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A construction of pseudo-Anosov braids

with small normalized entropies

Susumu Hirose and Eiko Kin

ABSTRACT. Let b be a pseudo-Anosov braid whose permutation has a
fixed point and let M}, be the mapping torus by the pseudo-Anosov
homeomorphism defined on the genus 0 fiber F} associated with b. We
prove that there is a 2-dimensional subcone Cy contained in the fibered
cone C of Fy, such that the fiber F, for each primitive integral class a € Co
has genus 0. We also give a constructive description of the monodromy
¢a : Fy — F, of the fibration on M, over the circle, and consequently
provide a construction of many sequences of pseudo-Anosov braids with
small normalized entropies. As an application we prove that the smallest
entropy among skew-palindromic braids with n strands is comparable
to 1/n, and the smallest entropy among elements of the odd/even spin
mapping class groups of genus g is comparable to 1/g.
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1. Introduction

Let ¥ = 3, ,, be an orientable surface of genus g with n punctures for n >
0. Weset 3y = ¥, 0. By mapping class group Mod (X, ), we mean the group
of isotopy classes of orientation preserving self-homeomorphisms on ¥,
preserving punctures setwise. By Nielsen-Thurston classification, elements
in Mod (X)) are classified into three types: periodic, reducible, pseudo-Anosov
[30, 9]. For ¢ € Mod(X) we choose a representative & € ¢ and consider the
mapping torus My = ¥ x R/ ~, where ~ identifies (z,t 4+ 1) with (®(x),?)
for x € ¥ and t € R. Then ¥ is a fiber of a fibration on My over the circle
St and ¢ is called the monodromy. A theorem by Thurston [31] asserts
that My admits a hyperbolic structure of finite volume if and only if ¢ is
pseudo-Anosov.

For a pseudo-Anosov element ¢ € Mod(X) there is a representative  :
> — X of ¢ called a pseudo-Anosov homeomorphism with the following
property: ® admits a pair of transverse measured foliations (F",u") and
(F*,pu®) and a constant A = A(¢) > 1 depending on ¢ such that F* and
F? are invariant under @, and p* and p® are uniformly multiplied by A and
A~! under ®. The constant A(¢) is called the dilatation and F* and F* are
called the unstable and stable foliation. We call the logarithm log(A(¢)) the
entropy, and call

Ent(9) = [x(%)] log(A(6))
the normalized entropy of ¢, where x(X) is the Euler characteristic of X.
Such normalization of the entropy is suited for the context of 3-manifolds [8,
22].
Penner [27] proved that if ¢ € Mod(X,,,) is pseudo-Anosov, then

log 2
m < IOg()‘(Qb))- (1-1)

See also [22, Corollary 2]. For a fixed surface ¥, the set
{log A\(¢) | » € Mod(X) is pseudo-Anosov}

is a closed, discrete subset of R ([1]). For any subgroup or subset G C
Mod(X) let 6(G) denote the minimum of A(¢) over all pseudo-Anosov el-
ements ¢ € G. Then §(G) > §(Mod(X)). We write f =< h if there is
a universal constant P > 0 such that 1/P < f/h < P. It is proved by
Penner [27] that the minimal entropy among pseudo-Anosov elements in
Mod(X4) on the closed surface of genus g satisfies

log 6(Mod(X,)) = ;.

See also [16, 32, 33] for other sequences of mapping class groups.

For any P > 0, consider the set Wp consisting of all pseudo-Anosov
homeomorphisms ® : ¥ — X defined on any surface ¥ with the normal-
ized entropy |x(2)|log A(®) < P. This is an infinite set in general (take
P > 2log(2 + V/3) for example) and is well-understood in the context of
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FIGURE 2. b:= ooyt (1) cl(b). (2) br(b). (3) Fy — M.

hyperbolic fibered 3-manifolds. The universal finiteness theorem by Farb-
Leininger-Margalit [8] states that the set of homeomorphism classes of map-
ping tori of pseudo-Anosov homeomprhisms ®° : ¥° — X° is finite, where
®° : 3° — ¥°is the fully punctured pseudo-Anosov homeomprhism obtained
from ® € Up. (Clearly \(®°) = A(®).) In other words such ®° : 3° — X°
is a monodromy of a fiber in some fibered cone for a hyperbolic fibered 3-
manifold in the finite list determined by P. Thus 3-manifolds in the finite
list govern all pseudo-Anosov elements in ¥p. It is natural to ask the dy-
namics and a constructive description of elements in Wp. There are some
results about this question by several authors [4, 15, 20, 21, 33], but it is
not completely understood. In this paper we restrict our attention to the
pseudo-Anosov elements in ¥ p defined on the genus 0 surfaces, and provide
an approach for a concrete description of those elements.

Let B,, be the braid group with n strands. The group B, is generated
by the braids o1, ,0,-1 as in Figure 1. Let S,, be the symmetric group,
the group of bijections of {1,...,n} to itself. A permutation P € S,, has
a fized point if P(i) = i for some i. We have a surjective homomorphism
7 B, — S, which sends each o; to the transposition (j,j + 1).
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The closure cl(b) of a braid b € B,, is a knot or link in the 3-sphere S3.

The braided link

br(b) = cl(b) U A
is a link in S3 obtained from cl(b) with its braid axis A (Figure 2). Let M,
denote the exterior of br(b) which is a 3-manifold with boundary. It is easy
to find an (n + 1)-holed sphere Fj, in M, (Figure 2(3)). Clearly Fj, is a fiber
of a fibration on M, — S' and its monodromy ¢, : Fj, — F}, is determined
by b. We call Fj, the F-surface for b.

A braid b € B, is periodic (resp. reducible, pseudo-Anosov) if the asso-
ciated mapping class f, € Mod (3¢ n41) is of the corresponding type (Sec-
tion 2.3). If b is pseudo-Anosov, then the dilatation A(b) is defined by A(f)
and the normalized entropy Ent(b) is defined by Ent(f;). The following
theorem is due to Hironaka-Kin [16, Proposition 3.36] together with the
observation by Kin-Takasawa [21, Section 4.1].

Theorem 1.1. There is a sequence of pseudo-Anosov braids z, € B, such
that Ent(z,) # 21log(2+v/3), M., ~ MU%G; for each n > 3 and Ent(z,) —

2log(2 +V/3) as n — oo.

Here ~ means they are homeomorphic to each other. The limit point
2log(2++/3) is equal to Ent(c705 ). By the lower bound (1.1), Theorem 1.1

implies that

log 6(Mod(So.,1)) = ~.
n

In particular, the hyperbolic fibered 3-manifold M o2as ! admits an infinitely

family of genus 0 fibers of fibrations over S*.

Let z, be a pseudo-Anosov braid with d,, strands. We say that a sequence
{zn} has a small normalized entropy if d,, < n and there is a constant P > 0
which does not depend on n such that Ent(z,) < P. By (1.1) a sequence {z,}
having a small normalized entropy means log(A(z,)) < 1/n. One of the aims
in this paper is to give a construction of many sequences of pseudo-Anosov
braids with small normalized entropies. The following result generalizes
Theorem 1.1.

Theorem A. Suppose that b is a pseudo-Anosov braid whose permutation
has a fized point. There is a sequence of pseudo-Anosov braids {z,} with
small normalized entropy such that Ent(z,) — Ent(b) asn — oo and M, ~
My forn > 1.

The proof of Theorem A is constructive. In fact one can describe braids
zn explicitly. For a more general result see Theorems 5.1, 5.2. Let C C
Hy(My, 0My) be the fibered cone containing [Fp]. A theorem by Thurston [29]
states that for each primitive integral class a € C there is a connected fiber
F, with the pseudo-Anosov monodromy ¢, : F, — F, of a fibration on the
hyperbolic 3-manifold M, over S*. The following theorem states a structure
of C.
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(1) 2)

FIGURE 3. Dynamics of 1) and w; in Theorem B. (1) Periodic
Y Fy, = F,. (2) Reducible w; : F,, = F,. Subsurface h(Sp)
is shaded.

Theorem B. Suppose that b is a pseudo-Anosov braid whose permutation
has a fixed point. Then there are a 2-dimensional subcone Cy C C and an
integer u > 1 with the following properties.

(1) The fiber F, for each primitive integral class a € Cy has genus 0.
(2) The monodromy ¢q : Fy — F, for each primitive integral class a € Cy
18 conjugate to

(Wit) -+ (wu1®) (wuth) ™1 Fy — Fy,

where m > 1 depends on the class a, v is periodic and each wj is
reducible. Moreover there are homeomorphisms W; : So — Sp on
a surface Sy for j = 1,...,u determined by b and an embedding
h: Sy — Fy such that h(So) is the support of each w; and

w;ln(sy) = ho®jo .

Theorem B gives a constructive description of ¢,. Also it states that each
wj : Fy — Fy is reducible supported on a uniformly bounded subsurface
h(So) C F,. It turns out from the proof that the type of the periodic
homeomorphism ¢ : F,, — F, does not depend on a € Cy (Remark 3.3), see
Figure 3(1). Theorem B reminds us of the symmetry conjecture in [23] by
Farb-Leininger-Margalit.

Clearly the permutation of each pure braid has a fixed point. For any
pseudo-Anosov braid b, a suitable power b¥ becomes a pure braid and one
can apply Theorems A, B for b*.

We have a remark about Theorem A. While the existence of a sequence
(Fy, ¢n) of fibers and monodromies in C for which Ent(¢,) — Ent(b) is
guaranteed by McMullen [25, Theorem 10.2], it does not say anything about
the genera of fibers F,. Theorem B has the extra (constructive) information
that each fiber Fj, along Cp is genus 0.
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FIGURE 4. Tlustration of braids (1) b, (2) rev(b), (3) skew(d).
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FIGURE 5. (1) Z: X, — X, (2) A basis {z1,y1,...,2%4,Yg}
of Hl(Zg;Zg).

