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The fundamental operator tuples
associated with the symmetrized polydisc

Bappa Bisai and Sourav Pal

Abstract. A commuting tuple of operators (S1, . . . , Sn−1, P ), defined
on a Hilbert space H, for which the closed symmetrized polydisc is a
spectral set, is called a Γn-contraction. To every Γn-contraction, there
is a unique operator tuple (A1, . . . , An−1), defined on Ran(I − P ∗P ),
such that

Si − S∗
n−iP = DPAiDP , DP = (I − P ∗P )

1
2 , i = 1, . . . , n− 1.

This is called the fundamental operator tuple or FO-tuple associated with
the Γn-contraction. The FO-tuple of a Γn-contraction completely deter-
mines the structure of a Γn-contraction and provides operator model
and complete unitary invariant for them. In this note, we analyze
the FO-tuples and find some intrinsic properties of them. Given a
Γn-contraction (S1, . . . , Sn−1, P ) and n − 1 operators A1, . . . , An−1 de-

fined on RanDP , we provide a necessary and sufficient condition under
which (A1, . . . , An−1) becomes the FO-tuple of (S1, . . . , Sn−1, P ). Also
for given tuples of operators (A1, . . . , An−1) and (B1, . . . , Bn−1), defined
on a Hilbert space E, we find a necessary condition and a sufficient con-
dition under which there exist a Hilbert space H and a Γn-contraction
(S1, . . . , Sn−1, P ) on H such that (A1, . . . , An−1) becomes the FO-tuple
of (S1, . . . , Sn−1, P ) and (B1, . . . , Bn−1) becomes the FO-tuple of the
adjoint (S∗

1 , . . . , S
∗
n−1, P

∗).
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1. Introduction and preliminaries

The symmetrized n-disk or simply the symmetrized polydisc

Γ◦n = Gn =


 ∑

1≤i≤n
zi,

∑
1≤i<j≤n

zizj , . . . ,
n∏

i=1

zi

 : |zi| < 1, i = 1, . . . , n


is a polynomially convex but non-convex domain which has attracted con-
siderable attentions in past two decades because of its rich function theory,
complex geometry, operator theory and its connection with the appealing
and difficult problem of µ-synthesis. We mention here only a few of the
numerous references that are relevant to the operator theory on the sym-
metrized polydisc of several dimensions, [1, 2, 8, 5, 6, 7, 9, 10, 11, 12, 14, 15].
An interested reader can also see the references there. A tuple of commut-
ing operators (S1, . . . , Sn−1, P ) defined on a complex Hilbert space H is said
to be a Γn-contraction if Γn is a spectral set for (S1, . . . , Sn−1, P ), i.e., if
the Taylor joint spectrum σT (S1, . . . , Sn−1, P ) ⊆ Γn and the von Neumann
inequality

‖f(S1, . . . , Sn−1, P )‖ ≤ ‖f‖∞,Γn = sup
(z1,...,zn)∈Γn

|f(z1, . . . , zn)|

holds for all rational functions f with singularities off Γn. It was shown
by the second named author of this article ([12], Theorem 3.3) that to
every Γn-contraction (S1, . . . , Sn−1, P ), there is a unique operator tuple
(A1, . . . , An−1) such that

Si − S∗n−iP = DPAiDP , for each i = 1, . . . , n− 1.

For its pivotal role in deciphering the structure of a Γn-contraction [11], pro-
ducing an operator model and constituting a complete unitary invariant for
Γn-contractions [5, 6, 12, 13, 14] (A1, . . . , An−1) is called the fundamental
operator tuple or the FO-tuple of (S1, . . . , Sn−1, P ).

There are three main results in this paper. First, Theorem 2.1 pro-
vides a necessary and sufficient condition under which an operator tuple
(A1, . . . , An−1) becomes the FO-tuple of a given Γn-contraction. A natural
question arises; given two tuples of operators (A1, . . . , An−1) and (B1, . . . ,
Bn−1) defined on some certain Hilbert spaces, does there exist a Γn-contracti-
on (S1, . . . , Sn−1, P ) such that (A1, . . . , An−1) becomes the FO-tuple of (S1,
. . . , Sn−1, P ) and (B1, . . . , Bn−1) becomes the FO-tuple of its adjoint (S∗1 , . . . ,
S∗n−1, P

