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Maps preserving absolute continuity and
singularity of positive operators
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Abstract. In this paper we consider the cone of all positive, bounded
operators acting on an infinite dimensional, complex Hilbert space, and
examine bijective maps that preserve absolute continuity in both di-
rections. It turns out that these maps are exactly those that preserve
singularity in both directions. Moreover, in some weak sense, such maps
are always induced by bounded, invertible, linear- or conjugate linear
operators of the underlying Hilbert space. Our result gives a possible
generalization of a recent theorem of Molnar which characterizes maps
on the positive cone that preserve the Lebesgue decomposition of oper-
ators.
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1. Introduction

Throughout this paper H will denote a complex infinite dimensional
Hilbert space, unless specifically stated otherwise, with the inner product
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(· | ·). The symbols B(H) and B+(H) will stand for the set of all bounded
operators and the cone of all positive operators, respectively. Motivated
by their measure theoretic analogues, Ando introduced the notion of ab-
solute continuity and singularity of positive operators in [1], and proved a
Lebesgue decomposition theorem in the context of B+(H). Since then sim-
ilar results have been proved in more general contexts, we only mention a
few of them: [6, 7, 9, 14–16].

Given a mathematical structure and an important operation/quantity/re-
lation corresponding to it, a natural question to ask is: how can we describe
all maps that respect this operation/quantity/relation? Such and similar
problems belong to the gradually enlarging field of preserver problems, the
interested reader is referred to the survey papers [5, 10, 11] for an intro-
duction. A considerable part of preserver problems is related to operator
structures, for which we refer to the book of Molnár [12] and the reference
therein.

In this paper our goal is to generalize Molnár’s result [13, Theorem 1.1]
about the structure of bijective maps on B+(H) that preserve the Lebesgue
decomposition in both directions. Molnár proved that the cone is quite rigid
in the sense that these maps can be always written in the form

A 7→ SAS∗

with a bounded, invertible, linear- or conjugate linear operator S : H→ H.
A natural question arises: how can we describe the form of those bijections
that preserve absolute continuity (or singularity) of operators in both direc-
tions? Clearly, this is a weaker condition than that of Molnár, hence maps
considered by Molnár obviously preserve this relation. However, it is not
too hard to construct other maps which preserve absolute continuity. For
example, one could use the fact that every positive operator is absolutely
continuous with respect to every invertible element of B+(H), and that in-
vertible elements are the only ones with this property. Therefore, if we leave
all positive and not invertible operators fixed, and consider an arbitrary
bijection on the subset of invertible and positive operators, then this map
preserves absolute continuity in both directions. Despite the existence of
such seemingly unstructured maps, it is still possible to describe all maps
with this weaker preserver property.

2. Technical preliminaries

We say that a bounded linear operator A : H→ H is positive if (Ax |x) ≥
0 holds for all x ∈ H. This notion induces a partial order on B+(H), that
is, A ≤ B if B − A ∈ B+(H). Two positive operators A,B ∈ B+(H) are
said to be singular, A ⊥ B in notation, if the only element C ∈ B+(H)
with C ≤ A and C ≤ B is the zero operator. It turns out that this relation
can be phrased in terms of the ranges of the positive square roots (see [1, p.
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256]):

A ⊥ B ⇐⇒ ranA1/2 ∩ ranB1/2 = {0}. (2.1)

Next, A is said to be B-dominated if there exists a c ≥ 0 such that
A ≤ cB. If A can be approximated by a monotone increasing sequence of
B-dominated operators in the strong operator topology then, we say that
A is B-absolutely continuous, and we write A � B. Observe that this
definition of absolute continuity combined with the Douglas factorization
theorem [2, Theorem 1] yields

A� B =⇒ ranA ⊆ ranB,

however, the converse implication is not true in general (see e.g. [14, Example
3]). A characterization of absolute continuity by means of operator ranges
reads as follows (see [1, Theorem 5]):

