New York Journal of Mathematics

New York J. Math. 26 (2020) 1002–1027.

Computations of de Rham cohomology rings of classifying stacks at torsion primes

Eric Primozic

ABSTRACT. We compute the de Rham cohomology rings of BG_2 and $B\mathrm{Spin}(n)$ for $7 \leq n \leq 11$ over base fields of characteristic 2.

Contents

Introduction		1002
Acknowledgments		1004
1.	Preliminaries	1004
2.	G_2	1006
3.	Spin groups	1010
References		1026

Introduction

Let G be a smooth affine algebraic group over a commutative ring R. In [17], Totaro defines the Hodge cohomology group $H^i(BG,\Omega^j)$ for $i,j\geq 0$ to be the ith étale cohomology group of the sheaf of differential forms Ω^j over R on the big étale site of the classifying stack BG. For $n\geq 0$, let $H^n_H(BG/R):=\oplus_j H^j(BG,\Omega^{n-j})$ denote the total Hodge cohomology group of degree n. De Rham cohomology groups $H^n_{dR}(BG/R)$ are defined to be the étale cohomology groups of the de Rham complex of BG. Let $\mathfrak g$ denote the Lie algebra associated to G and let $O(\mathfrak g)=S(\mathfrak g^*)$ denote the ring of polynomial functions on $\mathfrak g$. In [17, Corollary 2.2], Totaro showed that the Hodge cohomology of BG is related to the representation theory of G:

$$H^{i}(BG, \Omega^{j}) \cong H^{i-j}(G, S^{j}(\mathfrak{g}^{*})).$$

Let G be a split reductive group defined over \mathbb{Z} . From the work of Bhatt-Morrow-Scholze in p-adic Hodge theory [1, Theorem 1.1], one might expect that

Received October 8, 2019.

²⁰¹⁰ Mathematics Subject Classification. 14F40, 20G05.

 $Key\ words\ and\ phrases.$ Hodge cohomology, de Rham cohomology, torsion prime, classifying space.

$$\dim_{\mathbb{F}_p} H^i_{\mathrm{dR}}(BG_{\mathbb{F}_p}/\mathbb{F}_p) \ge \dim_{\mathbb{F}_p} H^i(BG_{\mathbb{C}}, \mathbb{F}_p) \tag{1}$$

for all primes p and $i \geq 0$. The results from [1] do not immediately apply to BG since BG is not proper as a stack over \mathbb{Z} . For p a non-torsion prime of a split reductive group G defined over \mathbb{Z} , Totaro showed that

$$H_{\mathrm{dR}}^*(BG_{\mathbb{F}_p}/\mathbb{F}_p) \cong H^*(BG_{\mathbb{C}}, \mathbb{F}_p)$$
 (2)

[17, Theorem 9.2]. It remains to compare $H^*_{dR}(BG_{\mathbb{F}_p}/\mathbb{F}_p)$ with $H^*(BG_{\mathbb{C}}, \mathbb{F}_p)$ for p a torsion prime of G. For $n \geq 3$, 2 is a torsion prime for the split group SO(n). Totaro showed that

$$H_{\mathrm{dR}}^*(BSO(n)_{\mathbb{F}_2}/\mathbb{F}_2) \cong H^*(BSO(n)_{\mathbb{C}},\mathbb{F}_2) \cong \mathbb{F}_2[w_2,\ldots,w_n]$$

as graded rings where w_2, \ldots, w_n are the Stiefel-Whitney classes [17, Theorem 11.1]. In general, the rings $H_{\mathrm{dR}}^*(BG_{\mathbb{F}_p}/\mathbb{F}_p)$ and $H^*(BG_{\mathbb{C}}, \mathbb{F}_p)$ are different though. For example,

$$\dim_{\mathbb{F}_2} H^{32}_{\mathrm{dR}}(B\mathrm{Spin}(11)_{\mathbb{F}_2}/\mathbb{F}_2) > \dim_{\mathbb{F}_2} H^{32}(B\mathrm{Spin}(11)_{\mathbb{C}},\mathbb{F}_2)$$

[17, Theorem 12.1].

In this paper, we verify inequality (1) for more examples. For the torsion prime 2 of the split reductive group G_2 over \mathbb{Z} , we show that

$$H_{\mathrm{dR}}^*(B(G_2)_{\mathbb{F}_2}/\mathbb{F}_2) \cong H^*(B(G_2)_{\mathbb{C}}, \mathbb{F}_2) \cong \mathbb{F}_2[y_4, y_6, y_7]$$

as graded rings where $|y_i| = i$ for i = 4, 6, 7. For the spin groups, we show that

$$H_{\mathrm{dR}}^*(B\mathrm{Spin}(n)_{\mathbb{F}_2}/\mathbb{F}_2) \cong H^*(B\mathrm{Spin}(n)_{\mathbb{C}},\mathbb{F}_2)$$
 (3)

for $7 \le n \le 10$. Note that 2 is a torsion prime for $\mathrm{Spin}(n)$ for $n \ge 7$. The isomorphism (3) holds for $1 \le n \le 6$ by the "accidental" isomorphisms for spin groups along with (2).

For n=11, we make a full computation of the de Rham cohomology ring of $B\mathrm{Spin}(n)_{\mathbb{F}_2}$:

$$H_{\mathrm{dR}}^*(B\mathrm{Spin}(11)_{\mathbb{F}_2}/\mathbb{F}_2) \cong \mathbb{F}_2[y_4, y_6, y_7, y_8, y_{10}, y_{11}, y_{32}]/(y_7y_{10} + y_6y_{11})$$

where $|y_i| = i$ for all i. We can compare this result with the computation of the singular cohomology of $B\text{Spin}(11)_{\mathbb{C}}$ given by Quillen [14]:

$$H^*(B\mathrm{Spin}(11)_{\mathbb{C}}, \mathbb{F}_2) \cong \mathbb{F}_2[w_4, w_6, w_7, w_8, w_{10}, w_{11}, w_{64}]/(w_7w_{10} + w_6w_{11}, w_{11}^2 + w_{11}^2w_7w_4 + w_{11}w_8w_7^2)$$

where $|w_i| = i$ for all i. Equivalently,

$$H^*(B\mathrm{Spin}(11)_{\mathbb{C}}, \mathbb{F}_2) \cong H^*(BSO(11)_{\mathbb{C}}, \mathbb{F}_2)/J \otimes \mathbb{F}_2[w_{64}]$$

where J is the ideal generated by the regular sequence

$$w_2, Sq^1(w_2), Sq^2Sq^1(w_2), \dots, Sq^{16}Sq^8 \dots Sq^1w_2.$$

Thus, the rings $H^*_{\mathrm{dR}}(B\mathrm{Spin}(n)_{\mathbb{F}_2}/\mathbb{F}_2)$ and $H^*(B\mathrm{Spin}(n)_{\mathbb{C}},\mathbb{F}_2)$ are not isomorphic in general even though $H^*_{\mathrm{dR}}(BSO(n)_{\mathbb{F}_2}/\mathbb{F}_2) \cong H^*(BSO(n)_{\mathbb{C}},\mathbb{F}_2)$ for all n. Steenrod squares on de Rham cohomology over a base field of

characteristic 2 have not yet been constructed. If they exist, our calculation suggests that their action on $H^*_{dR}(BSO(n)_{\mathbb{F}_2}/\mathbb{F}_2) \cong H^*(BSO(n)_{\mathbb{C}}, \mathbb{F}_2)$ would have to be different from the action of the topological Steenrod operations.

Acknowledgments

I thank Burt Totaro for suggesting this project to me and for providing advice. I thank the referee for carefully reading this paper and suggesting improvements to the exposition.

1. Preliminaries

In this section, we recall results from [17] that will be used in our computations. These results were also used by Totaro in [17, Theorem 11.1] to compute the de Rham cohomology of $BSO(n)_k$ for k a field of characteristic 2.

The first result we mention [17, Proposition 9.3] is an analogue of the Leray-Serre spectral sequence from topology.

Proposition 1.1. Let G be a split reductive group defined over a field F and let P be a parabolic subgroup of G with Levi quotient L (this means that $P \cong R_u(P) \rtimes L$ where $R_u(P)$ is the unipotent radical of P [2, 14.19]). There exists a spectral sequence of algebras

$$E_2^{i,j} = H^i_{\mathrm{H}}(BG/F) \otimes H^j_{\mathrm{H}}((G/P)/F) \Rightarrow H^{i+j}_{\mathrm{H}}(BL/F).$$

Proposition 1.1 is the main tool that we will use to compute Hodge cohomology rings of classifying stacks. To apply Proposition 1.1, we will choose a parabolic subgroup P for which $H^*_{\rm H}(BL/F)$ is a polynomial ring.

To fill in the 0th column of the E_2 page in Proposition 1.1, we use a result of Srinivas [15].

Proposition 1.2. Let G be split reductive over a field F and let P be a parabolic subgroup of G. The cycle class map

$$CH^*(G/P) \otimes_{\mathbb{Z}} F \to H^*_{\mathrm{H}}((G/P)/F)$$

is an isomorphism.

Under the cycle class map, $CH^i(G/P) \otimes_{\mathbb{Z}} F$ maps to $H^i(G/P, \Omega^i)$. From the work of Chevalley [5] and Demazure [6], $CH^*(G/P)$ is independent of the field F and is isomorphic to the singular cohomology ring $H^*(G_{\mathbb{C}}/P_{\mathbb{C}}, \mathbb{Z})$.

The last piece of information we will use to compute $H_{\mathrm{H}}^*(BG/F)$ is the ring of G-invariants $O(\mathfrak{g})^G = \bigoplus_i H^i(BG, \Omega^i)$. Let T be a maximal torus in G with Lie algebra \mathfrak{t} and Weyl group W. There is a restriction homomorphism

$$O(\mathfrak{g})^G \to O(\mathfrak{t})^W.$$
 (4)

We will need the following theorem which is due to Chaput and Romagny [4, Theorem 1.1]. For the following theorem, a split algebraic group G over a field F is simple if every proper smooth normal connected subgroup of G is trivial.

Theorem 1.3. Assume that G is simple over a field F. Then the restriction homomorphism (4) is an isomorphism unless $\operatorname{char}(F) = 2$ and $G_{\overline{F}}$ is a product of copies of $\operatorname{Sp}(2n)$ for some $n \in \mathbb{N}$.

From the rings $O(\mathfrak{g})^G$, $CH^*(G/P)$, $H^*_H(BL/F)$, we will be able to determine the E_{∞} terms of the spectral sequence in Proposition 1.1. This will allow us to determine $H^*_H(BG/F)$ by using the following version of the Zeeman comparison theorem [12, Theorem VII.2.4].

Theorem 1.4. Fix a field F. Let $\{\bar{E}_r^{i,j}\}$, $\{E_r^{i,j}\}$ be first quadrant (cohomological) spectral sequences of F-vector spaces such that $\bar{E}_2^{i,j} = \bar{E}_2^{i,0} \otimes_F \bar{E}_2^{0,j}$ and $E_2^{i,j} = E_2^{i,0} \otimes_F E_2^{0,j}$ for all i,j. Let $\{f_r^{i,j}: \bar{E}_r^{i,j} \to E_r^{i,j}\}$ be a morphism of spectral sequences such that $f_2^{i,j} = f_2^{i,0} \otimes f_2^{0,j}$ for all i,j. Fix $N,Q \in \mathbb{N}$. Assume that $f_\infty^{i,j}$ is an isomorphism for all i,j with i+j < N and an injection for i+j=N. If $f_2^{0,i}$ is an isomorphism for all i < Q and an injection for i=Q, then $f_2^{i,0}$ is an isomorphism for all $i < \min(N,Q+1)$ and an injection for $i=\min(N,Q+1)$.

