y0 ∈ Z, and (c, y0) is an integer point on the elliptic curve
y2 = x3+x2+2x+1. This curve has conductor 92, and is curve 92.b2 in the
LMFDB [16]. Besides the point at infinity, it has only the rational points
(0,±1), but c = 0 is excluded by hypothesis.

We now address a4(c). As in the previous paragraph, if a4(c) = y20 for
y0 ∈ Q, then (c, y0) is an integer point on the hyperelliptic curve

C : y2 = x7 + x6 + 2x5 + 5x4 + 6x3 + 6x2 + 4x+ 1.
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One easily checks that x7 + x6 + 2x5 + 5x4 + 6x3 + 6x2 + 4x + 1 has no
repeated roots, and hence C has genus 3. Denote by J the Jacobian of
C. A two-descent using MAGMA [2] shows that J(Q) has rank zero, and
hence consists only of torsion. We now use standard reduction techniques
to determine all torsion in J(Q) [9, Theorem C.1.4 and Section C.2]. We
have a commutative diagram

C(Q) −−−−→ J(Q)y y
C(F3) −−−−→ J(F3)

(18)

where the vertical maps are reduction modulo 3 and the horizontal maps are
the Abel-Jacobi maps taking P to the divisor class of (P −∞). The latter
are injective [9, Corollary A.6.3.3]. The discriminant of C is 212 · 23 · 2551,
and it follows that C, and hence J [9, p. 164], has good reduction at all
primes p /∈ {2, 23, 2551}. Because J(Q) is torsion, it follows that for any
such prime p, the reduction map J(Q)→ J(Fp) is injective; see, for instance,
the appendix of [15]. Thus, the right vertical map in (18) is injective, and it
follows that the left vertical map is injective as well. But one verifies that
#C(F3) = 4, and hence C(Q) = {∞, (0,±1), (−1, 0)}. Because we have
excluded c = 0,−1, we arrive at the desired contradiction.

One may attempt the same argument with a5(c), but a 2-descent on the
Jacobian J of the associated genus-7 hyperelliptic curve shows only that the
rank of J(Q) is at most 2. �

Proposition 3.4. The sequence (an)n≥1 is a rigid divisibility sequence. (See
Definition 2.5).

Proof. This is a straightforward application of [8, Lemma 2.5]. �

Proposition 3.5. Suppose that c+ 1 is not a square in Z. If c satisfies any
of the congruences in Table 1, then an is not a square in Q for all n ≥ 2.

Proof. By Proposition 3.1, it suffices to consider c > 0. Because a2 =
c + 1 > 0 is non-square by assumption, there is a prime q with vq(c + 1)
odd. Proposition 3.4 then implies that a2m is non-square for all m ≥ 1, so
we need only check that an is non-square for odd n ≥ 2. To do this, we let
f(x) = x2 + 1/c and we take p to be a fixed prime with p < 100 and p - c.
Let c0 ∈ {1, . . . , p−1} satisfy (1/c) ≡ c0 mod p and put f̄ = x2 + c0 ∈ Fp[x].

Now an = c2
n−1

fn(0), and it follows that if f̄n(0) is not a square in Fp, then
an is not a square in Q. The sequence (f̄n(0) mod p)n≥1 eventually lands in
a repeating cycle. When this sequence is such that f̄2n+1(0) is a non-square
in Fp for all n ≥ 2, then a2n+1 is a non-square in Z for all n ≥ 1 (the
n = 1 case is by Proposition 3.3). Most of the pairs of p, c listed in Table
1 yield such a result. For instance, when p = 3 and c ≡ 1 mod p, we have
f̄n(0) = 2 for all n ≥ 2. When p = 5 and c ≡ 3 mod p, the sequence f̄n(0)
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c ≡ 1, 2 (mod 3)

c ≡ 3 (mod 4)

c ≡ 2, 3 (mod 5)

c ≡ 1, 2, 5, 6 (mod 7)

c ≡ 1 (mod 8)

c ≡ 1, 3, 5, 7, 10 (mod 11)

c ≡ 3, 4, 5, 6, 8, 11 (mod 13)

c ≡ 6, 10, 14, 15 (mod 17)

c ≡ 1, 4, 9, 11, 12, 13, 15, 16, 18 (mod 19)

c ≡ 6, 10, 12, 18, 20, 22 (mod 23)

c ≡ 2, 12, 14, 17, 18, 27 (mod 29)

c ≡ 1, 10, 13, 16, 22, 27, 30 (mod 31)

c ≡ 6, 18, 23, 31, 32, 35 (mod 37)

c ≡ 7, 8, 11, 19, 25, 28, 35, 36 (mod 41)

c ≡ 1, 2, 4, 5, 9, 14, 15, 21, 27, 33, 37, 42 (mod 43)

c ≡ 6, 7, 9, 10, 24, 25, 28, 33, 46 (mod 47)

c ≡ 5, 18, 21, 23, 26, 30, 37, 40, 43, 45, 46, 47 (mod 53)

c ≡ 10, 14, 16, 29, 37, 47, 55, 57, 58 (mod 59)

c ≡ 2, 3, 11, 13, 15, 27, 30, 32, 34, 40, 45, 50 (mod 61)

c ≡ 10, 15, 20, 32, 33, 38, 41, 49, 51, 53, 55, 66 (mod 67)

c ≡ 4, 10, 49, 51, 53, 61, 70 (mod 71)

c ≡ 1, 3, 35, 43, 44, 50, 51, 71 (mod 73)

c ≡ 3, 12, 25, 32, 36, 58, 78 (mod 79)

c ≡ 15, 16, 19, 23, 25, 29, 31, 37, 41, 44, 51, 56, 59, 68, 71, 82 (mod 83)

c ≡ 13, 25, 49, 63 (mod 89)

c ≡ 3, 9, 21, 53, 59, 79, 89 (mod 97)

