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Simultaneously preperiodic integers for
quadratic polynomials

Valentin Huguin

Abstract. In this article, we study the set of parameters c ∈ C for
which two given complex numbers a and b are simultaneously preperi-
odic for the quadratic polynomial fc(z) = z2 + c. Combining complex-
analytic and arithmetic arguments, Baker and DeMarco showed that
this set of parameters is infinite if and only if a2 = b2. Recently, Buff
answered a question of theirs, proving that the set of parameters c ∈ C
for which both 0 and 1 are preperiodic for fc is equal to {−2,−1, 0}.
Following his approach, we complete the description of these sets when
a and b are two given integers with |a| 6= |b|.
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1. Introduction

For c ∈ C, let fc : C→ C be the complex quadratic map

fc : z 7→ z2 + c .

Given a point z ∈ C, we study the sequence (f◦nc (z))n≥0 of iterates of fc
at z. The set {f◦nc (z) : n ≥ 0} is called the forward orbit of z under fc.

The point z is said to be periodic for fc if there exists an integer p ≥ 1
such that f◦pc (z) = z. The least such integer p is called the period of z.
The point z is said to be preperiodic for fc if its forward orbit is finite or,
equivalently, if there is an integer k ≥ 0 such that f◦kc (z) is periodic for fc.
The smallest integer k with this property is called the preperiod of z.

Definition 1.1. For a ∈ C, let Sa be the set defined by

Sa = {c ∈ C : a is preperiodic for fc} .
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In this paper, we wish to examine these sets of parameters.
For n ≥ 0, let Fn ∈ Z[c, z] be the polynomial given by

Fn(c, z) = f◦nc (z) .

The sequence (Fn)n≥0 satisfies F0(c, z) = z and the recursion formulas

Fn(c, z) = Fn−1
(
c, z2 + c

)
= Fn−1(c, z)

2 + c for n ≥ 1 .

In particular, when n ≥ 1, the polynomial Fn is monic in c of degree 2n−1

and monic in z of degree 2n.
Now, given a point a ∈ C, define – for k ≥ 0 and p ≥ 1 – the set

Sk,pa = {c ∈ C : Fk+p(c, a) = Fk(c, a)} .

For all k ≥ 0 and p ≥ 1, the set Sk,pa contains at most 2k+p−1 elements and
consists of the parameters c ∈ C for which the point a is preperiodic for fc
with preperiod less than or equal to k and period dividing p.

In particular, it follows that the set

Sa =
⋃

k≥0, p≥1
Sk,pa

is countable. Moreover, we have the following (see [BaD11, Lemma 3.5];
when a = 0, also compare [HT15, Theorem 1.1]):

Proposition 1.2. For every a ∈ C, the set Sa is infinite.

Proof. To obtain a contradiction, suppose that Sa contains finitely many

elements. Then, since the sequence
(
Sn,1a

)
n≥0

is increasing with respect to

set inclusion, there exists an integer N ≥ 0 such that Sn+1,1
a = Sn,1a for all

n ≥ N . Now, note that, for every n ≥ 0, we have

Fn+2(c, a)− Fn+1(c, a) = (Fn+1(c, a)− Fn(c, a)) (Fn+1(c, a) + Fn(c, a)) .

It follows that, if n ≥ N and γ is a root of the polynomial Fn+1(c, a) +
Fn(c, a), then

Fn+1(γ, a)− Fn(γ, a) = Fn+1(γ, a) + Fn(γ, a) = 0 ,

and hence Fn+1(γ, a) = Fn(γ, a) = 0, which yields γ = 0. Therefore, we have
Fn(0, a) = 0 and Fn+1(c, a) +Fn(c, a) = c2

n
for all n ≥ N . In particular, we

get

∂ (FN+2 + FN+1)

∂c
(0, a) = 2

∂FN+1

∂c
(0, a)FN+1(0, a)

+ 2
∂FN
∂c

(0, a)FN (0, a) + 2

= 2 ,

which contradicts the fact that FN+2(c, a) + FN+1(c, a) = c2
N+1

. �
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a for c = −a2 + a,

fc

a −a for c = −a2 − a,

fc fc

a −a− 1 for c = −a2 − a− 1,

fc

fc

a a− 1 −a for c = −a2 + a− 1.

fc fc

fc

Figure 1. Some parameters c ∈ C for which a given complex
number a is preperiodic for fc.

