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Embedding problems with bounded
ramification over function fields

of positive characteristic

Moshe Jarden and Nantsoina Cynthia
Ramiharimanana

Abstract. Let K0 be an algebraic function field of one variable over a
Hilbertian field F of positive characteristic p. Let K be a finite Galois
extension of K0. We prove that every finite embedding problem 1 →
H → G → Gal(K/K0) → 1 whose kernel H is a p-group is properly
solvable.

Moreover, the solution can be chosen to locally coincide with finitely
many, given in advance, weak local solutions. Finally, and this is the
main point of this work, the number of prime divisors of K0/F that
ramify in the solution field is bounded by the number of prime divisors
of K0 that ramify in K plus the length of the maximal G-invariant
sequence of subgroups of H.
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Introduction

Solving finite embedding problems with solvable kernels and with bounded
ramification over global fields is discussed in [JaR18] and [JaR19]. Here is
the combination of the main results of those two works.

Theorem A: Let K/K0 be a finite Galois extension of global fields of char-
acteristic p, set Γ = Gal(K/K0), and consider a finite embedding problem

(∗) Gal(K0)

ρ

��
1 // H // G

α // Γ // 1,

with solvable kernel H. Suppose that
(a1) gcd(|H|, |µ(K)|) = 1, and

(a2) for each p ∈ P(K0) there exists a homomorphism ψp: Gal(K̂0,p) → G
such that α ◦ ψp = ρ|Gal(K̂0,p) (we call ψp a weak local solution).

Let T be a finite subset of P(K0) that contains Ram(K/K0) and for each
p ∈ T let ϕp be a weak local solution.

Then, there exists an epimorphism ψ: Gal(K0)→ G such that α ◦ ψ = ρ
(we call ψ a proper solution of embedding problem (∗)), and there
exists a set R ⊆ P(K0)rT with |R| = Ωp(H,G) that satisfies the following
conditions:
(b1) For each p ∈ T there exists a ∈ H such that ψ(σ) = a−1ϕp(σ)a

for all σ ∈ Gal(K̂0,p) (we say that ψp := ψ|Gal(K̂0,p) and ϕp are H-

equivalent).
(b2) The fixed field N in K0,sep of Ker(ψ) satisfies Ram(N/K0) ⊆ T ∪ R,

hence |Ram(N/K0)| ≤ |T |+ Ωp(H,G). We call N a solution field of
embedding problem (∗).

In this theorem we fix a separable algebraic closure K0,sep of K0 and
let Gal(K0) = Gal(K0,sep/K0) be the absolute Galois group of K0. We
denote the set of primes of K0 by P(K0) and for each p ∈ P(K0) we choose

a completion K̂0,p of K0 at p. Then, Ram(K/K0) denotes the set of all
p ∈ P(K0) that ramify in K. Also, µ(K) is the group of roots of unity in K.
Finally, Ωp(H,G) is a function that depends on p and the structure of the
group H as a normal subgroup of G. In particular, if p = 0, then Ωp(H,G)
is just the number of prime divisors of |H|, counted with multiplicity.

Induction on the structure of G acting on H reduces the proof of Theorem
A to the case where H is a simple multiplicative G-module Crl , where l is a
prime number and Cl is the cyclic group of order l.

Then, we use basic tools of algebraic number theory like the strong ap-
proximation theorem, the Chebotarev density theorem, and the interplay
between global and local fields. In the case where l 6= p, we follow Jürgen
Neukirch’s basic work [Neu79], generalized in [NSW15], and apply class field
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theory, including Artin’s reciprocity theorem and duality theorems for co-
homology groups. In the case where l = p, we replace class field theory by
Hilbert irreducibility theorem for K and Artin-Schreier extensions.

Note that Neukirch’s result deals with solving finite embedding problems
over number fields with solvable kernels but gives no information about the
ramification of the solution field. Our proofs in [JaR18] and [JaR19] add
the missing information by using ideas included in [GeJ98].

The present work deals with an algebraic function field K0 of one variable
over a Hilbertian field F of positive characteristic p. A prime divisor of K0

over F can be considered as an equivalence class of valuations of K0 which
are trivial over F . We denote the set of those prime divisors by P(K0/F ).

For each p ∈ P(K0/F ) let ordp be the normalized discrete valuation of

K0 attached to p with ordp(a) = 0 for each a ∈ F×. The completion K̂0,p

of K0 with respect to ordp is a field of power series in one variable over the

residue field K̄0,p of K0 at p. We fix an embedding of K0,sep in K̂0,p,sep and

use Krasner’s lemma to embed Gal(K̂0,p) into Gal(K0).
In the notation of Theorem A, assume that H is a finite p-group. Since

there is no root of unity of order p, Condition (a1) is trivially satisfied. Also,
since char(K0) = p, embedding problem (∗) has a weak p-local solution for
each p ∈ P(K0/F ) (Remark 6.1), so we don’t have to assume Condition (a2)
in this case.

This brings us to our main result, which is restricted to kernels that are
finite p-groups but is, in this case, much stronger than Theorem A:

Theorem B: Let K0 be a function field of one variable over a Hilbertian
field F of positive characteristic p and let K be a finite Galois extension of
K0. Consider the finite embedding problem (∗),

Gal(K0)

ρ

��
1 // H // G

α // Γ // 1,

where the kernel H is a p-group of order ps. Let T be a finite subset of
P(K0/F ) that contains Ram(K/K0). For each p ∈ T let ϕp: Gal(K̂0,p)→ G
be a homomorphism such that α ◦ ϕp = ρ|Gal(K̂0,p).

Then, there exists an epimorphism ψ: Gal(K0)→ G such that α ◦ ψ = ρ
and there exists a set R ⊆ P(K0/F )rT with |R| ≤ s such that:

(a) For each p ∈ T the homomorphism ψ|Gal(K̂0,p) is H-equivalent to ϕp.
(b) The fixed field N of Ker(ψ) in K0,sep satisfies Ram(N/K0) ⊆ T ∪R,

so |Ram(N/K0)| ≤ |T |+ |R| ≤ |T |+ s.

The proof of Theorem B follows that part of the proof of Theorem A in
[JaR19] in which H is a simple Gal(K0)-p-module. In particular, we use the
Hilbertianity of K0 to construct linearly disjoint Artin-Schreier extensions
of K0.
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Another difference in the proof from that of Theorem A arises from the
fact that the Galois group Gal(K̂0,p,ur/K̂0,p) of the maximal unramified ex-

tension of K̂0,p for p ∈ P(K0/F ) is not isomorphic to Ẑ anymore, as is the
case where K0 is a global field. But it is isomorphic to Gal(K̄0,p) and K̄0,p

is a Hilbertian field (because F is). Thus, we are able to apply a result of
Ikeda plus a small trick to properly solve the corresponding p-local embed-
ding problem (see proof of Lemma 6.3).

