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On the motive of Quot schemes of
zero-dimensional quotients on a curve

Massimo Bagnarol, Barbara Fantechi
and Fabio Perroni

Abstract. For any locally free coherent sheaf on a fixed smooth pro-
jective curve, we study the class, in the Grothendieck ring of varieties,
of the Quot scheme that parametrizes zero-dimensional quotients of the
sheaf. We prove that this class depends only on the rank of the sheaf
and on the length of the quotients. As an application, we obtain an
explicit formula that expresses it in terms of the symmetric products of
the curve.
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1. Introduction

Let C be a smooth projective curve over an algebraically closed ground
field k, and let E be a locally free sheaf of rank r on C. For any n ∈ Z>0,
let QuotnC/k(E) be the Quot scheme which parametrizes coherent quotients
of E with finite support and n-dimensional space of global sections. This
Quot scheme is a smooth projective k-variety, and it follows easily from its
definition that for any invertible sheaf L on C there is a natural isomorphism
QuotnC/k(E) ∼= QuotnC/k(E ⊗ L); in particular, if r = 1, QuotnC/k(E) is iso-
morphic to QuotnC/k(OC). In the case where r > 1, the isomorphism class
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of QuotnC/k(E) depends on E, as one already sees when n = 1, in which case
Quot1

C/k(E) is isomorphic to P(E), the projective space bundle associated to
E (see Section 2.3). Our aims are to study the class of QuotnC/k(E) (where
r ≥ 2) in the Grothendieck ring of k-varieties and to compute it in terms of
the classes [Symm(C)], m ≥ 0. In particular, we prove the following result.

Main Theorem. Under the previous hypotheses, the equality

[QuotnC/k(E)] = [QuotnC/k(O
⊕r
C )]

holds true in the Grothendieck ring K0(Var) of k-varieties.

Over the field of complex numbers C, this theorem has been recently
extended by Ricolfi to quasi-projective smooth varieties of any dimension
[Ric19]. His proof relies on the theory of power structures, while ours is
more elementary and self-contained.

The results of this paper were applied by the first author to the study of
the Betti and Hodge numbers of moduli spaces of genus 0 stable maps to
Grassmannians [Bag19].

Organization of the paper. In Section 2 we present some well-known
facts about Quot schemes on smooth projective curves. In particular, in §2.1
we recall the existence of a natural morphism σ : QuotnC/k(E) → Symn(C),
which we describe explicitly in §2.2. Finally, in §2.3 we consider Quot1

C/k(E),
and we show that, in general, it is not isomorphic to Quot1

C/k(O
⊕r
C ).

A more detailed study of the morphism σ is the subject of Section 3, where
we show that the fibers of σ only depend (up to isomorphism) on the rank
of the locally free sheaf E.

Section 4 contains the proof of our main theorem. As an application, we
explicitly compute [QuotnC/k(E)] ∈ K0(Var) and we prove that QuotnC/k(E) is
irreducible.

Acknowledgements. Part of the paper was written while the third au-
thor was visiting Fudan University (Shanghai) and he would like to thank
Prof. Meng Chen for the invitation and hospitality.

2. Notations and basic results

In this section, we recall some basic results that are relevant for us and
we fix the notation. For the proofs and for more details we refer to [Gro61].
Throughout the paper, we work over an algebraically closed ground field k.
By a variety we mean a reduced separated scheme of finite type over k, not
necessarily irreducible.

Let X be a projective scheme. Let OX(1) be a very ample line bundle
on X, let P ∈ Q[t] be a polynomial with rational coefficients, and let F be
a coherent sheaf on X. We denote by QuotPX/k(F) the Quot scheme that
parametrizes coherent quotients of F with Hilbert polynomial P . Let us
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recall that QuotPX/k(F) is a projective scheme, which represents the con-
travariant functor that associates to any locally noetherian scheme S the set
of isomorphism classes of S-flat coherent quotients q : FS → H, such that the
Hilbert polynomial of Hs is equal to P , for all s ∈ S. Here, FS (respectively
Hs) is the pullback of F to S×kX under the projection onto the second factor
(respectively the pullback of H to Xs). In particular, the identity morphism
of QuotPX/k(F) corresponds to the universal quotient u : FQuotPX/k(F) → Q.