Table 1. Congruences that ensure an is not a square for
n ≥ 2, provided that c+ 1 is not a square.

is 2, 1, 3, 1, 3, . . ., and hence f̄2n+1(0) is a non-square for all n ≥ 1. The

remaining pairs p, c in Table 1 satisfy the condition that both f̄3(n+1)+1(0)
and f̄3n+2(0) are non-squares for n ≥ 1 (the n+ 1 comes from the fact that
a4 is automatically a non-square by Proposition 3.3). Thus, a3n+1 and a3n+2

are non-squares in Z for all n ≥ 1. But by Proposition 3.3 we have that
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a3 is not a square in Z, and it follows from Proposition 3.4 that a3n is a
non-square in Z for all n ≥ 1. An example is when p = 7 and c ≡ 5 mod p,
for which the sequence f̄n(0) is 3, 5, 0, 3, 5, 0, . . .. �

We now prove cases (1)-(4) of Theorem 1.3, which we restate here.

Theorem 3.6. Let fr(x) = x2 + r with r = 1/c for c ∈ Z \ {0,−1}, and
let an and bn be as in (16) and (17). Assume that c satisfies one of the
following conditions:

(1) −c ∈ Z \ Z2 and c < 0;
(2) −c, c+ 1 ∈ Z \ Z2 and c ≡ −1 mod p for a prime p ≡ 3 mod 4;
(3) −c, c+1 ∈ Z\Z2 and c satisfies one of the congruences in Proposition

3.5 (see Table 1);
(4) −c ∈ Z \ Z2 and c is odd;

In cases (1)-(3), an is not a square in Q for any n ≥ 2, while in case (4),
bn is not a square for any n ≥ 2. In all cases, fnr (x) is irreducible for all
n ≥ 1.

Proof. Observe that conditions (1)-(4) each imply that f2r (x) is irreducible,
by Proposition 2.1 (note that c = 4m2(m2−1) implies that c+1 = (2m−1)2,
and that this is impossible when c is odd). We now argue that in cases (1)-
(3) an is not a square in Q for any n ≥ 2 and in case (4), bn is not a square
for any n ≥ 2. In all these cases, Lemma 1.10 proves that fnr (x) is irreducible
for all n ≥ 1.

If we are in case (1), then the desired conclusion holds by Proposition 3.1.
Assume we are in case (2). Because we have already established case (1),

it suffices to consider c > 0. Because 1/c ≡ −1 mod p, we see that modulo
p, the orbit of 0 under fr is 0 7→ −1 7→ 0 7→ · · · . Moreover, −1 is not a
square modulo p by assumption, and so a2n+1 is not a square for all n ≥ 3.
Because a2 = c+ 1 ≥ 2 is assumed non-square, it must be divisible by some
prime to odd multiplicity. From Proposition 3.4, it then follows that a2n is
not a square in Q for all n ≥ 1.

In case (3) the desired conclusion holds by Proposition 3.5.
In case (4), if an is not a square in Q then bn cannot be a square in Q,

and so we are done. If an is square in Q, then from the recursion in (16)
and the fact that any integer equals its square modulo 2, we have

√
an ≡ an ≡ a2n−1 + c2

n−1−1 ≡ a2n−1 + 1 ≡ an−1 + 1 (mod 2).

Thus, modulo 2, we have an−1 +
√
an ≡ 2an−1 + 1 ≡ 1, whence

v2

(
an−1 +

√
an

2

)
= −1,

proving that bn =
an−1+

√
an

2 is not a square in Q. �
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4. Proof of cases (5) and (6) of Theorem 1.3

In this section we deduce consequences from the assumption that an(c) or
even bn(c) is a square. This will lead to a fairly small upper bound on n in
terms of c. One application is the proof of cases (5) and (6) of Theorem 1.3.
Another is the development of a fast algorithm for checking that all iterates
of f are irreducible as soon as f2 is, for all c up to a very large bound; this
is done in the next section.

We denote the set of positive integers by Z+.

Lemma 4.1. Let c ∈ Z+ and n ≥ 2 such that an(c) is a square. Then we
can write c = uv with coprime integers u and v such that

(1) if c is odd, then

v2
n−1−1 − u2n−1−1 = 2an−1(uv);

(2) if c is even, then u is even and

v2
n−1−1 − 1

4u
2n−1−1 = an−1(uv).

If, in addition, bn(c) = (an−1(c) +
√
an(c))/2 is a square (with the positive

square root), then c is even and v is a square (and u and v are positive) or
−u is a square (and u and v are negative).

Proof. To simplify notation, we set N := 2n−1 − 1. By assumption, there
is s ∈ Z+ such that

an(c) = cN + an−1(c)
2 = s2

and hence
cN =

(
s+ an−1(c)

)(
s− an−1(c)

)
.

It follows easily by induction that am(c) ≡ 1 mod c for all m ≥ 1; in par-
ticular, an−1(c) and s are coprime with c. Since gcd(an−1(c), s) divides a
power of c, it follows that an−1(c) and s are also coprime. So we can deduce
that

gcd
(
s+ an−1(c), s− an−1(c)

)
| gcd(2s, 2an−1(c)) = 2.