Another difficulty arises from the fact that a crucial local-global surjec-
tivity theorem for the first cohomology groups (Proposition 4.7) is proved in
[NSW15] only for global fields of positive characteristic p, which is not our
case. So, we took extra care to prove that result and at points to enhance
the proofs of [NSW15], whenever we felt they were too short.

Acknowledgment: The authors are indebted to Aharon Razon for care-
fully reading drafts of this work and for his useful comments. Special thanks
go to the anonymous referee who suggested an essential simplification of an
earlier version of the proof of Proposition 6.8.

1. Function fields of one variable

Let F be a field of positive characteristic p and let K0 be an algebraic
function field of one variable over F . Thus, K0 is a finitely generated regular
extension of F of transcendence degree 1 [FrJ08, p. 52, Section 3.1]. We fix
a separable algebraic closure K0,sep of K0 and tacitly assume that each of
our separable algebraic extension of K0 is contained in K0,sep. In particular,
this is the case for a finite separable extension K of K0 that we consider.
In this case, K is a finitely generated separable (hence regular) extension
of the algebraic closure F ′ of F in K. Thus, by our convention, K is an
algebraic function field of one variable over F ′.

We denote the set of all prime divisors of K0/F by P(K0/F ) and the
normalized discrete valuation of K0 attached to p ∈ P(K0/F ) by ordp. Thus,
ordp(K0) = Z. Similar notation applies also to K, except that we abuse our
notation, write P(K/F ) instead of P(K/F ′) for the set of prime divisors
of K/F ′, and speak about “primes of K/F” rather than about “primes of
K/F ′ ”. In addition, we let Ram(K/K0) be the set of all p ∈ P(K0/F ) that
ramify in K. It is a finite set.

1.1. Krasner’s lemma. A central tool in the study of algebraic function
fields of one variable is the strong approximation theorem [FrJ08, p. 56,
Prop. 3.3.1]:

Proposition 1.1. Let S be a finite subset of P(K0/F ), consider
q ∈ P(K0/F )rS, and let S′ = S ∪ {q}. For each p ∈ S let xp be an
element of K0 and let mp be a positive integer. Then, there exists x ∈ K0
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with

ordp(x− xp) = mp for each p ∈ S and

ordp(x) ≥ 0 for each p ∈ P(K0/F )rS′.

Another tool that we use is Krasner’s lemma and its consequences. In
that lemma, one considers a complete discrete valuation (or, more generally,
Henselian) field (E, v) and a complete set of conjugates x1, . . . , xn of an
element x = x1 ∈ Esep. Then, every y ∈ Esep that satisfies

v(y − x) > max
i≥2

(v(x− xi)),

also satisfies E(x) ⊆ E(y) [Lan70, p. 43, Prop. 3].
Krasner’s lemma implies the following theorem about the continuity of

the roots. See [Jar91, Prop. 12.3] or [Efr06, p. 171, Thm. 18.5.2].

Proposition 1.2. Let (E, v) be a complete discrete valuation field and let
f ∈ E[X] be a monic polynomial of degree n with n distinct roots x1, . . . , xn.
Then, for each positive integer α there exists a positive integer γ such that
the following holds:

If g ∈ E[X] is a monic polynomial of degree n with v(g − f) > γ, then
the roots of g are distinct and can be enumerated as y1, . . . , yn such that
v(yi − xi) > α and E(xi) = E(yi).

Here, v(g − f) is the maximal v-value of the differences between the cor-
responding coefficients of g and f .

1.2. Completions. For each p ∈ P(K0/F ) we fix a completion K̂0,p of K0

at p and a separable algebraic closure K̂0,p,sep that contains K0,sep. Then,

K0,p = K0,sep ∩ K̂0,p is a Henselian closure of K0 at p.

By the theorem about the continuity of roots, for each x̂ ∈ K̂0,p,sep there

exists a monic polynomial f ∈ K0[X] with deg(f) = deg(irr(x̂, K̂0,p))
1 and

with ordp(f − irr(x̂, K̂0,p)) sufficiently large such that there exists a root

x of f with K̂0,p(x) = K̂0,p(x̂). In particular, x ∈ K0,sep. It follows that

K0,sepK̂0,p = K̂0,p,sep, so Gal(K0,p) ∼= Gal(K̂0,p). Hence, we may and we will

identify Gal(K̂0,p) with Gal(K0,p) via restriction.

2. Cohomological dimension

As in section 1, we consider an algebraic function field K0 of one vari-
able over a field F of positive characteristic p. Let ℘ be the Artin-Schreier
operator defined by ℘(x) = xp − x.

For a nonempty proper subset S of P(K0/F ) and a finite separable ex-
tension K of K0, we define SK to be the set of prime divisors of K/F that

1As usual, we denote the irreducible polynomial of an algebraic element x over a field
K by irr(x,K).
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lie over S. Following the convention in algebraic number theory [NSW15,
p. 452, Sec. VIII.3], we set

OK,S = {x ∈ K | ordP(x) ≥ 0 for all P ∈ P(K/F )rSK}.

For a separable algebraic extension L of K0, we set OL,S =
⋃
K OK,S , where

K ranges over all finite extensions of K0 in L. By [Lan58, p. 13, Prop. 4],

(1) OL,S is the integral closure of OK0,S in L.

However, as is customary in commutative algebra, for each p ∈ P(K0/F )
we write Op = {x ∈ K0 | ordp(x) ≥ 0} for the local ring of p.

Taking into account Footnote 1, the following result is included in Propo-
sition 3.3.2 of [FrJ08].

Lemma 2.1. The following statements on K0 and S hold:

(a) OK0,S is a Dedekind domain.
(b) If p ∈ P(K0/F )rS and P = {x ∈ OK0,S | ordp(x) > 0} is the

center of p at OK0,S, then Op = (OK0,S)P .
(c) Every non-zero prime ideal of OK0,S is the center of a prime divisor

p ∈ P(K0/F )rS.
(d) If q ∈ S, then OK0,S 6⊆ Oq.

Lemma 2.2. Let (R, v) be a complete discrete valuation domain of positive
characteristic p with v(R) = Z ∪ {∞}. Then, P := {x ∈ R | v(x) ≥ 1} ⊆
℘(R).

Proof. Let a ∈ P and consider the polynomial f(X) = Xp−X−a and its
derivative f ′(X) = −1. Then, v(f(0)) = v(a) ≥ 1 and v(f ′(0)) = v(−1) = 0.
Hence, by Hensel’s lemma, there exists x ∈ Quot(R) such that xp−x−a = 0
and v(x) ≥ 1. In particular, x ∈ R. It follows that a = ℘(x) ∈ ℘(R), as
claimed. �

Lemma 2.3. Let S be a set of prime divisors of K0/F and let T be a proper
finite subset of S. Then, the natural map

OK0,S →
⊕
p∈T

K̂0,p/℘K̂0,p

is surjective.