A� B ⇐⇒ {x ∈ H : A1/2x ∈ ranB1/2} is dense in H. (2.2)

If B has closed range, then the range-type characterization of absolute con-
tinuity takes a much simpler form:

A� B ⇐⇒ ranA ⊆ ranB, provided that ranB = ranB. (2.3)

In this paper we are going to investigate singularity and absolute continu-
ity preserving bijections. We say that a bijective map ϕ : B+(H)→ B+(H)
preserves absolute continuity in both directions if

A� B ⇐⇒ ϕ(A)� ϕ(B) for all A,B ∈ B+(H).

Similarly, we say that a bijection ϕ : B+(H)→ B+(H) preserves singularity
in both directions if

A ⊥ B ⇐⇒ ϕ(A) ⊥ ϕ(B) for all A,B ∈ B+(H).

To formulate our results, we need some further notation. With calli-
graphic letters we always denote linear (not necessarily closed) subspaces
of H and we use the symbol Lat(H) for the set of all subspaces. A special
subset of Lat(H) formed by operator ranges is denoted by

Latop(H) := {M ⊆ H : ∃ S ∈ B(H), ranS = M}
= {ranA1/2 : A ∈ B+(H)},

where the second identity is due to the range equality

ranS = ran(SS∗)1/2 for all S ∈ B(H). (2.4)

It is known that Latop(H) forms a lattice and that Latop(H) $ Lat(H), for
more information see [4].



132 GYÖRGY PÁL GEHÉR, ZSIGMOND TARCSAY AND TAMÁS TITKOS

For every positive integer n we set Latn(H) and Lat−n(H) to be the set
of all n-dimensional and n-codimensional operator ranges, respectively:

Latn(H) :=
{
M ∈ Latop(H) : dimM = n

}
=

{
M ∈ Lat(H) : dimM = n

}
,

Lat−n(H) :=
{
M ∈ Latop(H) : codimM = n

}
.

Observe also that Lat−n(H) consists of all n codimensional closed subspaces
of H. We use the symbol Bn

+(H) to denote the set of all bounded positive
operators with n dimensional range. We also introduce the following subset
of B+(H) which is associated with an operator range M ∈ Latop(H):

R1/2(M) :=
{
C ∈ B+(H) : ranC1/2 = M

}
.

Note that R1/2(M) is never empty according to (2.4).

3. Main theorem

In this section we state and prove our main result. We give a complete
description of bijections that preserve absolute continuity in both directions,
and of those that preserve singularity in both directions. It turns out that
these maps have the same structure.

Theorem A. Let H be an infinite dimensional complex Hilbert space and
assume that ϕ : B+(H) → B+(H) is a bijective map. Then the following
four statements are equivalent:

(i) ϕ preserves absolutely continuity in both directions,
(ii) ϕ preserves singularity in both directions,
(iii) there exists a bounded, invertible, linear- or conjugate linear operator

T : H→ H such that

ranϕ(A)1/2 = ranTA1/2 for all A ∈ B+(H), (3.1)

(iv) there exists a bounded, invertible, linear- or conjugate linear operator
T : H → H and a family {ZA : A ∈ B+(H)} of invertible positive
operators such that

ϕ(A) = (TAT ∗)1/2ZA(TAT ∗)1/2 for all A ∈ B+(H). (3.2)

Proof. (i)=⇒(ii): Notice that (i) implies ϕ(0) = 0, since 0 is the only
element in B+(H) which is B-absolutely continuous for all positive operator
B. Moreover, it is easy to see that we have A ∈ B1

+(H) if and only if

{C ∈ B+(H) : C � A,A 6� C} = {0},
hence ϕ(B1

+(H)) = B1
+(H). Assume that ϕ satisfies (i) but not (ii), hence

there exist A,B ∈ B+(H) such that A ⊥ B but ϕ(A) 6⊥ ϕ(B). In particular,
this means that there exists a non-zero vector f ∈ H such that f⊗f ≤ ϕ(A)
and f ⊗ f ≤ ϕ(B), and hence

f ⊗ f � ϕ(A) and f ⊗ f � ϕ(B).
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Since f ⊗ f = ϕ(e⊗ e) holds with some non-zero vector e ∈ H, we obtain

e⊗ e� A and e⊗ e� B.