∗) ? We answer this question in Lemma 3.1 and Theorem 3.4 by
finding separately a necessary condition and a sufficient condition. This
is considered to be the second main result of this paper. In [14], it was
shown that the commutators [A∗i , Aj ], where [P,Q] = PQ − QP , are the
key ingredients in representing the distinguished varieties in Γn. Also in
[12] and [13], we have seen that the same commutators determined the
conditional dilation on Γn and produced a complete unitary invariant for
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C.0 Γn-contractions. In this article, we choose a couple of Γn-contractions
(S1, . . . , Sn−1, P ), (S′1, . . . , S

′
n−1, P ) instead of taking only one Γn-contraction

and study the commutators [Ai, A
′
j ], [A

∗
i , A

′
j ] and also [Ai, Aj ], [A

∗
i , Aj ], where

(A′1, . . . , A
′
n−1) is the FO-tuple of the Γn-contraction (S′1, . . . , S

′
n−1, P ). As

a consequence, we obtain a few new interrelations between a pair of Γn-
contractions and their FO-tuples which are presented in the third main re-
sult Theorem 2.9 and its corollaries. En route we find few more interesting
properties of the FO-tuple of a Γn-contraction. Our results on one hand gen-
eralize the existing similar results for Γ2-contractions [4], and on the other
hand reflect new light on the possibility of extending operator theory from
Γ2 to Γn for n > 2. Indeed, there are notable major differences in operator
theory when we move from 2 to higher dimensions and the main underly-
ing reason is that rational dilation succeeds on the symmetrized n-disk for
n = 2, ([5]) but fails for n ≥ 3 ([13]).

Note. The arxiv (https://arxiv.org/archive/math) reference [14] has been
split into several parts for publications and the present article is one of them.

2. Properties of the fundamental operator tuples (FO-tuples)

We begin this section with a necessary and sufficient condition under which
a tuple of operator becomes the FO-tuple of a Γn-contraction. This is one
of the main results of this paper.

Theorem 2.1. A tuple of operators (A1, . . . , An−1) defined on DP is the
FO-tuple of a Γn-contraction (S1, . . . , Sn−1, P ) if and only if (A1, . . . , An−1)
satisfy the following operator equations in X1, . . . , Xn−1:

DPSi = XiDP +X∗n−iDPP , i = 1, . . . , n− 1.

Proof. First let (A1, . . . , An−1) be the FO-tuple of (S1, . . . , Sn−1, P ). Then

Si − S∗n−iP = DPAiDP for i = 1, . . . , n− 1.

Now

DP (AiDP +A∗n−iDPP ) = (Si − S∗n−iP ) + (S∗n−i − P ∗Si)P
= (I − P ∗P )Si

= D2
PSi.

Therefore, if J = DPSi − AiDP − A∗n−iDPP then J : H → DP and also
DPJ = 0. Now

〈Jh,DPh
′〉 = 〈DPJh, h

′〉 = 0 for all h, h′ ∈ H.
This shows that J = 0 and hence AiDP +A∗n−iDPP = DPSi.

Conversely, let (X1, . . . , Xn−1) be a tuple of operators on DP such that

DPSi = XiDP +X∗n−iDPP for i = 1, . . . , n− 1 .
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Also suppose that (F1, . . . , Fn−1) is the FO-tuple of (S1, . . . , Sn−1, P ). We
need to show that (X1, . . . , Xn−1) = (F1, . . . , Fn−1). Since we just proved
that (F1, . . . , Fn−1) satisfies the above mentioned operator equations, we
have

FiDP + F ∗n−iDPP = DPSi = XiDP +X∗n−iDPP.

and consequently

(Xi−Fi)DP +(Xn−i−Fn−i)
∗DPP = (Xn−i−Fn−i)DP +(Xi−Fi)

∗DPP = 0.

Let for each i

Yi = Xi − Fi , Yn−i = Xn−i − Fn−i.

Then for each i

YiDP + Y ∗n−iDPP = Yn−iDP + Y ∗i DPP = 0. (2.1)

To complete the proof, we need to show that Y1 = · · · = Yn−1 = 0. We have

YiDP + Y ∗n−iDPP = 0

or YiDP = −Y ∗n−iDPP

or DPYiDP = −DPY
∗
n−iDPP

or DPY
∗
i DP = P ∗DPY

∗
i DPP = P ∗2DPY

∗
i DPP

2 = · · ·

We obtained the equalities in the last line by applying (2.1). Thus we have

DPY
∗
i DP = P ∗nDPY

∗
i DPP

n (2.2)

for all n = 1, 2, . . .. Now consider the series

∞∑
n=0

‖DPP
nh‖2 =

∞∑
n=0

〈DPP
nh,DPP

nh〉

=
∞∑
n=0

〈P ∗nD2
PP

nh, h〉

=

∞∑
n=0

〈P ∗n(I − P ∗P )Pnh, h〉

=
∞∑
n=0

〈(P ∗nPn − P ∗n+1Pn+1h, h〉

=

∞∑
n=0

(‖Pnh‖2 − ‖Pn+1h‖2)

= ‖h‖2 − lim
n→∞

‖Pnh‖2.

