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On two trigonometric inequalities of
Askey and Steinig

Horst Alzer and Man Kam Kwong

Abstract. We prove that the inequality

5

8
cos(x/4) +

n∑
k=1

cos((k + 1/4)x)

k + 1
≥ 0

as well as its companion, obtained by replacing “cos” by “sin”, hold for
all n ≥ 1 and x ∈ (0, 2π). In both cases, the constant factor 5/8 is sharp.
This refines a result of Askey and Steinig, who proved the inequalities
with the factor 1 instead of 5/8.
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1. Introduction and statement of main results

In this paper, we study the inequalities
n∑

k=0

cos((k + 1/4)x)

k + 1
> 0 and

n∑
k=0

sin((k + 1/4)x)

k + 1
> 0 (1.1)

which are valid for all integers n ≥ 0 and real numbers x ∈ (0, 2π). These
elegant inequalities were proved in 1974 by Askey and Steinig [4]. In 2018,
Alzer and Kwong [1] published the following counterpart,

n∑
k=0

cos((k + 1/4)x) + sin((k + 1/4)x)

k + 1
≥ 1√

2
.

This inequality holds for all n ≥ 0 and x ∈ [0, 2π]. The constant lower
bound is best possible.
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The inequalities (1.1) are special cases of a more general result. Askey
and Steinig showed that if

(2k − 1)bk−1 ≥ 2kbk > 0 (k = 1, ..., n) (1.2)

and x ∈ (0, 2π), then
n∑

k=0

bk cos((k + 1/4)x) > 0 and
n∑

k=0

bk sin((k + 1/4)x) > 0. (1.3)

The assumption (1.2) can be relaxed. Brown and Hewitt [5] proved that
(1.3) remains valid if we replace (1.2) by

2kbk−1 ≥ (2k + 1)bk > 0 (k = 1, ..., n). (1.4)

Koumandos [6] showed that the cosine inequality in (1.3) holds for x ∈
(0, 2π) if

(k − λ)bk−1 ≥ kbk > 0 (k = 1, ..., n) and 0.3084438 ≤ λ < 1. (1.5)

We define

Cn(a, x) = a cos(x/4) +
n∑

k=1

cos((k + 1/4)x)

k + 1

and

Sn(a, x) = a sin(x/4) +
n∑

k=1

sin((k + 1/4)x)

k + 1
.

From (1.1) we obtain

Cn(1, x) > 0 and Sn(1, x) > 0 (n ≥ 1, 0 < x < 2π). (1.6)

Is it possible to refine these inequalities? More precisely, we ask for the
smallest real numbers α and β such that

Cn(α, x) > 0 and Sn(β, x) > 0 (n ≥ 1, 0 < x < 2π). (1.7)

We show that both inequalities in (1.6) can be improved. In fact, (1.7) holds
with the best possible constants α = 5/8 and β = 5/8.

Theorem 1.1. For all natural numbers n and real numbers x ∈ (0, 2π) we
have

5

8
cos(x/4) +

n∑
k=1

cos((k + 1/4)x)

k + 1
≥ 0. (1.8)

The sign of equality holds if and only if n = 1 and x = 4 arccos(
√

5/8).

Since Sn(a, x) = Cn(a, 2π − x), we conclude from Theorem 1.1 that the
following counterpart for sine sums is valid.

Theorem 1.2. For all natural numbers n and real numbers x ∈ (0, 2π) we
have

5

8
sin(x/4) +

n∑
k=1

sin((k + 1/4)x)

k + 1
≥ 0. (1.9)
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The sign of equality holds if and only if n = 1 and x = 4 arccos(
√

3/8).

Over the years, inequalities for trigonometric sums attracted (and still
attract) the attention of numerous researchers. Among the mathematicians,
who worked in this field, we find well-known names like Fejér, Szegö, Turán,
Vietoris, just to mention a few. Many of these inequalities are exquisitely
beautiful and, moreover, have remarkable applications in various branches,
like, for example, geometric function theory and approximation theory. For
more information on this subject we refer to Askey [2], Askey and Gasper
[3], Milovanović et al. [9, chapter 4] and the references cited therein.