A similar result holds true if X is replaced by a quasi-projective scheme
U . In this case, one defines a functor as before, with the additional require-
ment that H has proper support over S. Then, this functor is representable
by a quasi-projective scheme QuotPU/k(F). The relation between the two
constructions is given by the following result (see also [Nit05]).

Theorem 2.1. Let X and F be as before, and let U ⊆ X be an open sub-
scheme. Then QuotPU/k(F|U ) is naturally an open subscheme of QuotPX/k(F).

Now, let us consider the case where P is a constant polynomial equal to
n ∈ Z>0. Then QuotnX/k(F) parametrizes coherent quotients of F with finite
support and such that the dimension of the space of sections is equal to n.
Therefore, QuotnX/k(F) is independent of OX(1).

In this paper, the main object of study is QuotnC/k(E), where C is a smooth
projective curve and E is locally free.

Notation. Throughout the article, QuotnC/k(E) will be denoted by Qn
C(E).

Accordingly, the corresponding universal quotient on Qn
C(E) × C will be

denoted by u : EQn
C(E) → Q. Whenever U ⊆ X is an open subscheme, we

will write Qn
U (E) for the Quot scheme QuotnU/k(E|U ), and u0 : EQn

U (E) → Q0

for its universal quotient.

Let us first recall the following fact.

Lemma 2.2. Let C be a smooth projective curve, and let E be a locally free
coherent sheaf of rank r on C. Then Qn

C(E) is a smooth variety of dimension
nr.

Proof. Let [q : E → H] be a k-rational point of Qn
C(E). Since the support

of H is 0-dimensional, we have that

Ext1(ker(q),H) ∼= H1(C, ker(q)∨ ⊗H) = 0 .

The smoothness now follows from [HL10, Prop. 2.2.8]. Moreover, the dimen-
sion coincides with that of the Zariski tangent space at the point [q : E→ H],
which is equal to dim H0(C, ker(q)∨ ⊗H) = nr. �

As a consequence of Theorem 2.1 and Lemma 2.2, Qn
U (E) is a smooth

quasi-projective variety, for any U ⊆ C open.

Remark 2.3. We will prove in Corollary 4.7 that, under the above hypotheses,
Qn
C(E) is irreducible.
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2.1. The morphism σ. In the proof of the Main Theorem we will use the
morphism NX/k defined in [Gro61, §6], which will be denoted by σ in this
article. The following result is a special case of Grothendieck’s construction.

Proposition 2.4. Let F be a coherent sheaf on C. Then there exists a
canonical morphism σ : Qn

C(F) → Symn(C) that maps any k-rational point
[q : F → H] to the effective divisor

div(H) :=
∑
p∈C

dimk(Hp) p ,

where Hp is the stalk of H at p.

Remark 2.5. If U ⊆ C is open, then σ−1(Symn(U)) can be naturally identi-
fied with Qn

U (E). Hereafter, the morphism induced by σ will be denoted by
σU : Qn

U (E)→ Symn(U).

When E = OC , Qn
U (OC) = HilbnU/k and this morphism is the Hilbert-

Chow morphism ρU : HilbnU/k → Symn(U) of [FG05]. Notice that ρU is an
isomorphism. Therefore, for any E, σU factors through ρU via the morphism
τU := ρ−1

U ◦ σU : Qn
U (E)→ HilbnU/k.

2.2. Explicit construction of τU . For later use, we provide here an ex-
plicit construction of τU .

Let us consider the universal quotient u0 : EQn
U (E) → Q0 associated to

Qn
U (E). If K = ker(u0) and ι : K → EQn

U (E) is the inclusion, then we have
the short exact sequence

0→ K
ι−→ EQn

U (E)
u0−→ Q0 → 0 .

Since both EQn
U (E) and Q0 are flat over Qn

U (E), K is flat over Qn
U (E) too.