‖h‖ ≥ ‖Ph‖ ≥ ‖P 2h‖ ≥ · · · ≥ ‖Pnh‖ ≥ · · · ≥ 0.
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So lim
n→∞

‖Pnh‖2 exists. Therefore, the series is convergent and thus we have

lim
n→∞

‖DPP
nh‖2 = 0. So

‖DPY
∗
i DPh‖ = ‖P ∗nDPY

∗
i DPP

nh‖ by (2.2)

≤ ‖P ∗n‖‖DpY
∗
i ‖‖DPP

nh‖
≤ ‖DpY

∗
i ‖‖DPP

nh‖ → 0.

So DPY
∗
i DP = 0 and hence Yi = 0 for each i = 1, . . . , n− 1.

�

The next few results will provide some useful algebraic relations between
Γn-contractions and their FO-tuples.

Theorem 2.2. Suppose (S1, . . . , Sn−1, P ) and (S′1, . . . , S
′
n−1, P ) are two

commuting Γn-contractions on a Hilbert space H. Let (A1, . . . , An−1) and
(A′1, . . . , A

′
n−1) be the commuting FO-tuples of (S1, . . . , Sn−1, P ) and (S′1, . . . ,

S′n−1, P ), respectively and suppose AiA
′
j = A′jAi for any i, j = 1, . . . , n− 1.

Then for each i, j = 1, . . . , n− 1 we have

S∗i S
′
j − S′∗n−jSn−i = DP (A∗iA

′
j −A′∗n−jAn−i)DP .

Proof. We have that (A1, . . . , An−1) is a commuting tuple satisfying

Si − S∗n−iP = DPAiDP , for i = 1, . . . , n− 1.

and (A′1, . . . , A
′
n−1) is a commuting tuple satisfying

S′j − S′∗n−jP = DPA
′
jDP , for j = 1, . . . , n− 1.

Then

S∗i S
′
j = S∗i

(
S′∗n−jP +DPA

′
jDP

)
= S∗i S

′∗
n−jP + S∗iDPA

′
jDP

= S′∗n−jS
∗
i P + S∗iDPA

′
jDP

= S′∗n−j (Sn−i −DPAn−iDP ) + S∗iDPA
′
jDP

= S′∗n−jSn−i − S′∗n−jDPAn−iDP + S∗iDPA
′
jDP .

Now from Theorem 2.1 we have

S∗iDP = DPA
∗
i + P ∗DPAn−i

and
S′∗n−jDP = DPA

′∗
n−j + P ∗DPA

′
j .

Then

S∗iDPA
′
j − S′∗n−jDPAn−i

=
(
DPA

∗
iA
′
j + P ∗DPAn−iA

′
j

)
−
(
DPA

′∗
n−jAn−i + P ∗DPA

′
jAn−i

)
=DPA

∗
iA
′
j −DPA

′∗
n−jAn−i.

Therefore, S∗i S
′
j − S′∗n−jSn−i = DP

(
A∗iA

′
j −A′∗n−jAn−i

)
DP . �
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A direct consequence of the previous theorem is the following.

Corollary 2.3. Let (S1, . . . , Sn−1, P ) be a Γn-contraction with commuting
FO-tuple (A1, . . . , An−1). Then for each i , j = 1, . . . , n− 1 we have

S∗i Sj − S∗n−jSn−i = DP (A∗iAj −A∗n−jAn−i)DP .

Lemma 2.4. Let (S1, . . . , Sn−1, P ) be a Γn-contraction on a Hilbert space H
and let (A1, . . . , An−1) and (B1, . . . , Bn−1) be the FO-tuples of (S1, . . . , Sn−1,
P ) and (S∗1 , . . . , S

∗
n−1, P

∗), respectively. Then

DPAi = (SiDP −DP ∗Bn−iP )|DP
for i = 1, . . . , n− 1.