We recall a result from [17, Section 11] on the degeneration of the Hodge spectral sequence for split reductive groups, under some assumptions. The result in [17, Section 11] was proved for the special orthogonal groups but the proof works more generally.

Proposition 1.5. Let G be a split reductive group over a field F and assume that the Hodge cohomology ring of BG is generated as an F-algebra by classes in $\bigoplus_i H^{i+1}(BG, \Omega^i)$ and $\bigoplus_i H^i(BG, \Omega^i)$. Then the Hodge spectral sequence

$$E_1^{i,j} = H^j(BG, \Omega^i) \Rightarrow H_{\mathrm{dR}}^{i+j}(BG/F) \tag{5}$$

for BG degenerates at the E_1 page.

Proof. From [17, Lemma 8.2], there are natural maps

$$H^i(BG,\Omega^i)\to H^{2i}_{\rm dR}(BG/F)$$

and

$$H^{i+1}(BG,\Omega^i) \to H^{2i+1}_{\mathrm{dR}}(BG/F)$$

for all $i \geq 0$. These maps are compatible with products. Let T denote a maximal torus of G. From the group homomorphism $T \to G$, we have the commuting square

$$\bigoplus_{i} H^{i}(BG, \Omega^{i}) \longrightarrow \bigoplus_{i} H^{2i}_{dR}(BG/F)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{i} H^{i}(BT, \Omega^{i}) \stackrel{\cong}{\longrightarrow} H^{2i}_{dR}(BT/F).$$

$$(6)$$

The restriction homomorphism (4) induces an injection

$$\bigoplus_i H^i(BG,\Omega^i) \to \bigoplus_i H^i(BT,\Omega^i)$$

[17, Lemma 8.2]. Hence, from diagram (6), we get that the natural map

$$\bigoplus_i H^i(BG,\Omega^i) \to \bigoplus_i H^{2i}_{dR}(BG/F)$$

is an injection. Hence, any differentials into the diagonal in the spectral sequence (5) must be 0. Then all classes in $\bigoplus_i H^{i+1}(BT,\Omega^i)$ must be permanent cycles (an element x in the E_2 page of a spectral sequence E_* is called a permanent cycle if $d_i(x)=0$ for all $i\geq 2$) in (5). Classes in $\bigoplus_i H^i(BT,\Omega^i)$ must be permanent cycles in the spectral sequence (5) since $H^i(BG,\Omega^j)=0$ for i< j by [17, Corollary 2.2]. This proves that the Hodge spectral sequence for BG degenerates.

The following definition will be used later to describe the Hodge cohomology of flag varieties.

Definition 1.6. Let F be a field. For variables x_1, \ldots, x_n let $\Delta(x_1, \ldots, x_n)$ denote the F-vector space with basis given by the products $x_{i_1} \cdots x_{i_r}$ for $1 \le i_1 < i_2 < \cdots < i_r \le n$.

$2. G_2$

Let k be a field of characteristic 2 and let G denote the split form of G_2 over k.

Theorem 2.1. The Hodge cohomology ring of BG is freely generated as a commutative k-algebra by generators $y_4 \in H^2(BG, \Omega^2)$, $y_6 \in H^3(BG, \Omega^3)$, and $y_7 \in H^4(BG, \Omega^3)$. The Hodge spectral sequence for BG degenerates at E_1 and we have

$$H_{\mathrm{dR}}^*(BG/k) \cong H_{\mathrm{H}}^*(BG/k) = k[y_4, y_6, y_7].$$

From the computation [12, Corollary VII.6.3] of the singular cohomology ring of $B(G_2)_{\mathbb{C}}$ with \mathbb{F}_2 -coefficients, we then have $H^*(B(G_2)_{\mathbb{C}}, k) \cong H^*_{d\mathbf{R}}(BG/k)$.

Proof. We first choose a suitable parabolic subgroup of G. Let P be the parabolic subgroup of G corresponding to inclusion of the long root.

From Proposition 1.2, $CH^*(G/P)$ is independent of the field k and the characteristic of k. As discussed in [9, §23.3], if we consider $(G_2)_{\mathbb{C}}$ over \mathbb{C} along with the corresponding parabolic subgroup $P_{\mathbb{C}}$, $(G_2)_{\mathbb{C}}/P_{\mathbb{C}}$ is isomorphic to a smooth quadric Q_5 in \mathbb{P}^6 . Hence, by [8, Chapter XIII], $H^*_{\mathrm{H}}((G/P)/k)$ is isomorphic to

$$CH^*(Q_5) \otimes_{\mathbb{Z}} k \cong k[v, w]/(v^6, w^2, v^3 - 2w) = k[v, w]/(v^3, w^2)$$

where |v|=2 and |w|=6 in $H_{\mathrm{H}}^*((G/P)/k)$.

We next show that the Levi quotient L of P is isomorphic to $GL(2)_k$. This can be seen by constructing an isomorphism from the root datum of $GL(2)_k$ to the root datum of the Levi quotient. Let $(X_1, R_1, X_1^{\vee}, R_1^{\vee})$ be the usual root datum of $GL(2)_k$ where $X_1 = \mathbb{Z}\chi_1 + \mathbb{Z}\chi_2$, $R_1 = \mathbb{Z}(\chi_1 - \chi_2)$, and we take our torus to be the set of diagonal matrices in $GL(2)_k$. We take $(X_2, R_2, X_2^{\vee}, R_2^{\vee})$ to be the root datum of G as described in [3, Plate IX]. Here, $X_2 = \{(a, b, c) \in \mathbb{Z}^3 \mid a + b + c = 0\}$. The long root α for G is then (-2, 1, 1) and the root datum of $F(R_u(P))$ is $(X_2, \pm \alpha, X_2^{\vee}, \pm \frac{1}{3}\alpha)$. An isomorphism from the root datum of $GL(2)_k$ to the root datum of G can then be obtained from the isomorphism

$$X_1 \to X_2$$

$$\chi_1 \longmapsto (-1,1,0), \chi_2 \longmapsto (1,0,-1).$$

Thus, $L \cong GL(2)_k$.

We now analyze the spectral sequence

$$E_2^{i,j} = H_{\mathrm{H}}^i(BG/k) \otimes H_{\mathrm{H}}^j((G/P)/k) \Rightarrow H_{\mathrm{H}}^{i+j}(BL/k) \tag{7}$$

from Proposition 1.1. From [7, Proposition] and [10, II.4.22],

$$H_{\mathrm{H}}^*(BL/k) = S^*(\mathfrak{gl}_2)^{GL(2)_k} \cong S^*(\mathfrak{t})^{S_2} = k[x_1, x_2]$$

where $x_1 \in H^1(BL, \Omega^1)$ and $x_2 \in H^2(BL, \Omega^2)$. Here, \mathfrak{t} is the space of all diagonal matrices in \mathfrak{gl}_2 and S_2 acts on \mathfrak{t} by permuting the diagonal entries.

In order to compute $H^*_{\mathrm{H}}(BG/k)$ from the spectral sequence above, we must first compute the ring of invariants of $S^*(\mathfrak{g}_2)^G$. From Theorem 1.3, $S^*(\mathfrak{g}_2)^G \cong S^*(\mathfrak{t}_0)^W$ where \mathfrak{t}_0 is the Lie algebra of a maximal torus T in G and W is the corresponding Weyl group of G. By [17, Corollary 2.2],

$$H^i(BG,\Omega^i) \cong S^i(\mathfrak{t_0})^W$$

for $i \geq 0$.

Proposition 2.2. The ring of invariants $S^*(\mathfrak{t}_0)^W$ is equal to $k[y_4, y_6]$ where $|y_4| = 2$ and $|y_6| = 3$ in $S^*(\mathfrak{t}_0)^W$.

Proof. Following the notation in [3, Plate IX], $W \cong Z_2 \times S_3$ acts on the root lattice $X_2 = \{(a, b, c) \in \mathbb{Z}^3 \mid a+b+c=0\}$ by multiplication by -1 and by permuting the coordinates. Hence, since we are working in characteristic 2, W acts on $S^*(\mathfrak{t}_0) = k[t_1, t_2, t_3]/(t_1 + t_2 + t_3)$ by permuting t_1, t_2 , and t_3 . We then have $S^*(\mathfrak{t}_0)^W = k[t_1t_2 + t_1t_3 + t_2t_3, t_1t_2t_3] = k[y_4, y_6]$.

We can now carry out the computation of $H^*_{\mathrm{H}}(BG/k)$. First, we show that the class $v \in E_2^{0,2}$ is a permanent cycle. Consider the filtration on $H^2_{\mathrm{H}}(BL/k) = k \cdot v$ given by (7): $H^2_{\mathrm{H}}(BL/k) \longleftrightarrow E_\infty^{2,0}$, where $H^2_{\mathrm{H}}(BL/k)/E_\infty^{2,0} \cong E_\infty^{0,2}$. Here, $E_2^{1,1} = 0$ and

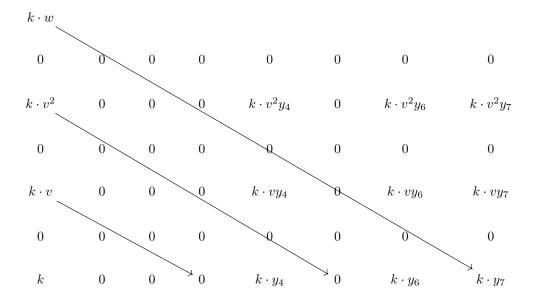
$$E_{\infty}^{2,0} = E_2^{2,0} = H_{\rm H}^2(BG/k) = H^1(BG,\Omega^1)$$

(we have $H^2(BG, \mathcal{O}) = 0$ since $H^2(BL, \mathcal{O}) = 0$ and there are no differentials entering $E_2^{2,0}$) since $H^*_{\mathrm{H}}((G/P)/k) = \bigoplus_i H^i(G/P, \Omega^i)$ is concentrated in even degrees. Hence,

$$E_{\infty}^{2,0} = H_{\rm H}^2(BG/k) = H^1(BG, \Omega^1) = 0,$$

by Proposition 2.2. It follows that $E_{\infty}^{0,2} \cong E_2^{0,2} = k \cdot v$ which implies that $d_3(v) = 0$. As (7) is a spectral sequence of algebras, it follows that v and v^2 are permanent cycles. Using that $H_{\rm H}^*(BL/k)$ is concentrated in even degrees, we then get that $H_{\rm H}^3(BG/k) = E_2^{3,0} = E_{\infty}^{3,0} = 0$ and $H_{\rm H}^5(BG/k) = E_2^{5,0} = E_{\infty}^{5,0} = 0$.

Next, we show that $w \in H^6_{\mathrm{H}}((G/P)/k) = E_2^{0,6}$ is transgressive with $0 \neq d_7(w) \in E_7^{7,0}$. Note that $\dim_k H^6_{\mathrm{H}}(BL/k) = 2$. As v is a permanent cycle in E_* , we observe that $E_\infty^{4,2} \cong E_2^{4,2} \cong k \cdot y_4 \otimes_k k \cdot v \cong k$ and $E_\infty^{6,0} \cong E_2^{6,0} \cong k \cdot y_6 \cong k$. Hence, $\dim_k H^6_{\mathrm{H}}(BL/k) = 2 = \dim_k E_\infty^{4,2} + \dim_k E_\infty^{6,0}$. From the filtration on $H^6_{\mathrm{H}}(BL/k)$ given by the spectral sequence (7), it follows that $E_\infty^{0,6} = 0$. As $H^3_{\mathrm{H}}(BG/k) = E_2^{3,0} = E_\infty^{3,0} = 0$ and $H^5_{\mathrm{H}}(BG/k) = E_2^{5,0} = E_\infty^{5,0} = 0$, we then get that $0 \neq d_7(w) \in E_7^{7,0}$ and $d_7(w)$ lifts to a non-zero element $y_7 \in H^4(BG, \Omega^3) \subseteq H^7_{\mathrm{H}}(BG/k)$.



