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A universal coefficient theorem with
applications to torsion in Chow groups of

Severi–Brauer varieties

Eoin Mackall

Abstract. For any variety X, and for any coefficient ring S, we de-
fine the S-topological filtration on the Grothendieck group of coherent
sheaves G(X) ⊗ S with coefficients in S. The S-topological filtration is
related to the topological filtration by means of a universal coefficient
theorem. We apply this observation in the case X is a Severi–Brauer
variety to obtain new examples of torsion in the Chow groups of X.
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Notation and Conventions. A ring is a commutative ring. An abelian
group is flat if it is a flat Z-module; equivalently, an abelian group is flat
if and only if it is torsion free. We fix an arbitrary field k, to be used as a
base. For any field F , an F -variety (or simply a variety when the field F is
clear) is an integral scheme separated and of finite type over F .

1. Introduction

Let X be a Severi–Brauer variety. The Chow groups CHi(X) of algebraic
cycles on X of codimension-i modulo rational equivalence have been the
subject of a considerable amount of current research [1, 9, 10, 11, 12]. A
primary focus of this research has been to determine the possible torsion
subgroups of CHi(X) for varying i and X. This line of study was initiated
by Merkurjev [15] who used the Brown-Gersten-Quillen or BGQ spectral
sequence to give the first proof that there can exist nontrivial torsion cycles
in CHi(X) for some X and some i ≥ 3.
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Merkurjev’s methods are inexplicit: although he shows that nontrivial
torsion cycles exist in the Chow groups of some Severi–Brauer varieties, it’s
difficult to write down an explicit torsion cycle let alone to know in which
codimension the cycle exists. Because of this, most modern computations
in this field rely on the pioneering ideas of Karpenko [7, 8] who gave the
first description of the torsion subgroups in CH2(X) for a handful of Severi–
Brauer varieties X including those X that are generic with associated central
simple algebra A of level lev(A) ≤ 1 (see Subsection 4.3 for a definition of
the level).

The torsion subgroup of CH2(X) for a Severi–Brauer variety X is often
useful. Karpenko’s calculations [8, Example 4.15] for the torsion subgroups
of CH2(X) for generic Severi-Brauer varieties associated to central simple
algebras A of level lev(A) ≤ 1 can be used to compute the group of inde-
composable degree three cohomological invariants for the algebraic groups
SLn/µm, with m a divisor of n, by [9, Lemma 3.5], [16, Theorem 2.10], and
[13, Lemma 5.13]; this computation also appears in [2] by different methods.
Nontrivial torsion in CH2(X) can also be used to show indecomposability
of the associated central simple algebra in some cases [8, 1, 12].

In this paper, we develop a new technique for determining nontrivial tor-
sion cycles in the Chow groups CHi(X) of a Severi–Brauer variety X for any
i ≥ 2. We then apply this technique in the case that X is a generic Severi–
Brauer variety associated to a central simple algebra A of index ind(A) = 2n

to determine all possible torsion subgroups of CH2(X) for all n ≤ 5; this
information is compiled in Tables 1, 2, and 3 below. Some corollaries to our
computations include the first examples (Corollary 4.15) of noncyclic torsion
in CH2(X) and the first examples (Corollaries 4.16, 4.17, 4.18) of torsion in
higher codimensions for X associated to an algebra A of level lev(A) > 1.

All of our results are based on an analog of the universal coefficient theo-
rem of singular homology that applies to the topological filtration τ•(X) of
the Grothendieck group G(X) of coherent sheaves on a variety X. That is to
say, we introduce an S-topological filtration τS• (X) on the group G(X)⊗ S
when S is an arbitrary coefficient ring (Definition 3.1) and we compare the
topological filtration with S-coefficients to the S-topological filtration via a
collection of natural maps; under some conditions, we can show that these
comparison maps are isomorphisms (Proposition 3.3).

If, in the discussion above, one takes the coefficient ring S to be the finite
field Fp of p elements for some prime p, then our results show that certain
questions regarding torsion elements of order p in the associated graded
groups of the topological filtration can be reduced to some computations
in the Fp-vector space G(X) ⊗ Fp. This makes it considerably easier to
check some results by hand (e.g. to see that CH2(X) can have nontrivial
torsion) and, it suggests that these computations can most likely be done in
an automated fashion.
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This paper is structured as follows. Section 2 is written in a completely
abstracted way; here we prove only basic results in homological algebra. The
abstract results of Section 2 are applied in a geometric setting in Section 3
where we also prove Proposition 3.3 which is our most useful form of the
universal coefficient theorem for the topological filtration. As an aside to
this section, we would like to point out Lemma 3.4, which characterizes
torsion elements in the Grothendieck ring K(X) of locally free sheaves on a
variety X as elements of the kernel of some Adam’s operations.

Section 4 is devoted to applications of the theory developed in Sections
2 and 3. Here we settle some questions on torsion in the Chow groups of
Severi–Brauer varieties. This section includes a summary (Subsections 4.1-
4.5) of the notation that we use and of some results that can be obtained from
the articles [8, 11, 12]. All new computations are contained in Subsection
4.6. Our proofs are highly computational and require some large amount
of detail so, whenever possible, we’ve sorted the needed information into a
table; these are provided at the end of the paper, before the references.

2. Filtered rings with coefficients

Throughout this section we let R be an abelian group equipped with an
ascending filtration F• ⊂ R, i.e. for every i ∈ Z there is a group Fi ⊂ R
indexed so that

· · · ⊂ Fi−1 ⊂ Fi ⊂ Fi+1 ⊂ · · · ⊂ R.

Further, this filtration is assumed to satisfy the following property:

(CC) we assume that the filtration F• is limiting, stable, and nonnegative,
i.e. F−1 = 0 and there exists an integer d ≥ 0 such that Fd = R.

We write Fi/i−1 for the associated quotient Fi/Fi−1. If S is an arbitrary

ring, we write FS
• for the ascending filtration on R⊗S whose degree-i term

FS
i is defined as the S-submodule generated by Fi ⊗ S. Equivalently, FS

i
can be defined as the image of the map obtained by tensoring the inclusion
Fi ⊂ R by S,

FS
i = Im (Fi ⊗ S → R⊗ S) .

We write FS
i/i−1 for the quotient FS

i /F
S
i−1.

Note that, for any i ∈ Z, tensoring the inclusion Fi−1 ⊂ Fi by S induces
an exact sequence

0→ Tor1(S, Fi−1)→ Tor1(S, Fi)→ Tor1(S, Fi/i−1)→

→ Fi−1 ⊗ S
ji−1−−→ Fi ⊗ S → Fi/i−1 ⊗ S → 0. (no.1)
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The final terms of these exact sequences fit into commuting diagrams

Fi−1 ⊗ S Fi ⊗ S Fi/i−1 ⊗ S 0

0 FS
i−1 FS

i FS
i/i−1 0

hi−1

ji−1

hi fi (no.2)

where the vertical maps hi are the canonical surjections, and the maps fi are
the induced maps on the quotients. Note that because of our assumption
(CC) above, we have that hd+k is an isomorphism for all k ≥ 0.

Lemma 2.1. Fix an integer e ≤ d. Suppose that ji is an injection for every
e ≤ i ≤ d. Then both hi and fi are isomorphisms for every e ≤ i ≤ d.

Proof. Let Ki = ker(hi). The snake lemma gives short exact sequences

0→ Ki → Ki+1 → ker(fi+1)→ 0.

From the inclusions Ke ⊂ · · · ⊂ Kd = 0 we find that hi is an isomorphism
for all e ≤ i ≤ d. Applying the snake lemma again shows that fi is an
isomorphism as well. �

Lemma 2.2. The following conditions are equivalent:

(1) for every i ≤ d the map ji is an injection;
(2) for every i ≤ d the map fi is an isomorphism.