Proof. For h ∈ H, we have

(SiDP −DP ∗Bn−iP )DPh = Si(I − P ∗P )h− (DP ∗Bn−iDP ∗)Ph

= Sih− SiP ∗Ph− (S∗n−i − SiP ∗)Ph
= Sih− SiP ∗Ph− S∗n−iPh+ SiP

∗Ph

= (Si − S∗n−iP )h = (DPAi)DPh.

Hence,

DPAi = (SiDP −DP ∗Bn−iP )|DP
.

�

Lemma 2.5. Let (S1, . . . , Sn−1, P ) be a Γn-contraction on a Hilbert space H
and let (A1, . . . , An−1) and (B1, . . . , Bn−1) be the FO-tuples of (S1, . . . , Sn−1,
P ) and (S∗1 , . . . , S

∗
n−1, P

∗), respectively. Then

PAi = B∗i P |DP
, for i = 1, . . . , n− 1.

Proof. We observe here that the operators on both sides are defined from
DP to DP ∗ . Let h, h′ ∈ H be any two elements. Then

〈(PAi −B∗i P )DPh,DP ∗h′〉
= 〈DP ∗PAiDPh, h

′〉 − 〈DP ∗B∗i PDPh, h
′〉

= 〈P (DPAiDP )h, h′〉 − 〈(DP ∗B∗iDP ∗)Ph, h′〉
= 〈P (Si − S∗n−iP )h, h′〉 − 〈(Si − PS∗n−i)Ph, h′〉
= 〈(PSi − PS∗n−iP − SiP + PS∗n−iP )h, h′〉 = 0.

Hence PAi = B∗i P |DP
for i = 1, . . . , n− 1 and the proof is complete. �

Lemma 2.6. Let (S1, . . . , Sn−1, P ) be a Γn-contraction on a Hilbert space H
and let (A1, . . . , An−1) and (B1, . . . , Bn−1) be the FO-tuples of (S1, . . . , Sn−1,
P ) and (S∗1 , . . . , S

∗
n−1, P

∗) respectively. Then for i = 1, . . . , n− 1,

(A∗iDPDP ∗ −An−iP
∗)|DP∗ = DPDP ∗Bi − P ∗B∗n−i.
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Proof. For h ∈ H, we have

(A∗iDPDP ∗ −An−iP
∗)DP ∗h

= A∗iDP (I − PP ∗)h−An−iP
∗DP ∗h

= A∗iDPh−A∗iDPPP
∗h−An−iDPP

∗h

= A∗iDPh− (A∗iDPP +An−iDP )P ∗h

= A∗iDPh−DPSn−iP
∗h [ by Lemma (2.1)]

= (SiDP −DP ∗Bn−iP )∗h−DPSn−iP
∗h [by Lemma 2.4]

= DPS
∗
i h− P ∗B∗n−iDP ∗h−DPSn−iP

∗h

= DP (S∗i − Sn−iP ∗)h− P ∗B∗n−iDP ∗h

= DPDP ∗BiDP ∗h− P ∗B∗n−iDP ∗h

= (DPDP ∗Bi − P ∗B∗n−i)DP ∗h.

�

The following theorem is another main result of this section.

Theorem 2.7. Suppose (S1, . . . , Sn−1, P ) and (S′1, . . . , S
′
n−1, P ) are two

commuting Γn-contractions on a Hilbert space H. Let (A1, . . . , An−1) and
(A′1, . . . , A

′
n−1) be the commuting FO-tuples of (S1, . . . , Sn−1, P ) and (S′1, . . . ,

S′n−1, P ), respectively and suppose AiA
′
j = A′jAi for any i, j = 1, . . . , n− 1.

Suppose (B1, . . . , Bn−1) and (B′1, . . . , B
′
n−1) are the FO-tuples of (S∗1 , . . . ,

S∗n−1, P
∗) and (S′∗1 , . . . , S

′∗
n−1, P

∗) respectively. If P has dense range, then
the following identities hold for i, j = 1, . . . , n− 1:

(i) [Ai, A
′∗
j ] = [A′n−j , A

∗
n−i]

(ii) [Bi, Bn−j ] = [B′i, B
′
n−j ] = 0

(iii) [B∗i , B
′
j ] = [B′∗n−j , Bn−i].