Remark 1.3. Note that, if a ∈ C, then fc(a) = fc(−a) for all c ∈ C. Conse-

quently, we have Sa = S−a and Sk,pa = Sk,p−a for all k ≥ 1 and p ≥ 1.

Example 1.4. Assume that a ∈ C. Then (see Figure 1) we have

S0,1a =
{
−a2 + a

}
,

S1,1a =
{
−a2 − a,−a2 + a

}
,

S0,2a =
{
−a2 − a− 1,−a2 + a

}
,

S1,2a =
{
−a2 − a− 1,−a2 − a,−a2 + a− 1,−a2 + a

}
.

Here, the problem we are interested in is the description of the sets Sa∩Sb
when a and b are two given complex numbers.

Example 1.5. Suppose that a ∈ C. Then (see Figure 2) we have

−a2 − a− 1 = −(a+ 1)2 + (a+ 1)− 1 ∈ S0,2a ∩ S
1,2
a+1

and
−a2 − a = −(a+ 1)2 + (a+ 1) ∈ S1,1a ∩ S

0,1
a+1 .

Example 1.6. We have −2 ∈ S2,10 ∩S
1,1
1 , −1 ∈ S0,20 ∩S

1,2
1 and 0 ∈ S0,10 ∩S

0,1
1

(see Figure 3).

Since the sets Sa are countably infinite (see Proposition 1.2), we may
wonder whether the sets Sa ∩ Sb are infinite. This question was answered
by Baker and DeMarco in [BaD11]. Using potential theory and an equidis-
tribution result for points of small height with respect to an adelic height
function, they proved that the set Sa ∩ Sb is infinite if and only if a2 = b2.
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a+ 1 a −a− 1 for c = −a2 − a− 1,

fc fc

fc

a −a and a+ 1 for c = −a2 − a.

fc fc fc

Figure 2. Two parameters c ∈ C for which a and a+ 1 are
simultaneously preperiodic for fc when a is a given complex
number.

0 −2 2 and 1 −1

f−2 f−2 f−2 f−2 f−2

1 0 −1

f−1 f−1

f−1

0 and 1

f0 f0

Figure 3. Three parameters c ∈ C for which both 0 and 1
are preperiodic for fc.

As they pointed out, their proof is not effective and does not provide
any estimate on the cardinality of these sets when they are finite. In their
article, Baker and DeMarco conjectured that −2, −1 and 0 were the only
parameters c ∈ C for which 0 and 1 are simultaneously preperiodic for fc
(see Example 1.6). Using localization properties of the set of parameters
c ∈ C for which both 0 and 1 have bounded forward orbit under fc and
the fact that 0 is the only parameter c ∈ C that is contained in the main
cardioid of the Mandelbrot set and for which 0 is preperiodic for fc, Buff
gave an elementary proof of their conjecture in [Bu18].

Following his approach, we complete the description of the sets Sa ∩ Sb
when a and b are two given integers with |a| 6= |b|. More precisely, we prove
the following theorem, which asserts that Example 1.5 and Example 1.6
present all the parameters c ∈ C for which two given distinct and non-
opposite integers are simultaneously preperiodic for the polynomial fc:

Theorem 1.7. Assume that a and b are two integers with |b| > |a|. Then

• either a = 0, |b| = 1 and Sa ∩ Sb = {−2,−1, 0},
• or a = 0, |b| = 2 and Sa ∩ Sb = {−2},
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• or |a| ≥ 1, |b| = |a|+ 1 and Sa ∩ Sb =
{
−a2 − |a| − 1,−a2 − |a|

}
,

• or |b| > max {2, |a|+ 1} and Sa ∩ Sb = ∅.

Our proof is elementary and uses only basic analytic and arithmetic argu-
ments. In particular, the reader does not need to be familiar with complex
dynamics.

In Section 2, we reprove some well-known results on the dynamics of the
polynomials fc. In Section 3, we go back to the study of the parameter space
and give a proof of Theorem 1.7.

Acknowledgments. The author would like to thank his Ph.D. advisors, Xavier
Buff and Jasmin Raissy, for helpful discussions without which this paper
would not exist and the anonymous referee for his comments.

2. The dynamics of the quadratic polynomials

We shall investigate here the dynamics of the quadratic maps fc : C→ C.
Given a parameter c ∈ C, let Xc be the set

Xc = {z ∈ C : z is preperiodic for fc} ,

and, for k ≥ 0 and p ≥ 1, let X k,pc be the set

X k,pc = {z ∈ C : Fk+p(c, z) = Fk(c, z)} .