As an application we will determine asymptotic behaviors of the minimal
dilatations of a subset of B,, consisting of braids with a symmetry. A braid
b € B, is palindromic if rev(b) = b, where rev : B, — B, is a map such
that if w is a word of letters J]j-d representing b, then rev(b) is the braid
obtained from b reversing the order of letters in w. A braid b € B, is
skew-palindromic if skew(b) = b, where skew(b) = Arev(b)A~! and A is
a half twist (Section 2.2). See Figure 4. We will prove that dilatations of
palindromic braids have the following lower bound.

Theorem C. Ifb € B, is palindromic and pseudo-Anosov for n > 3, then

A(b) > \/2+ V5.

In contrast with palindromic braids we have the following result.

Theorem D. Let PA, be the set of skew-palindromic elements in B,. We

have ]
logd(PA,) < —.
n

The hyperelliptic mapping class group H(X,) is the subgroup of Mod (%)
consisting of elements with representative homeomorphisms that commute
with some fixed hyperelliptic involution Z : ¥, — X, as in Figure 5(1).
It is shown in [16] that log d(H(X,)) =< 1/g. See also [7, 15, 19] for other
subgroups of Mod(X,). As an application we will determine the asymptotic
behavior of the minimal dilatations of the odd/even spin mapping class
groups of genus g. To define these subgroups let (-,-)2 be the mod-2 inter-
section form on Hy(Xg;Z2). A map q : Hi(Xg;Za) — Za is a quadratic form
if (v +w) = q(v) + q(w) + (v,w)s for v,w € Hi(X4;Z2). For a quadratic
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form q, the spin mapping class group Mod,[q] is the subgroup of Mod(%)
consisting of elements ¢ such that q o ¢, = q. To define the two quadratic
forms qo and q; we choose a basis {z1,y1,...,24,Yg} of Hi(X4;Z2) as in
Figure 5(2). Let qo be the quadratic form such that qo(z;) = qo(y;) = 0 for
1 <4 <g. Let q; be the quadratic form such that qi(z1) = q1(y1) = 1 and
qi(zs) = qi(ys) = 0 for 2 < i < g. A result of Dye [5] tells us that Mod,[q]
for any g is conjugate to either Mody[qo] or Modg[q:] in Mod(%,). We call
Modg[qo] and Modg[q:] the even spin and odd spin mapping class group
respectively. It is known that Mod,[q:] attains the minimum index for a
proper subgroup of Mod(%,) and Mod,[qo] attains the secondary minimum,
see Berrick-Gebhardt-Paris [2].

Theorem E. We have
(1) logd(Mody[gqi] NH(E)) <

(2) logd(Modg[qo] N H (%)) =

QI RQ | =

In particular log 6(Modg[q]) < 1/g for each quadratic form q.

Acknowledgments. We would like to thank Mitsuhiko Takasawa for help-
ful conversations and comments. The first author was supported by Grant-
in-Aid for Scientific Research (C) (No. 16K05156), Japan Society for the
Promotion of Science. The second author was supported by Grant-in-Aid for
Scientific Research (C) (No. 18K03299), Japan Society for the Promotion
of Science.

2. Preliminaries

2.1. Links. Let L be a link in the 3-sphere S®. Let A(L) denote a tubular
neighborhood of L and let £(L) denote the exterior of L, i.e. £(L) = 3\
int(N(L)).

Oriented links L and L’ in S? are equivalent, denoted by L ~ L' if there is
an orientation preserving homeomorphism f : S% — S3 such that f(L) = L’
with respect to the orientations of the links. Furthermore for components
K; of L and K] of L' with ¢ = 1,...,m if f satisfies f(K;) = K] for each 1,
then (L, K1,...,Ky,,) and (L', K{,...,K])) are equivalent and we write

m
(L,Ky,...,Kp) ~ (L',K1,...,KL).
2.2. Braid groups B,, and spherical braid groups SB,,. Let us set
0j =o0102---0j_1 and p; =o109--- Uj,gajz_l.
The half twist A; is given by
Aj=6505_1--02.

We often omit the subscript n in A,,, d§, and p, when they are precisely
n-braids.
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We put indices 1,2,...,n from left to right on the bottoms of strands,
and give an orientation of strands from the bottom to the top (Figure 1).
The closure cl(b) is oriented by the strands. We think of br(b) = cl(b) U A
as an oriented link in S® choosing an orientation of A = A; arbitrarily. (In
Section 3 we assign an orientation of the braid axis for i-monotonic braids).

If two braids are conjugate to each other, then their braided links are
equivalent. Morton proved that the converse holds if their axises are pre-
served.

Theorem 2.1 (Morton [26]). If (br(b), Ay) is equivalent to (br(c), Ac) for

braids b,c € By, then b and c are conjugate in B,,.

Let us turn to the spherical braid group SB, with n strands. We also
denote by o;, the element of SB,, as shown in Figure 1(1). The group SB,
is generated by o1,...,0,-1. For a braid b € B,, represented by a word of
letters J]j-d, let S(b) denote the element in SB, represented by the same
word as b.

For a braid b in B,, or SB,, the degree of b means the number n of the
strands, denoted by d(b).

2.3. Mapping classes and mapping tori from braids. Let D,, be the
n-punctured disk. Consider the mapping class group Mod(D,,), the group
of isotopy classes of orientation preserving self-homeomorphisms on D,, pre-
serving the boundary 9D of the disk setwise. We have a surjective homo-
morphism

I': B, — Mod(D,)

which sends each generator o; to the right-handed half twist t; between the
ith and (7 + 1)st punctures. The kernel of I' is an infinite cyclic group
generated by the full twist AZ.

Collapsing 0D to a puncture in the sphere we have a homomorphism

c: MOd(Dn) — MOd(E()JH_l).

We say that b € B, is periodic (resp. reducible, pseudo-Anosov) if f :=
¢(I'(b)) is of the corresponding Nielsen-Thurston type. The braids 6, p € B,
are periodic since some power of each braid is the full twist: A? = 6" =
n—1
p € B,.
We also have a surjective homomorphism

I': 5B, — Mod(Z,,)

sending each generator o; to the right-handed half twist t;. We say that
n € SBy, is pseudo-Anosov if T'(n) € Mod(Xy ) is pseudo-Anosov. In this
case A\(n) is defined by the dilatation of I'(n).
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FIGURE 6. Stable foliation which is 1-pronged at a boundary component.

2.4. Stable foliations F} for pseudo-Anosov braids b. Recall the sur-
jective homomorphism 7 : B, — S,. We write m, = 7(b) for b € B,.
Consider a pseudo-Anosov braid b € B,, with m,(i) = i. Removing the ith
strand b(i) from b, we get a braid b — b(i) € B,—1. Taking its spherical
element, we have S(b — b(i)) € SB,,—1. Note that b — b(¢) and S(b — b(7))
are not necessarily pseudo-Anosov. A well-known criterion uses the stable
foliation J3 for the monodromy ¢y : F, — F}, of a fibration on M, — S' as
we recall now. Such a fibration on M, extends naturally to a fibration on
the manifold obtained from Mj by Dehn filling a cusp along the boundary
slope of the fiber F}, which lies on the torus ON (cl(b(7))). Also ¢ extends
to the monodromy defined on F; of the extended fibration, where F; is
obtained from Fj by filling in the boundary component of F} which lies on
ON (cl(b(i))) with a disk. Then b — b(7) is the corresponding braid for the
extended monodromy defined on Fj. Suppose that F is not 1-pronged at
the boundary component in question. (See Figure 6 in the case where Fj is
1-pronged at a boundary component.) Then F; extends to the stable folia-
tion for b—b(i), and hence b—b(7) is pseudo-Anosov with the same dilatation
as b. Furthermore if F; is not 1-pronged at the boundary component of Fj,
which lies on ON(A), then S(b — b(i)) is still pseudo-Anosov with the same
dilatation as b.

2.5. Thurston norm. Let M be a 3-manifold with boundary (possibly
OM = (). If M is hyperbolic, i.e. the interior of M possess a complete hyper-
bolic structure of finite volume, then there is a norm || - || on Ha(M,0M;R),
now called the Thurston norm [29]. The norm ||-|| has the property such that
for any integral class a € Hao(M,0M;R), ||a|| = ming{—x(S)}, where the
minimum is taken over all oriented surface S embedded in M with a = [S]
and with no components of non-negative Euler characteristic. The surface
S realizing this minimum is called a norm-minimizing surface of a.

Theorem 2.2 (Thurston [29]). The norm || - || on Ha(M,0M;R) has the
following properties.

(1) There are a set of mazximal open cones Cy,--- ,Cy in Ho(M,0M;R)
and a bijection between the set of isotopy classes of connected fibers
of fibrations M — S' and the set of primitive integral classes in the
union C1 U -+ UCp.
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(2) The restriction of || - || to C; is linear for each j.
(3) If we let F, be a fiber of a fibration M — S' associated with a
primitive integral class a in each C;, then ||a| = —x(F,).

We call the open cones C; fibered cones and call integral classes in C;
fibered classes.

Theorem 2.3 (Fried [11]). For a fibered cone C of a hyperbolic 3-manifold
M, there is a continuous function ent : C — R with the following properties.

(1) For the monodromy ¢, : Fy — F, of a fibration M — S' associated
with a primitive integral class a € C, we have ent(a) = log(A(¢q))-

(2) Ent = || - |lent : C — R is a continuous function which becomes
constant on each ray through the origin.