Proof. (i) By Theorem 2.1, we have for each i = 1, . . . , n− 1 that DPSi =
AiDP + A∗n−iDPP and DPS

′
i = A′iDP + A′∗n−iDPP . Multiplying DPSi =

AiDP +A∗n−iDPP by DPA
′
n−j from the left we get,

DPA
′
n−jDPSi = DPA

′
n−jAiDP +DPA

′
n−jA

∗
n−iDPP

⇒(S′n−j − S′∗j P )Si = DPA
′
n−jAiDP +DPA

′
n−jA

∗
n−iDPP

⇒(S′n−jSi − S′∗j SiP ) = DPA
′
n−jAiDP +DPA

′
n−jA

∗
n−iDPP.

Similarly, multiplying DPS
′
n−j = A′n−jDP +A′∗j DPP by DPAi from the left

we get

DPAiDPS
′
n−j = DPAiA

′
n−jDP +DPAiA

′∗
j DPP

⇒(Si − S∗n−iP )S′n−j = DPA
′
n−jAiDP +DPAiA

′∗
j DPP

⇒(S′n−jSi − S∗n−iS′n−jP ) = DPA
′
n−jAiDP +DPAiA

′∗
j DPP.
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On subtraction we get

(S′∗j Si − S∗n−iS′n−j)P = DP (AiA
′
n−j −A′n−jAi)DP

+DP (AiA
′∗
j −A′n−jA∗n−i)DPP

⇒DP (A′∗j Ai −A∗n−iA′n−j)DPP = DP (AiA
′∗
j −A′n−jA∗n−i)DPP

⇒DP (AiA
′∗
j −A′∗j Ai +A∗n−iA

′
n−j −A′n−jA∗n−i)DPP

⇒DP

(
[Ai, A

′∗
j ] + [A∗n−i, A

′
n−j ]

)
DPP = 0

⇒DP

(
[Ai, A

′∗
j ] + [A∗n−i, A

′
n−j ]

)
DP = 0 [since RanP is dense in H]

⇒[Ai, A
′∗
j ] = [A′n−j , A

∗
n−i].

(ii) From Lemma 2.5, we have that PAi = B∗i P |DP
, for i, j = 1, . . . , n−1.

Therefore,

PAiAn−jDP = B∗i PAn−jDP

⇒PAn−jAiDP = B∗i PAn−jDP

⇒B∗n−jB∗i PDP = B∗iB
∗
n−jPDP

⇒[B∗i , B
∗
n−j ]DP ∗P = 0

⇒[B∗i , B
∗
n−j ] = 0

⇒[Bi, Bn−j ] = 0.

Similarly, for each i, j = 1, . . . , n− 1 we have

[B′i, B
′
n−j ] = 0.

(iii) Applying Theorem 2.2 for Γn-contractions (S∗1 , . . . , S
∗
n−1, P

∗) and
(S′∗1 , . . . , S

′∗
n−1, P

∗) we get SiS
′∗
j −S′n−jS∗n−i = DP ∗(B∗iB

′
j −B′∗n−jBn−i)DP ∗ .

From Lemma 2.4, DPAi = (SiDP−DP ∗Bn−iP )|DP
. Multiplying byA′n−jDP

from right we get

DPAiA
′
n−jDP = (SiDP −DP ∗Bn−iP )A′n−jDP

⇒DPAiA
′
n−jDP = SiDPA

′
n−jDP −DP ∗Bn−iPA

′
n−jDP

⇒DPA
′
n−jAiDP = Si(S

′
n−j − S′∗j P )−DP ∗Bn−iPA

′
n−jDP

⇒DPAiA
′
n−jDP = SiS

′
n−j − SiS′∗j P −DP ∗Bn−iB

′∗
n−jPDP .

Similarly, multiplying DPA
′
n−j = (S′n−jDP − DP ∗B′jP )|DP

by AiDP from
right we get

DPA
′
n−jAiDP = (S′n−jDP −DP ∗B′jP )AiDP

⇒DPA
′
n−jAiDP = S′n−jDPAiDP −DP ∗B′jPAiDP

⇒DPA
′
n−jAiDP = S′n−j(Si − S∗n−iP )−DP ∗B′jPAiDP

⇒DPA
′
n−jAiDP = S′n−jSi − S′n−jS∗n−iP −DP ∗B′jB

∗
i PDP .
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Subtracting those two equations we get

DP (AiA
′
n−j −A′n−jAi)DP = (S′n−jS

∗
n−i − SiS′∗j )P

+DP ∗(B′jB
∗
i −Bn−iB

′∗
n−j)PDP

⇒ (SiS
′∗
j − S′n−jS∗n−i)P +DP ∗(Bn−iB

′∗
n−j −B′jB∗i )DP ∗P = 0

⇒ DP ∗(B∗iB
′
j −B′∗n−jBn−i)DP ∗P +DP ∗(Bn−iB

′∗
n−j −B′jB∗i )DP ∗P = 0

⇒ DP ∗([B∗i , B
′
j ] + [Bn−i, B

′∗
n−j ])DP ∗P = 0

⇒ [B∗i , B
′
j ] = [B′∗n−j , Bn−i].