Moreover, the restriction of K to Uq is locally free, for all q ∈ Qn
U (E). It

follows that K is a locally free sheaf of rank r = rk(E).
Let ∧r(ι) : ∧r(K) → ∧r(EQn

U (E)) be the r-th exterior power of ι. By
tensoring it with ∧r(EQn

U (E))
∨, we get a short exact sequence

0→ ∧r(K)⊗ ∧r(EQn
U (E))

∨ → OQn
U (E)×U → G→ 0 .

Notice that G is flat over Qn
U (E), since OQn

U (E)×U is Qn
U (E)-flat and ∧r(ι)

remains injective when restricted to every fiber (see [Mat80], Thm. 49 and
its corollaries). Moreover, the Hilbert polynomial of the restriction of G to
every fiber is equal to n; indeed, the elementary divisor theorem for PIDs
implies that the restriction of G to every fiber is isomorphic to the restriction
of Q0 to the same fiber. Therefore, the quotient OQn

U (E)×U → G corresponds
to a morphism Qn

U (E)→ HilbnU/k, which is exactly the morphism τU defined
in Section 2.1.
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2.3. The case n = 1. The following result should be well known, but we
include it here for lack of a suitable reference.
Proposition 2.6. The Quot scheme Q1

C(E) is isomorphic to the projective
space bundle P(E).
Proof. In order to simplify the notation, let us denote Q1

C(E) by Q, and the
universal quotient over Q× C by u : EQ → Q.

Let σ : Q → C be as in Section 2.1, and let ϕ = (idQ, σ) : Q → Q × C
be the morphism with components the identity of Q and σ, respectively.
Then the pullback of u via ϕ gives a quotient ϕ∗u : ϕ∗EQ → ϕ∗Q. Notice
that ϕ∗Q⊗ k(q) ∼= k(q) for any q ∈ Q (where k(q) is the residue field of q),
therefore ϕ∗Q is locally free of rank 1. Since ϕ∗EQ = σ∗E, by [Har77, Prop.
7.12] we obtain a morphism ψ : Q→ P(E).

On the other hand, let π : P(E) → C be the projection associated to E,
and let π∗E → L be the universal quotient over P(E). Let us consider the
subscheme ∆̃ ⊂ P(E) × C whose structure sheaf is (π × idC)∗O∆, where
π × idC : P(E) × C → C × C is the morphism with components π and
the identity of C respectively, and ∆ ⊂ C × C is the diagonal. The tensor
product of the quotient OP(E)×C → O∆̃ with the sheaf EP(E) gives a surjection
q : EP(E) → EP(E) ⊗ O∆̃.

If pr1 : P(E) × C → P(E) is the projection, then there is an isomorphism
EP(E) ⊗ O∆̃

∼= (pr1)∗π∗E ⊗ O∆̃. Therefore, we can compose q with the mor-
phism (pr1)∗π∗E⊗O∆̃ → (pr1)∗L⊗O∆̃, and we obtain a surjective morphism
EP(E) → (pr1)∗L⊗O∆̃. Since (pr1)∗L⊗O∆̃ is flat over P(E) and has constant
Hilbert polynomial 1, this surjection corresponds to a morphism P(E)→ Q,
which is the inverse of ψ by construction. �

We conclude this section with the following result, from which we deduce
that in general Qn

C(E) depends on E, if rk(E) ≥ 2.
Proposition 2.7. Let E and E′ be two locally free coherent OC-modules of
the same rank r ≥ 2. Assume that one of the following conditions holds true:

(i) the genus of C is greater than or equal to 1;
(ii) r > 2.

Then Q1
C(E) ∼= Q1

C(E′) if and only if there exists an automorphism ψ of C
and an invertible sheaf L on C, such that E′ ∼= ψ∗E⊗ L.
Proof. First, assume that Q1

C(E) ∼= Q1
C(E′). By Proposition 2.6, we thus

have an isomorphism ϕ : P(E′) ∼−→ P(E). Let us denote the projections of
these bundles by π : P(E) → C and π′ : P(E′) → C. Under the hypothesis
(i) or (ii), the morphism π ◦ ϕ : P(E′) → C is constant on the fibers of π′.
Therefore, there exists an automorphism ψ of C such that the diagram

P(E′) P(E)

C C

ϕ

π′ π

ψ
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commutes. Since there is also a cartesian diagram

P(ψ∗E) P(E)

C C

∼=

p π

ψ

(1)

where p is the canonical projection, it follows that π′ : P(E′) → C and
p : P(ψ∗E) → C are isomorphic over C. By [Har77, §2.7, Exer. 7.9], we
deduce that E′ ∼= ψ∗E⊗ L for some invertible sheaf L on C.