(3) If a sequence {a,} C C tends to a point # 0 in the boundary OC
as n tends to oo, then ent(a,) — oo. In particular Ent(a,) =
llan ||lent(ay,) — oo.

We call ent(a) and Ent(a) the entropy and normalized entropy of the class
a€C.

For a pseudo-Anosov element ¢ € Mod(X) we consider the mapping torus
M. The vector field % on ¥ x R induces a flow ¢’ on My called the
suspension flow.

Theorem 2.4 (Fried [10]). Let ¢ be a pseudo-Anosov mapping class defined

on Y with stable and unstable foliations F° and F*. Let F* and F* denote
the suspensions of F° and F“ by ¢. If C is a fibered cone containing the
fibered class [X], then we can modify a norm-minimizing surface F, associ-
ated with each primitive integral class a € C by an isotopy on My with the
following properties.

(1) F, is transverse to the suspension flow ¢', and the first return map
ba : Fo, — Fy is precisely the pseudo-Anosov monodromy of the
fibration on My — S1 associated with a. Moreover F, is unique up
to isotopy along flow lines. -

(2) The stable and unstable foliations for ¢4 are given by F5 N F, and
FunF,.

2.6. Disk twist. Let L be a link in S3. Suppose an unknot K is a com-
ponent of L. Then the exterior £(K) (resp. 0E(K)) is a solid torus (resp.
torus). We take a disk D bounded by the longitude of a tubular neigh-
borhood N (K) of K. We define a mapping class Tp defined on £(K) as
follows. We cut £(K) along D. We have resulting two sides obtained from
D, and reglue two sides by twisting either of the sides 360 degrees so that
the mapping class defined on OE(K) is the right-handed Dehn twist about
0D. Such a mapping class on £(K) is called the disk twist about D. For
simplicity we also call a self-homeomorphism representing the mapping class
Tp the disk twist about D, and denote it by the same notation

Tp : E(K) — E(K).
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FIGURE 8. Sign of the point of intersection: +1 in (1) and
—1in (2).

Clearly Tp equals the identity map outside a neighborhood of D in £(K).

We observe that if © + 1 segments of L — K pass through D for v > 1, then

Tp(L — K) is obtained from L — K by adding the full twist near D. In

the case u = 1, see Figure 7. We may assume that Tp fixes one of these

segments, since any point in D becomes the center of the twisting about D.
For any integer ¢, consider a homeomorphism

Th: E(K) — E(K).
Observe that T5 converts L into a link K UTH(L — K) such that S3 \ L is
homeomorphic to S?\ (K UT%(L—K)). Then T% induces a homeomorphism
between the exteriors of links
hpe:E(L) = E(KUTH(L — K)). (2.1)

We use the homeomorphism in (2.1) in later section.

3. t-increasing braids and Theorem 3.2

Definitions of i-increasing braids, signs and intersection numbers.
Let L be an oriented link in S3 with a trivial component K. We take an
oriented disk D bounded by the longitude of N (K) so that the orientation
of D agrees with the orientation of K. For each component K’ of L — K
such that D and K’ intersect transversally with D N K’ # (), we assign each
point of intersection +1 or —1 as shown in Figure 8.



A CONSTRUCTION OF PSEUDO-ANOSOV BRAIDS 573
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O [F]° 2 SO A
ey ) 3)

FIGURE 9. F := [}, and E := Ey;. (1) Subcone C ;).
(2)(3) Possible shapes of CN{z[F]|+y[E] | z,y € R}. In case
(2), [E] € C. In case (3), [E] ¢ C.

Let b be a braid with m(i) = 7. We consider an oriented disk D = Dy, ;)
bounded by the longitude ¢; of N (cl(b(i))). Such a disk D is unique up
to isotopy on E(cl(b(i))). We say that a braid b € B, with m,(i) = i is
i-increasing (vesp. i-decreasing) if there is a disk D = D, ;) as above with
the following conditions.

(D1) There is at least one component K’ of cl(b—b(7)) such that DNK' #

0.
(D2) Each component of cl(b — b(i)) and D intersect with each other
transversally, and every point of intersection has the sign +1 (resp.
—-1).
We set e(b,i) = 1 (resp. €(b,i) = —1), and call it the sign of the pair
(b,1). We also call D the associated disk of the pair (b,7). We say that b is
i-monotonic if b is i-increasing or i-decreasing. Then we set

I(b,4) = DNcl(b— b))

and let u(b,7) > 1 be the cardinality of (b, 7). We call u(b, ?) the intersection
number of the pair (b,4). If the pair (b, ) is specified, then we simply denote
e(b, i) and u(b, i) by € and u respectively. For example o705 ' is 1-increasing
with u(o?o51,1) = 1.

A braid b is positive if b is represented by a word in letters o, but not a;l.
A braid b is irreducible if the Nielsen-Thurston type of b is not reducible.

Lemma 3.1. Let b be a positive braid with (i) = i. Then b is i-increasing
if b is irreducible.

Proof. Suppose that a positive braid b with 7,(¢) = i is irreducible. Since
b is positive, there is a disk D = Dy, ;) with the condition (D2). Assume
that D fails in (D1). Let D, be the boundary of the disk D,, containing
n punctures. Consider a neighborhood of 9D,, U (D, N D) in D,, which is
an annulus. One of the boundary components of this annulus is an essential
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simple closed curve in D,, preserved by I'(b) € Mod(D,,). This means that b
is reducible, a contradiction. Thus D satisfies (D1), and b is i-increasing. [

Orientation of the axis A. Let b be i-monotonic with €(b,i) = ¢ and
u(b,i) = u. Consider the braided link br(b) = cl(b) U A. The associated
disk D has a unique point of intersection with A, and the cardinality of
I(b,i) U(DNA)is u(b,i)+ 1. To deal with br(b) = cl(b) U A as an oriented
link, we consider an orientation of cl(b) as we described before, and assign
an orientation of A so that the sign of the intersection between D and A
coincides with €(b,7). See Figure 2(2).

Recall that M, = £(br(b)) is the exterior of br(b) which is a surface bundle
over S'. We consider an orientation of the F-surface I}, which agrees with
the orientation of A.

E-surface. We now define an oriented surface E, ;) of genus 0 embedded
in My. Consider small u(b,i) + 1 disks in the oriented disk D = D,
whose centers are points of I(b,i) U (D N A). Then Ey ;) is a sphere with
u(b, i) 4+ 2 boundary components obtained from D by removing the interiors
of those small disks. We choose the orientation of E;) so that it agrees
with the orientation of D. We call E(, ;) the E-surface for b. For example,

the 1-increasing braid ofo, ! has the E-surface E(U% 1) homeomorphic to

—1
(o

a 3-holed sphere.

Subcone C(p ). Consider the 2-dimensional subcone of Ha(Mp,0My; R)
spanned by [F}] and [E ] (Figure 9):

Civ,i) = {[F] + y[Ewpp] | >0, y > 0}.

Let C(3,5) denote the closure of C(y ;). We write (z,y) = z[Fy] +y[E@,q)]. We
prove the following theorem in Section 4.

Theorem 3.2. For a pseudo-Anosov, i-increasing braid b with u(b,1) = u,
let C be the fibered cone containing [Fp|. We have the following.
(1) Cua CC.
(2) The fiber F,,) for each primitive integral class (x,y) € Cp ;) has
genus 0.
(3) The monodromy ¢,y * Flzy)y — Flay) for each primitive integral
class (z,y) € Cp;) is conjugate to

(Wit) (a1 ) (wWuth) ™1 Flyyy = Floy)s

where m > 1 depends on (x,y), ¥ is periodic and each w; is reducible.
Moreover there are homeomorphisms &; : So — So for j =1,...,u
on a surface So determined by b and an embedding h : So — Fig4)
such that the subsurface h(So) of F(,., is the support of each w; and

wj‘h(so) = ho@j oh™ L.
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The conclusion of Theorem 3.2 holds for i-decreasing braids as well. We
now claim that Theorem 3.2 implies Theorem B.

Proof of Theorem B. Suppose that Theorem 3.2 holds. Let b € B,, be a
pseudo-Anosov braid such that (i) = i. We consider the braid bA%* € B,
for k > 1. The full twist A? is an element in the center Z(B,,) and A? = o, P;
holds for each 1 < j < n — 1, where P; is positive. Such properties imply
that bA2F is positive for k large. We fix such large k. Since I'(b) = I'(bA?)
in Mod(D,,), the braid bA2?! is certainly pseudo-Anosov. Hence it is 4-
increasing by Lemma 3.1. One can apply Theorem 3.2 for this braid, and
obtains the subcone Cp2x ;). Consider the kth power of the disk twist
about the disk D4 bounded by the longitude of N'(A):

Tp,  E(A) = E(A).

Since A U T]%A (cl(b)) = AU cl(bA%*) = br(bA2%*), we have S3 \ br(b) ~
53\ br(bAZ*). Let us set

fk = hDA,k : Mb — MbAQk,
where hp, i is the homeomorphism in (2.1). The isomorphism
fk* : HQ(M(,, 8Mb) — HQ(MbAzk,aMbAzk)

sends [Fp] to [Fya2x]. (Here we note that the above k is suppose to be large,
but the homeomorphism fj makes sense for all integer k.) The pullback of
the subcone Cya2k ;) into Ha(Mp, OMp) is a desired subcone contained in
C. O

Remark 3.3. If F(, ) is a (d41)-holed sphere, then the periodic homeomor-
phism 2 Fiy ) — Fgy) in Theorem 3.2 is determined by the periodic braid
p=0103...04-202_| € By. See the proof of Theorem 3.2(3) in Section 4.3.