We set t+ := s+ an−1(c) and t− := s− an−1(c).
(1) If c is odd, then the gcd on the left is odd (since it divides a power

of c), so t+ and t− are coprime. Then t+t− = cN implies that c = uv
with u, v coprime and t+ = vN , t− = uN . The claim follows, since
t+ − t− = 2an−1(c).

(2) Now assume that c is even. Then gcd(s+ an−1(c), s− an−1(c)) = 2,
since both entries have the same parity and their product is even.
We can then write c = uv with coprime u and v and u even such
that either t+ = 2vN and t− = 1

2u
N or t+ = 1

2u
N and t− = 2vN .

In the first case, the claim again follows from t+ − t− = 2an−1(c).
In the second case, we obtain (−v)N − 1

4(−u)N = (−t− + t+)/2 =
an−1((−u)(−v)), so we get the claim upon changing the signs of u
and v.
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For the last claim, observe that

0 <
an−1(c) +

√
an(c)

2
=
an−1(c) + s

2
=
t+
2
.

If c is odd, then t+ is odd, and t+/2 cannot be a square. Otherwise, t+/2 is
equal to either vN or (−u)N/4. Since N is odd, the claim follows. �

We set, for c ≥ 4,

F (c) =
1

2

(
1−

√
1− 4

c

)
=

2

c

(
1 +

√
1− 4

c

)−1
.

From the first expression, it is clear that F (c) decreases monotonically
from 1/2 to 0 as c grows from 4 to infinity. The second expression shows
that for large c, F (c) is close to 1/c.

Lemma 4.2. Let c ≥ 4. Then the sequence (ān(c))n≥1, where

ān(c) =
an(c)

c2n−1−1 ,

satisfies 1 = ā1(c) < ā2(c) < . . . and limn→∞ ān(c) = cF (c).

Proof. We have that ān+1(c) = 1 + ān(c)2/c. When 1 ≤ x < cF (c), then
cF (c) > 1+x2/c > x, so that the sequence is strictly increasing and bounded
by cF (c). Since cF (c) is the smallest fixed point ≥ 1 of x 7→ 1 + x2/c, it
must be the limit. �

We make a couple of definitions.

Definition 4.3. Let c ≥ 2 be an integer. We set

q(c) = min
{v
u

: u, v ∈ Z+ coprime with v > u and c = uv
}

and

q̃(c) = min
{v
u

: u, v ∈ Z+ coprime with v > u, c = uv,

and at least one of u and v is a square
}
. (19)

We note that q̃(c) ≥ q(c) > 1 + 1/
√
c, since v ≥ u+ 1 in the set above, so

q(c) ≥ 1 + 1/u for the minimizing u, and u <
√
c, since u2 < uv = c.

We write “log” for the natural logarithm.

Definition 4.4. Let c ∈ Z+ and n ≥ 2. We define ε(n, c) so that

log

√
an(c) + an−1(c)√
an(c)− an−1(c)

=
ε(n, c)√

c
.

It follows from Lemma 4.2 and the properties of F (c) that for fixed c ≥ 4,
ε(n, c) increases with n with limit

ε(c) := lim
n→∞

ε(n, c) =
√
c log

1 +
√
F (c)

1−
√
F (c)
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and that ε(c) decreases monotonically when c increases, with limc→∞ ε(c) =
2. In particular, we have that

ε(n, c) ≤ ε(c) ≤ ε(4) = 4 log(1 +
√

2) and
ε(n, c)√

c
≤ 2 log(1 +

√
2) .

Since (ex− 1)/x is monotonically increasing for positive x, this implies that
(for c ≥ 4)

exp
(ε(n, c)√

c

)
≤ 1 +

1 +
√

2

log(1 +
√

2)
· ε(n, c)√

c
≤ 1 +

4(1 +
√

2)√
c

. (20)

We note that

ε(c)√
c log q(c)

< 3.46 for c ≥ 4, (21)

ε(c)√
c log(1 + 1/

√
c)
< 2.12 for c ≥ 100, (22)

ε(c)√
c log(1 + 1/

√
c)
< 2.01 for c ≥ 10400. (23)

(To get (21), we use (22) and the explicit values of q(c) for c < 100. The
maximum is achieved for c = 6.) We will also need the elementary bound

1

log(1 + 1/
√
c)
≤
√
c+ 1

2 . (24)

We can now deduce an upper bound on n such that an(c) can be a square.

Proposition 4.5. Let c ≥ 4 be an integer and n ≥ 4. If c is odd or

n ≥ 1 + log2

(
1 +

ε(n, c)√
c log q(c)

+
log 4

log q(c)

)
,

then an(c) is not a square. This is the case whenever

√
c ≤ 2n−1 − 1

log 4
− 3.

If the weaker condition

n ≥ 1 + log2

(
1 +

ε(n, c)√
c log q̃(c)

+
log 4

log q̃(c)

)
holds, then bn(c) is not a square.

Proof. In the following, we write am for am(c), since c is fixed. We assume
that an is a square, so by Proposition 3.3 we have n ≥ 5, and by Lemma 4.1
and its proof we can write c = uv with coprime u, v (and u even when c is
even) such that

(vN , uN ) = (
√
an + an−1,

√
an − an−1) if c is odd;

(vN , uN ) =
(
1
2(±
√
an + an−1), 2(±

√
an − an−1)

)
if c is even,

where N = 2n−1 − 1.
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First assume that c is odd. Then v > u > 0, and we obtain using (20)

1 +
N√
c
≤

(
1 +

1√
c

)N
<
(v
u

)N
=

√
an + an−1√
an − an−1

= exp
(ε(n, c)√

c

)
≤ 1 +

4(1 +
√

2)√
c

,

which is a contradiction, since N ≥ 15. So an cannot be a square.
Now assume that c is even. If u, v > 0 (this corresponds to the positive

sign above), then (v
u

)N
=

1

4

√
an + an−1√
an − an−1

.