The inverse implication directly follows from [Har77, §2.7, Exer. 7.9] and
the diagram (1). �

3. The fibers of σ

In this section we describe the fibers of the morphism σ introduced in
Section 2.1 (analogous results in higher dimension have been obtained in
[BF08], [BR18] and [Ric18]). Throughout the section, C denotes a smooth
projective curve over k and E is a coherent locally free OC-module of rank r.

Proposition 3.1. The fiber of the morphism σ : Qn
C(E) → Symn(C) over

a point D ∈ Symn(C) is isomorphic to the fiber of the analogous morphism
Qn
C(O⊕rC )→ Symn(C) over the same point.

Proof. From Remark 2.5 we have that σ−1(Symn(U)) depends only on E|U ,
for any U ⊆ C open. Then the proposition follows from the fact that for any
D ∈ Symn(C), there exists an open subset U ⊆ C such that D ∈ Symn(U)
and E|U is trivial.

In order to see this, let V be an open affine subset of C, such that
D ∈ Symn(V ). Then, by [Ser58, Thm. 1], E|V ∼= O

⊕(r−1)
V ⊕ L, where

L is an invertible OV -module. Let us consider the short exact sequence
0→ L(−D)→ L→ L⊗ OD → 0, and the associated exact cohomology se-
quence, 0 → H0(V,L(−D)) → H0(V,L) → H0(V,L ⊗ OD) → 0. We deduce
that there exists s ∈ H0(V,L) such that s(x) 6= 0, for all x ∈ Supp(D). Hence
L (and consequently E) is trivial on the open set U = V \{x : s(x) = 0}. �

Definition 3.2. For any p ∈ C, let us define Fn,r(p) := σ−1(np). More
generally, for any D ∈ Symn(C), we define Fr(D) := σ−1(D).

Proposition 3.3. Let D = a1p1 + . . .+ ampm ∈ Symn(C), with p1, . . . , pm
pairwise distinct. Then

Fr(D) ∼= Fa1,r(p1)× · · · × Fam,r(pm) .

Proof. There is a natural morphism Fr(D) → Fa1,r(p1) × · · · × Fam,r(pm),
which is defined in the following way on k-rational points. For any quotient
[q : E → H] in Fr(D), we have a splitting H = ⊕mi=1Hpi , where Hpi is a
skyscraper sheaf on C, which is supported in {pi}. Therefore q = ⊕mi=1qi,
with qi : E → Hpi . Then the point [q : E → H] ∈ Fr(D) is mapped to
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[q1 : E→ Hp1 ]× · · · × [qm : E→ Hpm ] ∈ Fa1,r(p1)× · · · ×Fam,r(pm). Clearly
this is an isomorphism. �

4. The class of Qn
C(E) in K0(Var)

In this section we prove our main theorem.

Theorem 4.1. Let C be a smooth projective curve over k. Let E be a co-
herent locally free OC-module of rank r. Then, for any non-negative integer
n, the equality

[Qn
C(E)] = [Qn

C(O⊕rC )]

holds true in the Grothendieck group K0(Var) of k-varieties.

The proof will be divided into several steps.

Step 1. In order to make the proof clearer, we first fix our notation (see
also Section 2). Let U ⊆ C be a fixed open subset such that E|U ∼= O⊕rU , and
let C \ U = {p1, . . . , pN}. Then Symn(C) is the set-theoretic disjoint union
of the locally closed subsets

Za := {E ∈ Symn(C) | Supp(E − a1p1 − . . .− aNpN ) ⊂ U} ,

for a ∈ A := {(a1, . . . , aN ) ∈ NN | a1 + . . .+ aN ≤ n}. Notice that

Za
∼= Symn−|a|(U) ,

where |a| := a1 + · · ·+ aN .
For any a ∈ A, we denote by Qa(E) the preimage of Za under the mor-

phism σ : Qn
C(E) → Symn(C) of Section 2.1, with the reduced subscheme

structure.