Proof. Given an element ap ∈ K̂0,p for each p ∈ T , we use the assumption
that SrT 6= ∅ and the strong approximation theorem (Proposition 1.1) to
choose x ∈ K0 with ordp(x − ap) ≥ 1 for each p ∈ T and ordp(x) ≥ 0 for
every p ∈ P(K0/F )rS. Then, Lemma 2.2 gives for each p ∈ T an element

yp ∈ K̂0,p with x − ap = ℘(yp). Thus, x ∈ OK0,S and x ≡ ap mod ℘(K̂0,p),
as desired. �

Following [NSW15, p. 171, §3], we denote the category of all p-torsion
modules of a profinite group G by Modp(G). As usual, we denote the pth
cohomological dimension of G by cdp(G).
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Lemma 2.4 ([NSW15], p. 172, Prop. 3.3.2). The following conditions on a
profinite group G and a positive integer n are equivalent:

(a) cdp(G) ≤ n,
(b) Hq(G,A) = 0 for all A ∈ Modp(G) and for all q > n.

Recall that a G-module B is cohomologically trivial if H i(H,B) = 0
for every closed subgroup H of G and every positive integer i.

Let R be a Dedekind domain and let N be a Galois extension of K :=
Quot(R). Let RN be the integral closure of R in N . One says that RN/R
is tamely ramified if for every finite Galois extension L of K in N and
every prime ideal P of R, the prime factorization of P in RL has the form
PRL = (Q1 · · ·Qg)e with distinct prime ideals Q1, . . . , Qg of RL and with
gcd(e, char(R/P )) = 1.

Lemma 2.5 ([NSW15], p. 342, Thm. 6.1.10). Let R be a Dedekind domain
with quotient field K, let L be a Galois extension of K, and let RL be the
integral closure of R in L. Then, the following conditions are equivalent:

(a) RL is a cohomologically trivial Gal(L/K)-module.
(b) RL/R is tamely ramified.

We denote the maximal Galois extension of K0 which is unramified away
from S by K0,S .

Lemma 2.6 (Generalization of [NSW15], p. 453, Prop. 8.3.1). Let S be a
nonempty proper subset of P(K0/F ). Let L be a Galois extension of K0 in
K0,S. Let K be a Galois extension of K0 in L. Then, H i(Gal(L/K),OL,S) =
0 for every positive integer i.

Proof. By Lemma 2.1, OK0,S is a Dedekind domain and the non-zero
prime ideals of OK0,S are induced by P(K0/F )rS. By assumption, each
p ∈ P(K0/F )rS is unramified in L. Thus, the center of p at OK0,S is
unramified in OL,S . It follows from Lemma 2.1(c) that the ring extension
OL,S/OK0,S is unramified, hence tamely ramified. Therefore, by Lemma
2.5, OL,S is a cohomologically trivial Gal(L/K0)-module. By definition,
H i(Gal(L/K),OL,S) = 0 for all i ≥ 1. �

3. p-closed extensions

We say that a field L is p-closed if it has no Galois extensions of degree
p. Assuming that p = char(L) > 0, the Artin-Schreier map ℘: L → L is in
this case surjective. This yields the short exact sequence

0 −→ Fp −→ L
℘−→ L −→ 0. (2)

Lemma 3.1 ([NSW15], Cor. 6.1.2). Let L be a Galois p-closed extension of
K0. Then,

Hn(Gal(L/K0),Fp) =

{
K0/℘K0 for n = 1

0 for n ≥ 2.
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As in section 2, let S be a subset of P(K0/F ). Then, the following result
generalizes [NSW15, Cor. 8.3.2].

Lemma 3.2. Let L be a p-closed Galois extension of K0 in K0,S and let K
be a Galois extension of K0 in L. Then,

Hn(Gal(L/K),Fp) =

{
OK,S/℘OK,S for n = 1

0 for n ≥ 2.

Proof. First we prove that the map ℘: OL,S → OL,S is surjective. To this
end, consider a ∈ OL,S and choose x ∈ K0,sep such that xp−x = a. If x /∈ L,
then by Artin-Schreier, [L(x) : L] = p, which contradicts the assumption on
L. Hence, x ∈ L. Since OL,S is integrally closed (by (1)), x ∈ OL,S , as
claimed.

The claim yields the following short exact sequence of Gal(L/K)-modules:

0 −→ Fp −→ OL,S
℘−→ OL,S −→ 0. (3)

The beginning of the corresponding long exact sequence has the form

OK,S
℘−→ OK,S −→ H1(Gal(L/K),Fp) −→ H1(Gal(L/K),OL,S). (4)

By Lemma 2.6, the last term of (4) is 0. Hence,

H1(Gal(L/K),Fp) ∼= OK,S/℘OK,S .
Similarly, for i ≥ 1, (3) yields the exact sequence

H i(Gal(L/K),OL,S)→ H i+1(Gal(L/K),Fp)→ H i+1(Gal(L/K),OL,S)
(5)

with trivial first and third terms. Hence, H i+1(Gal(L/K),Fp) = 0, as
claimed. �

We end this section with a generalization of Corollary 8.3.3 on page 453
of [NSW15].

Lemma 3.3. Assume that F is Hilbertian and let L be a p-closed Galois
extension of K0 in K0,S. Then, cdp(Gal(L/K0)) = 1.

Proof. Let E be the fixed field in L of a p-Sylow subgroup of Gal(L/K0).
In particular E contains no p-extension of K0. Since F is Hilbertian, F
has a cyclic extension F ′ of degree p [FrJ08, p. 304, Prop. 16.4.5]. By
Artin-Schreier, there exists x ∈ Fsep rF such that a := xp − x ∈ F and
F ′ = F (x). Since K0/F is regular, K0F

′ is a cyclic extension of K0 of
degree p. Moreover, K0F

′ is unramified over K0 along P(K0F
′/F )rSK0F ′ ,

so K0F
′ ⊆ K0,S . Since L is p-closed in K0,S , we have F ′ ⊆ L. Finally,

by the choice of E, EF ′ is a cyclic extension of E of order p. Hence, by
[NSW15, p. 174, Cor. 3.3.7], cdp(Gal(L/E)) ≥ 1.

By Lemma 3.2, H i(Gal(L/E),Fp) = 0 for i ≥ 2. Since Gal(L/E) is a pro-
p group, it follows from [NSW15, p. 174, Cor. 3.3.6] and the last statement
of [NSW15, p. 172, Prop. 3.3.2] that cdp(Gal(L/E)) ≤ 1. It follows that
cdp(Gal(L/E)) = 1.
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Finally, since Gal(L/E) is a p-Sylow subgroup of Gal(L/K0) it follows
from [NSW15, p. 174, Cor. 3.3.6] that cdp(Gal(L/K0)) = 1, as claimed.
�

4. Surjectivity of restriction maps

This section establishes a surjectivity theorem for first cohomology groups.
As before, we consider an algebraic function field K0/F of one variable of
positive characteristic p.