If u, v < 0, then (u
v

)N
= 4

√
an + an−1√
an − an−1

.

In both cases, we have that | log(v/u)| ≥ log q(c). This gives

N log q(c) ≤ N
∣∣∣log

v

u

∣∣∣ ≤ log 4 +
ε(n, c)√

c
, (25)

which is equivalent to the inequality we wanted to show. If we assume that
bn(c) is a square, then we have in addition that |u| or |v| is a square, hence
the bound is valid for q̃(c) in place of q(c).

The bound on
√
c follows from the first inequality, together with the

estimates ε(n, c) ≤ ε(c), q(c) > 1+1/
√
c, and from (21) and (24). Note that

3.46/(log 4) + 0.5 < 3. �

This gives the following.

Corollary 4.6. Let c ≥ 4 be an integer and set f(x) = x2 + 1/c.

(1) If c is odd, then all fn are irreducible.
(2) If c is even and fm is irreducible for

m = 1 +
⌊
log2

(
1 +

log 4 + ε(c)/
√
c

log(1 + 1/
√
c)

)⌋
,

then all fn are irreducible.
(3) If c is even, f2 is irreducible, and ap(c) is not a square for all prime

numbers p with

5 ≤ p ≤ 1 +
⌊
log2

(
1 +

log 4 + ε(c)/
√
c

log(1 + 1/
√
c)

)⌋
,

then all fn are irreducible.
(4) If f2 is irreducible, c > 50, and q̃(c) ≥ 1.15c−1/30, then all fn are

irreducible.

We note that case (1) gives another proof of case (4) of Theorem 1.3 for
positive c.
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For large c, the bound on n in case (2) of the corollary is close to 1 +
log2(3 + (

√
c+ 1

2) log 4).

Proof. We recall that all fn are irreducible when fm is irreducible for
some m and an(c) or bn(c) is not a square for all n > m.

(1) If c is positive and odd, then f is irreducible and f2 is also irreducible
(since c is not of the form 4m2(m2 − 1), compare Proposition 2.1).
By Proposition 3.3, a3(c) is never a square when c > 0. By Propo-
sition 4.5, an(c) is not a square for all n ≥ 4, so the claim follows.

(2) If c is even and n > m, then

n ≥ 1 + log2

(
1 +

ε(n, c)√
c log q(c)

+
log 4

log q(c)

)
,

since q(c) > 1 + 1/
√
c and ε(n, c) < ε(c). So by Proposition 4.5,

an(c) is not a square, and the claim again follows.
(3) Let m be as in (2). Then an(c) is not a square for n > m. For 3 ≤

n ≤ m, an(c) is not a square by assumption (or by Proposition 3.3
for n = 3) if n is prime. Otherwise, n is divisible by 4 or by an
odd prime p ≤ m; then it follows that an(c) is not a square either,
because (an(c)) is a rigid divisibility sequence by Proposition 3.4 and
neither a4(c) (by Proposition 3.3 again) nor ap(c) is a square.

(4) First note that 22/15ε(c)1/15 < 1.15 when c > 50. The stated in-
equality then implies that the bound on n in the second statement
of Proposition 4.5 is < 5. �

We remark that recent work by one of the authors [21] shows that a5(c) is
never a square when c 6= 0, which allow us to replace “5” by “7” in case (3)

of the corollary and the condition in case (4) by “q̃(c) ≥ 1.034c−1/126”.
We can use case (4) of Corollary 4.6 to deduce case (5) of Theorem 1.3;

case (6) of this theorem follows by a similar argument.

Proof of cases (5) and (6) of Theorem 1.3. We can assume that c >
50 and c is even, since negative c are dealt with by case (1) and odd c are
covered by case (4) of the theorem; the few positive even c ≤ 50 can be
checked individually by the methods of this section. Then the assumptions
of case (5) imply that f2r is irreducible by Proposition 2.1. Since when c is
a square, c cannot be of the form 4m2(m2 − 1) either, this is also true in
case (6).

We first consider case (5). Assume that c = uv with u and v coprime and

(say) |u| a square. Then |v| ≥
∏

p:2-vp(c)
pvp(c) and |u| ≤

∏
p:2|vp(c)

pvp(c), so that

the inequality in the statement implies that q̃(c) > 1.15c−1/30. The claim
follows by invoking case (4) of Corollary 4.6.

We now consider case (6). If the claim is false, then there is n ≥ 5 such
that an(c) is a square. By Lemma 4.1 it follows that we can write c = uv
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with coprime u and v, with u even, such that v2
n−1−1− 1

4u
2n−1−1 = an−1(c).

Both u and v are now squares up to sign, so that we have

(v2
n−1−1, 14u

2n−1−1) = ±(x2, y2)

with coprime integers x and y, which implies that

x2 − y2 = ±an−1(c). (26)

Recall that an−1(c) ≡ 1 mod c. Since c is an even square, x is odd, and
y is even, we obtain the congruence 1 ≡ ±1 mod 4, which shows that we
must have the positive sign in (26). Let p 6≡ 1 mod 4 be a prime dividing c;
since c is a square, p2 | c. It follows that x2 ≡ y2 + 1 mod p2, and since
−1 is a non-square mod p2, p | x is impossible, so that we must have p | y.