For all k ≥ 0 and p ≥ 1, the set X k,pc contains at most 2k+p elements, is
invariant under fc and consists of the preperiodic points for fc with preperiod
less than or equal to k and period dividing p. In particular, we have

Xc =
⋃

k≥0, p≥1
X k,pc .

Moreover, the set Xc is completely invariant under fc – that is, for every
z ∈ C, fc(z) ∈ Xc if and only if z ∈ Xc.

Remark 2.1. Note that, if c ∈ C, then fc(z) = fc(−z) for all z ∈ C. There-

fore, the sets Xc and X k,pc , with k ≥ 1 and p ≥ 1, are symmetric with respect
to the origin.

Proposition 2.2. For every c ∈ C, we have

Xc ⊂
⋂
n≥0
{z ∈ C : |f◦nc (z)| ≤ ρc} ,

where ρc =
1+
√

1+4|c|
2 .

Proof. For every z ∈ C, we have |fc(z)| ≥ |z|2 − |c|, and |z|2 − |c| > |z| if
and only if |z| > ρc. It follows by induction that, if z ∈ C satisfies |z| > ρc,

then
∣∣∣f◦(k+p)c (z)

∣∣∣ > ∣∣f◦kc (z)
∣∣ for all k ≥ 0 and p ≥ 1, and hence z is not

preperiodic for fc. As the set Xc is invariant under fc, this completes the
proof of the proposition. �



368 VALENTIN HUGUIN

Now, let us study the dynamics of the polynomial fc when c is a real
parameter. Suppose that c ∈

(
−∞, 14

]
. Then the map fc : R → R is even

and strictly increasing on R≥0, has two fixed points αc ≤ βc – with equality
if and only if c = 1

4 – given by

αc =
1−
√

1− 4c

2
and βc =

1 +
√

1− 4c

2

and satisfies fc(z) > z for all z ∈ (βc,+∞). In particular, we have

fc ([−βc, βc]) = [c, βc]

and the sequence (f◦nc (z))n≥0 diverges to +∞ for all z ∈ (−∞,−βc) ∪
(βc,+∞).

It follows that, if c ∈
[
−2, 14

]
, then

fc ([−βc, βc]) ⊂ [−βc, βc] ,

and hence, for every z ∈ R, the point z has bounded forward orbit under fc
if and only if z ∈ [−βc, βc].

Remark 2.3. Note that, for every c ∈ C, we have ρc = β−|c|.

Let us examine more thoroughly the dynamics of the map fc when c ∈
(−∞,−2]. It is related to the dynamics of the shift map in the space of sign
sequences.

Let σ : {−1, 1}Z≥0 → {−1, 1}Z≥0 denote the shift map, which sends any
sequence ε = (εn)n≥0 of ±1 to the sequence (εn+1)n≥0.

A sign sequence ε is said to be periodic with period p ≥ 1 if σ◦p(ε) = ε
and p is the least such integer. The sequence ε is said to be preperiodic with
preperiod k ≥ 0 if the sequence σ◦k(ε) is periodic and k is minimal with this
property.

For k ≥ 0 and p ≥ 1, define

Σk,p =
{
ε ∈ {−1, 1}Z≥0 : σ◦(k+p)(ε) = σ◦k(ε)

}
to be the set of all preperiodic sign sequences with preperiod less than or
equal to k and period dividing p, and define

Σ =
⋃

k≥0, p≥1
Σk,p

to be the collection of all preperiodic sign sequences. For all k ≥ 0 and p ≥ 1,
the set Σk,p contains exactly 2k+p elements – each of them being completely
determined by the choice of its first k + p terms – and is invariant under
the shift map. Moreover, the set Σ is completely invariant under the shift
map – that is, any sign sequence ε is preperiodic if and only if the sequence
σ(ε) is preperiodic.

Theorem 2.4. For every c ∈ (−∞,−2], there exists a unique map

ψc : Σ→ R



PREPERIODIC INTEGERS FOR QUADRATIC POLYNOMIALS 369

that makes the diagram below commute and satisfies ε0ψc(ε) ≥ 0 for all
ε ∈ Σ.

Σ Σ

R R

σ

fc

ψc ψc

Furthermore, for every ε ∈ Σ, we have

ε0ψc(ε) ∈
[√
−βc − c, βc

]
,

for all c ∈ (−∞,−2], and the map ζε : (−∞,−2]→ R defined by

ζε(c) = ψc(ε)

is continuous.