Remark 4.2. Using the relations in the Grothendieck group of varieties, the
decomposition of Qn

C(E) into its locally closed subsets Qa(E) yields the equal-
ity

[Qn
C(E)] =

∑
a∈A

[Qa(E)]

in K0(Var).

Finally, we denote by D the divisor a1p1 + · · · + aNpN ∈ Sym|a|(C) cor-
responding to a ∈ A. Associated to this effective divisor we have the fiber
Fr(D) ⊂ Q

|a|
C (E), as in Definition 3.2.

Step 2. The core of our proof is the following proposition.

Proposition 4.3. For any a ∈ A, there is a natural isomorphism

Qa(E) ∼−→ Q
n−|a|
U (E)× Fr(D) .
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The idea behind this proposition is that any quotient of E in Qa(E) can
be obtained by glueing a quotient supported in U and a quotient supported
on {p1, . . . , pN}.

Before proving Proposition 4.3 in Step 3, we need the following result in
order to define the morphism Qa(E)→ Q

n−|a|
U (E).

Lemma 4.4. Let Q be the universal quotient associated to Qn
C(E), and let

i : U × Qa(E) ↪→ C × Qn
C(E) be the inclusion. For any a ∈ A, the support

Supp(i∗Q) is proper over Qa(E).

Proof. We shall apply the valuative criterion of properness to the restriction
ϕ : Supp(i∗Q) → Qa(E) of the projection U × Qa(E) → Qa(E). So, let R
be a valuation ring, and let K be its quotient field. Assume we are given a
commutative diagram

Spec(K) Supp(i∗Q)

Spec(R) Qa(E)

ϕ

where Spec(K)→ Spec(R) is induced by the inclusion R ↪→ K.
Since Supp(i∗Q) ⊂ C ×Qa(E) and C ×Qa(E) is proper over Qa(E), there

is a unique morphism ψ : Spec(R)→ C ×Qa(E) such that the diagram

Spec(K) Supp(i∗Q) C ×Qa(E)

Spec(R) Qa(E)

ϕ
ψ

commutes. The claim follows, if we prove that the image of ψ is contained
in U ×Qa(E).

Let us consider the composition

ψ′ : Spec(R)
ψ−→ C ×Qa(E)

idC ×(τ |Qa(E))−−−−−−−−−→ C × ρ−1(Za) ,

where τ : Qn
C(E) → HilbnC/k is the morphism defined in Section 2.1. The

universal ideal sheaf of HilbnC/k restricted to C × ρ−1(Za) is of the form
OC×ρ−1(Za)(−D−D′), for D = a1{p1}× ρ−1(Za) + . . .+ aN{pN}× ρ−1(Za)

and D′ an effective Weil divisor (notice that C × ρ−1(Za) is smooth), such
that D ∩D′ = ∅. Since the image of the composition

Spec(K)→ Supp(i∗Q) ↪→ C ×Qa(E)
idC ×(τ |Qa(E))−−−−−−−−−→ C × ρ−1(Za)

is contained in Supp(D′) ⊂ U ×ρ−1(Za), the same holds for the image of ψ′.
Therefore, the image of ψ lies in U ×Qa(E), as claimed. �
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Step 3. Using Lemma 4.4, we can now prove Proposition 4.3.

Proof of Proposition 4.3. As above, let u : EQn
C(E) → Q be the universal

quotient associated to Qn
C(E), and let i : U × Qa(E) ↪→ C × Qn

C(E) be the
inclusion. By Lemma 4.4, the quotient i∗u : i∗(EQn

C(E)) → i∗Q yields a

natural morphism f0 : Qa(E)→ Q
n−|a|
U (E).

In order to define a morphism f∞ : Qa(E) → Fr(D), let us consider the
open neighbourhood (C×Qa(E))\Supp(i∗Q) of ∪Nλ=1{pλ}×Qa(E), together
with its inclusion j into C×Qa(E). By composing the pullback of u to Qa(E)
with the unit of the adjunction j∗ a j∗, we get a surjective morphism

q : EQa(E) → QQa(E) → j∗j
∗(QQa(E))

of coherent OC×Qa(E)-modules. Notice that j∗j∗(QQa(E)) has constant Hilbert
polynomial |a|, hence it is flat over Qa(E). Therefore, q is associated to a
natural morphism Qa(E) → Q

|a|
C (E), whose image is contained in Fr(D).