Additionally, if we assume that R is flat then the above are equivalent to

(3) Tor1(S, Fi/i−1) = 0 for all i ≤ d.

Proof. Let Ki = ker(hi). Setting e = −1 in Lemma 2.1, we get the impli-
cation (1) =⇒ (2).

In the other direction, applying the snake lemma to the diagrams of (no.2)
gives surjections

0 = K−1 � · · ·� Kd,

so that hi is an injection for all i ≤ d. Since the left square of (no.2) is
commutative, the map ji−1 is an injection whenever hi−1 is an injection.

Lastly, when R is flat we have that Tor1(S, Fi) = 0 for all i ∈ Z. Thus
the vanishing Tor1(S, Fi/i−1) = 0 is equivalent to the injectivity of ji−1 by
(no.1). �

The following lemma can be seen as a direct generalization of the universal
coefficient theorem to the setting of filtered groups. We don’t use this lemma
directly but, we include it for completeness.

Lemma 2.3. Set Ki = ker(hi). Then for any i ∈ Z there is an isomorphism

Ki = coker (Tor1(S,R)→ Tor1(S,R/Fi)) .
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Proof. Since FS
i is the image of the inclusion Fi ⊗ S → R ⊗ S, we have a

short exact sequence

Tor1(S,R)→ Tor1(S,R/Fi)→ Fi ⊗ S → R⊗ S → R/Fi ⊗ S → 0

which proves the claim. �

Corollary 2.4. ker(fi) ⊂ Fi/i−1 ⊗ S is a quotient of Tor1(S,R/Fi). �

We end with a lemma, which will be needed later.

Lemma 2.5. In the notation above, the following statements hold.

(1) For every ring S, the maps hd and fd are isomorphisms.
(2) Suppose that there is a splitting R = Fd−1 ⊕ Z. Then, for every ring S,

the maps hd−1 and fd−1 are isomorphisms.
(3) Suppose both that the canonical map

Tor1(Q/Z, Fd−1)→ Tor1(Q/Z, Fd−1/d−2)

is a surjection and that hd−1 is an isomorphism. If additionally R is
flat then, for any ring S, the maps hd−2 and fd−2 are isomorphisms.

Proof. The proof of (1) is immediate from our assumption (CC) above.
To see (2), note that a splitting R = Fd−1 ⊕ Z gives a splitting R ⊗ S =
(Fd−1 ⊗ S)⊕ S. The map jd−1 is then the inclusion Fd−1 ⊗ S ⊂ R⊗ S and
(2) follows from Lemma 2.1. To see (3), we use the assumption R is flat to
find that Fd−1/d−2 is flat because of the surjection

0 = Tor1(Q/Z, Fd−1)→ Tor1(Q/Z, Fd−1/d−2).

It follows that Tor1(S, Fd−1/d−2) = 0 for every ring S. In particular the map
jd−2 is an injection, and the maps hd−2 and fd−2 are isomorphisms again by
Lemma 2.1. �

3. The topological filtration with coefficients

Let X be an arbitrary variety. In this paper, the (ascending) topological
filtration τ•(X) on the Grothendieck group G(X) of coherent sheaves on X
is the filtration whose ith term τi(X) is defined as the group

τi(X) :=
∑
Z⊂X

ker (G(X)→ G(X \ Z))

where the sum is indexed over all subvarieties Z ⊂ X having dimension
dim(Z) ≤ i and the arrows are pullbacks along the inclusions X \ Z ⊂ X.
The (descending) topological filtration τ•(X) is defined by setting τ i(X) =
τd−i(X), where d = dim(X) is the dimension of X. This filtration was
first considered by Grothendieck [18, Exposé 0, App., Chap. II, §3] and
afterwards by others, see e.g. [4, Chapter VI, §5].

By analogy to the above, we introduce the following generalization of the
topological filtration with coefficients in an arbitrary ring S.
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Definition 3.1. We define the ascending S-topological filtration as the fil-
tration τS• (X) ⊂ G(X)⊗ S whose ith piece τSi (X) is the group

τSi (X) :=
∑
Z⊂X

ker (G(X)⊗ S → G(X \ Z)⊗ S)

where the sum is indexed over all subvarieties Z ⊂ X with dim(Z) ≤ i
and the arrows are pullbacks along the inclusions X \ Z ⊂ X. We also
define the descending S-topological filtration τ•S(X) ⊂ G(X) ⊗ S by setting
τ iS(X) = τSd−i(X) where d = dim(X).

The next lemma allows us to compare the S-topological filtration of
G(X)⊗ S to the topological filtration of G(X) tensored by S.

Lemma 3.2. For every i ∈ Z, the group τSi (X) coincides with the image

τSi (X) = Im (τi(X)⊗ S → G(X)⊗ S)

induced by the inclusion τi(X) ⊂ G(X).

Proof. Let Z be a subvariety X of dimension dim(Z) ≤ i with inclusion
iZ : Z → X. From the exact localization sequence associated to the pair Z
and X \ Z,

G(Z)
iZ∗−−→ G(X)→ G(X \ Z)→ 0

it follows that τi(X) is the sum of images Im(iZ∗) as Z varies over all such
subvarieties. Taking the tensor product with S then gives

Im(τi(X)⊗ S → G(X)⊗ S) =
∑
Z⊂X

Im
(
G(Z)⊗ S iZ∗⊗1−−−−→ G(X)⊗ S

)
=
∑
Z⊂X

ker (G(X)⊗ S → G(X \ Z)⊗ S)

as claimed. �

From Lemma 3.2 it follows, as in (no.2) of the previous section, that for
every i ∈ Z there is a commuting diagram with exact rows

τi−1(X)⊗ S τi(X)⊗ S τi/i−1(X)⊗ S 0

0 τSi−1(X) τSi (X) τSi/i−1(X) 0

hi−1

ji−1

hi fi

(no.3)
where ji−1 is the inclusion τi−1(X) ⊂ τi(X) tensored with S, the vertical
maps hi are the canonical surjections, and the fi are the induced maps on
the quotients. The remainder of this section is dedicated to the proof of the
following proposition.
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Proposition 3.3. Let X be an arbitrary variety of dimension d. Let S be
an arbitrary ring. Then, for all i ≤ 1, the canonical surjections of (no.3)

τd−i(X)⊗ S
hd−i−−−→ τSd−i(X) and τd−i/d−i−1(X)⊗ S

fd−i−−−→ τSd−i/d−i−1(X)

are isomorphisms. If X is regular and G(X) is torsion free, then the same
holds for i = 2.

Recall that when X is regular, the group G(X) is a ring and the multipli-
cation of G(X) is induced by that of the Grothendieck ring K(X) of finite
rank locally free sheaves on X. Indeed, there is a morphism

ϕX : K(X)→ G(X) (no.4)

defined by sending the class of a locally free sheaf to the class of itself and,
when X is regular, the morphism ϕX is an isomorphism.

The ring K(X) is equipped with a number of operations, i.e. set maps
from K(X) to itself that are functorial with respect to pullbacks. We recall
the ones that will be of interest to us following [4, 14]. For any i ≥ 0, there
are lambda operations

λi : K(X)→ K(X)

that are defined on the class of a locally free sheaf F by the formula λi([F ]) =
[∧iF ] where ∧iF is the ith exterior power of F . These lambda operations
define a homomorphism

λt :=
∑

λi(x)ti : K(X)→ 1 +K(X)[[t]]

from K(X) to the group of formal power series in the variable t with coef-
ficients in K(X) and with constant term equal 1.

From the series λt one can construct a number of other useful operations.
For any i ≥ 0, there are gamma operations

γi : K(X)→ K(X)

whose value γi(x) on an element x ∈ K(X) is the coefficient of ti in the
formal power series

γt(x) :=
∑

γi(x)ti := λt/(1−t)(x) ∈ 1 +K(X)[[t]].