In the next section, we collect a few lemmas which we need to prove
Theorem 1.1. A proof of Theorem 1.1 is given in Section 2. Finally, in
Section 3, we present a few remarks and corollaries.

The numerical and algebraic computations have been carried out using
the computer software MAPLE 13.

2. Lemmas

The comparison principle which is stated in our first lemma is a helpful
tool to prove inequalities for trigonometric sums; see Koumandos [7] and
Kwong [8].

Lemma 2.1. Let αk > 0, βk and γk (k = 0, 1, ..., N) be real numbers. If

β0
α0
≥ β1
α1
≥ · · · ≥ βN

αN
> 0 and λ ≤

M∑
k=0

αkγk ≤ Λ (M = 0, 1, ..., N),

then

β0
α0
λ ≤

N∑
k=0

βkγk ≤
β0
α0

Λ. (2.1)

Proof. Let αN+1 = 1, βN+1 = 0 and δk =
∑k

j=0 αjγj . Then,

N∑
k=0

βkγk =
N∑
k=0

δk

(βk
αk
− βk+1

αk+1

)
and

λ
(βk
αk
− βk+1

αk+1

)
≤ δk

(βk
αk
− βk+1

αk+1

)
≤ Λ

(βk
αk
− βk+1

αk+1

)
(k = 0, 1, ..., N).

By summation we obtain (2.1). �

With the help of the comparison principle we are able to prove the fol-
lowing two lemmas.

Lemma 2.2. Let ck (k = 0, 1, ..., n) be real numbers such that c0 ≥ c1 ≥
· · · ≥ cn > 0. Then, for x ∈ (0, π/2),

n∑
k=0

ck cos((4k + 1)x) ≥ c0
sin(x)− 1

2 sin(2x)
. (2.2)
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Proof. We apply the formulae

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b),

sin(a) cos(b) =
1

2

(
sin(a− b) + sin(a+ b)

)
, (2.3)

n∑
k=0

cos(2ka) =
cos(na) sin((n+ 1)a)

sin(a)

and
n∑

k=0

sin(2ka) =
sin(na) sin((n+ 1)a)

sin(a)
. (2.4)

Then, for x ∈ (0, π/2),

n∑
k=0

cos((4k + 1)x) =
sin(x) + sin((4n+ 3)x)

2 sin(2x)
≥ sin(x)− 1

2 sin(2x)
.

Next, we use Lemma 2.1 with

αk = 1, βk = ck, γk = cos((4k + 1)x), λ =
sin(x)− 1

2 sin(2x)
.

This leads to (2.2). �

Lemma 2.3. Let m,n be integers with 0 ≤ m ≤ n and let ck (k = m,m +
1, ..., n) be real numbers such that cm ≥ cm+1 ≥ · · · ≥ cn > 0. Then, for
x ∈ (0, π/2),

n∑
k=m

ck sin(4kx) ≤ cm
sin(2x)

. (2.5)

Proof. Using

sin(a) sin(b) =
1

2

(
cos(a− b)− cos(a+ b)

)
and (2.4) gives for N ≥ m and x ∈ (0, π/2),

N∑
k=m

sin(4kx) =
cos((4m− 2)x)− cos((4N + 2)x)

2 sin(2x)
≤ 1

sin(2x)
.

From Lemma 2.1 with

N = n−m, αk = 1, βk = ck+m,

γk = sin(4(k +m)x), Λ =
1

sin(2x)

we conclude that (2.5) holds. �

The following inequality for cosine polynomials is due to Rogosinski and
Szegö [10].
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Lemma 2.4. For all natural numbers n and real numbers x we have

1

2
+

n∑
k=1

cos(kx)

k + 1
≥ 0.