Now, we can determine the E_{∞} terms in (7). For n odd, $E_{\infty}^{i,n-i}=0$ since $H_{\rm H}^*(BL/k)$ is concentrated in even degrees. Let $n\in\mathbb{N}$ be even. The k-dimension of $H_{\rm H}^n(BL/k)$ is equal to the cardinality of the set

$$S_n = \{(a, b) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 2a + 4b = n\}.$$

For i = 0, 1, 2, set $V_{i,n} := H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2})$. For i = 0, 1, 2, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n} = \{(a,b) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 4a + 6b = n - 2i\}$. As v is a permanent cycle in (7), $E_2^{n-2i,2i} \cong E_7^{n-2i,2i}$ for i = 0, 1, 2. As $y_7 \in H^4(BG, \Omega^3)$ and $H^i(BG, \Omega^j) = 0$ for i < j,

$$y_7 \cdot x \notin \bigoplus_j H^j(BG, \Omega^j)$$

for all $x \in H_{\mathrm{H}}^*(BG/k)$. Hence,

$$H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2}) \otimes_k k \cdot v^i \subseteq E_2^{n-2i,2i} \cong E_7^{n-2i,2i}$$

injects into $E_{\infty}^{n-2i,2i}$ for i=0,1,2.

Define a bijection $f_n: S_n \to S_{0,n} \cup S_{1,n} \cup S_{2,n}$ by

$$f_n(a,b) = \begin{cases} (b,a/3) \in S_{0,n} \text{ if } a \equiv 0 \mod 3, \\ (b,(a-1)/3) \in S_{1,n} \text{ if } a \equiv 1 \mod 3, \\ (b,(a-2)/3) \in S_{2,n} \text{ if } a \equiv 2 \mod 3. \end{cases}$$

Then

$$\dim_k H^n_{\mathbf{H}}(BL/k) = |S_n| = |S_{0,n}| + |S_{1,n}| + |S_{2,n}|$$

$$\leq \dim_k E^{n,0}_{\infty} + \dim_k E^{n-2,2}_{\infty} + \dim_k E^{n-4,4}_{\infty}$$

where the inequality follows from the fact proved above that

$$H^{(n-2i)/2}(BG,\Omega^{(n-2i)/2})$$

injects into $E_{\infty}^{n-2i,2i}$ for i=0,1,2. From the filtration on $H^n_{\mathrm{H}}(BL/k)$ defined by the spectral sequence (7), it follows that $H^{(n-2i)/2}(BG,\Omega^{(n-2i)/2})\cong E_{\infty}^{n-2i,2i}$ for i=0,1,2 and $E_{\infty}^{n-2i,2i}=0$ for $i\geq 3$.

We can now finish the computation of the Hodge cohomology of BG by using Zeeman's comparison theorem. Let F_* denote the cohomological spectral sequence of k-vector spaces concentrated on the 0th column with E_2 page given by

$$F_2^{0,i} = \begin{cases} k \text{ if } i = 0, \\ k \cdot v \text{ if } i = 2, \\ k \cdot v^2 \text{ if } i = 4, \\ 0 \text{ if } i \neq 0, 2, 4. \end{cases}$$

As $v \in E_2^{0,2}$ in the spectral sequence (7) is transgressive with $d_r(v) = 0$ for all $r \geq 2$, there exists a map of of spectral sequences $F_* \to E_*$ that takes $v \in F_2^{0,2}$ to $v \in E_2^{0,2}$ and $v^2 \in F_2^{0,4}$ to $v^2 \in E_2^{0,4}$.

Fixing a variable y, let H_* denote the cohomological spectral sequence with E_2 page given by $H_2 = \Delta(w) \otimes k[y]$ where w is of bidegree (0,6), y is

of bidegree (7,0), and w is transgressive with $d_7(wy^i) = y^{i+1}$ for all $i \geq 0$. As $w \in E_2^{0,6}$ is transgressive with $d_7(w) = y_7 \in E_2^{7,0}$, there exists a map of spectral sequence $H_* \to E_*$ such that $w \in H_2^{0,6}$ maps to $w \in E_2^{0,6}$ and $y \in H_2^{7,0}$ maps to $y_7 \in E_2^{7,0}$. Elements of the ring of G-invariants $k[y_4, y_6]$ are permanent cycles in the spectral sequence (7) since they are concentrated on the 0th row. Thus, by tensoring the previous maps of spectral sequences, we get a map

$$\alpha: I_* := F_* \otimes H_* \otimes k[y_4, y_6] \to E_*$$

of spectral sequences.

As shown above, the map α induces an isomorphism $I_{\infty} \cong F_2 \otimes k[y_4, y_6] \to E_{\infty}$ on E_{∞} pages. The 0th columns of the E_2 pages of the spectral sequences I_* and E_* are both isomorphic to $k[v,w]/(v^3,w^2)$ and α induces an isomorphism on the 0th columns of the E_2 pages. Thus, by Theorem 1.4, α induces an isomorphism on the 0th rows of the E_2 pages. Hence,

$$H_{\rm H}^*(BG/k) = k[y_4, y_6, y_7].$$

From Proposition 1.5, the Hodge spectral sequence for BG degenerates.

Corollary 2.3. Let G be a k-form of G_2 . Then

$$H_{\mathrm{H}}^*(BG/k) \cong k[x_4, x_6, x_7]$$

where $|x_i| = i$ for i = 4, 6, 7.

Proof. Letting k_s denote the separable closure of k, we have $BG \times_k \operatorname{Spec}(k_s) \cong B(G_2)_{k_s}$. From Theorem 2.1, $H_H^*(B(G_2)_{k_s})/k_s) \cong k_s[x_4', x_6', x_7']$ for some $x_4', x_6', x_7' \in H_H^*(B(G_2)_{k_s}/k_s)$ with $|x_i'| = i$ for all i. As Hodge cohomology commutes with extensions of the base field,

$$H_{\mathrm{H}}^*((BG \times_k \operatorname{Spec}(k_s))/k_s) \cong H_{\mathrm{H}}^*(BG/k) \otimes_k k_s.$$

It follows that $H_{\mathrm{H}}^*(BG/k) \cong k[x_4, x_6, x_7]$ for some $x_4, x_6, x_7 \in H_{\mathrm{H}}^*(BG/k)$.

3. Spin groups

Let k be a field of characteristic 2 and let G denote the split group $\mathrm{Spin}(n)_k$ over k for $n \geq 7$.

Let $P_0 \subset SO(n)_k$ denote a parabolic subgroup that stabilizes a maximal isotropic subspace. Let $P \subset G$ denote the inverse image of P_0 under the double cover map $G \to SO(n)_k$. The Hodge cohomology of G/P is given by Proposition 1.2 and [12, Theorem III.6.11].

Proposition 3.1. There is an isomorphism

$$H_{\mathrm{H}}^*((G/P)/k) \cong k[e_1, \dots, e_s]/(e_i^2 = e_{2i}),$$

where $s = \lfloor (n-1)/2 \rfloor$, $e_m = 0$ for $m > s$, and $|e_i| = 2i$ for all i .

The Levi quotient of P_0 is isomorphic to $GL(r)_k$ where $r = \lfloor n/2 \rfloor$. Hence, the Levi quotient L of P is a double cover of $GL(r)_k$.

Proposition 3.2. The torsion index of L is equal to 1.

Proof. We show that the torsion index of the corresponding compact connected Lie group M is equal to 1. As M is a double cover of U(r), M is isomorphic to $(S^1 \times SU(r))/2\mathbb{Z}$ where $k \in \mathbb{Z}$ acts on $S^1 \times SU(r)$ by

$$(z,A) \mapsto (ze^{2\pi ik/r}, e^{-2\pi ik/r}A).$$

Hence, the derived subgroup [M, M] of M is isomorphic to SU(r). As SU(r) has torsion index 1, M has torsion index 1 by [16, Lemma 2.1]. Thus, L has torsion index equal to 1.

Corollary 3.3. We have

$$H_{\mathrm{H}}^*(BL/k) = O(\mathfrak{l})^L = k[A, c_2, \dots, c_r]$$

where $|c_i| = 2i$ in $H_H^*(BL/k)$ for all i and |A| = 2.

Proof. From Proposition 3.2 and [17, Theorem 9.1],

$$H_{\mathrm{H}}^*(BL/k) = O(\mathfrak{l})^L.$$

Let T be a maximal torus in L with Lie algebra \mathfrak{t} and Weyl group W. From Theorem 1.3, $O(\mathfrak{t})^L \cong O(\mathfrak{t})^W$. To compute $O(\mathfrak{t})^W$, we use that L is a double cover of $GL(r)_k$. We have

$$S(X^*(T) \otimes k) \cong \mathbb{Z}[x_1, \dots, x_r, A]/(2A = x_1 + \dots + x_r) \otimes k$$
$$\cong k[x_1, \dots, x_r, A]/(x_1 + \dots + x_r).$$

The Weyl group W of L is isomorphic to the symmetric group S_r and acts on $S(X^*(T) \otimes k)$ by permuting x_1, \ldots, x_r . From [13, Proposition 4.1],

$$(k[x_1,\ldots,x_r,A]/(x_1+\cdots+x_r))^{S_r}=k[A,c_2,\ldots,c_r]$$

where c_1, \ldots, c_r are the elementary symmetric polynomials in the variables

$$x_1,\ldots,x_r$$
.

For our calculations, we will need to know the Hodge cohomology of $BSO(n)_k$ [17, Theorem 11.1].

Theorem 3.4. The Hodge spectral sequence for $BSO(n)_k$ degenerates and

$$H_{\mathrm{H}}^*(BSO(n)_k/k) = k[u_2, \dots, u_n]$$

where $u_{2i} \in H^i(BSO(n)_k, \Omega^i)$ and $u_{2i+1} \in H^{i+1}(BSO(n)_k, \Omega^i)$ for all relevant i.

We'll also need to know the ring of invariants of $G = \operatorname{Spin}(n)_k$ for all $n \geq 6$. This can be found in [17, Section 12].

Lemma 3.5. For $n \geq 6$,

$$O(\mathfrak{g})^G = \begin{cases} k[c_2, \dots, c_r, \eta_{r-1}] & \text{if } n = 2r + 1\\ k[c_2, \dots, c_r, \mu_{r-1}] & \text{if } n = 2r \text{ and } r \text{ is even}\\ k[c_2, \dots, c_r, \mu_r] & \text{if } n = 2r \text{ and } r \text{ is odd} \end{cases}$$

where $|c_i| = i$, $|\eta_j| = 2^j$, and $|\mu_j| = 2^{j-1}$ in $O(\mathfrak{g})^G$ for all i and j.

Note that under the inclusion $O(\mathfrak{g})^G \subset H^*_{\mathrm{H}}(BG/k)$, the degree of an invariant function in $H^*_{\mathrm{H}}(BG/k)$ is twice its degree in $O(\mathfrak{g})^G$.

Theorem 3.6. Let n = 7. The Hodge spectral sequence for BG degenerates and

$$H_{\mathrm{dR}}^*(BG/k) \cong H_{\mathrm{H}}^*(BG/k) = k[y_4, y_6, y_7, y_8]$$

where $|y_i| = i$ for i = 4, 6, 7, 8.