For any i ≥ 0, there are also Adams operations

ψi : K(X)→ K(X)

defined using the homomorphism rk : K(X) → Z sending the class of a
locally free sheaf F to its rank rk(F): the value ψi(x) is the coefficient of ti

in the formal power series

ψt(x) :=
∑

ψi(x)ti = rk(x)− t d
dt

log λ−t(x) ∈ K(X)[[t]].

For the properties of these operations we refer to the references.
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The (descending) gamma filtration γ•(X) ⊂ K(X) is defined as the small-
est multiplicative filtration (meaning γi(X) · γj(X) ⊂ γi+j(X) for all i, j)
having the following properties:

(1) γ0(X) = K(X),
(2) γ1(X) = ker(rk),
(3) γi(x) ∈ γi(X) for every x ∈ γ1(X) and for every i ≥ 1.

For regular varieties X, and when one identifies K(X) with G(X) via the
map ϕX of (no.4), the gamma filtration has the property that γi(X) ⊂ τ i(X)
for every i ≥ 0. When i ≤ 2, this inclusion is even an equality, see [8,
Proposition 2.14].

Lemma 3.4. Let X be a regular variety and let x ∈ K(X) be a nonzero el-
ement. Then for any integer n ≥ 2, the following statements are equivalent.

(1) There exists an integer i ≥ 1 with nix = 0.

(2) There exists an integer k ≥ 1 with ψnk
(x) = 0.

Proof. Assume (1). Since nix = 0, we have x ∈ γ1(X). Let j be maximal
with x ∈ γj(X). By [4, Proposition 3.1] applied to the element x we have
an inclusion

ψni
(x)− (ni)jx = ψni

(x) ∈ γj+1(X).

Applying [4, Proposition 3.1] to ψni
(x) and using some properties of Adams

operations (specifically that they are ring homomorphisms satisfying the
rule ψa ◦ ψb = ψab) we find

ψni
(ψni

(x))− nij+iψni
(x) = ψn2i

(x)− ψni
(nij+ix) = ψn2i

(x) ∈ γj+2(X).

Repeating this argument d = dim(X) times shows that there is an integer

k ≥ 1 (one can even take k = (d + 1 − j)i) such that ψnk
(x) ∈ γd+1(X) ⊂

τd+1(X) = 0.

Conversely, assume (2). Since ψnk
(x) = 0, we have

rk(ψnk
(x)) = ψnk

(rk(x)) = 0

so that x ∈ γ1(X). Let j be maximal with x ∈ γj(X). Applying [4,
Proposition 3.1] to x we find the inclusion

ψnk
(x)− nkjx = −nkjx ∈ γj+1(X).

Applying [4, Proposition 3.1] to nkjx we get

ψnk
(nkjx)− nk(j+1)nkjx = nkjψnk

(x)− n2jk+kx = −n2jk+kx ∈ γj+2(X).

Repeating this argument d+1− j times we eventually find nix = 0 for some
i ≥ 0 (and one can even take i = k(d + 2 − j)(j + (d + 1 − j)/2) to be
precise). �

Corollary 3.5. If X is a regular variety of dimension d = dim(X), then
the canonical map

Tor1(Q/Z, τd−1(X))→ Tor1(Q/Z, τd−1/d−2(X))
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is a surjection.

Proof. Since X is regular, we identify K(X) and G(X) using the map ϕX .
In this case, we have a chain of isomorphisms

τd−1/d−2(X) = τ1/2(X) = γ1/2(X) = Pic(X). (no.5)

From left to right: the first equality is just a change of notation, the second
equality follows from [8, Proposition 2.14], and the last equality is induced
by the map taking the class of a locally free sheaf F to its determinant line
bundle det(F), see [14, Proposition 10.6]. In particular, if L is a line bundle
then the element [L]− 1 in τd−1/d−2(X) is mapped under (no.5) to the class
of L in Pic(X).

Suppose that [L] − 1 is torsion in τd−1/d−2(X). Because of (no.5) this

means there exists an integer n > 0 with L⊗n = OX . Hence there’s an
equality

ψn([L]− 1) = [L⊗n]− 1 = 0

inside K(X). By Lemma 3.4, the element [L] − 1 of τd−1(X) is torsion,
proving the claim. �

We can now prove Proposition 3.3.

Proof of Proposition 3.3. The proof applies Lemma 2.5 above, setting
R = G(X) and Fi = τi(X). The assumptions of Lemma 2.5 (2) hold from
both the existence of the rank map and the equality τ1(X) = γ1(X). The
assumptions of Lemma 2.5 (3) hold by Corollary 3.5. �

We end with a definition for the S-gamma filtration of the ring K(X)⊗S,
for an arbitrary ring of coefficients S, keeping the spirit of this section.

Definition 3.6. We define the (descending) S-gamma filtration as the fil-
tration γ•S(X) ⊂ K(X)⊗ S whose ith piece γiS(X) is the image

γiS(X) := Im(γi(X)⊗ S → K(X)⊗ S)

induced by the inclusion γi(X) ⊂ K(X). We define the ith S-gamma oper-
ation γiS(x) of an element x ∈ K(X) as the image of γi(x) in K(X)⊗ S.

Remark 3.7. The descending S-gamma filtration is a multiplicative filtra-
tion ofK(X)⊗S. IfX is regular, then the descending S-topological filtration
is a multiplicative filtration of G(X) ⊗ S. When one identifies K(X) with
G(X) via the map ϕX , there is a comparison γiS(X) ⊂ τ iS(X) for all i ≥ 0
with equality holding for i ≤ 2.

Remark 3.8. Let F be a field and letX be a variety of dimension d. Assume
that the F -dimension of G(X)⊗F is finite, i.e. dimF (G(X)⊗F ) <∞. Then
there are equalities

dimF (G(X)⊗ F ) =
∑
i≤d

(
dimF (τFi (X))− dimF (τFi−1(X))

)
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=
∑
i≤d

dimF

(
τFi/i−1(X)

)
.

If X is a regular variety, and if dimF (K(X) ⊗ F ) < ∞, then an analogous

argument shows dimF (K(X)⊗ F ) =
∑

i≥0 dimF (γ
i/i+1
F (X)).

4. Generic algebras of index 2, 4, 8, 16 and 32

Throughout this section, we fix a central simple algebra A over our base
field k of degree deg(A) = d + 1 and index ind(A) = pn for a prime p
(eventually we’ll assume p = 2). Set

X = SB(A) ⊂ Gr(d+ 1, A) (no.6)

to be the Severi–Brauer variety SB(A) associated with A, considered as the
subvariety of the Grassmannian Gr(d+1, A) of (d+1)-dimensional subspaces
of A whose R-points X(R), for any finite type k-algebra R, are exactly the
minimal right ideals of A⊗k R.

The primary purpose of this section is to illustrate how one can use the
results above to produce nontrivial torsion cycles in the Chow ring CH(X)
of the Severi–Brauer variety X. We do this below (Tables 1, 2, and 3;
Corollaries 4.16, 4.17, and 4.18) under some additional assumptions on the
algebra A and the variety X. Before doing this, however, we recall a number
of results that will facilitate our computations. From now on we always
identify the ring K(X) with the ring G(X) without mention of the canonical
map ϕX of (no.4).

4.1. Structure for K(X). We write ζX for the tautological sheaf on X.
By definition, this means that ζX is the pullback of the universal subsheaf
of Gr(d+ 1, A) under the embedding of (no.6). It follows that ζX is a right
module under the constant sheaf A so, for any i ≥ 0, it makes sense to define
sheaves

ζX(i) := ζ⊗i
X ⊗A⊗i Mi

for some fixed choices of simple left A⊗i-modules Mi. By convention we set
ζX(0) = OX .

The significance of the sheaves ζX(i), for the purposes of this section, is
due to the following theorem of Quillen [17, §8, Theorem 4.1] describing the
group K(X).