Notation 4.1. Let S be a subset of P(K0/F ), letA be a finite Gal(K0,S/K0)-
module, and let x be an element of H1(Gal(K0,S/K0), A). We choose a
crossed homomorphism χ: Gal(K0,S/K0)→ A that represents x. Then, for
p ∈ P(K0/F ), we set χp to be the compositum of the maps

Gal(K̂0,p) −→Gal(K0,SK̂0,p/K̂0,p)

−→Gal(K0,S/K0,S ∩ K̂0,p)
incl−→ Gal(K0,S/K0)

χ−→ A,

where the first two maps are the corresponding restriction maps and the
third one is the inclusion map.

The map χ → χp is compatible with the actions of Gal(K0,S/K0) and

Gal(K̂0,p) on A, so χp is a crossed homomorphism. We denote the cohomol-
ogy class of χp by resp(x). Note that the map χ 7→ χp is multiplicative and
maps boundaries onto boundaries. Hence, resp: H

1(Gal(K0,S/K0), A) →
H1(Gal(K̂0,p), A) is a natural homomorphism.

Our definition implies that if y ∈ H1(Gal(K0,S/K0), A) and z is the image
of y under the map inf : H1(Gal(K0,S/K0), A) → H1(Gal(K0), A), then
resp(y) = resp(z).

Remark 4.2. Let S be a subset of P(K0/F ) and let T be a finite subset of

S. By Lemma 3.3, cdp(Gal(K0,S/K0)) = 1. Also, since char(K̂0,p) = p > 0,

we have cdp(Gal(K̂0,p)) ≤ 1 [NSW15, p. 338, Cor. 6.1.3]. Hence, if

0 −→ B′ −→ B −→ B′′ −→ 0

is a short exact sequence of p-primary Gal(K0,S/K0)-modules, then Lemma
2.4 yields the following commutative diagram:

H1(Gal(K0,S/K0), B′) //

res1(S,T,B′)��

H1(Gal(K0,S/K0), B) //

res1(S,T,B)��

H1(Gal(K0,S/K0), B′′) //

res1(S,T,B′′)��

0

⊕
p∈T H

1(Gal(K̂0,p), B′) //
⊕

p∈T H
1(Gal(K̂0,p), B) //

⊕
p∈T H

1(Gal(K̂0,p), B′′) // 0.

The vertical maps in this diagram are the direct sums of the maps resp for
p ∈ T introduced in Notation 4.1.

Observe that surjectivity of the middle vertical arrow implies surjectivity
of the right vertical arrow. �
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Proposition 4.7 below is an analog of Theorem 9.2.5 on page 539 of
[NSW15]. Its proof requires some preparations.

Remark 4.3 (Induced Modules). Consider a short exact sequence

1 −→ H −→ G −→ Ḡ −→ 1

of profinite groups. For a finite H-module A, IndHG (A) is the G-module
that consists of all functions f : G → A such that f(ησ) = ηf(σ) for all
η ∈ H and σ ∈ G. The action of G on IndHG (A) is given for each ρ ∈ G by
(ρf)(σ) = f(σρ).

The G-module IndHG (A) is isomorphic to the G-module Map(Ḡ, A) of all
maps f : Ḡ→ A, where an element ρ ∈ G acts on f by the rule (ρf)(σH) =
ρf(ρ−1σH). Hence,

IndHG (A) ∼= Map(Ḡ, A) ∼= Ind1
Ḡ(A). (6)

Shapiro’s lemma then gives an isomorphism Hn(G, IndHG (A)) ∼= Hn(H,A)
for each n ≥ 0 [NSW15, p. 62, Prop. 1.6.4].

We are interested in the special case where A = Fp has a trivial Ḡ-action
and Ḡ is a finite group. In this case Map(Ḡ,Fp) is isomorphic to the Ḡ-
module Fp[Ḡ] of all formal sums

∑
σ∈Ḡ aσσ with aσ ∈ Fp for all σ ∈ Ḡ. The

action of Ḡ on Fp[Ḡ] is given by τ
∑

σ∈Ḡ aσσ =
∑

σ∈Ḡ aτ−1σσ. It follows
that

Fp[Ḡ] ∼= Map(Ḡ,Fp) ∼= Ind1
Ḡ(Fp), (7)

as Ḡ-modules. Hence,

Hn(G,Fp[Ḡ]) ∼= Hn(G, Ind1
Ḡ(Fp))

(6)∼= Hn(G, IndHG (Fp)) ∼= Hn(H,Fp). (8)

Lemma 4.4. Let D be an open subgroup of a profinite group G and let Σ
be a system of representatives for the quotient set G/D, thus

G =
⋃
·

σ∈Σ

σD =
⋃
·

σ∈Σ

Dσ−1. (9)

For each σ ∈ Σ let Dσ = σDσ−1. Then, there exists an isomorphism

Φ: Map(G,Fp)→
⊕
σ∈Σ

Map(Dσ,Fp). (10)

We let G act on the right hand side of (10) such that Φ becomes an isomor-
phism of G-modules.

Proof. Given a continuous map f : G → Fp and an element σ ∈ Σ, the
continuous map fσ: Dσ → Fp given by fσ(σdσ−1) = f(dσ−1) for each d ∈ D
is well defined. Hence, the map Φ of (10) given by

Φ(f) = (fσ)σ∈Σ (11)

is well defined.
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If f ′: G → Fp is another element of Map(G,Fp) and Φ(f) = Φ(f ′), then
for every σ ∈ Σ and d ∈ D we have f(dσ−1) = fσ(σdσ−1) = f ′σ(σdσ−1) =
f ′(dσ−1), Hence, f = f ′. Thus, Φ is injective.

Given (fσ)σ∈Σ ∈
⊕

σ∈Σ Map(Dσ,Fp), we define a map f : G → Fp by

f(dσ−1) = fσ(σdσ−1) for all d ∈ D and σ ∈ Σ. By (9), f is well defined and
by (11), Φ(f) = (fσ)σ∈Σ. Hence, Φ is surjective.

It follows that Φ is bijective. Using that bijectivity, the definition ρΦ(f) =
Φ(ρf) for all ρ ∈ G and f ∈ Map(G,Fp) defines an action of G on the right
hand side of (10) such that Φ becomes an isomorphism of G-modules. By
definition, it satisfies the final statement of the lemma. �

Lemma 4.5. Let K0 be an algebraic function field of one variable over a
field F and let p be a prime divisor of K0/F . Let K be a finite Galois
extension of K0 with Galois group G. Then, for each n we have

Hn(Gal(K̂0,p),Fp[G]) ∼=
⊕
P|p

Hn(Gal(K̂P),Fp),

where P ranges over all prime divisors of K/F that lie above p.

Proof. By Remark 4.3, Fp[G] ∼= Map(G,Fp). By Lemma 4.4, there exists
an isomorphism of G-modules

Map(G,Fp) ∼=
⊕
P|p

Map(DP,Fp), (12)

where for each P, DP is the decomposition group of P over p. One may
lift the action of G on both sides of (12) to an action of Gal(K0) and then

to restrict it to an action of Gal(K̂0,p).