Proof. From Lemma 3.5,

$$O(\mathfrak{g})^G = k[y_4, y_6, y_8]$$

where $|y_i| = i$ in $H_{\rm H}^*(BG/k)$, viewing $O(\mathfrak{g})^G$ as a subring of $H_{\rm H}^*(BG/k)$. Consider the spectral sequence

$$E_2^{i,j} = H_{\mathrm{H}}^i(BG/k) \otimes H_{\mathrm{H}}^j((G/P)/k) \Rightarrow H_{\mathrm{H}}^{i+j}(BL/k)$$
 (8)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$H_{\mathrm{H}}^*((G/P)/k) \cong k[e_1, e_2, e_3]/(e_i^2 = e_{2i}) = k[e_1, e_3]/(e_1^4, e_3^2)$$

and

$$H_{\mathrm{H}}^*(BL/k) \cong k[A, c_2, c_3].$$

First, we show that $e_1 \in E_2^{0,2}$ is a permanent cycle. From the filtration on $H^2_H(BL/k) = k \cdot A$ given by (8), we have

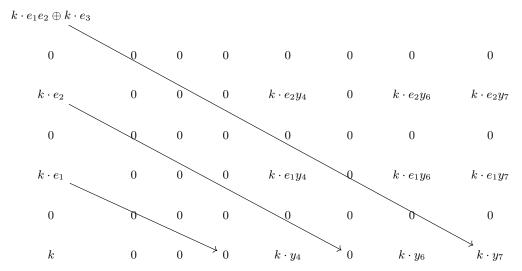
$$1 = \dim_k E_{\infty}^{0,2} + \dim_k E_{\infty}^{2,0} = \dim_k E_{\infty}^{0,2} + \dim_k E_2^{2,0}.$$

As $H_{\mathrm{H}}^*(BL/k) = \bigoplus_i H^i(BL,\Omega^i)$, $E_2^{2,0} = H^1(BG,\Omega^1) = 0$. Hence, $E_\infty^{0,2} = E_2^{0,2} = k \cdot e_1$ which implies that e_1 is a permanent cycle. As $e_2 = e_1^2$, it follows that e_2 is a permanent cycle. Hence, $E_\infty^{4,2} \cong E_2^{4,2} \cong k \cdot (y_4 \otimes e_1)$ and $E_\infty^{6,0} \cong E_2^{6,0} \cong k \cdot y_6$.

We next show that $e_3 \in E_2^{0,6}$ is transgressive with $d_7(e_3) \neq 0$. As e_1 is a permanent cycle and $H_{\rm H}^i(BL/k) = 0$ for i odd, the spectral sequence (8) implies that $E_2^{3,0} = E_2^{5,0} = 0$. Consider the filtration of (8) on $H_{\rm H}^6(BL/k)$. We have

$$\dim_k H_{\mathrm{H}}^6(BL/k) = 3 = \dim_k E_{\infty}^{6,0} + \dim_k E_{\infty}^{4,2} + \dim_k E_{\infty}^{0,6} = 2 + \dim_k E_{\infty}^{0,6}$$

which implies that $E_{\infty}^{0,6} \cong k \cdot e_1 e_2$. As $E_2^{3,0} = E_2^{5,0} = 0$, we must then have $e_3 \in E_7^{0,6}$ and $0 \neq d_7(e_3) \in E_7^{7,0}$. The class $d_7(e_3)$ lifts to a non-zero class $y_7 \in H^4(BG, \Omega^3) \subseteq E_2^{7,0} = H^7_H(BG/k)$.



We can now determine the E_{∞} page of (8). For n odd, $E_{\infty}^{i,n-i}=0$ since $H_{\rm H}^*(BL/k)$ is concentrated in even degrees. Assume that $n\in\mathbb{N}$ is even. The k-dimension of $H_{\rm H}^n(BL/k)$ is equal to the cardinality of the set

$$S_n = \{(a, b, c) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 2a + 4b + 6c = n\}.$$

For i=0,1,2,3, set $V_{i,n}:=H^{(n-2i)/2}(BG,\Omega^{(n-2i)/2})$. For i=0,1,2,3, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n}=\{(a,b,c)\in\mathbb{Z}_{\geq 0}\times\mathbb{Z}_{\geq 0}\times\mathbb{Z}_{\geq 0}\times\mathbb{Z}_{\geq 0}\times\mathbb{Z}_{\geq 0}\}$. As e_1 is a permanent cycle in (8),

$$V_{i,n} \cong V_{i,n} \otimes k \cdot e_1^i \subseteq E_{\infty}^{n-2i,2i}$$

for i = 0, 1, 2, 3.

Define a bijection $f_n: S_n \to S_{0,n} \cup S_{1,n} \cup S_{2,n} \cup S_{3,n}$ by

$$f_n(a,b,c) = \begin{cases} (b,c,a/4) \in S_{0,n} \text{ if } a \equiv 0 \mod 4, \\ (b,c,(a-1)/4) \in S_{1,n} \text{ if } a \equiv 1 \mod 4, \\ (b,c,(a-2)/4) \in S_{2,n} \text{ if } a \equiv 2 \mod 4, \\ (b,c,(a-3)/4) \in S_{3,n} \text{ if } a \equiv 3 \mod 4. \end{cases}$$

Then

$$\dim_k H_{\mathrm{H}}^n(BL/k) = |S_n| = |S_{0,n}| + |S_{1,n}| + |S_{2,n}| + + |S_{3,n}|.$$

As

$$\mathrm{dim}_k H^n_{\mathrm{H}}(BL/k) \geq E_{\infty}^{n,0} + E_{\infty}^{n-2,2} + E_{\infty}^{n-4,4} + E_{\infty}^{n-6,6}$$

and $V_{i,n} \subseteq E_{\infty}^{n-2i,2i}$ for i = 0, 1, 2, 3, it follows that $V_{i,n} \cong E_{\infty}^{n-2i,2i}$ for i = 0, 1, 2, 3 and $E_{\infty}^{n-2i,2i} = 0$ for $i \geq 4$.

We now use Theorem 1.4 to finish the computation of the Hodge cohomology of BG. Let F_* denote the cohomological spectral sequence of k-vector spaces concentrated on the 0th column given by $F_2 = \Delta(e_1, e_2)$ where e_i is of bidegree (0, 2i) for i = 1, 2. As e_1 is a permanent cycle in (8), there

is a map of spectral sequences $F_* \to E_*$ taking $e_i \in F_2^{0,2i}$ to $e_i \in E_2^{0,2i}$ for i=1,2. Fix a variable y. Let H_* be the spectral sequence with E_2 page given by $H_2 = \Delta(e_3) \otimes k[y]$ where e_3 is of bidegree (0,6), y is of bidegree (7,0), and e_3 is transgressive with $d_7(e_3y^i) = y^{i+1}$ for all i. As $e_3 \in E_2^{0,6}$ is transgressive with $d_7(e_3) = y_7$, there exists a map of spectral sequences $H_* \to E_*$ taking $e_3 \in H_2^{0,6}$ to $e_3 \in E_2^{0,6}$ and $y \in H_2^{7,0}$ to $y_7 \in E_2^{7,0}$. Elements in the ring of G-invariants $k[y_4, y_6, y_8]$ are permanent cycles in

Elements in the ring of G-invariants $k[y_4, y_6, y_8]$ are permanent cycles in the spectral sequence (8). Tensoring maps of spectral sequences, we get a map

$$\alpha: I_* := F_* \otimes H_* \otimes k[y_4, y_6, y_8] \to E_*$$

of spectral sequences. As $I_{\infty} \cong F_2 \otimes k[y_4, y_6, y_8]$, α induces isomorphisms on E_{∞} terms and on the 0th columns of the E_2 pages. Hence, by Theorem 1.4, α induces an isomorphism on the 0th rows of the E_2 pages. Thus,

$$H_{\rm H}^*(BG/k) = k[y_4, y_6, y_7, y_8].$$

The Hodge spectral sequence for BG degenerates by Proposition 1.5. \square

As Hodge cohomology commutes with extensions of the base field, we have the following result.

Corollary 3.7. Let k be a field of characteristic 2 and let G be a k-form of Spin(7). Then

$$H_{\rm H}^*(BG/k) \cong k[x_4, x_6, x_7, x_8]$$

where $|x_i| = i$ for all i.

Theorem 3.8. Let n = 8. The Hodge spectral sequence for BG degenerates and

$$H_{\mathrm{dR}}^*(BG/k) \cong H_{\mathrm{H}}^*(BG/k) = k[y_4, y_6, y_7, y_8, y_8']$$

where $|y_i| = i$ for i = 4, 6, 7, 8 and $|y_8'| = 8$.

Proof. From Lemma 3.5,

$$O(\mathfrak{g})^G = k[y_4, y_6, y_8, y_8']$$

where $|y_i|=i$ and $|y_8'|=8$ in $H_{\rm H}^*(BG/k)$, viewing $O(\mathfrak{g})^G$ as a subring of $H_{\rm H}^*(BG/k)$. Consider the spectral sequence

$$E_2^{i,j} = H_{\mathrm{H}}^i(BG/k) \otimes H_{\mathrm{H}}^j((G/P)/k) \Rightarrow H_{\mathrm{H}}^{i+j}(BL/k)$$
 (9)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$H_{\mathrm{H}}^*((G/P)/k) \cong k[e_1, e_2, e_3]/(e_i^2 = e_{2i}) = k[e_1, e_3]/(e_1^4, e_3^2)$$

and

$$H_{\mathrm{H}}^*(BL/k) \cong k[A, c_2, c_3, c_4].$$

Calculations similar to those performed in the proof of Proposition 3.6 show that e_1 is a permanent cycle in (9) and $e_3 \in E_2^{0,6}$ is transgressive with $0 \neq d_7(e_3) = y_7 \in H^4(BG, \Omega^3)$. We have $H_{\rm H}^m(BG/k) \cong H_{\rm H}^m(B{\rm Spin}(7)_k/k)$ for m < 8 and $H_{\rm H}^8(BG/k) = k \cdot y_8 \oplus k \cdot y_8'$.

We can now determine the E_{∞} terms for (9). For n odd, $E_{\infty}^{i,n-i}=0$ since $H_{\rm H}^*(BL/k)$ is concentrated in even degrees. Assume that $n\in\mathbb{N}$ is even. The k-dimension of $H_{\rm H}^n(BL/k)$ is equal to the cardinality of the set

$$S_n = \{(a, b, c, d) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} : 2a + 4b + 6c + 8d = n\}.$$

For i=0,1,2,3, set $V_{i,n}:=H^{(n-2i)/2}(BG,\Omega^{(n-2i)/2})$. For i=0,1,2,3, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n}=\{(a,b,c,d)\in\mathbb{Z}_{\geq 0}\times\mathbb{Z}_{\geq 0}\times\mathbb{Z}_{\geq 0}: 4a+6b+8c+8d=n-2i\}$. As e_1 is a permanent cycle in (9),

$$V_{i,n} \cong V_{i,n} \otimes k \cdot e_1^i \subseteq E_{\infty}^{n-2i,2i}$$

for i = 0, 1, 2, 3.