�

A direct consequence of the previous theorem is the following.

Corollary 2.8. Let (S1, . . . , Sn−1, P ) be a Γn-contraction acting on a Hilbert
space H and let (A1, . . . , An−1) and (B1, . . . , Bn−1) be the FO-tuples of
(S1, . . . , Sn−1, P ) and (S∗1 , . . . , S

∗
n−1, P

∗), respectively. If [Ai, An−j ] = 0 for
each i, j = 1, . . . , n−1 and if P has dense range, then the following identities
hold for i, j = 1, . . . , n− 1:

(i) [A∗j , Ai] = [A∗n−i, An−j ]

(ii) [Bi, Bn−j ] = 0
(iii) [B∗i , Bj ] = [B∗n−j , Bn−i].

Lemma 2.9. Let (S1, . . . , Sn−1, P ) and (S′1, . . . , S
′
n−1, P ) be two Γn-contract-

ions on a Hilbert space H such that P is invertible. Let (A1, . . . , An−1),
(A′1, . . . , A

′
n−1), (B1, . . . , Bn−1) and (B′1, . . . , B

′
n−1) be as in previous theo-

rem. Then [Ai, Aj ] = 0 = [A′i, A
′
j ], for i, j = 1, . . . , n − 1 if and only if

[Bi, Bj ] = 0 = [B′i, B
′
j ], for i, j = 1, . . . , n− 1.

Proof. Suppose that [Ai, Aj ] = 0 = [A′i, A
′
j ] for i, j = 1, . . . , n− 1. Since P

has dense range, by part (ii) of above theorem, we get [Bi, Bj ] = 0 = [B′i, B
′
j ]

for i, j = 1, . . . , n− 1.
Conversely, let [Bi, Bj ] = 0 = [B′i, B

′
j ] for i, j = 1, . . . , n − 1. Since P is

invertible, P ∗ has dense range too. So applying previous theorem for Γn-
contractions (S∗1 , . . . , S

∗
n−1, P

∗) and (S′∗1 , . . . , S
′∗
n−1, P

∗), we get [Ai, Aj ] =
0 = [A′i, A

′
j ] for i, j = 1, . . . , n− 1. �

Corollary 2.10. Let (S1, . . . , Sn−1, P ) be a Γn-contraction on a Hilbert
space H such that P is invertible. Let (A1, . . . , An−1) and (B1, . . . , Bn−1) be
as in previous theorem. Then [Ai, An−j ] = 0, for i, j = 1, . . . , n − 1 if and
only if [Bi, Bn−j ] = 0, for i, j = 1, . . . , n− 1.

3. Admissible fundamental operator tuples

We recall from [16], the notion of characteristic function of a contraction
introduced by Sz.-Nagy and Foias. For a contraction P defined on a Hilbert
space H, let ΛP be the set of all complex numbers for which the operator
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I − zP ∗ is invertible. For z ∈ ΛP , the characteristic function of P is defined
as

ΘP (z) = [−P + zDP ∗(I − zP ∗)−1DP ]|DP
. (3.1)

By virtue of the relation PDP = DP ∗P (Section I.3 of [16]), ΘP (z) maps
DP = RanDP into DP ∗ = RanDP ∗ for every z in ΛP . Since for each
z ∈ D, ΘP (z) maps DP into DP ∗ , ΘP induces a multiplication operator
MΘP

from H2(D)⊗DP into H2(D)⊗DP ∗ , defined by

MΘP
f(z) = ΘP (z)f(z), for all f ∈ H2(D)⊗DP and z ∈ D.

Note that MΘP
(Mz ⊗ IDP

) = (Mz ⊗ IDP∗ )MΘP
.