Since Fp[G] ∼= Map(G,Fp) (Remark 4.3) and DP
∼= Gal(K̂P/K̂0,p), it

follows from (12) that

Hn(Gal(K̂0,p),Fp[G]) ∼= Hn(Gal(K̂0,p),Map(G,Fp))
∼=

⊕
P|p

Hn(Gal(K̂0,p),Map(DP,Fp))

∼=
⊕
P|p

Hn(Gal(K̂0,p),Map(Gal(K̂P/K̂0,p),Fp))

(7)∼=
⊕
P|p

Hn(Gal(K̂0,p),Fp[Gal(K̂P/K̂0,p)])

(8)∼=
⊕
P|p

Hn(Gal(K̂P),Fp),

as claimed. �
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Lemma 4.6 ([Rib70], p. 118, Prop. 4.6). Let G be a profinite group, for i
in a set I let Ai be a G-module, and set A =

⊕
i∈I Ai. Then, Hq(G,A) =⊕

i∈I H
q(G,Ai) for each q ≥ 0.

Proposition 4.7. Let F be a field of positive characteristic p and let K0

be an algebraic function field of one variable over F . Let T ⊆ S be sets of
prime divisors of K0/F such that T is finite and SrT 6= ∅. Let A be a
finite Gal(K0,S/K0)-module such that pA = 0. Then, the homomorphism

res1(S, T,A): H1(Gal(K0,S/K0), A)→
⊕
p∈T

H1(Gal(K̂0,p), A)

is surjective.

Proof. We distinguish between four cases.

Case A: A = Fp By definition, K0,S is p-closed in K0,S . Hence, by Lemma
3.2,

H1(Gal(K0,S/K0),Fp) = OK0,S/℘OK0,S . (13)

By Lemma 2.3, the map OK0,S →
⊕

p∈T K̂0,p/℘K̂0,p is surjective. Hence, so
is

OK0,S/℘OK0,S →
⊕
p∈T

K̂0,p/℘K̂0,p. (14)

In addition, for each p ∈ P(K0/F ) the field K̂0,p,sep is p-closed. Hence, by
Lemma 3.1,

H1(Gal(K̂0,p),Fp) = K̂0,p/℘K̂0,p. (15)

It follows from (13), (14), and (15) that the map

res1(S, T,Fp): H1(Gal(K0,S/K0),Fp)→
⊕
p∈T

H1(Gal(K̂0,p),Fp) (16)

is surjective.

Case B: A = Fp[G], with G = Gal(K/K0), where K is a finite Galois
extension of K0 in K0,S . By (8),

H1(Gal(K0,S/K0),Fp[G]) ∼= H1(Gal(K0,S/K),Fp).

By Lemma 4.5, H1(Gal(K̂0,p),Fp[G]) ∼=
⊕

P|pH
1(Gal(K̂P),Fp). This gives

the commutative diagram:

H1(Gal(K0,S/K0),Fp[G])

��

//
⊕

p∈T H
1(Gal(K̂0,p),Fp[G])

��

H1(Gal(K0,S/K),Fp) //
⊕

P∈TK H
1(Gal(K̂P),Fp),

where the vertical arrows are isomorphims. By Case A, applied to K rather
than to K0, the lower horizontal arrow is surjective. It follows that the
upper arrow is also surjective.
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Case C: A = Fp[G]n, with G as in Case B and n ∈ N. By Lemma 4.6,

H1(Gal(K0,S/K0),Fp[G]n) = (H1(Gal(K0,S/K0),Fp[G])n.

Hence, the statement of our proposition for A = Fp[G]n follows from the
statement for A = Fp[G] proven in Case B.

Case D: A is a finite Gal(K0,S/K0)-module with pA = 0. Let G be a finite
quotient of Gal(K0,S/K0) such that the kernel of the map Gal(K0,S/K0)→
G acts trivially on A. Then, A =

∑n
i=1 Fp[G]ai for some a1, . . . , an ∈ A.

We write Fp[G]n =
⊕n

i=1 Fp[G]ei with ei being an n-tuple whose coor-
dinates are 0 except 1 in the ith place. Then, the map (e1, . . . , en) 7→
(a1, . . . , an) extends to an epimorphism Fp[G]n → A. Since by Case C, the

map H1(Gal(K0,S/K0),Fp[G]n) →
⊕

p∈T H
1(Gal(K̂0,p),Fp[G]n) is surjec-

tive, it follows from Remark 4.2 that the map

H1(Gal(K0,S/K0), A)→
⊕
p∈T

H1(Gal(K̂0,p), A)

is also surjective. �

5. Choosing an element in the first cohomology group

We prove an analogue of the strong approximation theorem for the first
cohomology group (Lemma 5.2).

Let K0 be either a global field or an algebraic function field of one variable
over a Hilbertian field of positive characteristic p. Let K be a finite Galois
extension of K0 and let A be a multiplicative Gal(K0)-module with an action
from the right.

Definition 5.1. Consider p ∈ P(K0/F ), let A be a finite Gal(K̂0,p)-module,

and let h be a homomorphism of Gal(K̂0,p) into another group. We say that

h is unramified if h(Îp) = 1.

Likewise, an element x ∈ H1(Gal(K̂0,p), A) is unramified if χ(Îp) = 1

for each (alternatively, for one) crossed homomorphism χ: Gal(K̂0,p) → A
that represents x.

Now we generalize Lemma 2.5 of [JaR19] (removing the unnecessary as-
sumption about the simplicity of the module A).

Lemma 5.2. Let K0 be an algebraic function field of one variable over a
field F of positive characteristic p, let K be a finite Galois extension of K0,
let Cp,1, . . . , Cp,r be isomorphic copies of Cp, and let A = Cp,1 × · · · × Cp,r
be a Gal(K/K0)-module. Let T be a finite subset of P(K0/F ) that contains

Ram(K/K0). For each p ∈ T consider an element yp ∈ H1(Gal(K̂0,p), A).
Finally, let q ∈ P(K0/F )rT .