This in turn implies that |u| ≥
∏

p:p 6≡1 mod 4

pvp(c) and |v| ≤
∏

p:p≡1 mod 4

pvp(c).

The inequality in the statement then implies that u/v > 1.15c−1/30. This
contradicts the second inequality in (25), so that we can conclude as in the
proof of Proposition 4.5 that an(c) cannot be a square, a contradiction. �

5. A fast algorithm and the proof of case (7) of Theorem 1.3

In this section, we always assume that c ≥ 4 is an even integer. Fix n ≥ 5
and assume that an = an(c) is a square. Set N = 2n−1 − 1. By Lemma 4.1,
we can write c = uv with u and v coprime integers and u even such that

vN − 1

4
uN = an−1(c). (27)

We now consider equation (27) as a relation between real numbers. First,
note that for c ≥ 6, we have (using Lemma 4.2 for the second inequality)

c2
n−2−1 + c2

n−2−2 ≤ an−1(c) ≤ c2
n−2

F (c) ≤ c2n−2−1 + 2c2
n−2−2,

so (27) implies that

vN − 1

4
uN = (uv)M + λ(uv)M−1

with 1 ≤ λ ≤ 2, where M = 2n−2 − 1 (so that N = 2M + 1).

We now set θ := 21/N , x := θ−1u and y := θv; this gives

yN − xN = 2(xy)M + 2λ(xy)M−1.

Writing

z :=
(xy)M

x2M + x2M−1y + . . .+ y2M
> 0

and recalling that N = 2M + 1, this leads to

y − x = 2
(

1 +
λ

xy

)
z. (28)



554 DEMARK, HINDES, JONES, MISPLON, STOLL AND STONEMAN

We want to estimate z. We expect that z is close to 1/N , which is the value
we obtain when x = y. Since x2M−kyk +xky2M−k ≥ 2(xy)M , it follows that

z ≤ 1

N
.

Since xy = uv = c ≥ 6, we see that y − x has to be small:

0 < y − x < 3

N
. (29)

We get a lower bound on z as follows. Write wk := xk +xk−1y+ . . .+ yk.
We consider

xy

(y − x)2
(1−Nz) =

xyw2M −N(xy)M+1

(y − x)2w2M

=

M∑
j=1

(xy)M+1−j(yj − xj)2

(y − x)2w2M
=

M−1∑
j=0

(xy)M−jw2
j

w2M
. (30)

We note that (xy)M−jw2
j is given by

xM+jyM−j + 2xM+j−1yM−j+1 + . . .+ (j + 1)xMyM + . . .+ xM−jyM+j ,

which is at most (j + 1)w2M , and this gives that

xy

(y − x)2
(1−Nz) ≤

M−1∑
j=0

(j + 1) =
M(M + 1)

2
.

Thus, using (29) for the second inequality,

z ≥ 1

N
− M(M + 1)

2N

(y − x)2

xy
≥ 1

N
− 9M(M + 1)

2N3

1

xy
.

Using this, 1 ≤ λ ≤ 2, and 0 < λ/(xy) ≤ 1/3 in (28), we obtain∣∣∣y − x− 2

N

∣∣∣ ≤ 4

N

1

xy
.

Going back to our original integral variables u and v, this final bound is
equivalent to ∣∣∣θ2v − u− 2θ

N

∣∣∣ ≤ 4θ

N

1

uv
. (31)

We want to replace 1/(uv) on the right by 1/v2. The following lemma allows
us to do that.

Lemma 5.1. Let c ≥ 4 be even. We assume that an(c) is a square for some

n ≥ 2 and take u and v as in (27). Then, with N = 2n−1− 1 and θ = 21/N ,

(3− 2
√

2)1/N <
u

θ2v
< (3 + 2

√
2)1/N

and

(3− 2
√

2)1/N <
θ2v

u
< (3 + 2

√
2)1/N .
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In particular,

1

uv
<

(3 + 2
√

2)1/N

θ2
1

v2
and c > θ2(3− 2

√
2)1/Nv2.

Proof. Note that for c ≥ 4, we have an−1(c) < 2c2
n−2−1 ≤ cN/2. Using this

in (27) and dividing by vN , this gives∣∣∣1− ( u

θ2v

)N ∣∣∣ < 2

√( u

θ2v

)N
.

Set µ := (u/(θ2v))N/2 > 0. Rearranging, we obtain that

(µ− 1)2 < 2 and (µ+ 1)2 > 2,

which gives

(
√

2− 1)2 < µ2 =
( u

θ2v

)N
< (
√

2 + 1)2,

from which the bounds in the statement are easily derived. �

Corollary 5.2. Let c ≥ 6 be even. We assume that an(c) is a square for
some n ≥ 2 and take u and v as in (27). Then, with N = 2n−1 − 1 and

θ = 21/N , ∣∣∣θ2v − u− 2θ

N

∣∣∣ < 4(3 + 2
√

2)1/N

θN

1

v2
. (32)

Proof. This follows immediately from (31) and Lemma 5.1. �

We can use the estimate (32) to compute a large lower bound on v (and
therefore on c, by Lemma 5.1), in the following way. We set

δ :=
4(3 + 2

√
2)1/N

θN
.