4. Proof of Theorem 3.2

We fix integers n > 3 and 1 < ¢ < n. Throughout Section 4, we assume
that b € B, is pseudo-Anosov and i-increasing with u(b,i) = u. We now
choose an associated disk about the pair (b,4) suitably. Let D denote the
unit disk with the center (0,0) in the plane R?. Let J = (—1,1) x {0} C D
be the interval and let Ag = (—2,0) be a point in R?2. We denote by D,,, the
disk D with equally spaced n points in J. Let us denote these n points by
Aq,..., A, from left to right. We take a point Q; # A; € J between A; 4
and A; so that the Euclidean distance d(Q;, A;) is sufficiently small (e.g.
d(Qi, A;) < %H) Let r; denote the closed interval in [—2,1] x {0} with
endpoints Ay and Q;. (Figure 10(1).) We regard b as a braid contained in
the cylinder D x [0, 1] C R? and b is based at n points Ay x {0}, ..., A, x {0}
Since mp(i) = 4, one can take a representative of b such that b(7) is an interval
in the cylinder:
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........ —cl(b(i))

"1 \O A

(1 2)

FIGURE 10. (1) Ay,..., A, Q;, 7; when n = 3, i = 1. (2)
0D = {; is a union of four segments. U; is an annulus in the
figure.

OL b)) = | Aix{t}.
0<t<1
Furthermore we may assume that 0D (= ¢;) of an associated disk D of (b, )
is a union of the following four segments as a set (Figure 10):

02 (| Aox{tH)u(rix{-1Hu( |J @ix{t})u(rx{2}).

—1<t<2 —1<t<2
Preserving {1, 2 we may further assume the following (Figures 10(2), 11(1)):
3. For a regular neighborhood U; of ¢; in D, we have I(b,i) C Us.

This is because every point z € D N K’, where K’ is a component of cl(b —
b(7)), one can slide x along K’ so that the resulting point on K’ is in U;. Said
differently, preserving 0D pointwise, we can modify a small neighborhood
of D near K’ so that the resulting associated disk satisfies {>3.

Under the conditions {}1, 2, 3 we have the following. For each x € DNK' C
Ui, there is a segment h’ C K’ through x such that h' passes over b(i) since
b is i-increasing. See Figure 11(1). Such a local picture of cl(b) is used
in the the next section. Hereafter we assume that associated disks possess
conditions {1, 2, 3.

4.1. Proof of Theorem 3.2(1). Let s be the open segment (1-dimensional
simplex) in Ha(M;, 0My; R) with the endpoints "Tfl[E(b’i)] = (0,2=1) and
[Fp] = (1,0):

n n—1
s={(.y) €Cpy ly=-———a+— 0<z<1} (41

The ray of each point in C(3 ;) through the origin intersects with s. Thus for
the proof of (1), it suffices to prove that s C C.

We now introduce a sequence of braided links {br(b,)};2; from an i-
increasing braid b € B, such that M;, ~ M, for each p > 1. (We use the
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s cl(b(?)) ; cl(bi(i+u))

W }
xo/ U segments
D af

‘ A

Tp

— (
" J
U

(1 br(b) () br(b;)
FIGURE 11. Case: b is i-increasing. (1) Associated disk D
with conditions ¢ 1,2,3. (2) br(b;). Circles o indicate points

of intersection between D and components of br(b — b(i)).
See also Figure 12.

— ] ?
"] | ek

e
S I O | I I I = | L

(1) 2) 3)

FIGURE 12. Braided links for (1) 1-increasing o705 ', (2) 2-
increasing (0705 1)1 and (3) 3-increasing (o205 1)a.

l-increasing braid 0?05 1 ¢ Bs toillustrate the idea.) Let D be an associated
disk of the pair (b,7). We take a disk twist

Tp : E(cl(b(i))) — E(cl(b(i)))

so that the point of intersection D N A becomes the center of the twisting
about D, i.e. Tp(DNA) = DNA. We may assume that Tp(A) = A as a set.
Figure 11 illustrates the image of the segment A’ under Tpp. The condition
{3 ensures that Tp equals the identity map outside a neighborhood of U;
in £(cl(b(7))). Then by 1,2, it follows that

Tp(br(b — b(i))) U cl(b(i))

is a braided link of some (i 4+ u)-increasing braid with (n + u) strands. We
define by € By, 44, to be such a braid. The trivial knot Tp(A)(= A) becomes
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a braid axis of b;. By definition of the disk twist, we have M, ~ M. See
Figure 12 for br((ofoy')1).

As discussed below, there is some ambiguity in defining b;. As we will
see, the ambiguity is irrelevant for the study of pseudo-Anosov monodromies
defined on fibers of fibrations on the mapping torus. Suppose that both D
and D’ are the associated disks of the pair (b,7) with conditions {1, 2,3. We
consider the disk twists Tp and T with the above condition, i.e. both DNA
and D’ N A become the center of the twisting about D and D’ respectively.
Observe that the resulting two links obtained from D and D’ are equivalent:

T (br(b — b(3))) U cl(b(4)) ~ T (br(b — b(i))) U cl(b(i)).

They are braided links, say br(b;) and br(d}) of some braids by, b} € Bty
respectively with the same axis Tp(A) = A = Tp/(A). This means that a
more stronger claim holds:

(br(by), A) ~ (br(by), A).

Thus by and b] are conjugate in By, by Theorem 2.1. In particular both
by and b are pseudo-Anosov (since the initial braid b is pseudo-Anosov and
M, is hyperbolic) and they have the same dilatation.

To define b, for p > 1, we consider the pth power

TP E(cl(b(i))) — E(cl(b(i)))
using the above Tp. As in the case of p =1,
T} (br(b —b(2))) Ucl(b(2))
is a braided link of some (i + pu)-increasing braid with (n + pu) strands.
We define b, € Bp1py to be such a braid. Then M;,, ~ M. As in the case
of p =1, such a braid b, is well-defined up to conjugate. We say that b, is
obtained from b by the disk twist. Clearly u(b,,i + pu) = u(b,7) for p > 1.
See Figure 12.
Let us set
Jp ‘= hD,p : Mb — Mbp,
where hp , is the homeomorphism in (2.1). We consider the isomorphism
Ipy - HQ(M(,, 6Mb) — Hg(Mbp, aMbP).

Lemma 4.1. For each integer p > 1, g,  sends (0,1) € Cpy to (0,1) €

Clbyitpu), and sends (1,p) € Cpyy to (1,0) € Cy, ippu)- In particular for

integers v,y > 1 with y = xp + 1 for 0 < r < p, gp, sends (x,y) € Cp ;) to
(JJ,T‘) € C(bp,i+pu)’

Proof. We consider the oriented sum F,,) = xFp + yEp ;). This is an
oriented surface embedded in My, and is obtained from the cut and past
construction of parallel x copies of Fj, and parallel y copies of E ;). The
orientation of F{, ,) agrees with those of Fj and E(, ;. We have [F(, )]
(z,y) € Cpy)- Then g, sends Ey ;) to By, itpuy, and sends Fy ) to Fp,.



A CONSTRUCTION OF PSEUDO-ANOSOV BRAIDS 579

Thus gp, sends (0,1) to (0,1), and sends (1, p) to (1,0). This completes the
proof. O

By the proof of Lemma 4.1, g1 sends F(y 1) = Fp + E, ;) to the fiber Fp,
of a fibration on M} associated with (1,1) € C,;). Since the fibers F ;)
and Fj are norm-minimizing, Eq) is also norm-minimizing.

Proof of Theorem 3.2(1). We have ||[F3]|| = n—1and |[[F},]|| = n+pu—1
since [, and F}, are fibers, and [|[E, ;]| = u since E, ;) is norm-minimizing.
By Lemma 4.1, [F},] = (1,p) € C(4). Consider the rational class

Cp =

n—1 7 n—1 p(n—1)
n—l—pu—l[ ) = (n—i—pu—l’n—i—pu—l)'

The classes ¢, that are all projectively fibered, and they lie on the 1-
dimensional linear simplex s given by (4.1). Note that the closure of s
contains [F}]. Moreover, the Thurston norm of all ¢, equals that of [F}] (and
it is n — 1). This is only possible if the simplex s is projectively contained
in a single fibered face. The corresponding fibered cone has to contain [F}]
from the above discussion, and hence it is C. Thus s C C. This completes
the proof. ([l

Remark 4.2. From the proof of Theorem 3.2(1), one sees the following: If

[Ewi)] € Cpy is a fibered class, then [Eg ] € C. Otherwise [E, ;] € 9C.
See Figure 9(2)(3).

4.2. Proof of Theorem 3.2(2). We start with a simple observation: A% €
B,, is j-increasing for each 1 < j < n, and u(A?,j) = n — 1 holds. The
following lemma is immediate.

Lemma 4.3. If b € B, is i-increasing, then bA? € B, is i-increasing with
w(bA%)i) = u(b,i) +n — 1.

We explain the idea of Theorem 3.2(2). Let D be the associated disk of the
pair (b, i). We have two types of the disk twist. One is T}, : £(A) = £(A)
which appears in the proof of Theorem B in Section 3 and the other is
TP E(cl(b(i))) — E(cl(b(3))). If k and p are positive, then we obtain the
i-increasing bA%* from the former type TgA, and another increasing braid
bp from the latter type T7,. Since both resulting braids are increasing, we
can further apply two types of the disk twist for the resulting braid. This is
a key of the proof. Choosing two types of the disk twist alternatively, we get
a sequence of increasing and pseudo-Anosov braids (since the initial braid
b is pseudo-Anosov). We shall see that the desired monodromies associated
with primitive classes in C(3 ;) are given by these braids.