Then, there exists z ∈ H1(Gal(K0), A) such that

(a) resp(z) = yp for each p ∈ T and
(b) resp(z) is unramified for each p ∈ P(K0/F )r(T ∪ {q}).
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Proof. We set T ′ = T ∪{q} and let K0,T ′ be the maximal Galois extension
of K0 which is unramified away of T ′. Since Ram(K/K0) ⊆ T ⊂ T ′, we
have K ⊆ K0,T ′ . Hence, A can be considered as a Gal(K0,T ′/K0)-module
with a trivial action of Gal(K0,T ′/K) on A. By Proposition 4.7 applied to
T and T ′ rather than to T and S, there exists y ∈ H1(Gal(K0,T ′/K0), A)
such that resp(y) = yp for each p ∈ T . Let inf : H1(Gal(K0,T ′/K0), A) →
H1(Gal(K0), A) be the inflation map and set z = inf(y) ∈ H1(Gal(K0), A).
Then, resp(z) = resp(y) = yp for each p ∈ T (Notation 4.1). If p ∈
P(K0/F )rT ′, then p is unramified in K0,T ′ , so the inertia subgroup Îp
of Gal(K̂0,p) is contained in Gal(K0,T ′). Let χ: Gal(K0,T ′/K0) → A be a
crossed homomorphism that represents y. Then, ψ = χ ◦ resK0,sep/K0,T ′

is

a crossed homomorphism that represents z. Hence, for each σ ∈ Îp and σ̄
being the restriction of σ to K0,T ′ we have ψ(σ) = χ(σ̄) = χ(1) = 1. Thus,
z is unramified at p, as desired. �

6. Embedding problems with simple kernels

Let F be a Hilbertian field of positive characteristic p, let K0 be an al-
gebraic function field of one variable over F , and let K be a finite Galois
extension of K0. We set Γ = Gal(K/K0) and consider the embedding prob-
lem

Gal(K0)

ρ

��
1 // A // Ḡ

ᾱ // Γ // 1,

(17)

where A = Crp with r ≥ 1 and ρ = resK0,sep/K . Suppose that the action of Γ

on A defined by aᾱ(ḡ) = ḡ−1aḡ for ḡ ∈ Ḡ makes A a simple (multiplicative)
Γ-module. Then, lifting the action of Γ on A via ρ to an action of Gal(K0)
on A, the group A becomes a simple Gal(K0)-module on which Gal(K) acts
trivially.

Remark 6.1. Our goal in this section is to properly solve Embedding
Problem (17) with bounded ramification. As a first step toward that goal
we note that in any case, the problem is weakly solvable. Indeed, since
char(K0) = p > 0, we have cdp(Gal(K0)) ≤ 1 [NSW15, p. 338, Cor. 6.1.3].
Since A is a finite p-group, [NSW15, p. 192, Thm. 3.5.6] yields a homomor-
phism ψ0: Gal(K0)→ Ḡ such that ᾱ ◦ ψ0 = ρ.

Notation 6.2. Given a homomorphism h of Gal(K0) into a group G and
a prime divisor p ∈ P(K0/F ), we set hp = h|Gal(K̂0,p). Note that a homo-

morphism hp: Gal(K̂0,p) → G may appear in our text without being the
restriction of a homomorphism h as above.

A local version of Remark 6.1 makes the existence of local weak solutions
in our case redundant and also replaces the crucial lemma 8.1 of [JaR18].
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Lemma 6.3. For every p ∈ P(K0/F ) there exists a homomorphism

ϕp: Gal(K̂0,p)→ Ḡ

such that, in the notation of Diagram (17), ᾱ ◦ ϕp = ρp, where ρp =
ρ|Gal(K̂0,p).

Moreover, if a prime divisor p ∈ P(K0/F ) is unramified in K, then

(a) one can choose the local solution ϕp to be unramified and
(b) if in addition, the short exact sequence in embedding problem (17)

splits, then ϕp can be chosen to be surjective.

Proof. The existence of a weak solution ϕp of the local embedding problem

at p follows as in Remark 6.1 from the fact that char(K̂0,p) = p and that A
is a p-group.

Next, we assume that p is unramified in K. Hence, K ⊆ K̂0,p,ur. Since ρ is

trivial on Gal(K), it is also trivial on Îp = Gal(K̂0,p,ur). Hence, there exists

an epimorphism ρ̄p: Gal(K̂0,p,ur/K̂0,p)→ Γ such that ρ̄p ◦ resK̂0,p,sep/K̂0,p,ur
=

ρp, where K̂0,p,ur is the maximal unramified extension of K̂0,p.

By Section 1, ordp is a discrete valuation of K0 and K̂0,p is the completion
of K0 at ordp. Hence, by [CaF67, p. 28, Cor. 2], there is an isomorphism

Gal(K̂0,p,ur/K̂0,p) ∼= Gal(K̄0,p), (18)

where K̄0,p is the residue field of K0 at p. We identify the groups Gal(K̄0,p)

and Gal(K̂0,p,ur/K̂0,p) under the isomorphism (18).
As in Remark 6.1, the relation char(K̄0,p) = p > 0 yields a homomorphism

ϕ̄p: Gal(K̄0,p) → Ḡ such that ᾱ ◦ ϕ̄p = ρ̄p. Let ϕp = ϕ̄p ◦ resK̂0,p,sep/K̂0,p,ur
.

Then, ᾱ ◦ ϕp = ρp. Moreover, ϕp(Îp) = 1, so ϕp is unramified.

Gal(K̂0,p)

res
��

ϕp

��

ρp

vv

Gal(K̂0,p,ur/K̂0,p)

ρ̄p

��

ϕ̄p

xxqqqqqqqqqqqq

1 // A // Ḡ
ᾱ // Γ // 1

(19)

This proves (a).
Next assume that the short exact sequence in (17) (hence, in (19)) splits.

Note that the residue field K̄0,p is a finite extension of the Hilbertian field
F . Hence, by [FrJ08, p. 227, Prop. 12.3.3], K̄0,p is also Hilbertian. By Ikeda
[FrJ08, p. 304, Prop. 16.4.5], we may choose the homomorphism ϕ̄p in this
case to be surjective. Under that choice, ϕp will also be surjective, as stated
in (b). �
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Definition 6.4. Two weak solutions ψ,ψ′: Gal(K0) → Ḡ of (17) are A-
equivalent if there exists a ∈ A such that ψ′(σ) = a−1ψ(σ)a for all σ ∈
Gal(K0). We denote the A-equivalence class of ψ by [ψ] and let

HomΓ,ρ,ᾱ(Gal(K0), Ḡ)

be the set of all A-equivalence classes.

Remark 6.5. (a) For A-equivalent weak solutions ψ and ψ′ of (17), ψ is
surjective (respectively, unramified, or trival) if and only if ψ′ is. Thus, we
say that [ψ] is surjective, unramified, trivial if one (alternatively, every)
representative of the class has the corresponding property.

We denote the set of all surjective classes [ψ] by HomΓ,ρ,ᾱ(Gal(K0), Ḡ)sur.
(b) The cohomolgy group H1(Gal(K0), A) acts freely and transitively

on HomΓ,ρ,ᾱ(Gal(K0), Ḡ): If x ∈ H1(Gal(K0), A), χ: Gal(K0) → A is a
crossed homomorphism that represents x, and [ψ] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ),
then [ψ]x := [ψ · χ]. This action makes HomΓ,ρ,ᾱ(Gal(K0), Ḡ) a principal
homogeneous space over H1(Gal(K0), A) ([JaR18, Lemma 10.4]). In partic-
ular, the action of H1(Gal(K0), A) is transitive.

(c) Similarly, for each p ∈ P(K0/F ), the set of all equivalence classes

HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ)

of the weak solutions of the corresponding local embedding problem at the
prime divisor p of K0/F is a principal homogeneous space over

H1(Gal(K̂0,p), A).

The proof of the following result is a verbatim repetition of Lemma 10.5
of [JaR18].