Choose some ε > 0 (roughly of size B−2 when B is the desired lower
bound for v). Let Λε ⊂ R2 be the lattice generated by the vectors (ε, θ2)
and (0,−1). Use lattice basis reduction to find the minimal squared eu-
clidean distance σ(ε) between a lattice point and (0, 2θ/N). Now, assuming
that (v, u) ∈ Z2 satisfies |θ2v − u − 2θ/N | < δ/v2 (which follows by Corol-
lary 5.2 for suitable (v, u) if an(c) is a square), we see that

σ(ε) ≤ (εv)2 + |θ2v − u− 2θ/N |2 < ε2v2 + δ2v−4.

If the polynomial ε2X3 − σ(ε)X2 + δ2 has two positive roots 0 < ξ− ≤ ξ+,
then it follows that

|v| >
√
ξ+ or |v| <

√
ξ−.

If we already know (from Proposition 4.5 or a previous application of the

method) that |v| must be larger than
√
ξ−, then we get the new lower bound

|v| >
√
ξ+.

Since the covolume of Λε is ε, we expect that σ(ε) ≈ ε. If ε is sufficiently

smaller than δ2, then we get
√
ξ− ≈

√
δ/ 4
√
ε and

√
ξ+ ≈ 1/

√
ε.
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This gives the following algorithm for checking that an(c) can never be a

square when 4 ≤ c ≤ θ2(3− 2
√

2)1/NB2, for a large bound B.

(1) Use Proposition 4.5 and Lemma 5.1 to determine B0 such that |v| ≥
B0 in any solution of an(c) = �. For example, we can take

B0 :=

⌈
(
√

2− 1)1/N

θ

( N

log 4
− 3
)⌉

,

where N = 2n−1 − 1 and θ = 21/N as usual.
(2) Repeat the following steps until B0 > B.

(a) Set ε := γδ2B−40 with some γ ≈ 1.
(b) Compute σ(ε) and ξ−, ξ+.
(c) If ξ− ≥ B2

0 (or does not exist), increase γ and go to Step (2a) .

(d) Set B0 :=
⌈√

ξ+

⌉
.

If the algorithm terminates, then this gives a proof that |v| ≥ B and

therefore (by Lemma 5.1) c > θ2(3−2
√

2)1/NB2 in any solution of an(c) = �.
Since this uses real numbers, it does not yet give a method that can be

implemented on a computer. We need to figure out which precision is neces-
sary. The lattice basis reduction will essentially compute continued fraction
approximations to θ2 with numerators and denominators of size roughly B2

0 .

The resulting reduced lattice basis will have lengths of order B−20 . The vec-
tor that is closest to (0, 2θ/N) will then have coefficients of order B2

0 in terms
of this lattice basis. We need the resulting minimal distance to be computed
to an accuracy that is somewhat better than B−20 . This means that we need
more than 6 log2B0 bits of precision. In practice, we work with an integral
lattice obtained by scaling and rounding the basis given above, as follows.
We assume that we have computed θ to > 8 log2B0 bits of precision. In the
following, bαe denotes any integer a such that |α − a| ≤ 1. We can then
make the loop in Step 2 of the algorithm above precise in the following way.

(1) Set γ := δ2.
(2) Let Λ ⊂ Z2 be the lattice generated by (bγB4

0e, bθ2B8
0e) and (0,−B8

0).
(3) Compute the four points of Λ closest to (0, b2θB8

0/Ne); call (vj , uj)
(for j = 1, 2, 3, 4) their coefficients with respect to the original basis
of Λ and set
(aj , bj) := (vjbγB4

0e, vjbθ2B8
0e − ujB8

0 − b2θB8
0/Ne).

(4) Set σ := min
j=1,2,3,4

(
max{0, |aj | − |vj |}2 + max{0, |bj | − |vj | − 1}2

)
.

(5) Set h(x) = bγB4
0e2x6 − σx4 + dδ2B16

0 e ∈ Z[x].
(6) If h(B0) ≥ 0, then set γ := 2γ and go to Step (2) .
(7) Set B0 := max{x ∈ Z>B0 : h(x) ≤ 0}+ 1.

The main point here is that σ/B16
0 is a lower bound for σ(ε), where

ε = γ/B4
0 .

If we denote the successive values taken by B0 by B0, B1, B2, . . ., then we
expect that Bk+1 ≈ B2

k/δ. So to reach a given bound B, we will have to
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make about log logB passes through the loop. The computational cost of
the last pass dominates all others; it is polynomial in logB.

Example 5.3. We illustrate how the method works in the case n = 5. The
initial lower bound for |v| is B0 = 8. The lattice Λ has basis (336, 18401670)
and (0,−16777216); the target vector is (0, 2342757). We compute σ =
2373638400 and find that h(B0) < 0. We obtain the new lower bound
B1 = 145. In the same way, we find the successive lower bounds

B2 = 56956

B3 = 1196488139

B4 = 7319637204404186177

B5 = 41458361126834155279142315082592517830

and so on.

This allows us to verify Conjecture 1.8 for all c up to a very large bound X
in reasonable time. We just have to run our algorithm for all n = p ≥ 5
prime and the corresponding bound B for |v|, as long as the initial bound B0

(which grows roughly like 2p) is less than B. Using a straight-forward im-
plementation in MAGMA [2], it took less than 12 minutes (on the laptop of
one of the authors) to prove the following, which by Proposition 2.1 amounts
to a proof of case (7) of Theorem 1.3.

Proposition 5.4. Let c ∈ Z+ and set f(x) = x2 + 1/c. If c ≤ 101000 and
the second iterate f2 is irreducible, then all iterates of f are irreducible.