Lemma 3.1. Let (A1, . . . , An−1) and (B1, . . . , Bn−1) be the FO-tuples of a
Γn-contraction (S1, . . . , Sn−1, P ) and its adjoint (S∗1 , . . . , S

∗
n−1, P

∗), respec-
tively. Then for each i = 1, . . . , n− 1,

(A∗i +An−iz)ΘP ∗(z) = ΘP ∗(z)(Bi +B∗n−iz) for all z ∈ D. (3.2)

Proof. We have that

(A∗i +An−iz)ΘP ∗(z)

= (A∗i +An−iz)(−P ∗ +
∞∑
n=0

zn+1DPP
nDP ∗)

= (−A∗iP ∗ +

∞∑
n=1

znA∗iDPP
n−1DP ∗)

+(−zAn−iP
∗ +

∞∑
n=2

znAn−iDPP
n−2DP ∗)

= −A∗iP ∗ + z(A∗iDPDP ∗ −An−iP
∗)

+

∞∑
n=2

zn(A∗iDPP
n−1DP ∗ +An−iDPP

n−2DP ∗)

= −A∗iP ∗ + z(A∗iDPDP ∗ −An−iP
∗)

+
∞∑
n=2

zn(A∗iDPP +An−iDP )Pn−2DP ∗

= −P ∗Bi + z(DPDP ∗Bi − P ∗B∗n−i) +

∞∑
n=2

znDPS2P
n−2DP ∗ .
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The last equality follows by using Theorem 2.1, Lemma 2.5 and Lemma 2.6.
Also we have

ΘP ∗(z)(Bi +B∗n−iz)

= (−P ∗ +

∞∑
n=0

zn+1DPP
nDP ∗)(Bi +B∗n−iz)

= (−P ∗Bi +
∞∑
n=1

znDPP
n−1DP ∗Bi)

+(−zP ∗B∗n−i +

∞∑
n=2

znDPP
n−2DP ∗B∗n−i)

= −P ∗Bi + z(DPDP ∗Bi − P ∗B∗n−i)

+
∞∑
n=2

zn(DPP
n−1DP ∗Bi +DPP

n−2DP ∗B∗n−i)

= −P ∗Bi + z(DPDP ∗Bi − P ∗B∗n−i)

+
∞∑
n=2

znDPP
n−2(PDP ∗Bi +DPB

∗
n−i)

= −P ∗Bi + z(DPDP ∗Bi − P ∗B∗n−i) +

∞∑
n=2

znDPP
n−2Sn−iDP ∗

= −P ∗Bi + z(DPDP ∗Bi − P ∗B∗n−i) +
∞∑
n=2

znDPSn−iP
n−2DP ∗ .

Hence for i = 1, . . . , n−1 we have (A∗i +An−iz)ΘP ∗(z) = ΘP ∗(z)(Bi+B
∗
n−iz)

for all z ∈ D and the proof is complete. �

Note 3.2. Under the hypotheses of Theorem 3.1, the following equations
hold:

(B∗i +Bn−iz)ΘP (z) = ΘP (z)(Ai +A∗n−iz), for all z ∈ D. (3.3)

We are now in a position to present one of the main results of this paper.
We first state a result from the literature which provides a characterization
of Γn-unitaries. We shall use this result in the proof of the main theorem.

Theorem 3.3 ([7], Theorem 4.2). Let (S1, . . . , Sn−1, P ) be a commuting
tuple of bounded operators. Then the following are equivalent.

(1) (S1, . . . , Sn−1, P ) is a Γn-unitary,
(2) P is a unitary, (n−1

n S1,
n−2
n S2, . . . ,

1
nSn−1) is a Γn−1-contraction and

Si = S∗n−iP for i = 1, . . . , n− 1.

Theorem 3.4. Let P be a C.0 contraction on a Hilbert space H. Let
A1, . . . , An−1 ∈ B(DP ) and B1, . . . , Bn−1 ∈ B(DP ∗) be such that they satisfy
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equations ( 3.3) and(
n− 1

n
(B∗1 +Bn−1z),

n− 2

n
(B∗2 +Bn−2z), . . . ,

1

n
(B∗n−1 +B1z)

)
are Γn−1-contractions for all z ∈ T. Then there exists a Γn-contraction
(S1, . . . , Sn−1, P ) such that (A1, . . . , An−1) is the FO-tuple of (S1, . . . , Sn−1, P )
and (B1, . . . , Bn−1) is the FO-tuple of (S∗1 , . . . , S

∗
n−1, P

∗).

Proof. Let us define W : H → H2(D)⊗DP ∗ by

W (h) =
∞∑
n=0

zn ⊗DP ∗P ∗nh for all h ∈ H.