Thus we obtain a morphism f∞ : Qa(E) → Fr(D), and the morphism in
Proposition 4.3 is (f0, f∞).

To prove that (f0, f∞) is an isomorphism, we exhibit its inverse, as follows.
Let u0 : E

Q
n−|a|
U (E)

→ Q0 be the universal quotient of Q
n−|a|
U (E), and let

u∞ : EFr(D) → Q∞ be the pullback of the universal quotient of Q
|a|
C (E)

to C × Fr(D) ⊂ C × Q
|a|
C (E). In the following, we view u0 as a family

of quotients of E supported in U (see Lemma 2.1 above). Let us denote
the projections by pr12 : C × Q

n−|a|
U (E) × Fr(D) → C × Q

n−|a|
U (E) and

pr13 : C ×Q
n−|a|
U (E)× Fr(D)→ C × Fr(D). Then

(pr12)∗u0 ⊕ (pr13)∗u∞ : E
Q

n−|a|
U (E)×Fr(D)

→ (pr12)∗Q0 ⊕ (pr13)∗Q∞

is precisely a family of quotients of E, parametrized by Q
n−|a|
U (E) × Fr(D),

with constant Hilbert polynomial equal to n. The associated morphism
Q
n−|a|
U (E)× Fr(D)→ Qn

C(E) is the inverse morphism of (f0, f∞). �

Step 4. We can finally conclude the proof of Theorem 4.1.
By Remark 4.2 and Proposition 4.3, we have the following equalities in

K0(Var):

[Qn
C(E)] =

∑
a∈A

[Qa(E)] =
∑
a∈A

[Qn−a
U (E)][Fr(D)] .

In particular, this is true also for E = O⊕rC .
Now, E|U is trivial, therefore [Qn−a

U (E)] = [Qn−a
U (O⊕rC )]. Theorem 4.1 thus

follows from Proposition 3.1.

4.1. Explicit computation. We provide an explicit formula for the class
[Qn

C(E)] ∈ K0(Var) in terms of the classes [Symm(C)].
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Proposition 4.5. For any non-negative integer n, the equality

[Qn
C(E)] =

∑
n∈Nr, |n|=n

[Symn1(C)] · . . . · [Symnr(C)] · [A1
k]
dn

holds true in K0(Var), where dn :=
∑r

i=1(i− 1)ni.

Proof. From Theorem 4.1 we have that [Qn
C(E)] = [Qn

C(O⊕rC )]. Then the
result follows directly from [Bif89]. �

Remark 4.6. From the previous formula we can determine the Poincaré poly-
nomial of Qn

C(E) (for `-adic cohomology, where ` 6= char(k) is a prime) as fol-
lows (cf. also [BGL94]). By [Mac62], the Poincaré polynomial P (Symm(C); t)
of Symm(C) is the coefficient of um in the expansion of

(1 + tu)2g

(1− u)(1− t2u)
,

where g is the genus of C. Then, for E(t, u) :=
∑∞

n=0 P (Qn
C(E); t)un, we

have:

E(t, u) =

∞∑
n=0

∑
n∈Nr, |n|=n

P (Symn1(C); t) · · ·P (Symnr(C); t) t2dnun

=
∑
n∈Nr

r∏
i=1

P (Symni(C); t)unit2(i−1)ni

=

r−1∏
i=0

(1 + t2i+1u)2g

(1− t2iu)(1− t2i+2u)
.

Corollary 4.7. The Quot scheme Qn
C(E) is irreducible.

Proof. Since Qn
C(E) is smooth, it suffices to show that the coefficient of

t0 in the Poincaré polynomial of Qn
C(E) is 1. To this aim, notice that, for

any n ∈ Nr with |n| = n, we have that dn =
∑r

i=1(i − 1)ni = 0 only for
n = (n, 0, . . . , 0). The claim now follows from Proposition 4.5. �
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