Proof. For c ∈ {1, 2, 3}, this can be checked by considering an(c) modulo
3, 5, and 11, respectively. So we can assume that c ≥ 4. By Corollary 4.6,
it is enough to show that ap(c) is not a square for even c as in the statement
and primes

5 ≤ p ≤ 1+
⌊
log2

(
1+

log 4 + ε(c)/
√
c

log(1 + 1/
√
c)

)⌋
≤ 1+

⌊
log2

(
3.01+

log 4

log(1 + 10−500)

)⌋
,

and this last expression is 1662. (For c ≥ 10400, we use the bound (23).
For smaller c, the expression is much smaller than 1662.) This is a finite
computation using the algorithm described above. �

We remark that in the course of executing the algorithm, it was never
necessary to increase the initial value of γ.

We have now at last assembled all the ingredients required to prove The-
orem 1.2.

Proof of Theorem 1.2. Let fr(x) = x2 + r with r = 1/c, c ∈ Z \ {0,−1}
and |c| ≤ 109. If f2r (x) is irreducible and c is negative or odd, then the
claim follows from parts (1) and (4) of Theorem 1.3 (recall that fr(x) and
so also f2r (x) is reducible when −c is a square). If f2r (x) is irreducible and
c is positive and even, Theorem 1.2 holds by Proposition 5.4.
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If fr(x) or f2r (x) is reducible, then the relevant cases of Theorem 1.2 follow
from Theorem 1.5, Corollaries 2.9 and 2.11, and Proposition 2.16. �

6. Applications to the density of primes dividing orbits

In this section, we prove Theorem 1.12, which we restate here for the
reader’s convenience.

Theorem 6.1. Let c ∈ Z, let r = 1/c, suppose that −c and c + 1 are
non-squares in Q, and assume that Conjecture 1.11 holds for c, i.e. that
an−1+

√
an

2 is not a square in Q for all n ≥ 3. Then for any t ∈ Q we have
D({p prime : p divides Ofr(t)}) = 0.

Remark 6.2. Observe that the hypothesis that
an−1+

√
an

2 not be a square for
n ≥ 2 is strictly weaker than an not being a square for n ≥ 2; in the latter
case the conclusion of Theorem 6.1 follows immediately from part (2) of [8,
Theorem 1.1]. To prove Theorem 6.1, we must apply [8, Theorem 1.1] in a
non-trivial way.

Remark 6.3. When the hypotheses of Theorem 6.1 are satisfied, we also
obtain certain information on the action of GQ on Tf (0) (see p. 527 for
the definition). The index-two subgroup GQ(

√
−r) acts on both Tf (

√
−r)

and Tf (−
√
r). Both of these actions are transitive on each level of the

tree, i.e., on f−nr (
√
−r) (resp. f−nr (−

√
−r)), and the images of the maps

GQ(
√
−r) → Sym(f−nr (±

√
−r)) ∼= S2n cannot lie in the alternating subgroup.

Proof. Let K = Q(
√
−r), so that fr = (x +

√
−r)(x −

√
−r) over K. Let

g1 = (x +
√
−r) and g2 = (x −

√
−r). To apply part (2) of [8, Theorem

1.1], we must show that for i = 1, 2, gi(f
n−1
r (0)) is a non-square in K for all

n ≥ 3, and also that −gi(fr(0)) is a non-square in K. But gi(f
n−1
r (0)) =

fn−1r (0)±
√
−r. As in the final part of the proof of Lemma 3.2, fn−1r (0)±

√
−r

is a square in K if and only if (fn−1r (0)±
√
fnr (0))/2 is a square in Q, which in

turn is equivalent to (an−1+
√
an)/2 being a square in Q. But by assumption

(an−1 +
√
an)/2 is not a square in Q for any n ≥ 3. Moreover, −gi(fr(0)) =

−r∓
√
−r, which is a square in K if and only if (−r±

√
r2 + r)/2 is a square

in Q. Because c+1 is not a square in Q, it follows that r2 +r is not a square
in Q either, proving that −gi(fr(0)) is not a square in Q.

Therefore we may apply part (2) of [8, Theorem 1.1] twice to show

0 = lim
B→∞

#{p ∈ S : N(p) ≤ B}
#{p : N(p) ≤ B}

, (33)

where N(p) is the norm of the ideal p and S is the set of primes p in the
ring of integers OK of K that divide gi(f

n−1
r (t)) for at least one value of

i ∈ {1, 2} and at least one n ≥ 2.
If we exclude the finite set of ramified primes, then the primes p in OK

come in two flavors: those with norm p, where necessarily p splits in OK ;
and those with norm p2, where necessarily p is inert in OK . Note that
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#{n ≤ B : n = p2 for some prime p} has asymptotic density zero relative
to #{n ≤ B : n = p for some prime p}, and so (33) is equivalent to

0 = lim
B→∞

#{p ∈ S : N(p) = p ≤ B}
#{p : N(p) = p ≤ B}

. (34)

Suppose p in S, and say p | gi(fn−1r (t)) for n ≥ 2. Then

N(p) | NK/Q(gi(f
n−1
r (t))) = fnr (t),

where NK/Q is the usual field norm. Let p = Z∩OK be the prime lying below
p. Note that N(p) = p if p splits in OK , i.e. if −r is a quadratic residue mod-
ulo p, and N(p) = p2 otherwise. But 0 ≡ fr(fn−1r (t)) ≡ (fn−1r (t))2+r mod p
and hence −r must be a quadratic residue modulo p. Thus N(p) = p. It
follows that the numerator of (34) is 2#{p : p ≤ B and p divides Of (t)}.
Clearly the denominator is

2#{p : p ≤ B and −r is a quadratic residue modulo p}.