Define a bijection $f_n: S_n \to S_{0,n} \cup S_{1,n} \cup S_{2,n} \cup S_{3,n}$ by

$$f_n(a,b,c,d) = \begin{cases} (b,c,d,a/4) \in S_{0,n} \text{ if } a \equiv 0 \mod 4, \\ (b,c,d,(a-1)/4) \in S_{1,n} \text{ if } a \equiv 1 \mod 4, \\ (b,c,d,(a-2)/4) \in S_{2,n} \text{ if } a \equiv 2 \mod 4, \\ (b,c,d,(a-3)/4) \in S_{3,n} \text{ if } a \equiv 3 \mod 4. \end{cases}$$

Then

$$\dim_k H_{\mathrm{H}}^n(BL/k) = |S_n| = |S_{0,n}| + |S_{1,n}| + |S_{2,n}| + +|S_{3,n}|.$$

As

$$\dim_k H^n_{\mathrm{H}}(BL/k) \ge E_{\infty}^{n,0} + E_{\infty}^{n-2,2} + E_{\infty}^{n-4,4} + E_{\infty}^{n-6,6}$$

and $V_{i,n} \subseteq E_{\infty}^{n-2i,2i}$ for i = 0, 1, 2, 3, it follows that $V_{i,n} \cong E_{\infty}^{n-2i,2i}$ for i = 0, 1, 2, 3 and $E_{\infty}^{n-2i,2i} = 0$ for $i \geq 4$.

Let F_* denote the spectral sequence concentrated on the 0th column with $F_2 = \Delta(e_1, e_2, e_4)$ where e_i is of bidegree (0, 2i). There is a map of spectral sequences $F_* \to E_*$ taking e_i to e_i for i=1,2,4. Fix a variable y. Let H_* denote the spectral sequence with E_2 page $H_2 = \Delta(e_3) \otimes k[y]$ where e_3 is of bidegree (0,6), y is of bidegree (7,0), and e_3 is transgressive with $d_7(e_3y^i) = y^{i+1}$ for all i. There is an obvious map of spectral sequences $H_* \to E_*$. Classes in the ring of G-invariants are permanent cycles in the spectral sequence (9). Tensoring these maps, we get a map of spectral sequences

$$\alpha: I_* := F_* \otimes H_* \otimes k[y_4, y_6, y_8, y_8'] \to E_*.$$

The map α induces an isomorphism on E_{∞} terms and on the 0th columns of the E_2 pages. Theorem 1.4 then implies that α induces an isomorphism on the 0th rows of the E_2 pages. Thus,

$$H_{\mathrm{H}}^{*}(BG/k) = k[y_4, y_6, y_7, y_8, y_8'].$$

Proposition 1.5 implies that the Hodge spectral sequence for BG degenerates.

Corollary 3.9. Let k be a field of characteristic 2 and let G be a k-form for Spin(8). Then

$$H_{\rm H}^*(BG/k) \cong k[y_4, y_6, y_7, y_8, y_8']$$

where $|y_i| = i$ for i = 4, 6, 7, 8 and $|y_8'| = 8$.

Theorem 3.10. Let n = 9. The Hodge spectral sequence for BG degenerates and

$$H_{\mathrm{dR}}^*(BG/k) \cong H_{\mathrm{H}}^*(BG/k) = k[y_4, y_6, y_7, y_8, y_{16}]$$

where $|y_i| = i$ for i = 4, 6, 7, 8, 16.

Proof. From Lemma 3.5,

$$O(\mathfrak{g})^G = k[y_4, y_6, y_8, y_{16}]$$

where $|y_i| = i$ in $H_H^*(BG/k)$, viewing $O(\mathfrak{g})^G$ as a subring of $H_H^*(BG/k)$. Consider the spectral sequence

$$E_2^{i,j} = H_{\mathrm{H}}^i(BG/k) \otimes H_{\mathrm{H}}^j((G/P)/k) \Rightarrow H_{\mathrm{H}}^{i+j}(BL/k)$$
 (10)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$H_{\rm H}^*((G/P)/k) \cong k[e_1, e_2, e_3, e_4]/(e_i^2 = e_{2i}) = k[e_1, e_3]/(e_1^8, e_3^2)$$

and

$$H_{\mathrm{H}}^*(BL/k) \cong k[A, c_2, c_3, c_4].$$

Calculations similar to those performed in the proof of Proposition 3.6 show that e_1 is a permanent cycle in (10) and $e_3 \in E_2^{0,6}$ is transgressive with $0 \neq d_7(e_3) = y_7 \in H^4(BG, \Omega^3)$. We have $H_{\rm H}^m(BG/k) \cong H_{\rm H}^m(B{\rm Spin}(7)_k/k)$ for $m \leq 10$.

We now determine the E_{∞} terms for (10). For n odd, $E_{\infty}^{i,n-i}=0$ since $H_{\mathrm{H}}^*(BL/k)$ is concentrated in even degrees. Assume that $n \in \mathbb{N}$ is even. The k-dimension of $H_{\mathrm{H}}^n(BL/k)$ is equal to the cardinality of the set

$$S_n = \{(a, b, c, d) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : 2a + 4b + 6c + 8d = n\}.$$

For $0 \le i \le 7$, set $V_{i,n} := H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2})$. For $0 \le i \le 7$, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n} = \{(a,b,c,d) \in \mathbb{Z}_{\ge 0} \times \mathbb{Z}_{\ge 0} \times$

$$V_{i,n} \cong V_{i,n} \otimes k \cdot e_1^i \subseteq E_{\infty}^{n-2i,2i}$$

for $0 \le i \le 7$.

Define a bijection $f_n: S_n \to \bigcup_{i=0}^7 S_{i,n}$ by $f_n(a,b,c,d) = (b,c,d,(a-i)/8) \in S_{i,n}$ for $a \equiv i \mod (8)$. Then

$$\dim_k H^n_{\mathrm{H}}(BL/k) = |S_n| = \sum_{i=0}^7 |S_{i,n}|.$$

As

$$\dim_k H^n_{\mathrm{H}}(BL/k) \ge \sum_{i=0}^7 E_{\infty}^{n-2i,2i}$$

and $V_{i,n} \subseteq E_{\infty}^{n-2i,2i}$ for $0 \le i \le 7$, it follows that $V_{i,n} \cong E_{\infty}^{n-2i,2i}$ for $0 \le i \le 7$ and $E_{\infty}^{n-2i,2i} = 0$ for $i \ge 8$.

Let F_* denote the cohomological spectral sequence concentrated on the 0th column with E_2 page given by $F_2 = \Delta(e_1, e_2, e_4)$ where e_i has bidegree (0,2i) for i=1,2,4. As e_1 is a permanent cycle in the spectral sequence (10), there exists a map $F_* \to E_*$ of spectral sequences taking e_i to e_i for i=1,2,4. Let y be a free variable and let H_* denote the spectral sequence with E_2 page $H_2 = \Delta(e_3) \otimes k[y]$ where e_3 is of bidegree (0,6), y is of bidegree (7,0), and e_3 is transgressive with $d_7(e_3y^i) = y^{i+1}$ for all i. As e_3 is transgressive in the spectral sequence (10) with $d_7(e_3) = y_7$, there exists a map of spectral sequences $H_* \to E_*$ taking e_3 to e_3 and y to y_7 .

Elements in the ring of G-invariants $k[y_4, y_6, y_8, y_{16}]$ are permanent cycles in the spectral sequence (10). Tensoring maps of spectral sequences, we get a map

$$\alpha: I_* := F_* \otimes H_* \otimes k[y_4, y_6, y_8, y_{16}] \to E_*.$$

The map α induces an isomorphism on E_{∞} terms and on the 0th columns of the E_2 pages. Hence, Theorem 1.4 implies that α induces an isomorphism on the 0th rows of the E_2 pages. Thus,

$$H_{\rm H}^*(BG/k) = k[y_4, y_6, y_7, y_8, y_{16}].$$

Proposition 5 implies that the Hodge spectral sequence for BG degenerates.

Corollary 3.11. Let k be a field of characteristic 2 and let G be a k-form for Spin(9). Then

$$H_{\mathrm{H}}^{*}(BG/k) \cong k[y_{4}, y_{6}, y_{7}, y_{8}, y_{16}]$$

where $|y_i| = i$ for i = 4, 6, 7, 8, 16.

Remark 3.12. Assume that k is perfect. Let μ_2 denote the group scheme of the 2nd roots of unity over k. For $n \geq 10$, the Hodge cohomology of BG is no longer a polynomial ring. To determine the relations that hold in $H^*_{\mathrm{H}}(BG/k)$, we will restrict cohomology classes to the classifying stack of a certain subgroup of G considered in [17, Section 12]. Let $r = \lfloor n/2 \rfloor$ and let $T \cong \mathbb{G}^r_m$ denote a split maximal torus of G. Assume that $n \not\equiv 2 \mod 4$ so that the Weyl group W of G contains -1, acting by inversion on T. Then -1 acts by the identity on $T[2] \cong \mu_2^r$ (for $n \in \mathbb{N}$, $T[n] \subset T$ is the kernel of the nth power map $T \to T$) and G contains a subgroup $Q \cong \mu_2^r \times \mathbb{Z}/2$. Under the double cover $G \to SO(n)_k$, the image of Q is isomorphic to $K \cong \mu_2^{r-1} \times \mathbb{Z}/2$ and $Q \to K$ is a split surjection. We will need to know the Hodge cohomology rings of the classifying stacks of these groups. For a

commutative ring R, we let rad $\subset R$ denote the ideal of nilpotent elements. From [17, Proposition 10.1],

$$H_{\rm H}^*(B\mu_2/k)/{\rm rad} \cong k[t]$$

where $t \in H^1(B\mu_2, \Omega^1)$. From [17, Lemma 10.2],

$$H_{\mathrm{H}}^*((B\mathbb{Z}/2)/k) = k[s]$$

where $s \in H^1(B\mathbb{Z}/2, \Omega^0)$. The Künneth formula [17, Proposition 5.1] then lets us calculate the Hodge cohomology ring of $B\mu_2^i \times B(\mathbb{Z}/2)^j$ for any $i, j \geq 0$. Fix i, j > 0. Then

$$H_{\mathrm{H}}^*((B\mu_2^i \times B(\mathbb{Z}/2)^j)/k)/\mathrm{rad} \cong k[t_1,\ldots,t_i,s_1,\ldots,s_i]$$

where $t_l \in H^1(B\mu_2^i \times B(\mathbb{Z}/2)^j, \Omega^1)$ for all l and $s_l \in H^1(B\mu_2^i \times B(\mathbb{Z}/2)^j, \Omega^0)$ for all l.

Theorem 3.13. Let n = 10. The Hodge spectral sequence for BG degenerates and

$$H_{\mathrm{dR}}^*(BG/k) \cong H_{\mathrm{H}}^*(BG/k) = k[y_4, y_6, y_7, y_8, y_{10}, y_{32}]/(y_7y_{10})$$

where $|y_i| = i$ for i = 4, 6, 7, 8, 10, 32.

Proof. We may assume that $k = \mathbb{F}_2$ so that Remark 3.12 applies. From Lemma 3.5,

$$O(\mathfrak{g})^G = k[y_4, y_6, y_8, y_{10}, y_{32}]$$

where $|y_i| = i$ in $H_H^*(BG/k)$, viewing $O(\mathfrak{g})^G$ as a subring of $H_H^*(BG/k)$. Consider the spectral sequence

$$E_2^{i,j} = H_H^i(BG/k) \otimes H_H^j((G/P)/k) \Rightarrow H_H^{i+j}(BL/k)$$
(11)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$H_{\mathrm{H}}^*((G/P)/k) \cong k[e_1, e_2, e_3, e_4]/(e_i^2 = e_{2i}) = k[e_1, e_3]/(e_1^8, e_3^2)$$

and

$$H_{\mathrm{H}}^*(BL/k) \cong k[A, c_2, c_3, c_4, c_5].$$

Calculations similar to those performed in the proof of Proposition 3.6 show that e_1 is a permanent cycle in (11) and $e_3 \in E_2^{0,6}$ is transgressive with $0 \neq d_7(e_3) = y_7 \in H^4(BG, \Omega^3)$. We have $H_{\rm H}^m(BG/k) \cong H_{\rm H}^m(B{\rm Spin}(9)_k/k)$ for m < 10.