Let p1, ..., p;j be integers such that p; > 0 and po,...,p; > 1. Given an i-
increasing braid b € By, with w(b, i) = u, we define an integer i[p1,...,p;] > 1
and an i[p1, ..., pj]-increasing braid b[p1, ..., p;| inductively as follows.
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e If j =1 and p; = 0, then (0] = ¢ and b[0] = b. If j = 1 and
p1 =p > 1, then i[p] = i + pu and b[p] = by,.
e If j > 1 is even, then
i[plw"apj—hpj] = Z'[p17"‘7pj—1]7
b[pl)"'apj—17pj] (b[p17"')pj—l])A2pj'

The right-hand side is i[p1, ..., pj—1]-increasing by Lemma 4.3.
e If j > 1 is odd, then

ilp1, .., pj—1,05) = ilp1,...,pj—1) + pju(blpr, ..., pj-1],ilp1,. .. pj-1]),
b[pla"'apj—bpj] = (b[p17"'7pj—1])pj~

We say that b[p1,...,p;] has length j.

Example 4.4.
(1) blp] = by by definition.
(2) Let B =0bA% Then b[0,1] = B and b[0,1,p] = B,.
(3) We have b[0,p] = bA% and b[0,p,1] = (bA?P);, where (bA%P); is
obtained from i-increasing bA? by the disk twist.

For each k > 1, let fx : My — Mya2r be the homeomorphism which in
the proof of Theorem B. Consider the isomorphism fy, : Ho(My, OMp) —
Hy(Mypzk, OMypz2r). We have the following property.

Lemma 4.5. For each integer k > 1, fi, sends (1,0) € C; to (1,0) €

Cpazk ), and sends (k,1) € Cpyy to (0,1) € Cypk . In particular for
integers x,y > 1 with x = yk+r for 0 <r <k, then fi, sends (z,y) € Cpy)
to (r,y) € Crpnzk 3y

Proof. The homeomorphism fj sends Fy, to Fja2x, and sends Fy 1) = kFp+
E@,i) to Eyazk ;). This implies that the claim holds. O

Proof of Theorem 3.2(2). Let (z,y) € C;;) be a primitive integral class.
(Hence z,y are positive integers with ged(z,y) = 1.) We consider the con-
tinued fraction of y/x by the Euclidean algorithm

y 1 11 11
—=pt =prt— = —
P2 +p3 -+ +pj-1+p;

x 1
p2 +

1

b3 1

Dj—1+ —

J

with length j and p; > 2 and p; = 0 if 0 < y < x. There is another
expression

1 1 1 1

P23t pio+ (o — 1)+

e

g:pl-i-
X
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with length j + 1. We choose one of the two expressions with odd length ¢:

Yy 1 1 1 1

x P2 +p3+-+pe-1+pe
This encodes the fiber F{, ) and its monodromy ¢, .. In fact Lemmas 4.1,
4.5 ensure that

(IpeSe19pe—s* Jp2Gpr )+ + Ha(My, OMy) — Ho(Mypp, ... p)> OMyjp, .. p])

sends (v,y) = [vFy + yEp ;)] to (1,0) which is the integral class of the F-
surface of b[p1,...,pe. (9p, = id : My — M, if p1 = 0.) Thus F{, ) has
genus 0. Moreover this means that one can take Fjp,, ., as a representative
of (z,y) € Cpy) and the monodromy ¢, . 1 Fiaz,) — F(g,y) s determined
by b[p1,...,p¢. This completes the proof. O

We denote by b, , the braid b[p1, . .., p¢] which determines ¢, ). Here is
an example: If (z,y) = (5,14), then % = 2+%+i and ¢ 5 14) is determined
by bs,14) = b[2,1,4]. If (2, ) = (14,5), then £y = 0+3 , 1, 5,1 and ¢35
is determined by b(145) = 0[0,2,1, 3, 1].

4.3. Proof of Theorem 3.2(3). We begin with the following lemma.

Lemma 4.6 (Standard form). If b € B, is i-increasing with u(b,i) = wu,
then b is conjugate to an n-increasing braid V' of the form

v = (w10, ) (waoy,_y),

where each wy, is a word of o', ..., oY, but not o

» Y n—27
some k.

+1
n—1’

possibly w,, = O for

Figure 13(1) shows the form of ¥’ in Lemma 4.6 in case u = 2.

Proof. We regard b as a braid in D x [0,1]. By {1, b(¢) is an interval in
D x [0,1]. If ¢ = n, then b is n-increasing and it is not hard to see that a
representative of b is of the desired form in Lemma 4.6. Suppose that b is
i-increasing for 1 < i < n. Weset 0 = op_10p92---0;if 1 <i<n-—1
and 0 = 0,1 if i = n — 1. We consider the n-braid ¥ = obo~! which is
n-increasing with u(b',n) = u. We pull ¥'(n) tight in D x [0, 1] and make it
straight. Then a representative of b’ is of the desired form. O

Proof of Theorem 3.2(3). Since each i-increasing braid is conjugate to
an n-increasing braid of a standard form in Lemma 4.6, we may assume
that b € By, is an n-increasing braid of the form b = (w102_;) -+ (wyo2_;).
Since p € B, is the periodic braid such that p = o109 - - - Jn_gafb_l we have

0721_1 = (01---0n_2)"'p. Then b is expressed as follows.

b= (v1p)- - (vup),

where v; = w;(01 - - - 0,,_2) ! is written by a word of de, . ,afiQ, but not
O’,i:_ll. Each v; in b is a reducible braid and p in b is the periodic braid.
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iy

(1) (2) 3)

F1GURE 13. The figure illustrates how an initial braid b
generates {b,}. (1) b = wio3wq03 = (v1p)(v2p) € By,
where v; = w;(o102)7t. (2) by = (v1p)(v2p) € Bs. (3)
b = (v1p)(v2p) € Bs.

Let w; : Fy — Fj, denote a reducible representative whose mapping class
is determined by v;, and let ¢ : F}, — F} denote a periodic representative
whose mapping class determined by p. The monodromy ¢, defined on F} is
written by ¢y = (wi%) - - (wuth)-

Recall that D, _1 is the disk D with marked points Ay, -+, A,_1. Let
So be an n-holed sphere obtained from D,_; by removing the interiors of
small (n — 1) disks with centers Ay,---, A,—1. Each v; as an (n — 1)-braid
determines a homeomorphism @; : Sp — Sp. We may assume that &; fixes
one of the boundary components corresponding to 0D pointwise. It is clear
that we have an embedding h : Sy < Fj, such that each w; in ¢, is reducible
supported on the subsurface h(Sp) and the restriction of w; to h(Sp) is given
by hod;oh L.

By the proof of Theorem 3.2(2), Py Flay) = Fla,y) associated with
each primitive class (z,y) € Cp;) is determined by the braid of the form
b[p1,-..,pe]. We now prove by the induction on length ¢ that

m—1

blp1, -5 pd = (v1p) - (Wu1p)(vup)p™ ™ = (v1p) - (Vue1P) (Vup™)

for some m > 1 depending on (z,y). Here each v; in blp1,...,p/] is a re-
ducible braid which is an extension of v; in b and p is the periodic braid with
the degree of b[p1,...,pj|. If this holds, then ¢, ) has a desired property
as in Theorem 3.2(3). Suppose that £ = 1. If p; = 0, then b[0] = b and we
are done. If py > 1, then b[p;] = by,. Using the above expression of b we
observe that b, is written by

bp, = (1p) - - (vup) € Bripiu

(see Figure 13). We are done.

For ¢ > 2, suppose that b[py,...,pe—1] = (v1pa) - (Vu—1pa)(vup)]’) for
some m, where d is the degree of b[p1,...,pe—1]. Consider b[p,...,ps| with
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length £. If £ is even, then by induction hypothesis
blp1,- oo = (blprs s pe-a]) AT = (1pa) -+~ (vum1pa) (upig ) A"

Since A2 = pg_l we have (Vupgl)Azp“ = yup;nﬂ”(d_l). Thus b[p1, ..., pd]
has a desired expression and we are done. If ¢ is odd, then by induction
hypothesis again

blp, - .., pe =(blp1,- .. ,Pz—l])m: ((v1pa) - - (Vuflpd)(Vupgl))pé-
As in the case of £ = 1, the braid in the right-hand side is expressed as

((v1pa) -+ (vum1pa) (Vuplf')), = (Vipt) -+ (Vum1p4) (vupi"),
where 1 is the degree of b[p1,...,pg]. This completes the proof. O

5. Sequences of pseudo-Anosov braids with small normalized
entropies

In this section we prove Theorem A. We begin with an observation. Let
Q c{aeC||al]| =1} be a compact set in Ho(M,, 0My; R) and let Co C C
denote the cone over € through the origin. By Theroem 2.3(2) there is a
constant P = P(2) > 0 depending on 2 such that Ent(a) < P for any
a € Cq. This observation provides us many sequences of pseudo-Anosov
braids with small normalized entropies from a single pseudo-Anosov braid
b.

Theorem 5.1. Suppose that b is a pseudo-Anosov braid whose permutation
has a fized point. We fix any 0 < £ < oo. Let {(xp,yp)} be a sequence of
primitive integral classes in C, ;) such that yp/x, < £ and |[(xp, yp)| < p.
Then the sequence of pseudo-Anosov braids {b )} has a small normalized
entropy.

Tp,Yp

Proof. If {(xp,y,)} is the sequence under the assumption, then we have
d(bzyy,) = I(@p,yp)ll < p. (Recall that d(-) denotes the degree of the
braid, i.e., the number of the strands.) Since (1,0) € C(; C C and the
slope of y,/x, is bounded by ¢ from above, the set of projective classes

(2p,yp) is contained in some compact set in {a € C | ||a|| = 1} (Figure 9).
Thus there is a constant P = P(¢) > 1 such that Ent(b,,,)) < P for any
p. This completes the proof. O

Let us discuss three sequences coming from Example 4.4. They are {b,},
{B,} and {(bA?);} varying p. It is not hard to see that d(b,), d(Bp),
d((bA%P)1) =< p.