But this implies e ∈ ranA1/2 ∩ ranB1/2, hence A 6⊥ B, which is a contradic-
tion.

(ii)=⇒(iii): The first step is to reformulate the singularity preserving
property in terms of operator ranges. For any positive operator A we define
the set

A⊥ := {C ∈ B+(H) : C ⊥ A}.
From (2.1) it follows easily that

A⊥ = B⊥ ⇐⇒ ranA1/2 = ranB1/2 for all A,B ∈ B+(H).

Consequently, ϕ satisfies

ranA1/2 = ranB1/2 ⇐⇒ ranϕ(A)1/2 = ranϕ(B)1/2 (3.3)

for all A,B ∈ B+(H). We introduce the following map:

Φ : Latop(H)→ Latop(H), Φ(ranA1/2) := ranϕ(A)1/2,

which is obviously well-defined and bijective. From (2.1) and (3.3) it is
immediate that Φ preserves “zero intersection” in both directions, i.e.,

M ∩N = {0} ⇐⇒ Φ(M) ∩ Φ(N) = {0}.

Next, our task is to understand Φ. We can easily see that M ⊆ N if and
only if

{K ∈ Latop(H) : K ∩N = {0}} ⊆ {K ∈ Latop(H) : K ∩M = {0}} ,

and thus Φ preserves inclusion in both directions:

M ⊆ N ⇐⇒ Φ(M) ⊆ Φ(N). (3.4)

In particular this implies that Φ({0}) = {0} and Φ(H) = H. Notice that
we have

dimM = 1 ⇐⇒ {N ∈ Latop(H) : N ⊆M} = {{0},M} ,

hence the restriction Φ|Lat1(H) is a bijection of Lat1(H) onto itself. Similarly,
we have

dimM = 2 ⇐⇒
{
N : N $ M

}
⊆ Lat1(H) ∪

{
{0}
}
,

therefore Φ|Lat2(H) : Lat2(H) → Lat2(H) is also a bijection. Combining
these observations, we conclude that Φ|Lat1(H) is a projectivity, that is, Φ
maps any three coplanar elements to coplanar elements. Therefore the fun-
damental theorem of projective geometry (see e.g. [3]) can be applied: there
exists a semilinear bijection T : H→ H such that

Φ(M) = T (M), for all M ∈ Lat1(H).
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Now, we examine how Φ acts on a general M ∈ Latop(H) \ {0}. By the
above properties, for all N ∈ Lat1(H) and M ∈ Latop(H) we have

N ⊆M ⇐⇒ T (N) ⊆ Φ(M)

and

M ∩N = {0} ⇐⇒ T (N) ∩ Φ(M) = {0}.
Therefore, for all M ∈ Latop(H) \ {0} we have

Φ(M) =
⋃

T (N)⊆Φ(M),
T (N)∈Lat1(H)

T (N) =
⋃

N⊆M,
N∈Lat1(H)

T (N) = T

 ⋃
N⊆M,

N∈Lat1(H)

N

 = T (M),

hence, by the definition of Φ and T we obtain that

ϕ[R1/2(M)] = R1/2(T (M)) for all M ∈ Latop(H).