Theorem 4.1. The group homomorphism

deg(A)−1⊕
i=0

K(A⊗i)→ K(X)

sending the class of a left A⊗i-module M to the class of ζ⊗i
X ⊗A⊗i M is an

isomorphism.
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For any central simple algebra B the Grothendieck group K(B), of finitely
generated and projective left B-modules, is isomorphic with Z. A canonical
generator for K(B) is the class of a simple left B-module. Hence Theorem
4.1 shows that K(X) is free with basis the classes of the sheaves ζX(i) as i
ranges over the interval 0 ≤ i ≤ d.

It’s also possible to determine the multiplication of K(X) from Theorem
4.1. To do this we note that, since K(X) is torsion free, the flat pullback

π∗F/k : K(X)→ K(XF ),

along the projection πF/k : XF → X from any finite extension F/k, is
an injection. If the extension F/k splits A, then there is an isomorphism
between XF and the projective space Pd so that we can identify K(XF ) with
the ring

K(XF ) = Z[x]/(1− x)d+1 (no.7)

where x = [O(−1)], see [14, Theorem 4.5]. Finally, because the equality
rk(ζX(i)) = ind(A⊗i) holds for every i ≥ 0, it follows that K(X) can be
identified with the subring of K(XF ) generated by π∗F/k(ζX(i)) = ind(A⊗i)xi

as i ranges over the interval 0 ≤ i ≤ d.

4.2. The reduced Behavior rBeh(A). Recall from [8, Definition 3.8]
that the reduced behavior of A is the following sequence of p-adic valuations

rBeh(A) =
(
vp(ind(A⊗pi))

)m
i=0

where the index i is increasing from 0 to the p-adic valuation m = vp(exp(A))
of the exponent (or period) exp(A). The reduced behavior is a strictly
decreasing sequence of length m + 1. The first term of this sequence is
always n = vp(ind(A)) and the last term is always 0.

Conversely, for every strictly decreasing sequence of integers S starting
with n and ending with 0, there exists a central division algebra AS such
that ind(AS) = pn and rBeh(AS) = S. One can even choose AS so that
the gamma and topological filtrations of K(XS) coincide for the variety
XS = SB(AS), see [8, Theorem 3.7 and Lemma 3.10].

Lastly, note that the ring K(X) is completely determined by the reduced
behavior of A because of the description of K(X) given in Subsection 4.1.
In fact, the gamma filtration γ•(X) ⊂ K(X) is also completely determined
by the reduced behavior as a consequence of the description (no.7) and the
functorality of the gamma operations, [6, Corollary 1.2].

4.3. The level lev(A). Consider the following set of integers i ≥ 1,

SX = {i : vp(ind(A⊗pi)) < vp(ind(A⊗pi−1
))− 1}. (no.8)

The cardinality #SX of this set is an invariant of A called the level of A,
i.e. lev(A) = #SX . Colloquially, the integers of the set SX are exactly the
places where the reduced behavior rBeh(A) decreases by more than one from
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the previous spot. Our interest in the level of A is due to the next lemma
and its subsequent corollary.

Lemma 4.2. [11, Lemma A.6] The ring K(X) is generated by the lambda
operations of the classes of the sheaves ζX(pi) where i ∈ SX ∪ {0}.

Corollary 4.3 ([13, Lemma 5.4]). The ith piece of the gamma filtration
γi(X) ⊂ K(X) is generated additively by all products

γj1(x1 − rk(x1)) · · · γjr(xr − rk(xr))

with j1 + · · ·+ jr ≥ i and with x1, ..., xr classes of the sheaves ζX(pi) where
i ∈ SX ∪ {0}.

The level is also known to affect the torsion subgroups of CH(X).

Lemma 4.4. [8, Proposition 4.9 and Proposition 4.14] Assume p = 2 and
lev(A) ≤ 1. Then Tor1(Q/Z,CH2(X)) = 0 in either of the following cases:

(1) lev(A) = 0
(2) lev(A) = 1 and rBeh(A) = (n, ..., 2, 0).

Moreover, if one assumes γ3(X) = τ3(X) then in the remaining case
that lev(A) = 1 and rBeh(A) 6= (n, ..., 2, 0), one has Tor1(Q/Z,CH2(X)) =
Z/2rZ where

r =

{
min{i, n− ni − i} if ni > 0

min{i, n− i− 1} if ni = 0

for the uniquely determined i ∈ SX and for ni = v2(ind(A⊗2i)).

4.4. The groups CTi(1;X) and Qi(X). Let CT(1;X) be the subring
of CH(X) generated by the Chern classes of ζX(1). For any i ≥ 0, we write
CTi(1;X) for the subgroup of CT(1;X) contained in CHi(X); we write
Qi(X) for the cokernel of the inclusion CTi(1;X) ⊂ CHi(X). It follows from
[11, Proposition A.8] that CTi(1;X) is isomorphic with Z. Consequently,
for any i ≥ 0 there is an inclusion

Tor1(Q/Z,CHi(X)) ⊂ Qi(X). (no.9)

The group Q2(X) has been studied in depth, e.g. in [12, Proposition 3.7].
Combined with [8, Proposition 4.7 and Proposition 4.9] one gets the next:

Lemma 4.5. Suppose that γ3(X) = τ3(X) and Q2(X) = Z/pZ. Assume
additionally that either of the following two conditions hold:

(1) the prime p is odd and lev(A) > 0
(2) p = 2 and either lev(A) > 1 or, lev(A) = 1 and rBeh(A) 6= (n, ..., 2, 0).

Then there’s an equality Tor1(Q/Z,CH2(X)) = Z/pZ.

Proof. From [8, Corollary 2.15] there’s an isomorphism CH2(X) = γ2/3(X).
Under the assumption of either (1) or (2), Karpenko [8, Proposition 4.7 and

Proposition 4.9] shows that Tor1(Q/Z, γ2/3(X)) 6= 0. We conclude using the
inclusion of (no.9). �
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Corollary 4.6. Suppose that γ3(X) = τ3(X). Assume that p = 2 and
assume that rBeh(A) has the form of either (1), (2), or (3) below.

(1) rBeh(A) = (4, 2, 0)
(2) rBeh(A) = (5, 4, 2, 0)
(3) rBeh(A) = (5, 3, 2, 0).

Then Q2(X) = Tor1(Q/Z,CH2(X)) = Z/2Z.

Proof. In [12, Proposition 3.7], the group Q2(X) is described by generators
and some, but possibly not all, relations. When the reduced behavior of A
has the form of (1), (2), or (3) one can check that the relations described
in [12, Proposition 3.7] show that Q2(X) is a quotient of Z/2Z. But, in
each of these cases the group CH2(X) has nontrivial torsion because of our
assumption γ3(X) = τ3(X) and [8, Proposition 4.7 and Proposition 4.9]. It
follows from the inclusion (no.9) that Q2(X) = Z/2Z. Now one can apply
Lemma 4.5 to see that Tor1(Q/Z,CH2(X)) = Z/2Z. �

The group Q2(X) has also been determined in the following setting.

Lemma 4.7. Suppose that γ3(X) = τ3(X). Assume that p = 2 and
lev(A) ≤ 1. Then:

Q2(X) =


0 if lev(A) = 0

0 if lev(A) = 1 and rBeh(A) = (n, ..., 2, 0)

Z/2sZ if lev(A) = 1 and rBeh(A) 6= (n, ..., 2, 0).

In the last case, the value s equals

s =

{
n− ni − i if ni > 0

n− i− 1 if ni = 0

for the uniquely determined i ∈ SX and for ni = v2(ind(A⊗2i)).