Theorem 5.2. For an i-increasing and pseudo-Anosov b € B,,, we have the
following on the sequences of pseudo-Anosov braids.

(1) {bp} has a small normalized entropy if and only if [Ey ;] is a fibered
class.
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(2) For B = bA? € B, {B,} has a small normalized entropy and
Ent(8,) — Ent((1,1)) as p — 0.

(3) {(bA?P)1} has a small normalized entropy and Ent((bA%P)1) — Ent(b)
as p — <.

Proof of Theorem 5.2. For a = (7,y) € C(;), let a = (7,y) denote its
projective class. We have [F},] = (1,p) = [Epq] = (0,1) as p — oo. If
[Ep,:] is a fibered class, thein[E(b’i)] € C by Remark 4.2 and Ent(b,) —
Ent([Ey]) as p — oo by Theorem 2.3(2). If [E(;)] is a non-fibered
class, then [Eq ;] € OC by Remark 4.2, and Ent(b,) — oo as p — oo
by Theorem 2.3(3). We finish the proof of (1). We turn to (2). Since
[F3,] = (p+1,p) € Cpy, its projective class goes to (1,1) as p — co. Since
(1,1) € Cpy) C C by Theorem 3.2(1), Ent(8,) — Ent((1,1)) as p — oo by
Theorem 2.3(2). This completes the proof of (2). Finally we prove (3). The
fibered class of F-surface of (bA?P); is given by (p +1,1) € C,i)- Its pro-
jective class goes to [Fy] = (1,0) as p — oo. Thus Ent((bA%);) — Ent(b)
as p — oo. This completes the proof. O

We use Theorem 5.2(1)(2) in Section 8. For an application using (3), see
[19].

Proof of Theorem A. Suppose that b € B,, is pseudo-Anosov with (i) =
i. Let B(k) denote bA?* € B, for k > 1. Clearly 3(k) is pseudo-Anosov with
the same dilatation as b (for any k) and (k) is positive for k large. We fix
such large k. By Lemma 3.1 8(k) is i-increasing. If we let 2, = (8(k)A%);,
then M., ~ Mgy =~ M, holds for p > 1. By Theorem 5.2(3), {2} has a
small normalized entropy and Ent(z,) — Ent(8(k)) = Ent(b) as p — co. O

Let by denote the braid obtained from (i + pu)-increasing b, by removing
the strand of the index ¢ + pu. Taking its spherical element we have S (b;).
A mild generalization of the sequence {b,} is the ones {by} and {S(b3)}
varing p. Although by, S(by) may not be pseudo-Anosov, they are frequently
pseudo-Anosov. To be more precise, we need to consider the number of
prongs of singularities in the stable foliation JFj,, for b, as we explained in
Section 2.3. This is the motivation of the study in Section 6.

6. Stable foliation for the monodromy

Let b be pseudo-Anosov and i-monotonic with the sign €(b, i) = €. For any
primitive integral class (z,y) € C;), the oriented sum Fi, ) = vFy+yE ;)
is connected. Let T, 4y and Ty ;) denote the tori ON(A) and ON (cl(b(i)))
respectively. Let us set

b, Flay) = OF (@) N T(p,a) and Oy Flay) = OF(5) 0 Tips),

each of which is a single simple closed curve on the torus (since ged(z,y) =
1). Recall that we chose the orientation of the axis for the i-monotonic b



A CONSTRUCTION OF PSEUDO-ANOSOV BRAIDS 585

Q

3

L1 ||| e
-

()
(1 (2

FIGURE 14. Case: b is i-increasing. (1) Meridian and longi-
tude basis. (2) Two boundary slopes J 4)F(1,1) (in green)
on Ty 4y and Oy, ) F(1,1) (in red) on T4y when (z,y) = (1,1).

in Section 3. We use the meridian and longitude basis {ma,fa} for T a)
to represent a homology class of a disjoint union of simple closed curves on
Ti5,4)- We also use the meridian and the longitude basis {m;, {;} for T ;).
Observe that the homology classes [0y 4)F(4)] and [0 F are given
by the pairs of integers

[0, 4)F o)) = (—ey, ) and [0 Fay)] = (—ex,y). (6.1)
They are called boundary slopes of F{, . See Figure 14.

Let ¢y : Fy — Fp be the pseudo-Anosov monodromy of a fiber Fj of the
fibration on My — S'. The stable foliation F} of ¢, has singularities on each
boundary component of F,. Now we consider the suspension flow ¢} (¢ € R)
on the mapping torus M. We obtain a disjoint union of simple closed curves
ca = cppa) on T 4y (possibly a single simple closed curve) which is a union
of closed orbits for singularities in 93 4)Fy under the flow. Similarly we have
a disjoint union of simple closed curves ¢; = c(; ;) on T3 (possibly a single
simple closed curve again) which is a union of closed orbits for singularities
in 04 Fp. (Figure 17 depicts these closed curves for some pseudo-Anosov
3-braid.) A useful tool is train track maps which encode those data ¢y, Fp.
They also enable us to compute homology classes [c4] and [¢;].

The following lemma is a consequence of Theorem 2.4(2) by Fried.

Lemma 6.1. Let ¢, ) : Flpy) = Flzy) be the monodromy of a fibration on
M, — S associated with a primitive integral class (x,y) € C,iy- Then the
stable foliation F(y y) for d(qy) is i([cal, [Op,a) Flzy)])-pronged at Oy, a)Fiay)
and is i([ci], [O(p,5) Flay)])-pronged at O ;) Fia.,)), where i(+,-) means the geo-
metric intersection number between homology classes of closed curves.

a:,y)]

Remark 6.2. Every closed orbit of the suspension flow ¢tb on the map-
ping torus My travels around S* direction at least once. This implies that
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[ca] has a non-zero first coordinate of the meridian and longitude basis for
Tv,4), i-e., we have [ca] = (k, ) € Z* with k # 0, since the meridian for
T4y corresponds to the flow direction. Similarly, [c;] has a non-zero sec-
ond coordinate of the meridian and longitude basis for T4, that is we have
[c;] = (K, 0') € Z% with I # 0, since the longitude for T,y corresponds to
the flow direction in this case.

Recall that given a braid b € B,,, we denote by S(b) € SB,,, the spherical
n-braid with the same word as b. For an i-increasing braid b of pseudo-
Anosov type, consider the braid (bA?P); = b[0, p, 1] in Example 4.4(3). This
is an [0, p, 1]-increasing braid. Then we have its spherical braid S((bA?P);).
We now define other braids obtained from (bA%);. Let (bA%)$ denote the
braid obtained from (bA?P); by removing the strand of the index i[0, p, 1].
Let S((bA%);) and S((bA?P)$) be the spherical braids corresponding to
(bA?P); and (bA?P)$ respectively. Then we have the following result.

Lemma 6.3. Suppose that b is an i-increasing braid of pseudo-Anosov
type. For p large, the braid (bA?P)} and the spherical braids S((bA?P)y),
S((bA?P)S) are all pseudo-Anosov with the same dilatation as (bA?P);.

Before proving Lemma 6.3, we recall a formula of the geometric intersec-
tion number i([c], [¢/]) between two homology classes of simple closed curves
¢, d on a torus. Let (p,q) and (p',¢') be primitive elements of Z? which
represent [c] and [¢/] respectively. Then

i([e, [¢]) = Ipd’ —Pal.
Proof of Lemma 6.3. The fibered class of F-surface of (bA?P); is (p +
1,1) € Cpy)- We have [0 a)F(pi1,)] = (=1,p + 1) and [0 5 Fipi1,1)] =
(—(p+1),1), see (6.1). By Remark 6.2, one can write [ca| = (k, £) with k # 0
and [¢;] = (K',¢') with £ # 0. Then i([cal, [0pa)Fip+1,1)]) = [k(p +1) + /|
and i([ci], [Op,5) Fp+1,0]) = [K' + €' (p + 1)|. Since k # 0 and ¢’ # 0, these
intersection numbers are increasing with respective to p and they are clearly
greater than 1 when p is large. Then Lemma 6.1 says that when p is large,
the stable foliation F,, 1) for the monodromy ¢, 1) is not 1-pronged at
each component of 9y, 4)Fp+1,1)U0(p,4) Fp+1,1)- By the discussion in Section
2.4, we are done. 0

7. Properties of F-surfaces and E-surfaces

The aim of this section is to study properties of E-, F-surfaces and to
present the technique used in the last section.

Lemma 7.1. For an i-increasing braid b € B, with u(b,i) = u, we set
B =bA% € B,. Then there is an n-increasing braid v € By, 1., such that

(br(B), cl(B(i)), Ag) ~ (br(7), Ay, cl(y(n))).
In particular My ~ Mg ~ M, and Eg ;) = F,, Fg = E(, ) up to isotopy in
Mg. Moreover if b is pseudo-Anosov, then vy is also pseudo-Anosov.
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(6)

FIGURE 15. Demonstration of Lemma 7.1 when b is

n-increasing with u(b,n) = 2. (1) br(B) of B =
w02 _jweo? A% (5)(6) br(y) of v = kok1k2ksAZ_].

A similar claim holds for i-decreasing braids.
Proof. By Lemma 4.6 we may assume that b € B,, is an n-increasing braid
of a standard form b = (w102 _;)--- (w,o2_;) containing u subwords o2_;.
Using the identity

2 2
A“ = An—lgn—l ++ 09010102+ 0Op—1 € Bn,
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we have (Figure 15(1))

br(B) = br(bA?) = br(wio2 ;- wuo2 A2 0y 102010102 On_1).