3. Proof of Theorem 1.1

Since

C1(5/8, x) =
5

8
cos(x/4) +

1

2
cos(5x/4) =

1

8
cos(x/4)

(
8 cos2(x/4)− 5

)2
,

we obtain C1(5/8, x) ≥ 0 for x ∈ (0, 2π) with equality if and only if x =

4 arccos(
√

5/8).
We define

Θn(x) = Cn(5/8, 4x) =
5

8
cos(x) +

n∑
k=1

cos((4k + 1)x)

k + 1
.

It remains to show that for n ≥ 2 and x ∈ (0, π/2) we get Θn(x) > 0.
First, we consider the cases n = 2, 3, 4. We have

Θ2(x) =
1

24
cos(x)F2

(
cos2(x)

)
, Θ3(x) =

1

24
cos(x)F3

(
cos2(x)

)
,

Θ4(x) =
1

120
cos(x)F4

(
cos2(x)

)
,

(3.1)

where

F2(z) = 2048z4 − 4608z3 + 3648z2 − 1200z + 147,

F3(z) = 24576z6 − 79872z5 + 101888z4 − 64512z3 + 21120z2 − 3384z + 225,

F4(z) = 1572864z8 − 6684672z7 + 11821056z6 − 11261952z5 + 6254080z4

−2045952z3 + 379776z2 − 36504z + 1533.

Next, we apply Sturm’s theorem to determine the number of distinct real
roots of a polynomial in an interval; see van der Waerden [11, section 79].
We obtain that each of the functions F2, F3, F4 has no zero on [0, 1]. Since
Fn(0) > 0 (n = 2, 3, 4), we get Fn(z) > 0 for z ∈ [0, 1]. From (3.1) we
conclude that for x ∈ (0, π/2) we have Θn(x) > 0 (n = 2, 3, 4).

Let n ≥ 5. We consider two cases.
Case 1. 0 < x ≤ 0.055.
We have

Θn(x) = cos(x)Un(x)− sin(x)Vn(x) (3.2)

with

Un(x) =
5

8
+

n∑
k=1

cos(4kx)

k + 1
and Vn(x) =

n∑
k=1

sin(4kx)

k + 1
.

Using Lemma 2.4 gives

cos(x)Un(x) ≥ cos(0.055) · 1

8
. (3.3)
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We apply Lemma 2.3 with m = 6 and ck = 1/(k + 1). Then,

sin(x)Vn(x) = sin(x)
(
V5(x) +

n∑
k=6

sin(4kx)

k + 1

)
≤ sin(x)

(
V5(x) +

1

7 sin(2x)

)
(3.4)

= sin(x)
5∑

k=1

sin(4kx)

k + 1
+

1

14 cos(x)
= G(x), say.

Since each of the six terms of G is increasing on [0, 0.055], we obtain

G(x) ≤ G(0.055). (3.5)

Combining (3.2) - (3.5) yields

Θn(x) ≥ 1

8
cos(0.055)−G(0.055) = 0.0144....

Case 2. 0.055 ≤ x < π/2.
Let

c0 = c1 = c2 = c3 =
1

5
, ck =

1

k + 1
(k ≥ 4)

and

B(x) =
17

40
cos(x) +

3

10
cos(5x) +

2

15
cos(9x) +

1

20
cos(13x).

Then,

Θn(x) = B(x) +
n∑

k=0

ck cos((4k + 1)x).

An application of Lemma 2.2 gives

n∑
k=0

ck cos((4k + 1)x) ≥ sin(x)− 1

10 sin(2x)
.

It follows that

Θn(x) ≥ B(x) +
sin(x)− 1

10 sin(2x)
. (3.6)

Let

W (x) = 10 sin(2x)B(x) + sin(x)− 1.