All that remains is to prove that the semilinear map T is either linear- or
conjugate linear, and bounded. It is immediate that T and T−1 map one-
codimensional linear manifolds into one-codimensional ones. Furthermore,
a finite codimensional subspace of H is an operator range if and only if it is
closed, so we infer that T maps Lat−1(H) onto Lat−1(H). Since H is infinite
dimensional, we can use [8, Lemma 2 and its Corollary] to conclude that T
is either linear- or conjugate linear. Finally, to show that T is bounded it
suffices to prove that y∗ ◦ T is bounded for every bounded linear functional
y∗ ∈ H∗. Suppose first that T is linear. Since T maps Lat−1(H) onto
Lat−1(H), there is x∗ ∈ H∗ such that ker y∗ = T (kerx∗). Consequently,
kerx∗ = ker(y∗ ◦T ), which implies y∗ ◦T = λx∗ for some λ, and hence y∗ ◦T
is bounded. A very similar approach applies when T is conjugate linear.

(iii)=⇒(iv): First, assume that T is linear. Then by (2.4) we obtain

ranϕ(A)1/2 = ranTA1/2 = ran(TAT ∗)1/2 for all A ∈ B+(H). (3.5)

Hence by [4, Corollary 1 on p.259] we have ϕ(A)1/2 = (TAT ∗)1/2XA with
some invertible operator XA ∈ B(H). Therefore (3.2) clearly holds with
ZA = XAX

∗
A.

Assume now that T is conjugate linear. Consider an arbitrary antiunitary
operator U : H→ H. Then

ranϕ(A)1/2 = ranTA1/2 = ranTA1/2U = ran(TAT ∗)1/2

for all A ∈ B+(H), where in the last step we used (2.4) for the linear

bounded operator TA1/2U . From here we finish the proof as in the linear
case.

(iv)=⇒(i): By (2.4) we have

ranϕ(A)1/2 = ran(TAT ∗)1/2Z
1/2
A = ran(TAT ∗)1/2

= ranTA1/2 = ranTA1/2T ∗
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for all A ∈ B+(H). Thus by [4, Corollary 1 on p.259], there exists an
invertible operator YA ∈ B(H) such that

ϕ(A)1/2 = TA1/2T ∗YA.

If we introduce the notation DA,B := {x ∈ H : A1/2x ∈ ranB1/2} for every
pair A,B ∈ B+(H), then an immediate calculation shows that

Dϕ(A),ϕ(B) = (T ∗YA)−1(DA,B)

from which it follows that DA,B is dense if and only if Dϕ(A),ϕ(B) is dense.
By (2.2) this implies (i). �

4. The finite dimensional case

If dimH <∞, then Lat(H) = Latop(H), every operator has closed range,

and ranA = ranA1/2 holds for all A ∈ B+(H). Therefore the notions
of absolute continuity and singularity simplify considerably. In particular,
the characterization (2.3) of absolute continuity is valid for every pair A,B
of positive operators. Similarly, the range characterization of singularity
reduces to

A ⊥ B ⇐⇒ ranA ∩ ranB = {0}.
Furthermore, we have R1/2(M) = {C ∈ B+(H) : ranC = M} for all
M ∈ Lat(H). Therefore the finite dimensional version of Theorem A can
be proved much more easily using the fundamental theorem of projective
geometry provided that dimH > 2. However, we point out that the result
we get is slightly different, as T is not necessarily linear- or conjugate linear
anymore. We omit the proof.

Theorem A. Let H be a complex Hilbert space such that 3 ≤ dimH < +∞
and let ϕ : B+(H) → B+(H) be a bijective map. Then the following three
statements are equivalent:

(i) ϕ preserves absolutely continuity in both directions,
(ii) ϕ preserves singularity in both directions,
(iii) there is a semilinear bijection T : H→ H such that

ranϕ(A) = ranTA for all A ∈ B+(H).

Finally, in case when dimH = 2, the fundamental theorem of projective
geometry cannot be applied. However, one can prove easily that points (i)
and (ii) are both equivalent with the following condition:

(iii’) ϕ(0) = 0, ϕ maps the set of all invertible positive operators bijec-
tively onto itself, and there is a bijection Ψ: Lat1(H) → Lat1(H)
such that

ranϕ(A) = Ψ(ranA) for all A ∈ B1
+(H).
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