Lemma 6.6. Consider p ∈ P(K0/F ), let [ψ] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ), and
let x ∈ H1(Gal(K0), A). Suppose that [ψ] is unramified at p and resp(x) ∈
H1(Gal(K̂0,p), A) is unramified. Then, [ψ]x is unramified at p.

Lemma 6.7. Let p be a prime divisor in P(K0/F ) which is unramified in K.
Then, in the notation of Embedding Problem (17), there exists an element

[ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) such that if for [ψ̄] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ)

we have [ψ̄p] = [ϕp], then

(a) [ψ̄] is unramified at p and

(b) [ψ̄] is surjective.

Proof. By Lemma 6.3, there exists an unramified homomorphism

ϕp: Gal(K̂0,p)→ Ḡ

such that

(20a) ᾱ ◦ ϕp = ρp and
(20b) if the short exact sequence in Embedding Problem (17) splits, then ϕp

is surjective.
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Claim: For every weak solution ψ̄ of Embedding Problem (17), the in-
tersection A ∩ Im(ψ̄) is a Gal(K0)-module. Indeed, if σ ∈ Gal(K0) and
a = ψ̄(σ) ∈ A ∩ Im(ψ̄) and τ ∈ Gal(K0), then ᾱ(ψ̄(τ)) = ρ(τ). Hence, by

definition, aτ = ψ̄(σ)τ = ψ̄(σ)ψ̄(τ) = ψ̄(στ ). Therefore, aτ ∈ A ∩ Im(ψ̄).
If [ψ̄p] = [ϕp], then by Remark 6.5, [ψ̄p] is unramified, so [ψ̄] is unramified

at p.
We distinguish between two cases.

Case A: The short exact sequence in Diagram (17) does not split. This
implies that A ∩ Im(ψ̄) 6= 1. Since A is a simple Gal(K0)-module, we con-
clude from the claim that A = A ∩ Im(ψ̄) ≤ Im(ψ̄). Since ᾱ(Im(ψ̄)) =
ρ(Gal(K0)) = Γ, this implies that Im(ψ̄) = Ḡ. This means that ψ̄ is surjec-
tive.

Case B: The short exact sequence in Diagram (17) splits. Then, by (20b),
[ψ̄] is surjective, as asserted. �

Proposition 6.8. Let T be a finite subset of P(K0/F ) that contains

Ram(K/K0). For each p ∈ T let [ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ).

Then, there exist q ∈ P(K0/F )rT and a proper solution ψ̄: Gal(K0)→ Ḡ
of Embedding Problem (17) such that

(a) [ψ̄p] = [ϕp] in HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) for each p ∈ T and
(b) [ψ̄] is unramified at p ∈ P(K0/F )r(T ∪{q}), so if N̄ is the solution

field corresponding to ψ̄, then Ram(N̄/K0) ⊆ T ∪ {q}.
Proof. We break the proof into four parts.

Part A: Surjectivity. Use Lemma 6.7 to choose q0 ∈ P(K0/F )rT and an

element [ϕq0 ] ∈ HomΓ,ρq0 ,ᾱ
(Gal(K̂0,q0), Ḡ) such that if

[ψ̄] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ)

satisfies [ψ̄q0 ] = [ϕq0 ], then

(21a) [ψ̄] is unramified at q0 and

(21b) [ψ̄] is surjective.

Part B: A weak solution. By Remark 6.1, there exists an element [ψ0] ∈
HomΓ,ρ,ᾱ(Gal(K0), Ḡ). Our goal is to adjust [ψ0] by the action of an element
x ∈ H1(Gal(K0), A) such that [ψ0]x satisfies Conditions (a) and (b) of the
proposition.

Part C: Constructing an element x ∈ H1(Gal(K0), A). Let T ∗ = T ∪ {q0}
and let r1, . . . , rs be the prime divisors in P(K0/F )rT ∗ where ψ0 ramifies.
Set T ∗∗ = T ∗ ∪ {r1, . . . , rs}. Then,

(22) ψ0 is unramified along P(K0/F )rT ∗∗.

Since Ram(K/K0) ⊆ T , each p ∈ {r1, . . . , rs} is unramified in K, so

ρp: Gal(K̂0,p)→ Γ

is unramified (Definition 5.1). Hence, by Lemma 6.3(a),
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(23) there exists an unramified element [ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ).

Consider the system ([ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ))p∈T ∗∗ . By Remark

6.5(c), for each p ∈ T ∗∗ there exists a (unique) element yp ∈ H1(Gal(K̂0,p), A)
such that

[ψ0,p]
yp = [ϕp]. (24)

By Lemma 5.2, there exist x ∈ H1(Gal(K0), A) and a prime divisor q ∈
P(K0/F )rT ∗∗ such that

(25a) resp(x) = yp for each p ∈ T ∗∗ and
(25b) resp(x) is unramified at each p ∈ P(K0/F )r(T ∗∗ ∪ {q}).
Part D: The proper solution ψ̄. Let [ψ̄] = [ψ0]x ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ).

Proof of (a). For each p ∈ T ∗∗ we have that

[ψ̄p] = [ψ0,p]
resp(x) (25a)

= [ψ0,p]
yp

(24)
= [ϕp] in HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ). (26)

In particular, (26) holds for each p ∈ T , so conclusion (a) of the proposition
holds.

Proof of (b). Let p ∈ P(K0/F )r(T ∪ {q}). If p = q0, then by (26),
[ψ̄p] = [ϕp]. Hence, by (21a), [ψ̄p] is unramified. If p ∈ {r1, . . . , rs}, then by
26, [ψ̄p] = [ϕp], hence by (23), [ψ̄p] is unramified. Now if

p ∈ P(K0/F )r(T ∗∗ ∪ {q}),
then by (22) and (25b), both [ψ0,p] and resp(x) are unramified. Hence,

[ψ̄p] = [ψ0,p]
resp(x) is unramified (Lemma 6.6). It follows that conclusion (b)

holds in all cases. �

7. Finite embedding problems with a p-group kernel

Using induction, we prove in this section our main result: Every finite
embedding problem over K0 whose kernel is a p-group has a proper solution
with bounded ramification that satisfies finitely many local conditions.