Proof. In [11, Theorem A.15], the groups Q2(X̃) are computed, with the

values given above, for any Severi–Brauer variety X̃ with the property that
the gamma and topological filtrations of K(X̃) coincide. This gives us iso-
morphisms

CH2(X) = γ2/3(X) = γ2/3(X̃) = CH2(X̃) (no.10)

where, from left to right, the first is because γ3(X) = τ3(X) and [8, Corol-
lary 2.15], the second is because the gamma filtration depends only on the
reduced behavior [6, Corollary 1.2], and the last follows from [11, Theorem
A.15]. One can check that the isomorphism of (no.10) commutes with the

inclusions of both CT2(1;X) and CT2(1; X̃). The claim follows since both

Q2(X) and Q2(X̃) are defined as the cokernels of these inclusions. �
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4.5. A summary so far. Throughout the remainder of this section our
goal is to produce nontrivial torsion cycles in the Chow ring CH(X) under
the assumption that A is a generic division algebra (in the sense of [8,
Definition 3.12]) with ind(A) = 2n for some n ≤ 5. To be precise, we recall
that A is generic if, for every i ≥ 0, the inclusion γi(X) ⊂ τ i(X) of the
gamma filtration in the topological filtration, is an equality.

One consequence of our computations is a complete description of the
torsion subgroup of CH2(X) for any generic algebra A of index ind(A) = 2n

for any n ≤ 5. This result still has some interest when A is not necessarily
generic because the torsion subgroups that we describe below are maximal
in the sense that they surject onto the torsion subgroup of CH2(X) for
any algebra A of the same reduced behavior [8, Theorem 3.13]. Now we
summarize this result which is only completed in Subsection 4.6 below.

If ind(A) = 1 or ind(A) = 2, then the torsion subgroup of CH2(X) is well-
known to be trivial. If ind(A) = 4, then there two cases: either lev(A) = 0
or rBeh(A) = (2, 0). In both cases one has CH2(X) = Z by Lemma 4.4 and
Q2(X) = 0 by Lemma 4.7.

For generic algebras A with ind(A) = 23, all possible values of torsion in
CH2(X) are given in Table 1 below. Table 1 can be filled out with Lemma
4.4.

For generic algebras A with ind(A) = 24, all possible torsion subgroups of
CH2(X) are given in Table 2 below. It turns out that only Z/2Z can appear
as a torsion subgroup in this case. Table 2 can be filled out with the help
of Lemma 4.4, Lemma 4.7, and Corollary 4.6.

Lastly, for generic algebras A with ind(A) = 25, all possible torsion sub-
groups of CH2(X) are given in Table 3 below; the group depends on the
reduced behavior of A. Rows 1-10 and 13-16 of Table 3 can be filled out
using Lemma 4.4, Lemma 4.7, and Corollary 4.6. For rows 11 and 12, we
note that [12, Proposition 3.7] shows Q2(X) is a quotient of Z/2Z⊕ Z/2Z.
In Subsection 4.6 we prove Corollary 4.15 saying that, for these two cases,
we have

Tor1(Q/Z,CH2(X)) = Z/2Z⊕ Z/2Z.
Together with the inclusion (no.9), this completes the table.

4.6. Working with coefficients in F2. We write F2 = Z/2Z for the field
of two elements. We assume throughout that A is a central simple algebra of
index ind(A) = 2n with n ≥ 1. We continue to use the notation X = SB(A)
for the Severi–Brauer variety associated to A.

Because of Theorem 4.1, we have a canonical basis for the F2-vector space
K(X) ⊗ F2 consisting of those elements νi that are the classes (mod 2) of
the sheaves ζX(i) respectively,

K(X)⊗ F2 =

deg(A)−1⊕
i=0

F2 · νi. (no.11)



A UNIVERSAL COEFFICIENT THEOREM & TORSION IN CHOW GROUPS 1169

From now on F/k will be a finite extension splitting A and, under the
identification (no.7), we will work in K(XF ) to deduce relations in the space
K(X)⊗ F2.

Lemma 4.8. Let m = v2(exp(A)). Then inside of K(X)⊗ F2 we have the
relations

νiνj =

{
νi+j if 2m | i or 2m | j
0 otherwise.

for any pair of integers i, j ≥ 0.

Proof. Since ν0 = 1, it suffices to assume i, j ≥ 1. Now, in the ring K(X) ⊂
K(XF ) multiplication is defined so that

ind(A⊗i)xi · ind(A⊗j)xj =
ind(A⊗j)ind(A⊗i)

ind(A⊗i+j)
ind(A⊗i+j)xi+j

= α · ind(A⊗i+j)xi+j .

Indeed, we’ll show that α is an integer.
To see this, we use the following two facts (see [5, Chapter 4 Section 5]):

(1) for any integer t ≥ 1, we have ind(A⊗t) = ind(A⊗2v2(t));
(2) for any pair of integers r ≥ s ≥ 0 one has the divisibility relation

ind(A⊗2r) | ind(A⊗2s).

Because of (1), it suffices to show the divisibility

ind(A⊗2v2(i+j)
) | ind(A⊗2v2(j))ind(A⊗2v2(i)).

But, by properties of valuations, we have v2(i + j) ≥ max{v2(i), v2(j)} so
that (2) applies.

Finally, we show that α ≡ 1 (mod 2) only in the suggested cases. There
are only two cases: either m ≤ v2(i) or m ≤ v2(j); or v2(i) ≤ v2(j) < m. In
the former case, we get (assuming that m ≤ v2(i) without loss of generality)
that α ≡ 1 (mod 2) because

ind(A⊗j) = ind(A⊗i+j)

whenever 2m divides i. In the latter case, we use the inequality v2(i+ j) ≥
max{v2(i), v2(j)} to find the divisibility

ind(A⊗i+j) | ind(A⊗i).

Combined with the fact 2 | ind(A⊗j) it follows α ≡ 0 (mod 2). �

Now we work towards describing the F2-gamma filtration (see Definition
3.6) of K(X) ⊗ F2. In this direction, we first prove Lemma 4.10 giving an
explicit description for the images of the gamma operations of the elements

ζX(2i) − ind(A⊗2i) for any i ≥ 1. Together with Lemma 4.9, this provides
us with an explicit description for the generators of the F2-gamma filtration
in any given degree. Afterwards, we work by hand to determine relations
between the generators that we described.
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Lemma 4.9. Let SX be the set defined as in (no.8). Then the ith piece of
the F2-gamma filtration γiF2

(X) ⊂ K(X)⊗ F2 is generated by all products

γj1F2
(x1 − rk(x1)) · · · γjrF2

(xr − rk(xr)) (no.12)

with j1 + · · ·+ jr ≥ i and with x1, ..., xr classes of the sheaves ζX(2i) where
i ∈ SX ∪ {0}.

Proof. By Corollary 4.3, the similarly defined monomials of K(X) generate
γi(X) ⊂ K(X). But, the images (in K(X)⊗F2) of these monomials are the
products of the images of the individual factors, hence the claim. �

For the following lemma we define S2(r) = a0 + · · · + as, for any integer
r ≥ 1, to be the sum of the coefficients appearing in a base-2 expansion
r = a0 + a12 + · · ·+ as2

s, i.e. in such an expression with 0 ≤ a0, ..., as ≤ 1.

Lemma 4.10. Fix an integer i ≥ 0 and set ni = v2(ind(A⊗2i)). Then, for
any integer j with 1 ≤ j ≤ 2ni and for each integer k with 0 ≤ k ≤ j, there
is an integer αk

i,j so that

γjF2
(ζX(2i)− 2ni) =

∑
0≤k≤j

αk
i,jν2ik

when the αk
i,j are considered in F2 = Z/2Z. Moreover, the integers αk

i,j

satisfy the congruences

αk
i,j ≡

{
0 if ni − v2(j)− S2(j) + S2(k) + S2(j − k)− nv2(k)+i > 0

1 if ni − v2(j)− S2(j) + S2(k) + S2(j − k)− nv2(k)+i = 0

in F2 = Z/2Z.