We first deform br(f) into a link as in Figure 15(3). The same figure(1)(2)(3)
tells us the process to get the desired link in (3). Then we perform the local
moves in the shaded regions containing u subwords o2_; in b so that the link
in question is a union of the closure of some n-increasing braid v € By 44
and its braided axis, namely a braided link, see Figure 15(3)(4)(5). As a
result,

(br(8),cl(8(n)), Ag) ~ (br(7), Ay, cl((n))).

This expression says that Mg ~ M., and the E-, F-surfaces for 3 are equal
to the F-, E-surfaces for . Since M; ~ Mg we are done. O

Here we introduce a simple representative of v € Bj4, in Lemma 7.1.
By the deformation as in (5)(6) of Figure 15, we can take the following
representative of ~.

Y = KoKi--- mu+1A%_1, where
Ko = Op—10p—2°°'010102" " Ontu—1,
e . ) . _1 . .. _1 3 ) P—
Kj = WjOp—10n"" Ontu—j—10,4y_j_2° " Op_1 fl1<j<u-—1,
Ry = WyOn—1,
Kutl = 051 if u=1,
_ -1 -1 ~1 ity >9
Futl = Oppu—19n4u—2"""%n nu = 2.

For example if (n,u) = (3,2), then
2 2 -1 -1 _—-1_2
Y= /i0/€1/€2/£3A2 = 0’20’10'20'30'411}1020'30'2 ’w20'20'4 03 O07. (71)

If (n,u) = (3,3), then v = Kok1rokakaAZ, that is
_ 2 —1_—1 —1 —1_—1_—1_2

Y = 0207102030405W102030405 0y  W2020305 W30205 0, 05 07. (7.2)

Lemma 7.1 is used in the following situation. Suppose that a € By, is
a j-increasing braid and our task is to prove that « is pseudo-Anosov and
its E-surface E(, jy is a fiber of a fibration on M, — S1. (The conditions
are needed to apply Theorem 5.2(1) for «.) To do this, we need to find an
i-increasing and pseudo-Anosov braid b € B,, with u = u(b,7) and need to
check the resulting n-increasing braid v € B4, in Lemma 7.1 satisfies the
property

(br(7y), Ay, cl(y(n))) ~ (br(a), Aa, cl(a(4))),

i.e. v is conjugate to « preserving the corresponding strand. If this equiv-
alence holds, then by Lemma 7.1 together with the above equivalence ~,
our task is done. As a result {a;} has a small normalized entropy by The-
orem 5.2(1).
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8. Application

In the last section we prove Theorems C, D and E. We first recall a study
of pseudo-Anosov 3-braids [14, 24]. Let w be a word in o7 ' and oo. If
both o Land o9 occur at least once in w, then we say that w is a pA word.
It is known that the 3-braid represented by a pA word is pseudo-Anosov.
Conversely a 3-braid b is pseudo-Anosov, then there is a pA word w such
that the braid represented by w is conjugate to b up to a power of the full
twist.

The stable foliation F3 is 1-pronged at each boundary component of Fj
for each pseudo-Anosov 3-braid b. Figure 17(3) exhibits a train track au-
tomaton. A train track map for the 3-braid represented by a pA word w
is obtained from the closed loop corresponding to w in the automaton. For
more details, see Ham-Song [13].

8.1. Palindromic/Skew-palindromic braids. We define a map

rev: B, — B,

Ufllaff---aﬁ;’“ > ai’“---aéfafll, pi = +£1,
which is an anti-homomorphism. A braid b € B,, is palindromic if rev(b) = b.
Clearly b - rev(b) is palindromic for any b € B,,. Let us consider another

anti-homomorphism

skew: B, — B,

M1 _p2 o Pk e ., M2 H1 R
T;, Oiy o o O inOn—iys M = +1.

A braid b € B,, is skew-palindromic if skew(b) = b. Clearly b - skew(b) is
skew-palindromic for any b € B,,.

We now prove Theroems C and D which indicate the asymptotic behaviors
of minimal entropies among these subsets are quite distinct.

Proof of Theorem C. For the surjective homomorphism 7 : B, — S,, we
write 7; = m(0;). Suppose that an n-braid b = o},'0}? - - - 0} * is palindromic.
Since rev(b) = b we have

(Trmv(b) :)ﬂ-ik T T Ty = Ty Mg ﬂ'ik(: ).

Multiply the both side by m;, m;, - - - m;, from the left:

(7 Tig =3y )+ (i o+ Tig iy ) = (Wiy Mg -+ M) = (i Ty -+ - 73, ) = -

Since 7rj2- = id the left-hand side equals id. Hence id = 7r§ which means

that the square b? is pure. A theorem by Song [28] states that for a pseudo-
Anosov pure element O € B,, its dilatation has a uniform lower bound
24+ /5 < A(¥'). In particular if ' = b2, then 2+ /5 < A(b%) = (A(b))2. This
completes the proof. ([
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FIGURE 16. (1) br(€). (2) Skew-palindromic {3 € Byyop.
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FIGURE 17. (1) br(b) for b = oy 'odo;'03. (2) ca C T(v,4)
and c3 C T(,3). (3) Train track automaton.

Proof of Theorem D. We separate the proof into two cases, depending
on the parity of the braid degree. We first prove log§(PAszy,) =< 1/n. Let
us take ¢ = 01050304 € By (Figure 16). The braid ¢ is 3-increasing with
u(§,3) = 2. We consider the disk twist about D¢ 3). We obtain the braid
§p which is (3 + 2p)-increasing for each p > 1. Observe that & is a skew-
palindromic braid with even degree for each p > 1:

& = (01 0149p)(03 - 0319p) € Basap.

(For the definition of £3, see Section 5.) By the lower bound of dilatations by
Penner, it is enough to prove that the sequence {{J} has a small normalized
entropy. We prove this in the following two steps. In Step 1 we prove that
{&} has a small normalized entropy. In Step 2 we prove that the stable
foliation F¢, is not 1-pronged at J(¢, 342p)F¢, for p > 1. This tells us that )
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is pseudo-Anosov with the same dilatation as &§,. By Step 1 it follows that
{¢;} has a small normalized entropy.

Step 1. The sequence {{,} has a small normalized entropy.

By Theorem 5.2(1) it suffices to prove that & is pseudo-Anosov and [E¢ 3)]

is a fibered class. Consider a pseudo-Anosov braid b = o 10%01_ 10% € Bs.

It is 3-increasing with u(b,3) = 2. For 8 = bA? we have M), ~ Mz. By
Lemma 7.1 (br(8),cl(8(3)), Ag) ~ (br(y), Ay, cl(v(3))), where v € Bs is the
braid in (7.1) substituting oy ! for w; and o] ! for wy. Tt is not hard to check
that! ~ is conjugate to & in Bs and their permutations have a common fixed
point 3. Hence

(br(8), cl(B(3)), Ag) ~ (br(£), Ag, cl(£(3)))- (8.1)

In particular E(¢ 3y = Fjg which means that E¢ 3) is a fiber of a fibration on
the hyperbolic mapping torus M; ~ M over S L. Thus ¢ is pseudo-Anosov.

Step 2. F¢, is (p+ 1)-pronged at J(¢, 349y Fg, for p > 1.

We read the singularity data of F¢, from the monodromy ¢g : Fg — Fjg
of the fibration on Mz — S1. First consider the suspension flow ¢t on the
mapping torus M. Since Fj is 1-pronged at each component of Fp, we have
simple closed curves ca C T, 4y and c3 C T3y such that [ca] = (1,0),
[cs] = (2,1) € Z? (Figure 17(1)(2)).

Next we turn to 3 = bA? € Bz and the suspension flow d)tﬁ on Mg ~ M,,.
We have simple closed curves cg 4y C T(g.4) and cg3y C T(g3). Since
f is the product of b and A?, we get [¢(5.4)] = (1,0) + (0,1) = (1,1).
The first term (1,0) comes from [c4] and the second one (0,1) comes from
A?. Similarly we have [c(z3)] = (2,1) + (1,0) = (3,1). By (8.1) we have
gjﬁ = E¢3) and E(g3) = F¢. We also have T3 4) = T(¢3) and T3y = T¢, a)-

ince

plEB] + [E,3)] = [Fe] + plEe3)] = [Fe + pEe3)] = (1,p) € Cle3),

the stable foliation J{; ;) associated with an integral class (1,p) € C(¢3) is
the stable foliation associated with (p, 1) € C(g3y. By (6.1) for (z,y) = (p, 1)

[005,4)(Fe + pEe )] = (=1,p), [05,3)(Fe + pE(e3)] = (—p. 1) € Z*.

Fromi([c(s 4], [0(5,4)(Fe+PE(¢ 3))]) = p+1 and i([c(g.3)]; [0(5.3) (Fe+PE(¢ 3))])
p+ 3 together with Lemma 6.1, one sees that JF(; ) associated with (1,p) €

Cl¢,3) is (p+1)-pronged at 9 4)F(1,p)(= 9¢ 3)F(1,5)), and is (p+ 3)-pronged
at 95,5 F1p) (= e 0 Flup)-

IThere is a solution for the conjugacy problem on B, [6]. The software Braiding [12]
can be used to determine whether two braids are conjugate.
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FIGURE 18. Simple closed curve C; on 3.

Since g, : Mg — My, sends F(y ;) to Fg, the stable foliation JF(; ;) associ-
ated with (1,p) € C(¢ 3) is identified with F¢, via g,. The boundary compo-
nents die 4 F (1) and Je 3)F(1,) correspond to O, a)Fe, and O, 340p) Fe,
respectively via g,. Thus F¢, is (p + 1)-pronged at d(¢, 349y Fg,. This com-
pletes the proof of Step 2.