It is evident that

||Wh||2 =
∞∑
n=0

||DP ∗P ∗nh||2 =
∞∑
n=0

(
||P ∗nh||2 − ||P ∗n+1h||2

)
= ||h||2 − lim

n→∞
||P ∗nh||2.

Therefore W is an isometry if P is a pure contraction. It is obvious that

W ∗(zn ⊗ ξ) = PnDP ∗ξ for all ξ ∈ DP ∗ and n ≥ 0.

Also if Mz is the multiplication operator on H2(D) and if M = Mz ⊗ I on
H2(D)⊗DP ∗ , then we have

M∗Wh = T ∗z

( ∞∑
n=0

znDP ∗P ∗nh

)
=

∞∑
n=0

znDP ∗P ∗n+1h = WP ∗h.

Therefore M∗W = WP ∗. Since(
n− 1

n
(B∗1 +Bn−1z),

n− 2

n
(B∗2 +Bn−2z), . . . ,

1

n
(B∗n−1 +B1z)

)
is a Γn−1-contraction for all z ∈ T, it follows from Theorem 3.3 that the
multiplication operator tuple (MB∗

1+Bn−1z, . . . ,MB∗
n−1+B1z,Mz) on L2(DP ∗)

is a Γn-unitary. Obviously the Toeplitz operator tuple

(TB∗
1+Bn−1z, . . . , TB∗

n−1+B1z, Tz) on H2(DP ∗),

by being the restriction of (MB∗
1+Bn−1z, . . . ,MB∗

n−1+B1z,Mz) to the joint

invariant subspace H2(DP ∗), is a Γn-isometry. Again since H2(DP ∗) and
H2(D) ⊗ DP ∗ are isomorphic, the Γn-isometry on the space H2(D) ⊗ DP ∗

that corresponds to (TB∗
1+Bn−1z, . . . , TB∗

n−1+B1z, Tz) is

(I ⊗B∗1 +Mz ⊗Bn−1, . . . , I ⊗B∗n−1 +Mz ⊗B1,Mz ⊗ I).

Let us define

Si = W ∗MiW for i = 1, . . . , n− 1 ,

where

Mi = I ⊗B∗i +Mz ⊗Bn−i for i = 1, . . . , n− 1.
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Equations (3.3) tell us that RanMΘP
is invariant under Mi for i = 1, . . . , n−

1 which is same as saying that RanW = (RanMΘP
)⊥ is invariant under M∗i

for i = 1, . . . , n− 1.

Since (M1, . . . ,Mn−1,M) is a Γn-isometry, (S1, . . . , Sn−1, P ) is a Γn-contr-
action by being the compression of (M1, . . . ,Mn−1,M). We now show that
(B1, . . . , Bn−1) is the FO-tuple of (S∗1 , . . . , S

∗
n−1, P

∗). For each i = 1, . . . , n−
1 we have that

S∗i − Sn−iP ∗ = W ∗M∗i W −W ∗Mn−iWW ∗M∗W

= W ∗M∗i W −W ∗Mn−iM
∗W

= W ∗[(I ⊗Bi) + (M∗z ⊗B∗n−i)− (M∗z ⊗B∗n−i)
− (MzM

∗
z ⊗Bi)]W

= DP ∗BiDP ∗ .

To obtain the equalities above, we used the fact that RanW is invariant
under M∗z and that I −MzM

∗
z is a rank one projection. By the uniqueness

of FO-tuple of a Γn-contraction, we conclude that (B1, . . . , Bn−1) is the
fundamental operator tuple of (S∗1 , . . . , S

∗
n−1, P

∗). Let (Y1, . . . , Yn−1) be the
FO-tuple of (S1, . . . , Sn−1, P ). Then by the first part of this theorem, we
have for each i = 1, . . . , n− 1 that

(B∗i +Bn−iz)ΘP (z) = ΘP (z)(Yi + Y ∗n−iz) for all z ∈ D.

By this and the fact that all Bi satisfy equations (3.3), for some operators
A1, . . . , An−1 ∈ B(DP ), we have that

Ai +A∗n−iz = Yi + Y ∗n−iz for all i = 1, . . . , n− 1

and for all z ∈ D. Therefore, Yi = Ai for each i and consequently (A1, . . . ,
An−1) is the FO-tuple of (S1, . . . , Sn−1, P ) and the proof is complete.

�
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