But by quadratic reciprocity and Dirichlet’s theorem on primes in arithmetic
progressions, the latter is asymptotic to #{p : p ≤ B}. It follows that
D({p : p divides Of (t)}) = 0, as desired. �
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Math. Besançon Algèbre Théorie Nr. (2013), Presses Univ. Franche-Comté, Be-
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Bordeaux, 23 (2011), no. 1, 257-277. MR2780629, Zbl 1270.11030, arXiv:1008.1905,
doi: 10.5802/jtnb.760. 541

[21] Stoll, Michael. An application of “Selmer group Chabauty” to arithmetic dy-
namics. arXiv:1912.05893. 552

[22] Swaminathan, Ashvin A. On arboreal Galois representations of rational
functions. J. Algebra, 448 (2016), 104–126. MR3438308, Zbl 1387.11081,
doi: 10.1016/j.jalgebra.2015.09.032. 533

http://www.ams.org/mathscinet-getitem?mr=1745599
http://www.emis.de/cgi-bin/MATH-item?0948.11023
http://dx.doi.org/10.1007/978-1-4612-1210-2
http://dx.doi.org/10.1007/978-1-4612-1210-2
http://www.ams.org/mathscinet-getitem?mr=2439638
http://www.emis.de/cgi-bin/MATH-item?1193.37144
http://arXiv.org/abs/math/0612415
http://dx.doi.org/10.1112/jlms/jdn034
http://www.ams.org/mathscinet-getitem?mr=2959789
http://www.emis.de/cgi-bin/MATH-item?1302.11086
http://dx.doi.org/10.1016/j.jalgebra.2012.05.020
http://www.ams.org/mathscinet-getitem?mr=3220023
http://www.emis.de/cgi-bin/MATH-item?1307.11069
http://arXiv.org/abs/1402.6018
http://www.ams.org/mathscinet-getitem?mr=3704363
http://www.emis.de/cgi-bin/MATH-item?1391.37072
http://arXiv.org/abs/1603.00673
http://dx.doi.org/10.1142/S1793042117501263
http://www.ams.org/mathscinet-getitem?mr=3177912
http://www.emis.de/cgi-bin/MATH-item?1316.11104
http://arXiv.org/abs/1101.4339
http://dx.doi.org/10.4171/CMH/316
http://www.ams.org/mathscinet-getitem?mr=0604840
http://www.emis.de/cgi-bin/MATH-item?0471.14023
http://dx.doi.org/10.1007/BF01394256
http://www.lmfdb.org
http://www.ams.org/mathscinet-getitem?mr=3937588
http://www.emis.de/cgi-bin/MATH-item?07094881
http://dx.doi.org/10.1112/blms.12227
http://www.ams.org/mathscinet-getitem?mr=2782838
http://www.emis.de/cgi-bin/MATH-item?1246.37102
http://arXiv.org/abs/0808.2679
http://dx.doi.org/10.1016/j.jnt.2011.01.005
http://www.ams.org/mathscinet-getitem?mr=1174401
http://www.emis.de/cgi-bin/MATH-item?0758.11045
http://dx.doi.org/10.1007/BF01197321
http://www.ams.org/mathscinet-getitem?mr=2780629
http://www.emis.de/cgi-bin/MATH-item?1270.11030
http://arXiv.org/abs/1008.1905
http://dx.doi.org/10.5802/jtnb.760
http://arXiv.org/abs/1912.05893
http://www.ams.org/mathscinet-getitem?mr=3438308
http://www.emis.de/cgi-bin/MATH-item?1387.11081
http://dx.doi.org/10.1016/j.jalgebra.2015.09.032


EVENTUALLY STABLE QUADRATIC POLYNOMIALS 561

(DeMark) School of Mathematics, University of Minnesota, 206 Church Street
SE, Minneapolis, MN 55455, USA
demar180@umn.edu

(Hindes) Department of Mathematics, Texas State University, 601 University
Drive, San Marcos, TX 78666, USA
wmh33@txstate.edu

(Jones) Department of Mathematics and Statistics, Carleton College, 1 North
College St, Northfield, MN 55057, USA
rfjones@carleton.edu

(Misplon) Department of Mathematics and Statistics, Carleton College, 1
North College St, Northfield, MN 55057, USA
mzrmisplon@gmail.com

(Stoll) Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Ger-
many
Michael.Stoll@uni-bayreuth.de

(Stoneman) Department of Mathematics and Statistics, Carleton College, 1
North College St, Northfield, MN 55057, USA
mstoneman@google.com

This paper is available via http://nyjm.albany.edu/j/2020/26-25.html.

mailto:demar180@umn.edu
mailto:wmh33@txstate.edu
mailto:rfjones@carleton.edu
mailto:mzrmisplon@gmail.com
mailto:Michael.Stoll@uni-bayreuth.de
mailto:mstoneman@google.com
http://nyjm.albany.edu/j/2020/26-25.html

	1. Introduction
	2. The case where fr(x) or fr2(x) is reducible
	3. The proof of cases (1)-(4) of Theorem 1.3
	4. Proof of cases (5) and (6) of Theorem 1.3
	5. A fast algorithm and the proof of case (7) of Theorem 1.3
	6. Applications to the density of primes dividing orbits
	References