Proof. We claim that it suffices to consider only the case i = 0. To see

this, choose i > 0 and set Y = SB(A⊗2i) to be the Severi–Brauer variety

associated with the tensor power A⊗2i . Then X embeds into Y via the
composition

f : X → X × · · · ×X = X×2i → Y

of the diagonal embedding of X into the direct product X×2i of 2i copies of

X, and the twisted Segre embedding of X×2i into Y . The pullback f∗ with
coefficients in F2,

f∗ : K(Y )⊗ F2 → K(X)⊗ F2

sends the class of ζY (k) to f∗ζY (k) = ζX(2ik) and commutes with the
gamma operations. Assume that the lemma holds when i = 0, i.e. assume
that there are integers, say βk0,j , with

γjF2
(ζY (1)− 2ni) =

∑
0≤k≤j

βk0,jνk

and satisfying the given congruences. Then, from the equalities
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f∗γjF2
(ζY (1)− 2ni) = f∗

 ∑
0≤k≤j

βk0,jνk


=
∑

0≤k≤j

βk0,jν2ik = γjF2
(f∗ζY (1)− 2ni) = γjF2

(ζX(2i)− 2ni)

one finds that the claim holds for this i > 0 as well by taking αk
i,j = βk0,j .

In the case i = 0, we compute explicitly the image of γj(ζX(1) − 2n)
in K(X) ⊗ F2. Fix a finite field extension F/k splitting A and identify
K(X) ⊂ K(XF ) as in (no.7). Then

γt(ζX(1)− 2n) = γt(x− 1)2
n

= (1 + (x− 1)t)2
n

and it follows

γj(ζX(1)− 2n) =

(
2n

j

)
(x− 1)j .

Expanding this again, we get

γj(ζX(1)− 2n) =
∑

0≤k≤j

(−1)j−k

(
2n

j

)(
j

k

)
xk.

Setting

βk0,j =

(
2n

j

)(
j
k

)
ind(A⊗2v2(k))

and computing the 2-adic valuation (using Kummer’s theorem) of βk0,j gives
the result, in light of the previous paragraph. �

Remark 4.11. In the case that A is a division algebra of index ind(A) = 25

and of reduced behavior either rBeh(A) = (5, 3, 1, 0) or rBeh(A) = (5, 3, 0),
the values αk

i,j obtained from Lemma 4.10 are compiled in Table 4. To get
them, one can either use the formula provided in the lemma statement or
expand the polynomial (x−1)j modulo powers of 2 (e.g. to get the entry for
γ3F2

(ζX(1)− 32) one can note that (x − 1)3 ≡ x3 + x2 + x − 1 mod 2; now

v2(
(
32
3

)
) = 5 so that one must have γ3F2

(ζX(1)− 32) = ν3 + 4ν2 + ν1 + 32 =
ν3 + ν1).

Theorem 4.12. Suppose A is a division algebra with ind(A) = 25 and
rBeh(A) = (5, 3, 1, 0). For each i ≥ 0, set

xi = γiF2
(ζX(1)− 32), yi = γiF2

(ζX(2)− 8), and zi = γiF2
(ζX(4)− 2).

Then the associated graded space for the F2-gamma filtration of K(X)⊗ F2

is determined by the information in Table 6 below.

Proof. We proceed by considering, for each degree 0 ≤ i ≤ 31, all of the
possible monomials described in Lemma 4.9. Then we use the relations
given in (no.13) below to eliminate all but the suggested generators from
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the associated graded space. The proof will be complete once we eliminate
enough generators to prove that there’s an inequality∑

i≥0

dimF2

(
γ
i/i+1
F2

(X)
)
≤ 32

because of Remark 3.8.
Note that by the definition of xi, yi, zi we have the trivial relations: x0 =

y0 = z0 = ν0 = 1; xi = 0 for i ≥ 32; yi = 0 for i > 8; zi = 0 for i > 2.
Now the following relations can be found using Lemma 4.8 and the entries
of Table 4. We assume i, j ≥ 1:

x2i+1 = x2i+2 for i < 15 y2i+1 = y2i+2 for i < 3 y28 = x31

xiyj =


0 j < 8

xi+16 j = 8, i ≤ 14

0 j = 8, i > 16

xizj =


0 j = 1

xi+8 j = 2, i ≤ 23

0 j = 2, i > 24

xixj = 0

yiyj =

{
0 i, j < 8

yiy8 i ≤ 8, j = 8
yizj =


0 i < 8, j = 1

z1z
2
2 i = 8, j = 1

yi+4 i ≤ 3, j = 2

y8z2 i = 8, j = 2

z21 = 0

z22 = y8 + y7 y6z2 = y8y1
(no.13)

Degree 0. The only monomial of (no.12) in degree 0 is ν0 = x0 = y0 = z0 = 1.

Degree 1. There are three monomials as in (no.12) of degree 1: x1, y1, and
z1. Looking at Table 4, we have x1 = x2 and y1 = y2 so that x1 = y1 = 0
modulo γ2F2

(X).

Degree 2. Generators of degree 2 are x21 = 0, y21 = 0, z21 = 0, x2, y2, and z2.
There are no relations on the x2, y2 and z2 monomials.

Degree 3. Now a monomial generator like those in (no.12) of degree l ≥ 3
will have the form

xai y
b
jy

c0
8 z

c1
1 z

c2
2 (no.14)

for some 0 ≤ i < 32 with 0 ≤ j < 8 and for some integers a, b, c0, c1, c2 ≥ 0
satisfying

0 ≤ a, b, c0, c1 ≤ 1 and 0 ≤ c2 ≤ 3

with ia + jb + 8c0 + c1 + 2c2 = l. Indeed, there are relations xrxs = 0 for
all r, s ≥ 1, relations yrys = 0 whenever 1 ≤ r, s < 8, a relation z21 = 0,
and y28 = z42 = x31 + x32 = x31. Note that these are some, but not all
possible, restrictions on our monomial generators (e.g. no two of a, b, c1 can
be simultaneously positive).

This leaves as possible degree 3 generators: x3, x1y2, x1z2, y3, y1z2, z1z2.
But, x3 = x4 and y3 = y4 so that both terms vanish modulo γ4F2

(X). We
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also have x1y2 = 0, x1z2 = x9, y1z2 = y5 so that these terms similarly vanish
modulo γ4F2

(X). This leaves just z1z2 as a generator for this degree.

Degree 4. Barring the restrictions given in the previous case, possible degree
4 monomials are: x4, x2z2, y4, y2z2, z

2
2 . But x2z2 = x10, y2z2 = y6, and

z22 = y8 + y7 so that these monomials must vanish modulo γ5F2
(X). This

leaves only x4 and y4 in this degree. We note that we now exclude z22 from
ever being a factor of a monomial generator, i.e. we check only 0 ≤ c2 ≤ 1
in (no.14).

Degree 5. Possible monomials of degree 5 are now: x5, x3z2, y5, y3z2. Since
x5 = x6, y5 = y6, x3 = x4, and y3 = y4 all of these generators vanish in the
associated graded space.

Degree 6. Possible monomials of degree 6 are: x6, x4z2, y6, y4z2. But
x4z2 = x12 and y4z2 = y3z2 = y7 both vanish modulo γ7F2

(X). This leaves
x6 and y6.

Degree 7. Possible monomials of degree 7 are: x7, x5z2, y7, y5z2. Here
x7 = x8, x5 = x6, and y5 = y6. Only y7 remains.

Degree 8. Possible monomials of degree 8 are: x8, x6z2, y8, y6z2. Here
x6z2 = x14 and y6z2 = y8y1 so that these monomials can be eliminated.
This leaves x8 and y8.

Degree 9. Possible monomials of degree 9 are: x9, x1y8, x7z2, y1y8, y8z1,
y7z2. But x1 = x2, y1 = y2, x7 = x8, and x9 = x10. Modding out by
γ10F2

(X) leaves only y8z1 and y7z2. But, we have y7 = y3z2 = y4z2 and

y7z2 = y4z
2
2 = y4(y7 + y8) = y4y8 so that only y8z1 remains.