Let F_* be the spectral sequence concentrated on the 0th column with E_2 page given by $F_2 = \Delta(e_1, e_2, e_4)$ where e_i has bidegree (0, 2i) for all i. As e_1 is a permanent cycle in (11), there exists a map of spectral sequence $F_* \to E_*$ taking e_i to e_i for i = 1, 2, 4. Fix a variable y. Let H_* denote the spectral sequence with E_2 page $H_2 = \Delta(e_3) \otimes k[y]$ where e_3 has bidegree (0,6), y has bidegree (7,0), and e_3 is transgressive with $d_7(e_3y^i) = y^{i+1}$ for all i. As e_3 is transgessive in (11) with $d_7(e_3) = y_7$, there exists a map of spectral sequences $H_* \to E_*$ taking e_3 to e_3 and y to y_7 . Elements in the ring

of G-invariants $k[y_4, y_6, y_8, y_{10}, y_{32}]$ are permanent cycles in (11). Tensoring maps of spectral sequences, we get a map

$$\alpha: I_* := F_* \otimes H_* \otimes k[y_4, y_6, y_8, y_{10}, y_{32}] \to E_*$$
 (12)

which induces an isomorphism on the 0th columns of the E_2 pages.

Let n be even. The k-dimension of $H^n_{\mathrm{H}}(BL/k)$ is equal to the cardinality of the set

$$S_n = \{(a, b, c, d, e) \in \mathbb{Z}_{>0}^5 : 2a + 4b + 6c + 8d + 10e = n\}.$$

For $0 \le i \le 15$, set $V_{i,n} := H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2})$. For $0 \le i \le 15$, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n} = \{(a,b,c,d,e) \in \mathbb{Z}_{\ge 0}^5 : 4a + 6b + 8c + 10d + 32e = n - 2i\}$. As $e_1 \in H^2_{\mathrm{H}}((G/P)/k)$ is a permanent cycle in (11),

$$V_{i,n} \cong V_{i,n} \otimes k \cdot e_1^i \subseteq E_{\infty}^{n-2i,2i}$$

for $0 \le i \le 7$. Hence, the map α in (12) induces injections on all E_{∞} terms. For n odd, α induces isomorphisms $0 = I_{\infty}^{n-i,i} \cong E_{\infty}^{n-i,i} = 0$ for all i since $H_{\mathrm{H}}^*(BL/k)$ is concentrated in even degrees.

Define a bijection $f_n: S_n \to \bigcup_{i=0}^{15} S_{i,n}$ by $f_n(a,b,c,d,e) = (b,c,d,e,(a-i)/16) \in S_{i,n}$ for $a \equiv i \mod (16)$. Then

$$\dim_k H_{\mathrm{H}}^n(BL/k) = |S_n| = \sum_{i=0}^{15} |S_{i,n}| = \sum_{i=0}^{15} \dim_k V_{i,n}.$$
 (13)

Now assume that $n \leq 14$. Then f_n gives a bijection

$$S_n \to \bigcup_{i=0}^7 S_{i,n}.$$

As

$$\dim_k H^n_{\mathrm{H}}(BL/k) \ge \sum_{i=0}^7 E_{\infty}^{n-2i,2i}$$

and $V_{i,n} \subseteq E_{\infty}^{n-2i,2i}$ for $0 \le i \le 7$, it follows that $V_{i,n} \cong E_{\infty}^{n-2i,2i}$ for $0 \le i \le 7$ and $E_{\infty}^{n-2i,2i} = 0$ for $i \ge 8$. As α induces injections on all E_{∞} terms, Theorem 1.4 implies that α in (12) induces an isomorphism $I_2^{n,0} \to E_2^{n,0}$ for n < 16.

Now we consider the filtration on $H_{\rm H}^{16}(BL/k)$ given by (11). From the bijection f_{16} defined in the previous paragraph, we have

$$\dim_k H^{16}_{\mathrm{H}}(BL/k) = 1 + \sum_{i=0}^7 |S_{i,n}| = 1 + \sum_{i=0}^7 \dim_k V_{i,n} \otimes k \cdot e_1^i.$$

As e_1 is a permanent cycle and α induces isomorphisms on 0th row terms of the E_2 pages in degrees less than 16, we must then have

$$E_{\infty}^{10,6} \cong (H_{\mathrm{H}}^{10}(BG/k) \otimes k \cdot e_{1}^{3}) \oplus (k \cdot z \otimes k \cdot e_{3})$$

for some $0 \neq z \in H^{10}_H(BG/k)$. Hence, $y_7z = 0$ in $H^*_H(BG/k)$. Write $z = ay_4y_6 + by_{10}$ for some $a, b \in k$.

We now show that a=0 by restricting $y_7z=0$ to the Hodge cohomology of the classifying stack of the subgroup $Spin(8)_k$ of G. Under the isomorphism

$$H_{\mathrm{H}}^*(B\mathrm{Spin}(8)_k/k) \cong k[y_4, y_6, y_7, y_8, y_{16}]$$

of Theorem 3.10, the pullback from $H_{\rm H}^*(BG/k)$ to $H_{\rm H}^*(B{\rm Spin}(8)_k/k)$ maps $y_4, y_6, y_{10} \in H_{\rm H}^*(BG/k)$ to y_4, y_6 , and 0 respectively in $H_{\rm H}^*(B{\rm Spin}(8)_k/k)$. Hence, to show that a=0, it suffices to show that $y_7 \in H_{\rm H}^*(BG/k)$ restricts to $y_7 \in H_{\rm H}^*(B{\rm Spin}(8)_k/k)$. From the isomorphism

$$H_{\mathrm{H}}^*(BSO(m)_k/k) \cong k[u_2,\ldots,u_m]$$

of Theorem 3.4 for $m \geq 0$, the class $u_7 \in H^7_{\mathrm{H}}(BSO(10)_k/k)$ restricts to $u_7 \in H^7_{\mathrm{H}}(BSO(8)_k/k)$. Thus, we are reduced to showing that $u_7 \in H^7_{\mathrm{H}}(BSO(8)_k/k)$ pulls back to a non-zero multiple of $y_7 \in H^*_{\mathrm{H}}(B\mathrm{Spin}(8)_k/k)$.

Consider the subgroups $\mu_2^4 \times \mathbb{Z}/2 \cong Q \subseteq \operatorname{Spin}(8)_k$ and $\mu_2^3 \times \mathbb{Z}/2 \cong K \subseteq SO(8)_k$ defined in Remark 3.12. As the morphism $Q \to K$ is split surjective, if we can show that u_7 restricts to a nonzero class in $H^*_{\mathrm{H}}(BK/k)$, then u_7 would restrict to a nonzero class in $H^*_{\mathrm{H}}(B\mathrm{Spin}(8)_k/k)$. From the inclusion $O(2)_k^4 \subset O(8)_k$, $O(8)_k$ contains a subgroup of the form $\mu_2^4 \times (\mathbb{Z}/2)^4$. As $SO(8)_k$ is the kernel of the Dickson determinant (also called the Dickson invariant in some sources [11, §23]) $O(8)_k \to \mathbb{Z}/2$, it follows that $SO(8)_k$ contains a subgroup $H \cong \mu_2^4 \times (\mathbb{Z}/2)^3$. Write

$$H_{\rm H}^*(BH/k)/{\rm rad} \cong k[t_1,\ldots,t_4,s_1,\ldots,s_4]/(s_1+s_2+s_3+s_4)$$

using Remark 3.12. From the proof of [17, Lemma 11.4], the pullback of u_7 to $H_H^*(BH/k)/\text{rad}$ followed by pullback to

$$H_{\rm H}^*(BK/k)/{\rm rad} \cong k[t_1,\ldots,t_4,s]/(t_1+\cdots+t_4)$$

is given by

$$u_7 \mapsto \sum_{j=1}^3 s_j(t_j + t_4) \sum_{\substack{1 \le i_1 < i_2 \le 3 \\ i_1, i_2 \ne j}} t_{i_1} t_{i_2} \mapsto \sum_{j=1}^3 s(t_j + t_4) \sum_{\substack{1 \le i_1 < i_2 \le 3 \\ i_1, i_2 \ne j}} t_{i_1} t_{i_2}$$

$$= s \sum_{1 \le i_1 < i_2 \le 3} (t_{i_1} + t_{i_2}) t_{i_1} t_{i_2} \ne 0.$$

Thus, $u_7 \in H^7_H(BSO(8)_k/k)$ pulls back to a nonzero multiple of

$$y_7 \in H^7_{\mathrm{H}}(B\mathrm{Spin}(8)_k/k)$$

which implies that $y_7y_{10} = 0$ in $H_H^*(BG/k)$.

Using the relation $y_7y_{10} = 0$, we now modify the spectral sequence I_* defined above to define a new spectral sequence J_* that better approximates (and will actually be isomorphic to) the spectral sequence (11). Let

$$(yy_{10}) := F_2 \otimes (\Delta(e_3) \otimes yk[y]) \otimes y_{10}k[y_4, y_6, y_8, y_{10}, y_{32}].$$

Define the E_2 page of J_* by $J_2 = I_2/(yy_{10})$. Define the differentials d'_m of J_* so that $I_2 \to J_2$ induces a map $I_* \to J_*$ of cohomological spectral sequences of k-vector spaces and $d'_m = 0$ for m > 7. This means that $d'_7(f \otimes e_3 \otimes y_{10}g) = f \otimes y \otimes y_{10}g = 0$ and $d'_m(f \otimes e_3 \otimes y_{10}g) = 0$ for m > 7, $f \in F_2$, and $g \in k[y_4, y_6, y_8, y_{10}, y_{32}]$. The E_{∞} page of J_* is given by

$$J_{\infty} \cong (F_2 \otimes k[y_4, y_6, y_8, y_{10}, y_{32}]) \oplus (F_2 \otimes e_3 \otimes y_{10}k[y_4, y_6, y_8, y_{10}, y_{32}]).$$

As $y_7y_{10}=0$ in $H^*_{\rm H}(BG/k)$, α induces a map $\alpha':J_*\to E_*$ of spectral sequences. To finish the calculation, we will show that α' induces an isomorphism on E_∞ terms so that Theorem 1.4 will apply. For n odd, $E_\infty^{n-i,i}=0$ for all i since $H^*_{\rm H}(BL/k)$ is concentrated in even degrees. Now assume that n is even. For $0 \le i \le 7$,

$$V_{i,n} \cong H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2}) \otimes e_1^i \subseteq E_{\infty}^{n-2i,2i}.$$

For $8 \le i \le 15$,

$$V_{i,n} \cong y_{10}H^{(n-2i)/2}(BG,\Omega^{(n-2i)/2}) \otimes e_1^{i-8}e_3 \subseteq E_{\infty}^{n-2i+10,2i-10}.$$

Hence, from the description of the E_{∞} terms of J_* given above, it follows that α' induces an injection $J_{\infty}^{n-2i,2i} \to E_{\infty}^{n-2i,2i}$ for all i. Equation (13) then implies that $J_{\infty}^{n-2i,2i} \cong E_{\infty}^{n-2i,2i}$ for all i.

Thus, α' induces an isomorphism on E_{∞} pages and an isomorphism on the 0th columns of the E_2 pages of the 2 spectral sequences. Theorem 1.4 then implies that

$$H_{\mathrm{H}}^*(BG/k) \cong k[y_4, y_6, y_7, y_8, y_{10}, y_{32}]/(y_7y_{10}).$$

From Proposition 5, the Hodge spectral sequence for BG degenerates.