We obtain

W (x) = sin(x)P (cos2(x))− 1

with

P (z) = 4096z7− 13312z6 +
51968

3
z5− 11520z4 + 4160z3− 804z2 +

151

2
z+ 1.
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Let T = T (x) = tan(x/2). Since T is strictly increasing on [0, π), we have
0.027... = T (0.055) ≤ T < T (π/2) = 1. Using

sin(x) =
2T

1 + T 2
and cos(x) =

1− T 2

1 + T 2

leads to the representation

W (x) =
2T

1 + T 2
P
((1− T 2

1 + T 2

)2)
− 1 =

(1− T )2

3(1 + T 2)15
Q(T ) (3.7)

with

Q(T ) =
28∑
k=0

µkT
k

and

µ0 = µ28 = −3, µ1 = µ27 = 109, µ2 = µ26 = 176,

µ3 = µ25 = −4887, µ4 = µ24 = −10265, µ5 = µ23 = 117334,

µ6 = µ22 = 243568, µ7 = µ21 = −1235098, µ8 = µ20 = −2717859,

µ9 = µ19 = 6533455, µ10 = µ18 = 15775760,

µ11 = µ17 = −15448645, µ12 = µ16 = −46688065,

µ13 = µ15 = 11893220, µ14 = 70455200.

An application of Sturm’s theorem shows that Q has no zero on [T (0.055), 1],
so that Q(1) > 0 reveals that Q(T ) > 0 for T ∈ [T (0.055), 1]. From (3.7) we
conclude that W is positive on [0.055, π/2). Using (3.6) gives Θn(x) > 0.
This completes the proof of Theorem 1.1.

4. Remarks and corollaries

We set b0 = 5/8 and bk = 1/(k + 1) (k ≥ 1). A short calculation reveals
that none of the conditions (1.2), (1.4), (1.5) is fulfilled for k = 1. Thus,
neither (1.8) nor (1.9) is included in (1.3).

Since

Cn(a, 0) = Sn(a, 2π) = a+
n∑

k=1

1

k + 1
,

we conclude that there are no constant upper bounds for Cn(a, x) and
Sn(a, x) which are valid for all n ≥ 1 and x ∈ (0, 2π).

We use

cos(a) cos(b) =
1

2

(
cos(a− b) + cos(a+ b)

)
with

a = (k + 1/4)x and b = (k + 1/4)y

and apply Theorem 1.1. Then we obtain an extension of (1.8).



ON TWO TRIGONOMETRIC INEQUALITIES OF ASKEY AND STEINIG 35

Corollary 4.1. For all natural numbers n and real numbers x, y with 0 <
x− y < 2π, 0 < x+ y < 2π we have

5

8
cos(x/4) cos(y/4) +

n∑
k=1

cos((k + 1/4)x) cos((k + 1/4)y)

k + 1
≥ 0. (4.1)

The sign of equality holds if and only if n = 1 and x = 4 arccos(
√

5/8),
y = 0.

An application of (2.3) and Theorem 1.2 leads to a companion of (4.1).

Corollary 4.2. For all natural numbers n and real numbers x, y with 0 <
x− y < 2π, 0 < x+ y < 2π we have

5

8
sin(x/4) cos(y/4) +

n∑
k=1

sin((k + 1/4)x) cos((k + 1/4)y)

k + 1
≥ 0.

The sign of equality holds if and only if n = 1 and x = 4 arccos(
√

3/8),
y = 0.

Let

C∗
n(x) =

n∑
k=1

(−1)k
cos((k + 1/4)x)

k + 1
and S∗

n(x) =

n∑
k=1

(−1)k
sin((k + 1/4)x)

k + 1
.

Alzer and Kwong [1] proved that for n ≥ 1 and x ∈ [0, 2π] we have

cos(x/4)+sin(x/4)+C∗
n(x)+S∗

n(x) ≥ 13−
√

85

200

√
300 + 20

√
85 = 0.41601....

(4.2)
The constant lower bound is sharp.

We replace in (1.9) x by π − x and make use of

sin(a− b) = sin(a) cos(b)− cos(a) sin(b).

Then we multiply both sides of the inequality by
√

2. This yields the fol-
lowing counterpart of (4.2).

Corollary 4.3. For all natural numbers n and real numbers x ∈ (−π, π) we
have

5

8

(
cos(x/4)− sin(x/4)

)
+ C∗

n(x)− S∗
n(x) ≥ 0.

The sign of equality holds if and only if n = 1 and x = π − 4 arccos(
√

3/8).
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