Degree 10. Possible monomials of degree 10 are: x10, x2y8, y2y8, y8z2. Only
x2y8 = x18 can be eliminated so that x10, y2y8, and y8z2 remain as genera-
tors.

Degree 11. Possible monomials of degree 11 are: x11, x3y8, x1y8z2, y3y8,
y1y8z2, y8z1z2. Here the first five can be eliminated since x11 = x12, x3 = x4,
x1 = x2, y3 = y4, and y1 = y2. This leaves y8z1z2.

Degree 12. Possible monomials of degree 12 are: x12, x4y8, x2y8z2, y4y8,
y2y8z2. Since we have x4y8 = x20, x2y8 = x18, and y2z2 = y6 the only
monomials that survive are x12 and y4y8.
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Degree 13. Possible monomials of degree 13 are: x13, x5y8, x3y8z2, y5y8,
y3y8z2. There are no monomials that survive.

Degree 14. Possible monomials of degree 14 are: x14, x6y8, x4y8z2, y6y8,
y4y8z2. But we have x6y8 = x22, x4z2 = x12 and y4z2 = y3z2 = y7. This
leaves x14 and y6y8.

Degree 15. Possible monomials of degree 15 are: x15, x7y8, x5y8z2, y7y8,
y5y8z2. Here most of the odd terms are problematic. Only y7y8 survives.

Degree 16. Possible monomials of degree 16 are: x16, x8y8, x6y8z2, y6y8z2.
Note x6z2 = x14, x8y8 = x24 and y6z2 = y8y1 so that x16 is the only mono-
mial left.

Degree 17. Possible monomials of degree 17 are: x17, x9y8, x7y8z2, y7y8z2.
Only y7y8z2 can remain but, y7z2 = y4y8 as we found in degree 9 so that all
monomials are eliminated.

Degree 18. Possible monomials of degree 18 are: x18, x10y8, x8y8z2. Here
only x18 survives.

Degree 19. Possible monomials of degree 19 are: x19, x11y8, x9y8z2. This
emulates the general procedure in all further degrees. There simply aren’t
enough large degree monomials to produce higher terms. In odd degrees
(except for degree 31), all terms will vanish; in even degrees 2i, there will
be only one generator given by an x2i. �

Theorem 4.13. Suppose A is a division algebra with ind(A) = 25 and
rBeh(A) = (5, 3, 0). For each i ≥ 0, set

xi = γiF2
(ζX(1)− 32), yi = γiF2

(ζX(2)− 8), and zi = γiF2
(ζX(4)− 1).

Then the associated graded space for the F2-gamma filtration of K(X)⊗ F2

is determined by the information in Table 7 below.

Proof. The same method of proof that works for Theorem 4.12 can be done
here. By the definition of xi, yi, zi we have the trivial relations: x0 = y0 =
z0 = ν0 = 1; xi = 0 for i ≥ 32; yi = 0 for i > 8; zi = 0 for i > 1. Now one
can use the relations

x2i+1 = x2i+2 for i < 15 y2i+1 = y2i+2 for i < 3 y28 = z81 = x31

xiyj =


0 j < 8

xi+16 j = 8, i ≤ 14

0 j = 8, i > 16

xiz1 =

{
xi+4 i ≤ 27

0 i > 28
xixj = 0

yiyj =

{
0 i, j < 8

yiy8 i ≤ 8, j = 8
yiz1 =

{
yi+2 i ≤ 5

y1y8 i = 7
z41 = y7 + y8

(no.15)
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for i, j ≥ 1 that are found using Lemma 4.8 and the entries of Table 4. �

Theorem 4.14. Suppose A is a division algebra with ind(A) = 24 and
rBeh(A) = (4, 2, 0). For each i ≥ 0, set

xi = γiF2
(ζX(1)− 16), yi = γiF2

(ζX(2)− 4), and zi = γiF2
(ζX(4)− 1).

Then the associated graded space for the F2-gamma filtration of K(X)⊗ F2

is determined by the information in Table 5 below.

Proof. The proof follows the same lines as the proofs for Theorems 4.12
and 4.13. �

Corollary 4.15. Let A be a central simple algebra with ind(A) = 25. Let
X = SB(A) be the associated Severi–Brauer variety. Assume either of the
following are true:

(1) rBeh(A) = (5, 3, 1, 0),
(2) rBeh(A) = (5, 3, 0).

Then there is a surjection

Z/2Z⊕ Z/2Z � Tor1(Q/Z,CH2(X)).

Moreover, this surjection is an isomorphism if and only if γ3(X) = τ3(X).

Proof. To construct the given surjection, we let Ã be a generic algebra with
ind(Ã) = 25 and rBeh(Ã) = rBeh(A). Set X̃ = SB(Ã). From [8, Theorem
3.13], there is a surjection

CH2(X̃) � CH2(X)

which is an isomorphism if and only if γ3(X) = τ3(X). Further, the kernel

of this surjection is a torsion subgroup of CH2(X̃) so, applying the functor
Q/Z⊗− we get a surjection

Tor1(Q/Z,CH2(X̃)) � Tor1(Q/Z,CH2(X)).

It suffices then to show Tor1(Q/Z,CH2(X̃)) = Z/2Z⊕ Z/2Z.

Since Ã is generic, the topological and gamma filtration of K(X̃) coincide
(by definition). Hence the F2-gamma and the descending F2-topological fil-

tration of K(X)⊗F2 coincide. Since X̃ satisfies the conditions of Proposition
3.3, the composition

CH2(X̃)⊗ F2
∼−→ τ2/3(X̃)⊗ F2 � τ

2/3
F2

(X̃),

of the canonical isomorphism [3, Example 15.3.6] and the canonical surjec-
tion of (no.3) when S = F2, is an isomorphism. Theorem 4.12 and Theorem
4.13 show that

τ
2/3
F2

(X̃) = Z/2Z⊕3.

As CH2(X̃) has rank one, and its torsion subgroup is a finitely generated
2-primary group we find

Tor1(Q/Z,CH2(X̃)) = Z/2rZ⊕ Z/2sZ
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for some integers r, s ≥ 1. But, it’s possible to determine from [12, Propo-
sition 3.7] that Q2(X) is a quotient of Z/2Z ⊕ Z/2Z so that r = s = 1 by
(no.9). �

Lastly, we end with some corollaries that follow immediately from the
data of the second columns of Tables 6, 7, 5 and from the existence of the
canonical surjections

CHi(X)⊗ F2 � τ i/i+1(X)⊗ F2 � τ
i/i+1
F2

(X)

coming from the Grothendieck-Riemann-Roch without denominators ([3,
Example 15.1.5]) and from (no.3) with S = F2.

Corollary 4.16. Let A be a central simple algebra with ind(A) = 25 and
reduced behavior rBeh(A) = (5, 3, 1, 0). Let X = SB(A) be the associated
Severi–Brauer variety. Finally, assume that A is generic.

Then the group Tor1(Q/Z,CHi(X)) is:

(1) nonzero if i = 2, 4, 6, 8, 10, 12, 14
(2) noncyclic if i = 2, 10. �

Corollary 4.17. Let A be a central simple algebra with index ind(A) = 25

and reduced behavior rBeh(A) = (5, 3, 0). Let X = SB(A) be the associated
Severi–Brauer variety. Finally, assume that A is generic.