Next we prove log §(PAzn+1) < 1/n following the above arguments in
Steps 1,2. Take an initial braid

7 = 010203040503040304050607 € Bs.

It is 4-increasing with u(n,4) = 2. Consider 1, € Bg;2, obtained from 7
by the disk twist. Then np is a skew-palindromic braid with odd degree for
each p > 1:

Ny = (0102 -+ 04y2p) (0304 061+2p) € Brigp.

For our purpose it suffices to prove that {7];} has a small normalized en-
tropy. Following Step 1 we first prove that 7 is pseudo-Anosov and [E(, 4]
is a fibered class. Consider a pseudo-Anosov braid b = o0 10§A? € Bj
which is 3-increasing with u(b, 3) = 5. For 8 = bA? Lemma 7.1 tells us that
(br(8), cl(B(3)), Aﬁ) ~ (br(v), A’WCl(’Y(S)))v where v = Kory - "56A% € Bs.
One sees that v is conjugate to 7 in Bg. Since the permutation 7, has a
unique fixed point it follows that (br(3), cl(3(3)), Ag) ~ (br(n), Ay, cl(n(4))).
This expression says that E, 4y = Fp is a fiber of a fibration on the hyper-
bolic M, ~ M,, over S*. Hence 7 is pseudo-Anosov. We conclude that {n,}
has a small normalized entropy.

Following Step 2 one sees that J;, is (p + 2)-pronged at Ony.a+2p)Fy, for
p > 1. Thus ny is pseudo-Anosov with the same dilatation as 7,. This
completes the proof. O

8.2. Spin mapping class groups. In this section we prove Theorem E.
We first recall a connection between #H(¥,) and Mod (3¢ 2442). Let t; €
Mod(3,) for 1 < j < 2g+1 be the right-handed Dehn twist about the simple
closed curve C; as in Figure 18. Birman-Hilden [3] proved that H(3,) is
generated by t1,t2,...,%2441. In fact they prove that

Q/H(Eg) — MOd(Eo7gg+2)
tj — fj
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(D @) 3)

FIGURE 19. (1) 0 € Bg. (2) 0;) € B5+2p. (3) 8h(0;) S B6+2p.

sending ¢; to the right-handed half twist t; (see Section 2.3) is well-defined
and it is a surjective homomorphism whose kernel is generated by the invo-
lution ¢ = [Z] as in Figure 5. Using the relation between Mod (X 24+2) and
SBagy2 we have

H(%g)/{1) = Mod(Sog42) = SBayra/(A%).

It is well-known that ¢ € H(X,) is pseudo-Anosov if and only if Q(¢) is
pseudo-Anosov and in this case A(¢) = A(Q(¢)) holds. The following lemma
is useful to find elements of the odd/even spin mapping class groups.

Lemma 8.1 (Theorem 6.1 in [18] for (1), Theorem 3.1 in [17] for (2)).

Suppose that g > 3.
(1) ta, ts, tjatit; )}y, 17 € Modg[qi] for4 <j <2g and 1<k <2g+1.
(2) tjratit; )y, tf € Modg[qo] for 1 <j <2g and 1 <k <2g+1.
By the above result of Birman-Hilden, all mapping classes in Lemma 8.1
are elements of H(X,). Using the braid relations: t;t; = t;t; if |[i — j| > 2
and tjtj+1tj = tj+1tjtj+1 for 1 S] < 29, we have

1 _ -1 -2 —1 4,2
titjaty =ttt = G0 (Gt )t
Thus Lemma 8.1 tells us that tjtj+1tj_1 € Modg[q;] for 4 < j < 2¢ and

tjtjrit; | € Modg[qo] for 1 < j < 2g.
The following spin mapping classes are used in the proof of Theorem E.

Lemma 8.2. Let p > 1 be an integer.

(1) tats(tats - - ts+2p) ts12p € Modg[ai] for any g > p +2.
(2) (t2t3 s t5+2p)2tg+2p S Modg[qo] for any g > p+ 2.

Proof. We prove the lemma by the induction on p. We first prove (1).
When p=1

tots(tatstetr)*ty = to - t3 - tatsty ' - 13 - tetaty ' - totsty - t2 - 12

which is an element of Modg[qq] for g > 3 by Lemma 8.1(1).
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Assume that tots(tats - - - t5+2(p,1))2t5+2(p,1) € Mod,[qq] for g > p—1+
2. By the braid relations, t2t3(t4t5 ce t4+2(p_1)t5+2(p_1)t4+2pt5+2p)2t5+2p is
equal to

2 —2
tats(tats - - ts5ia(p—1)) tsr2(p-1) - byagy_1) - tat2ptstaptsrap—1)tatap - t5yop-
(r—1)

—1 _
Note that tjtji1tj1t; = (tjtjrat; )(tjtj—1t;')t3. Then the assump-
tion together with Lemma 8.1(1) implies that tots(t4ts - ~t5+2p)2t5+2p €
Modg[q:] for g > p+ 2.
Let us turn to (2). When p =1

(tatstatstety)?ts = totaty ! - 15 - tataty ! - tatstyt 15 - totrtg - totsty - t2 - 1212

which is an element of Mod[qo] for g > 3.
Assume that (tat3 - -t5+2(p_1))2t§+2(p71) € Modg|qo] for any g > p—1+2.
By the braid relations again, we have

(tats-- 't4+2(p71)t5+2(p71)t4+2pt5+2p)2t§+2p
2,3 —4 4
= (tats- - tspo(p-1)) tryo(p-1)  tsra(p_1) - tat2ptsraptsiap—1)tatap L5 yap-
The assumption together with Lemma 8.1(2) says that (tat3 - - - t5+2p)2t§+2p €
Mod,[qo] for g > p+ 2. This completes the proof. O

The shift map sh : B,, — Bp41 is an injective homomorphism sending o;
to oj41 for 1 < j < n —1. Suppose that b € B,, is pseudo-Anosov. Then
S(sh(b)) € SBy41 is pseudo-Anosov with the same dilatation as b since
T(S(sh(b))) is conjugate to f, = ¢(I'(b)) in Mod(Xo,n+1)- (See Section 2.3
for definitions I, f) We finally prove Theorem E.

Proof of Theorem E(1). Consider o = 01020304050304050305 € Bg. It
is a 4-increasing braid with u(o,4) = 2 (Figure 19). The braid o, is obtained
from o by disk twist for each p > 1. Then

o, = 0102(0304- - 0419p)°0uy2p € Bsiop,
S(sh(o;)) = o0903(0405 - 05+2p)205+2p € SBgtap.

By Lemma 8.2(1) t2t3(t4t5 .- 't5+2p)2t5+2p S Modp+2[q1] for p > 1, and it
is pseudo-Anosov if S(sh(op)) is pseudo-Anosov. In this case they have the
same dilatation. Thus by the relation between o and S(sh(o})) it is enough
to prove that {op} has a small normalized entropy. We first claim that
{0p} has a small normalized entropy. By Theorem 5.2(1) it suffices to prove
that o is a pseudo-Anosov and [E(, 4] is a fibered class. Consider a 3-braid
b= 0?03 - 03 - 05 which is 3-increasing with u(b,3) = 3. Let 3 denote bAZ?.
By Lemma 7.1 (br(3),cl(5(3)), Ag) ~ (br(y), Ay,cl(v(3))), where v € Bg is
the braid in (7.2) substituting o2, (), 0 for wy, wa, w3 respectively. In this
case 7y is conjugate to o in Bg. Since the permutation 7, has a unique fixed
point 4, it follows that (br(5),cl(5(3)), Ag) ~ (br(o), Ao, cl(o(4))). This tells
us that Mg =~ M, and [E, 4)] = [F}] is a fibered class. On the other hand f3
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is conjugate to ofoy 2A% in By which means that 3 is pseudo-Anosov. Thus
Mg ~ M, is hyperbolic and o is pseudo-Anosov.

Next we prove that op is pseudo-Anosov with the same dilatation as o,
for p > 1. By the same argument as in the proof of Theorem D one sees that
Fo, is (p+2)-pronged at 9(0,,442p) Fo,- Thus o} has the desired property for
p > 1. We finish the proof of (1).

We turn to (2). Let us consider v = (0102030405)201020§ € Bg which is
3-increasing with u(v,3) = 2. Let v, € Bg12, be the braid obtained from v
by the disk twist. Then v, is (3 4 2p)-increasing and

vy = (0102 --U4+2p)202+2p € Bsyap,
S(Sh(U;)) = (0'20'3 cee 0-5+2p)20-§+2p S SBG+2p.

By Lemma 8.2(2) it is enough to prove that {vp} has a small normalized
entropy. To do this we first prove that {v,} has a small normalized entropy.
Consider a pseudo-Anosov 3-braid

b=o0%0, A" = 030301 A = 0303 - 0205 - 0103

which is 3-increasing with u(b,3) = 3. Lemma 7.1 tells us that for 8 = bA2
we have (br(3),cl(3(3)),Ag) ~ (br(v), Ay, cl(7(3))), where v € Bg is the
braid in (7.2) substituting o3 for wy, o3 for wy and oy for w3. One sees that
7 is conjugate to v in Bg. Thus (br(5),cl(5(3)), Ag) ~ (br(v), Ay, cl(v(3))).
This implies that [E,3)] = [Fjs] is a fibered class of the hyperbolic Mg ~
M,, and hence v is pseudo-Anosov. By Theorem 5.2(1), {v,} has a small

normalized entropy.
One sees that F,, is (p + 3)-pronged at O(v,,3+2p) Fv,- Thus vy is pseudo-
Anosov with the same dilatation as v, for p > 1. This completes the proof.
O
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