Definition 7.1. Suppose that a finite group G acts on a finite group H
with |H| = ps. Let

1 = Hm < · · · < H2 < H1 < H0 = H (27)

be a maximal G-series in H. In other words, for each 1 ≤ i ≤ m, the group
Hi is a proper normal subgroups of Hi−1 which is maximal among all proper
normal subgroups of Hi−1 that are G-invariant. Since Hi−1 is a p-group,
Hi−1/Hi

∼= Crip is a simple G-module, where ri is a positive integer (see
e.g. [JaR19, Lemma 5.1]). If 1 = H ′m′ < · · · < H ′2 < H ′1 < H ′0 = H is
another maximal G-series in H, then by Jordan-Hölder, m = m′ and there
is a permutation κ of {0, 1, . . . ,m} such that κ(0) = 0, κ(m) = m′, and
Hi−1/Hi is G-isomorphic to H ′κ(i−1)/H

′
κ(i) for i = 1, . . . ,m [Rob82, p. 66,

Thm. 3.14].
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We set Ωp(H,G) = m, in particular

Ωp(Hi−1/Hi, G) = 1 (28)

and Ωp(H,G) ≤ s. Note that if H ′ is a G-invariant normal subgroup of H,
then G acts on H/H ′ and

Ωp(H,G) = Ωp(H/H
′, G/H ′) + Ωp(H

′, G). (29)

Setup 7.2. Let F be a Hilbertian field of characteristic p, K0 an algebraic
function field of one variable over F , and K a finite Galois extension of K0.
Consider the embedding problem

Gal(K0)

ρ

��
1 // H // G

α // Γ // 1,

(30)

where Γ = Gal(K/K0), G is a finite group, α is an epimorphism, ρ =
resK0,sep/K , and H = Ker(α) is a p-group. In particular, H is normal in G,
so G acts on H by conjugation. Hence, each G-invariant subgroup of H is
normal in H.

Let H1 be a maximal G-invariant subgroup of H. Then, by Definition
7.1, there exists a positive integer r1 such that H/H1

∼= Cr1p . In particular,
H/H1 is a simple G-module. Hence, H/H1 is also a simple Γ-module, so
also a simple Gal(K0)-module on which Gal(K) acts trivially. Moreover,
pr1 |H1| = |H| and we have the following commutative diagram:

H1

��

H1

��

Gal(K0)

ρ

��
1 // H //

λ
��

G
α //

λ
��

Γ // 1

1 // H/H1
// G/H1

ᾱ // Γ // 1

(31)

with exact short horizontal sequences such that both maps λ are quotient
maps.

With this we arrive at our main result:

Theorem 7.3. Let K0 be an algebraic function field of one variable over a
Hilbertian field F of positive characteristic p. Consider the finite Embedding
Problem (30) whose kernel H is a p-group of order ps. Let T be a finite
subset of P(K0/F ) that contains Ram(K/K0). For each p ∈ T let [ϕp] ∈
HomΓ,ρp,α(Gal(K̂0,p), G).

Then, there exists an element [ψ] ∈ HomΓ,ρ,α(Gal(K), G)sur and there
exists a set R ⊆ P(K0/F )rT with |R| = Ωp(H,G) such that



EMBEDDING PROBLEMS WITH BOUNDED RAMIFICATION 1441

(a) [ψp] = [ϕp] in HomΓ,ρp,α(Gal(K̂0,p), G) for each p ∈ T and
(b) [ψ] is unramified at each p ∈ P(K0/F )r(T ∪ R). Thus, the fixed

field N of Ker(ψ) in K0,sep satisfies Ram(N/K0) ⊆ T ∪R.

Proof. As in Setup 7.2, let H1 be a maximal G-invariant subgroup of
H. Thus, H/H1 is a simple Γ-module and H/H1

∼= Cr1p for some positive
integer r1. Let λ: G → G/H1 be a homomorphism as in the commutative
diagram (31). Then, for each p ∈ T the homomorphism ϕ̄p := λ◦ϕp satisfies
ᾱ ◦ ϕ̄p = ρp. The rest of the proof breaks up into three parts.

Part A: An embedding problem whose kernel is a simple Gal(K0)-module.
Since H/H1

∼= Cr1p is a simple Γ-module, Proposition 6.8 yields a prime
divisor q1 ∈ P(K0/F )rT and an element

[ψ1] ∈ HomΓ,ρ,ᾱ(Gal(K0), G/H1)sur (32)

such that

(33a) [ψ1,p] = [ϕ̄p] in HomΓ,ρp,ᾱ(Gal(K̂0,p), G/H1) for each p ∈ T and

(33b) [ψ1] is unramified at each p ∈ P(K0/F )r(T ∪ {q1}).
Part B: The induction step. Part A gives rise to an embedding problem

Gal(K0)

ψ1

��
1 // H1

// G
λ // G/H1

// 1

(34)

with a p-group kernel H1. Set s1 = s− r1. Then, |H1| = |H|/|H/H1| = ps1 .
By (33a), there exists for each p ∈ T an element ap ∈ H such that

ψ1,p(σ) = λ(ap)
−1ϕ̄p(σ)λ(ap) = λ(a−1

p )λ(ϕp(σ))λ(ap)

= λ(a−1
p ϕp(σ)ap) = λ ◦ ϕapp (σ)

for each σ ∈ Gal(K̂0,p). Hence,

[ϕ
ap
p ] ∈ HomG/H1,ψ1,p,λ(Gal(K̂0,p), G) for every p ∈ T. (35)

Given p ∈ T , we set
ϕ1,p = ϕ

ap
p (36)

and for q1 we use Lemma 6.3 to choose

[ϕ1,q1 ] ∈ HomG/H1,ψ1,q1 ,λ
(Gal(K̂0,p), G).

Since H1 is a p-group with |H1| < |H|, an induction hypothesis on the
order of the kernel of the embedding problem gives a set

R1 ⊆ P(K0/F )r(T ∪ {q1})
with |R1| = Ωp(H1, G) and an element

[ψ] ∈ HomG/H1,ψ1,λ(Gal(K0), G)sur (37)

such that
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(38a) [ψp] = [ϕ1,p] ∈ HomG/H1,ψ1,p,λ(Gal(K̂0,p), G) for each p ∈ T ∪ {q1},
and

(38b) [ψ] is unramified at each p ∈ P(K0/F )r(T ∪ {q1} ∪R1).

Let R = {q1} ∪R1. Then,

|R| = 1 + |R1|
(28)
= Ωp(H/H1, G/H1) + Ωp(H1, G)

(29)
= Ωp(H,G).

Part C: Conclusion of the proof. We prove that the class [ψ] introduced in
Part B satisfies the conclusion of the theorem. Indeed,

α ◦ ψ
(31)
= ᾱ ◦ λ ◦ ψ

(37)
= ᾱ ◦ ψ1

(32)
= ρ.

In addition, by (37), ψ is surjective, so ψ ∈ HomΓ,ρ,α(Gal(K0), G)sur.

1

��
H1

��

Gal(K0)
ψ

yysssssssssss

ρ

��

ψ1

������������������

1 // H //

��

G

λ
��

α

%%KKKKKKKKKKKK

1 // H/H1
// G/H1

ᾱ //

��

Γ // 1

1

Moreover, by (38a), for each p ∈ T there exists bp ∈ H1 such that for each

σ ∈ Gal(K̂0,p) we have

ψp(σ) = b−1
p ϕ1,p(σ)bp

(36)
= b−1

p a−1
p ϕp(σ)apbp = (apbp)

−1ϕp(σ)(apbp).

Since ap ∈ H and bp ∈ H1, we have apbp ∈ H. Therefore, [ψp] = [ϕp] in

HomΓ,ρp,α(Gal(K̂0,p), G) for each p ∈ T , as desired. �
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