Then the group Tor1(Q/Z,CHi(X)) is:

(1) nonzero if i = 2, 4, 6, 8, 10, 12, 14
(2) noncyclic if i = 2, 10. �

Corollary 4.18. Let A be a central simple algebra with index ind(A) = 24

and reduced behavior rBeh(A) = (4, 2, 0). Let X = SB(A) be the asso-
ciated Severi–Brauer variety. Finally, assume that A is generic. Then
Tor1(Q/Z,CHi(X)) 6= 0 if i = 2, 4, 6. �
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Table 1. For generic algebras of index 8

rBeh(A) lev(A) Q2(X) Tor1(Q/Z,CH2(X))

1 (3, 2, 1, 0) 0 0 0

2 (3, 2, 0) 1 0 0

3 (3, 1, 0) 1 Z/2Z Z/2Z
4 (3, 0) 1 Z/2Z Z/2Z

Table 2. For generic algebras of index 16

rBeh(A) lev(A) Q2(X) Tor1(Q/Z,CH2(X))

1 (4, 3, 2, 1, 0) 0 0 0
2 (4, 3, 2, 0) 1 0 0
3 (4, 3, 1, 0) 1 Z/2Z Z/2Z
4 (4, 3, 0) 1 Z/2Z Z/2Z
5 (4, 2, 1, 0) 1 Z/2Z Z/2Z
6 (4, 2, 0) 2 Z/2Z Z/2Z
7 (4, 1, 0) 1 Z/4Z Z/2Z
8 (4, 0) 1 Z/4Z Z/2Z

Table 3. For generic algebras of index 32

rBeh(A) lev(A) Q2(X) Tor1(Q/Z,CH2(X))

1 (5, 4, 3, 2, 1, 0) 0 0 0

2 (5, 4, 3, 2, 0) 1 0 0

3 (5, 4, 3, 1, 0) 1 Z/2Z Z/2Z
4 (5, 4, 3, 0) 1 Z/2Z Z/2Z
5 (5, 4, 2, 1, 0) 1 Z/2Z Z/2Z
6 (5, 4, 2, 0) 2 Z/2Z Z/2Z
7 (5, 4, 1, 0) 1 Z/4Z Z/4Z
8 (5, 4, 0) 1 Z/4Z Z/4Z
9 (5, 3, 2, 1, 0) 1 Z/2Z Z/2Z
10 (5, 3, 2, 0) 2 Z/2Z Z/2Z
11 (5, 3, 1, 0) 2 Z/2Z⊕ Z/2Z Z/2Z⊕ Z/2Z
12 (5, 3, 0) 2 Z/2Z⊕ Z/2Z Z/2Z⊕ Z/2Z
13 (5, 2, 1, 0) 1 Z/4Z Z/2Z
14 (5, 2, 0) 2 Z/2Z Z/2Z
15 (5, 1, 0) 1 Z/8Z Z/2Z
16 (5, 0) 1 Z/8Z Z/2Z
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Table 4. γjF2
(−)’s if rBeh(A) = (5, 3, 1, 0) or rBeh(A) = (5, 3, 0)

j ζX(1)− 32 ζX(2)− 8 ζX(4)− 2 ζX(4)− 1

1 ν1 ν2 ν4 ν4 + ν0
2 ν1 ν2 ν8 + ν4 + ν0 -
3 ν3 + ν1 ν6 + ν2 -
4 ν3 + ν1 ν6 + ν2
5 ν5 + ν1 ν10 + ν2
6 ν5 + ν1 ν10 + ν2
7 ν7 + ν5 + ν3 + ν1 ν14 + ν10

+ν6 + ν2
8 ν7 + ν5 + ν3 + ν1 ν16 + ν14 + ν10

+ν6 + ν2 + ν0
9 ν9 + ν1 -
10 ν9 + ν1
11 ν11 + ν9 + ν3 + ν1
12 ν11 + ν9 + ν3 + ν1
13 ν13 + ν9 + ν5 + ν1
14 ν13 + ν9 + ν5 + ν1
15 ν15 + ν13 + ν11 + ν9

+ν7 + ν5 + ν3 + ν1
16 ν15 + ν13 + ν11 + ν9

+ν7 + ν5 + ν3 + ν1
17 ν17 + ν1
18 ν17 + ν1
19 ν19 + ν17 + ν3 + ν1
20 ν19 + ν17 + ν3 + ν1
21 ν21 + ν17 + ν5 + ν1
22 ν21 + ν17 + ν5 + ν1
23 ν23 + ν21 + ν19 + ν17

+ν7 + ν5 + ν3 + ν1
24 ν23 + ν21 + ν19 + ν17

+ν7 + ν5 + ν3 + ν1
25 ν25 + ν17 + ν9 + ν1
26 ν25 + ν17 + ν9 + ν1
27 ν27 + ν25 + ν19 + ν17

+ν11 + ν9 + ν3 + ν1
28 ν27 + ν25 + ν19 + ν17

+ν11 + ν9 + ν3 + ν1
29 ν29 + ν25 + ν21 + ν17

+ν13 + ν9 + ν5 + ν1
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30 ν29 + ν25 + ν21 + ν17
+ν13 + ν9 + ν5 + ν1

31 ν31 + ν29 + ν27 + ν25
+ν23 + ν21 + ν19 + ν17
+ν15 + ν13 + ν11 + ν9

+ν7 + ν5 + ν3 + ν1
32 ν32 + ν31 + ν29 + ν27

+ν25 + ν23 + ν21 + ν19
+ν17 + ν15 + ν13 + ν11

+ν9 + ν7 + ν5 + ν3
+ν1 + ν0

Table 5. rBeh(A) = (4, 2, 0)

i dimF2

(
γ
i/i+1
F2

(X)
)

generators
∑

j≤i dimF2

(
γ
j/j+1
F2

(X)
)

0 1 ν0 1

1 1 z1 2

2 2 x2, y2 4

3 1 y3 5

4 2 x4, y4 7

5 1 y4z1 8

6 2 x6, y2y4 10

7 1 y3y4 11

8 1 x8 12

9 0 - 12

10 1 x10 13

11 0 - 13

12 1 x12 14

13 0 - 14

14 1 x14 15

15 1 x15 16
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Table 6. rBeh(A) = (5, 3, 1, 0)

i dimF2

(
γ
i/i+1
F2

(X)
)

generators
∑

j≤i dimF2

(
γ
j/j+1
F2

(X)
)

0 1 ν0 1

1 1 z1 2

2 3 x2, y2, z2 5

3 1 z1z2 6

4 2 x4, y4 8

5 0 - 8

6 2 x6, y6 10

7 1 y7 11

8 2 x8, y8 13

9 1 y8z1 14

10 3 x10, y2y8, y8z2 17

11 1 y8z1z2 18

12 2 x12, y4y8 20

13 0 - 20

14 2 x14, y6y8 22

15 1 y7y8 23

16 1 x16 24

17 0 - 24

18 1 x18 25

19 0 - 25

20 1 x20 26

21 0 - 26

22 1 x22 27

23 0 - 27

24 1 x24 28

25 0 - 28

26 1 x26 29

27 0 - 29

28 1 x28 30

29 0 - 30

30 1 x30 31

31 1 x31 32
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Table 7. rBeh(A) = (5, 3, 0)

i dimF2

(
γ
i/i+1
F2

(X)
)

generators
∑

j≤i dimF2

(
γ
j/j+1
F2

(X)
)

0 1 ν0 1

1 1 z1 2

2 3 x2, y2, z
2
1 5

3 1 z31 6

4 2 x4, y4 8

5 0 - 8

6 2 x6, y6 10

7 1 y7 11

8 2 x8, y8 13

9 1 y8z1 14

10 3 x10, y2y8, y8z
2
1 17

11 1 y8z
3
1 18

12 2 x12, y4y8 20

13 0 - 20

14 2 x14, y6y8 22

15 1 y7y8 23

16 1 x16 24

17 0 - 24

18 1 x18 25

19 0 - 25

20 1 x20 26

21 0 - 26

22 1 x22 27

23 0 - 27

24 1 x24 28

25 0 - 28

26 1 x26 29

27 0 - 29

28 1 x28 30

29 0 - 30

30 1 x30 31

31 1 x31 32
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