Corollary 3.14. Let G be a k-form of Spin(10). Then

$$H_{\rm H}^*(BG/k) \cong k[y_4, y_6, y_7, y_8, y_{10}, y_{32}]/(y_7y_{10})$$

where $|y_i| = i$ for all i.

Theorem 3.15. Let n = 11. The Hodge spectral sequence for BG degenerates and

$$H_{\mathrm{dR}}^*(BG/k) \cong H_{\mathrm{H}}^*(BG/k) = k[y_4, y_6, y_7, y_8, y_{10}, y_{11}, y_{32}]/(y_7y_{10} + y_6y_{11})$$

where $|y_i| = i$ for $i = 4, 6, 7, 8, 10, 11, 32$.

Proof. We may assume that $k = \mathbb{F}_2$ so that Remark 3.12 applies. From Lemma 3.5,

$$O(\mathfrak{g})^G \cong k[y_4, y_6, y_8, y_{10}, y_{32}]$$

where $|y_i| = i$ in $H_{\rm H}^*(BG/k)$, viewing $O(\mathfrak{g})^G$ as a subring of $H_{\rm H}^*(BG/k)$. Consider the spectral sequence

$$E_2^{i,j} = H_{\mathrm{H}}^i(BG/k) \otimes H_{\mathrm{H}}^j((G/P)/k) \Rightarrow H_{\mathrm{H}}^{i+j}(BL/k)$$
 (14)

from Proposition 1.1. From Proposition 3.1 and Corollary 3.3,

$$H_{\mathrm{H}}^*((G/P)/k) \cong k[e_1, e_2, e_3, e_4, e_5]/(e_i^2 = e_{2i}) = k[e_1, e_3, e_5]/(e_1^8, e_3^2, e_5^2)$$

and

$$H_{\mathrm{H}}^*(BL/k) \cong k[A, c_2, c_3, c_4, c_5].$$

Using Theorem 3.4, write $H_{\rm H}^*(BSO(11)_k/k) = k[u_2,\ldots,u_{11}]$. From the inclusions $O(2)_k^5 \subset O(10)_k \subset SO(11)_k$, $SO(11)_k$ contains a subgroup $H \cong \mu_2^5 \times (\mathbb{Z}/2)^5$. Write $H_{\rm H}^*(BH/k)/{\rm rad} \cong k[t_1,\ldots,t_5,s_1,\ldots,s_5]$ as described in Remark 3.12. Under the pullback map $H_{\rm H}^*(BSO(11)_k/k) \to H_{\rm H}^*(BH/k)/{\rm rad}$, u_{2m} pulls back to the mth elementary symmetric polynomial

$$\sum_{1 \le i_1 < \dots < i_m \le 5} t_{i_1} \cdots t_{i_m} \tag{15}$$

and u_{2m+1} pulls back to

$$\sum_{j=1}^{5} s_j \sum_{\substack{1 \le i_1 < \dots < i_m \le 5 \\ \text{one equal to j}}} t_{i_1} \cdots t_{i_m}$$

for $1 \le m \le 5$ [17, Lemma 11.4]. To be concise, from now on we will write u_{2m} to denote the image of u_{2m} under pullback maps to $H_{\rm H}^*(BH/k)/{\rm rad}$ or $H_{\rm H}^*(BK/k)/{\rm rad}$ whenever we are dealing with these two rings.

Let $Q \cong (\mu_2^5 \times \mathbb{Z}/2) \subset G$ and $K \cong (\mu_2^4 \times \mathbb{Z}/2) \subset SO(11)_k$ be the subgroups described in Remark 3.12. Write $H_{\mathrm{H}}^*(BK/k)/\mathrm{rad} \cong k[t_1,\ldots,t_5,s]/(t_1+\cdots+t_5)$. Under the pullback map $H_{\mathrm{H}}^*(BSO(11)_k/k) \to H_{\mathrm{H}}^*(BK/k)/\mathrm{rad}$, u_7 maps to $su_6 \neq 0$ and u_{11} maps to $su_{10} \neq 0$. As $Q \to K$ is split, it follows that u_7, u_{11} restrict to nonzero classes $y_7 \in H_{\mathrm{H}}^7(BG/k)$ and $y_{11} \in H_{\mathrm{H}}^{11}(BG/k)$. Also, y_4y_7 and y_{11} are linearly independent in $H_{\mathrm{H}}^{11}(BG/k)$.

Returning to the spectral sequence (14), calculations similar to those performed in the proof of Proposition 3.6 show that e_1 is a permanent cycle in (14) and $e_3 \in E_2^{0,6}$ is transgressive with $0 \neq d_7(e_3) = y_7 \in H^4(BG, \Omega^3)$. We have $H_{\rm H}^m(BG/k) \cong H_{\rm H}^m(B{\rm Spin}(10)_k/k)$ for $m \leq 10$.

Let F_* be the spectral sequence concentrated on the 0th column with E_2 page given by $\Delta(e_1, e_2, e_4)$ with e_i of bidegree (0, 2i) for i = 1, 2, 4. Fix a variable y and let H_* be the spectral sequence with $H_2 = \Delta(e_3) \otimes k[y]$ where e_3 is of bidegree (0, 6), y is of bidegree (7, 0), and e_3 is transgressive with $d_7(e_3y^i) = y^{i+1}$ for all i. There exists a map of spectral sequence

$$\alpha: I_* := F_* \otimes H_* \otimes k[y_4, y_6, y_8, y_{10}, y_{32}] \to E_*$$

taking e_i to e_i for i=1,2,3,4 and taking y to y_7 . The E_{∞} page of I_* is given by $I_{\infty} \cong F_2 \otimes k[y_4,y_6,y_8,y_{10},y_{32}]$ and α induces an injection $I_{\infty}^{i,j} \to E_{\infty}^{i,j}$ for all i,j with $i+j \leq 17$. For n odd, α induces an isomorphism $0=I_{\infty}^{n-i,i} \cong E_{\infty}^{n-i,i}=0$ for all i since $H_{\rm H}^*(BL/k)$ is concentrated in even degrees.

Let n be even. The k-dimension of $H^n_H(BL/k)$ is equal to the cardinality of the set

$$S_n = \{(a, b, c, d, e) \in \mathbb{Z}_{>0}^5 : 2a + 4b + 6c + 8d + 10e = n\}.$$

For $0 \le i \le 15$, set $V_{i,n} := H^{(n-2i)/2}(BG, \Omega^{(n-2i)/2})$. For $0 \le i \le 15$, $\dim_k V_{i,n}$ is equal to the cardinality of the set $S_{i,n} = \{(a,b,c,d,e) \in \mathbb{Z}_{\ge 0}^5 : 4a + 6b + 8c + 10d + 32e = n - 2i\}$. As $e_1 \in H^2_{\mathrm{H}}((G/P)/k)$ is a permanent cycle in (14),

$$V_{i,n} \cong V_{i,n} \otimes k \cdot e_1^i \subseteq E_{\infty}^{n-2i,2i}$$

for $0 \le i \le 7$ and $n \le 16$.

Define a bijection $f_n: S_n \to \bigcup_{i=0}^{15} S_{i,n}$ by $f_n(a,b,c,d,e) = (b,c,d,e,(a-i)/16) \in S_{i,n}$ for $a \equiv i \mod (16)$. Then

$$\dim_k H_{\mathrm{H}}^n(BL/k) = |S_n| = \sum_{i=0}^{15} |S_{i,n}| = \sum_{i=0}^{15} \dim_k V_{i,n}.$$
 (16)

Now assume that $n \leq 14$. Then f_n gives a bijection

$$S_n \to \bigcup_{i=0}^7 S_{i,n}.$$

As

$$\dim_k H^n_{\mathrm{H}}(BL/k) \ge \sum_{i=0}^7 E_{\infty}^{n-2i,2i}$$

and $V_{i,n} \subseteq E_{\infty}^{n-2i,2i}$ for $0 \le i \le 7$, it follows that $V_{i,n} \cong E_{\infty}^{n-2i,2i}$ for $0 \le i \le 7$ and $E_{\infty}^{n-2i,2i} = 0$ for $i \ge 8$. In particular, $E_{\infty}^{0,10} \cong k \cdot e_1^5$. As mentioned above, we have $H_{\rm H}^m(BG/k) = 0$ for m = 3, 5, 9. After adding a k-multiple of $e_3e_1^2$ to e_5 , we can assume that $d_7(e_5) = 0$. Then the isomorphism $E_{\infty}^{0,10} \cong k \cdot e_1^5$ implies that $d_{11}(e_5) \ne 0$. Hence, e_5 is transgressive in (14) and $y_{11} \in H^6(BG,\Omega^5)$ is a lifting of $d_{11}(e_5)$ to $E_2^{11,0}$.

Fix a variable x. Let J_* denote the spectral sequence with E_2 page $J_2 = \Delta(e_5) \otimes k[x]$ where e_5 has bidegree (0, 10), x has bidegree (11, 0), and e_5 is transgressive with $d_{11}(e_5x^i) = x^{i+1}$ for all i.

$$k \cdot e_5$$
 $k \cdot e_5 x$ \cdots
 d_{11} d_{11}
 0 $k \cdot x$ $k \cdot x^2$ \cdots

As e_5 is transgressive in (14), there exists a map of spectral sequences $J_* \to E_*$ taking e_5 to e_5 and x to y_{11} . Tensoring with the map α defined above, we get a map

$$\alpha': K_* := I_* \otimes J_* \to E_*$$

which induces an isomorphism on the 0th columns of the E_2 pages. The E_{∞} page of K_* is given by

$$K_{\infty} \cong I_{\infty} \cong F_2 \otimes k[y_4, y_6, y_8, y_{10}, y_{32}].$$

As mentioned above, α and hence α' induce isomorphisms on $E_{\infty}^{n-i,i}$ terms for n<16 and injections on all E_{∞} terms on or below the line i+j=17. Theorem 1.4 implies that α' induces an isomorphism $K_2^{n,0} \to E_2^{n,0}$ for n<16.

Next, we consider the filtration on $H_{\rm H}^{16}(BL/k)$ given by (14). From (16),

$$\dim_k H^{16}_{\mathrm{H}}(BL/k) = 1 + \sum_{i=0}^7 |S_{i,16}| = 1 + \sum_{i=0}^7 \dim_k V_{i,16} \otimes k \cdot e_1^i.$$

We must then have either $d_7(e_3f) = y_7f = 0 \in H^{17}_{\rm H}(BG/k)$ for some $0 \neq f \in H^{10}_{\rm H}(BG/k)$ or $d_{11}(e_5g) = y_{11}g = d_7(e_3)h = y_7h \in H^{17}_{\rm H}(BG/k)$ for some $0 \neq g \in H^6_{\rm H}(BG/k)$ and $h \in H^{10}_{\rm H}(BG/k)$. Let $a,b,c \in k$, not all zero, such that $ay_{11}y_6 + by_7y_{10} + cy_7y_4y_6 = 0 \in H^{17}_{\rm H}(BG/k)$.

The class $au_{11}u_6 + bu_7u_{10} + cu_7u_4u_6 \in H_{\rm H}^{17}(BSO(11)_k/k)$ pulls back to $ay_{11}y_6 + by_7y_{10} + cy_7y_4y_6 = 0 \in H_{\rm H}^{17}(BG/k)$. Under the pullback map

$$H_{\mathrm{H}}^{*}(BSO(11)_{k}/k) \to H_{\mathrm{H}}^{*}(BK/k)/\mathrm{rad} \cong k[t_{1},\ldots,t_{5},s]/(t_{1}+\cdots+t_{5}),$$

 $au_{11}u_6 + bu_7u_{10} + cu_7u_4u_6$ maps to $asu_{10}u_6 + bsu_6u_{10} + csu_6u_4u_6$, which equals 0 since $Q \to K$ is split. Then c = 0 and a = b since the elementary symmetric polynomials (15) in

$$k[t_1,\ldots,t_5]/(t_1+\cdots+t_5)$$

generate a polynomial subring.

$$au_{11}u_{6} + bu_{7}u_{10} + cu_{7}u_{4}u_{6} \in H^{17}_{H}(BSO(11)_{k}/k) \longrightarrow 0 \in H^{17}_{H}(BG/k)$$

$$\downarrow \qquad \qquad \downarrow$$

$$asu_{10}u_{6} + bsu_{6}u_{10} + csu_{6}u_{4}u_{6} \in H^{17}_{H}(BK/k)/\mathrm{rad} \longrightarrow 0 \in H^{17}_{H}(BQ/k)/\mathrm{rad}$$

Thus, the relation $y_7y_{10} + y_6y_{11} = 0$ holds in $H^*_H(BG/k)$ and $E^{6,10}_\infty \cong (k \cdot y_6 \otimes e_5) \oplus (k \cdot y_6 \otimes e_5^5)$. We now use the relation $y_7y_{10} + y_6y_{11} = 0$ to define a new spectral sequence L_* from K_* . Let $(y_6x + yy_{10}) \subset K_2$ denote the ideal generated by $y_6x + yy_{10}$ and let $L_2 := K_2/(y_6x + yy_{10})$. Define the differentials d'_m of L_* so that $K_2 \to L_2$ induces a map of spectral sequences $K_* \to L_*$ and $d'_m = 0$ for m > 11. Then $\alpha' : K_* \to E_*$ induces a map of spectral sequences $\alpha'' : L_* \to E_*$. The E_∞ page of L_* is given by

$$L_{\infty} \cong (F_2 \otimes k[y_4, y_6, y_8, y_{10}, y_{32}]) \oplus (F_2 \otimes y_6 k[y_4, y_6, y_8, y_{10}, y_{32}] \otimes e_5).$$

We now show by induction that α'' induces an isomorphism $L_2^{n,0} \to E_2^{n,0}$ for all n. For n < 16, we have shown that $L_2^{n,0} \cong E_2^{n,0}$. Now let $n \geq 16$ and assume that α'' induces an isomorphism $L_2^{m,0} \to E_2^{m,0}$ for all m < n. First, suppose that n is even. As $L_2^{m,0} \cong E_2^{m,0}$ for m < n, $y_7g \neq 0 \in H^*_H(BG/k)$ for all $0 \neq g \in H^*_H(BG/k)$ with |g| < n - 7. Hence, for any $0 \neq g \in H^m_H(BG/k)$ with |g| = m < n - 7, $g \otimes e_3e_5 \in E_2^{m,16} \cong E_7^{m,16}$ is not in the kernel of the differential $d_7: E_7^{m,16} \to E_7^{m+7,10} \cong E_2^{m+7,10}$. As $y_7 \in H^4(BG,\Omega^3)$ and $y_{11} \in H^6(BG,\Omega^5)$, $y_7z, y_{11}z \notin \oplus_i H^i(BG,\Omega^i)$ for all $z \in H^*_H(BG/k)$. It follows that α'' induces an injection $L_\infty^{i,j} \to E_\infty^{i,j}$ for all i,j with $m=i+j \leq n$:

$$L_{\infty}^{m-2i,2i} \cong V_{i,m} \otimes e_1^i \subseteq E_{\infty}^{m-2i,2i}$$

for $0 \le i \le 4$,

$$L^{m-2i,2i}_{\infty} \cong (V_{i,m} \otimes e_1^i) \oplus (y_6 V_{i+3,m} \otimes e_1^{i-5} e_5) \subseteq E_{\infty}^{m-2i,2i}$$

for $5 \le i \le 7$, and

$$L^{m-2i,2i}_{\infty} \cong y_6 V_{i+3,m} \otimes e_1^{i-5} e_5 \subseteq E_{\infty}^{m-2i,2i}$$

for $8 \leq i \leq 12$. The equality in (16) then implies that α'' induces isomorphisms $L_{\infty}^{i,j} \to E_{\infty}^{i,j}$ for all i,j with $i+j \leq n$. As mentioned above, α'' induces isomorphisms $0 = L_{\infty}^{n+1-i,i} \to E_{\infty}^{n+1-i,i} = 0$ for all i since n+1 is odd. Theorem 1.4 then implies that α'' induces an isomorphism $L_2^{n,0} \cong E_2^{n,0} = H_{\rm H}^n(BG/k)$.

Now assume that n is odd. We have $0 = L_{\infty}^{i,j} \cong E_{\infty}^{i,j} = 0$ for all i,j with i+j=n. An argument similar to the one used above for when n is even shows that α'' induces injections $L_{\infty}^{i,j} \to E_{\infty}^{i,j}$ for all i,j with $i+j \leq n+1$. Equation (16) then implies that α'' induces isomorphisms $L_{\infty}^{i,j} \to E_{\infty}^{i,j}$ for all i,j with $i+j \leq n+1$. It follows that α'' induces an isomorphism $L_2^{n,0} \cong E_2^{n,0} = H_{\rm H}^n(BG/k)$ by an application of Theorem 1.4. Thus, by induction, we have obtained that the 0th row of L_2 is isomorphic to the 0th row of E_2 :

$$H_{\rm H}^*(BG/k) = k[y_4, y_6, y_7, y_8, y_{10}, y_{11}, y_{32}]/(y_7y_{10} + y_6y_{11}).$$

The Hodge spectral sequence for BG degenerates by Proposition 5.

Corollary 3.16. Let G be a k-form of Spin(11). Then

 $H_{\rm H}^*(BG/k) \cong k[y_4, y_6, y_7, y_8, y_{10}, y_{11}, y_{32}]/(y_7y_{10} + y_6y_{11})$

where $|y_i| = i$ for i = 4, 6, 7, 8, 10, 11, 32.

References

- Bhatt, Bhargav; Morrow, Matthew; Scholze, Peter. Integral p-adic Hodge theory. Publ. Math. Inst. Hautes Études Sci. 128 (2018), 219–397.
 MR3905467, Zbl 07018374, arXiv:1602.03148, doi:10.1007/s10240-019-00102-z. 1002, 1003
- BOREL, ARMAND. Linear algebraic groups. Second edition. Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991. xii+288 pp. ISBN: 0-387-97370-2. MR1102012 (92d:20001), Zbl 0726.20030. 1004
- BOURBAKI, NICOLAS. Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics. Springer-Verlag, Berlin, 2002. xii+300 pp. ISBN: 3-540-42650-7. MR1890629 (2003a:17001), Zbl 1145.17001. 1007
- [4] CHAPUT, PIERRE-EMMANUEL; ROMAGNY, MATTHIEU. On the adjoint quotient of Chevalley groups over arbitrary base schemes. J. Inst. Math. Jussieu 9 (2010), no. 4, 673–704. MR2684257 (2011h:20097), Zbl 1202.13004, doi: 10.1017/S1474748010000125. 1005
- [5] CHEVALLEY, CLAUDE. Sur les décompositions cellulaires des espaces G/B. Proc. Sympos. Pure Math., 56, Part 1. Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), 1–23. Amer. Math. Soc., Providence, RI, 1994. MR1278698 (95e:14041), Zbl 0824.14042, doi:10.1090/pspum/056.1. 1004
- [6] Demazure, Michel. Invariants symétriques entiers des groupes de Weyl et torsion. *Invent. Math.* **21** (1973), 287–301. MR0342522 (49#7268), Zbl 0269.22010, doi: 10.1007/BF01418790.1004
- [7] DONKIN, STEPHEN. On conjugating representations and adjoint representations of semisimple groups. *Invent. Math.* 91 (1988), no. 1, 137–145. MR0918240 (89a:20047), Zbl 0639.20021, doi: 10.1007/BF01404916. 1007
- [8] ELMAN, RICHARD; KARPENKO, NIKITA; MERKURJEV, ALEXANDER. The algebraic and geometric theory of quadratic forms. American Mathematical Society Colloquium Publications, 56. American Mathematical Society, Providence, RI, 2008. viii+435 pp. ISBN: 978-0-8218-4329-1. MR2427530 (2009d:11062), Zbl 1165.11042, doi:10.1090/coll/056. 1007
- [9] FULTON, WILLIAM; HARRIS, JOE. Representation theory. A first course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991. xvi+551 pp. ISBN: 0-387-97527-6; 0-387-97495-4. MR1153249 (93a:20069), Zbl 0744.22001, doi: 10.1007/978-1-4612-0979-9. 1007
- [10] JANTZEN, JENS CARSTEN. Representations of algebraic groups. Second edition. Mathematical Surveys and Monographs, 107. American Mathematical Society, Providence, RI, 2003. xiv+576 pp. ISBN: 0-8218-3527-0. MR2015057 (2004h:20061), Zbl 1034.20041. 1007
- [11] KNUS, MAX-ALBERT; MERKURJEV, ALEXANDER; ROST, MARKUS; TIGNOL, JEAN-PIERRE. The book of involutions. American Mathematical Society Colloquium Publications, 44. American Mathematical Society, Providence, RI, 1998. xxii+593 pp. ISBN: 0-8218-0904-0. MR1632779 (2000a:16031), Zbl 0955.16001, doi: 10.1090/coll/044. 1020
- [12] MIMURA, MAMORU; TODA, HIROSI. Topology of Lie groups. I, II. Translated from the 1978 Japanese edition by the authors. Translations of Mathematical

- Monographs, 91. American Mathematical Society, Providence, RI, 1991. iv+451 pp. ISBN: 0-8218-4541-1. MR1122592 (92h:55001), Zbl 0757.57001. 1005, 1006, 1010
- [13] NAKAJIMA, HARUHISA. Invariants of finite groups generated by pseudoreflections in positive characteristic. Tsukuba J. Math. 3 (1979), no. 1, 109–122.
 MR0543025 (82i:20058), Zbl 0418.20041, doi:10.21099/tkbjm/1496158618.
 1011
- [14] QUILLEN, DANIEL. The mod 2 cohomology rings of extra-special 2-groups and the spinor groups. Math. Ann. 194 (1971), 197–212. MR0290401 (44#7582), Zbl 0225.55015, doi: 10.1007/BF01350050. 1003
- [15] SRINIVAS, VASUDEVAN. Gysin maps and cycle classes for Hodge cohomology. Proc. Indian Acad. Sci. Math. Sci. 103 (1993), no. 3, 209–247. MR1273351 (95d:14010), Zbl 0816.14003, doi:10.1007/BF02866988. 1004
- [16] Totaro, Burt. The torsion index of E_8 and other groups. Duke Math. J. **129** (2005), no. 2, 219–248. MR2165542 (2006f:57039a), Zbl 1093.57011, doi: 10.1215/S0012-7094-05-12922-2. 1011
- [17] TOTARO, BURT. Hodge theory of classifying stacks. Duke Math. J. 167 (2018),
 no. 8, 1573–1621. MR3807317, Zbl 1423.14149, doi:10.1215/00127094-2018-0003. 1002, 1003, 1004, 1005, 1006, 1007, 1011, 1017, 1018, 1020, 1022

(Eric Primozic) Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada

primozic@ualberta.ca

This paper is available via http://nyjm.albany.edu/j/2020/26-42.html.