Before proving Theorem 2.4, observe that c ≤ −βc for all c ∈ (−∞,−2],
with equality if and only if c = −2. Consequently, for c ∈ (−∞,−2] and
ε = ±1, the partial inverse gεc : [c,+∞)→ R of fc given by

gεc(z) = ε
√
z − c

is well defined on [−βc, βc], and we have

gεc ([−βc, βc]) =
[
ε
√
−βc − c, εβc

]
⊂ [−βc, βc] .

Lemma 2.5. For all c ∈ (−∞,−2] and all ε = (ε0, . . . , εp−1) ∈ {−1, 1}p,
with p ≥ 1, the map gεc : [−βc, βc]→ [−βc, βc] defined by

gεc (z) = gε0c ◦ · · · ◦ g
εp−1
c (z)

has a unique fixed point zε(c).
Moreover, for every finite sequence ε of ±1, the map c 7→ zε(c) is contin-

uous.

Claim 2.6. If c ∈ (−∞,−2], ε ∈ {−1, 1}p, with p ≥ 1, and z is a fixed point

of gεc , then z ∈ X 0,p
c and εjf

◦j
c (z) > 0 for all j ∈ {0, . . . , p− 1}.

Proof of Claim 2.6. We have f◦pc (z) = z and the set X 0,p
c is invariant

under fc. Therefore, for all j ∈ {0, . . . , p− 1}, we have

f◦jc (z) = g
εj
c ◦ · · · ◦ gεp−1

c (z) ∈ gεjc ([−βc, βc]) ∩ X 0,p
c ,

which yields

εjf
◦j
c (z) ∈

(√
−βc − c, βc

]
⊂ R>0

since εj
√
−βc − c is preperiodic for fc with preperiod 2 and period 1. �
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Proof of Lemma 2.5. Fix c ∈ (−∞,−2] and p ≥ 1. For every ε ∈
{−1, 1}p, the map gεc has a fixed point zε(c) by the intermediate value the-

orem. Now, note that zε(c) is not a fixed point of gε
′
c whenever ε 6= ε′ ∈

{−1, 1}p by Claim 2.6. Therefore, the points zε(c), with ε ∈ {−1, 1}p, are

pairwise distinct, and, since X 0,p
c contains at most 2p elements, it follows

that

X 0,p
c = {zε(c) : ε ∈ {−1, 1}p} .

Thus, for every ε ∈ {−1, 1}p, zε(c) is the unique fixed point of the map gεc .
Now, fix p ≥ 1, ε = (ε0, . . . , εp−1) ∈ {−1, 1}p and c ∈ (−∞,−2]. It

remains to verify that the map c′ 7→ zε (c′) is continuous at c. For each
c′ ∈ (−∞,−2], choose εc′ ∈ {−1, 1}p such that

∣∣zε(c)− zεc′ (c
′)
∣∣ is minimal.

Then we have

∣∣zε(c)− zεc′
(
c′
)∣∣ ≤

 ∏
ε′∈{−1,1}p

∣∣zε(c)− zε′
(
c′
)∣∣ 1

2p

=
∣∣Fp (c′, zε(c)

)
− zε(c)

∣∣ 1
2p

for all c′ ∈ (−∞,−2], and so zεc′ (c
′) tends to zε(c) as c′ approaches c.

By Claim 2.6, it follows that, whenever c′ is close enough to c, we have

εjf
◦j
c′
(
zεc′ (c

′)
)
> 0 for all j ∈ {0, . . . , p−1}, which yields εc′ = ε. Thus, the

limit of zε (c′) as c′ approaches c is zε(c), and the lemma is proved. �

We may now deduce Theorem 2.4 from Lemma 2.5.

Proof of Theorem 2.4. Fix c ∈ (−∞,−2]. Assume that ψc : Σ → R is a
map that satisfies fc ◦ ψc = ψc ◦ σ and ε0ψc(ε) ≥ 0 for all ε ∈ Σ. Then, for
all ε ∈ Σ and all n ≥ 0, we have

ψc(ε) = gε0c ◦ · · · ◦ gεnc
(
ψc

(
σ◦(n+1)(ε)

))
.

It follows that, if ε is a periodic sign sequence with period p ≥ 1, then ψc(ε) is
a fixed point of the map g

εp
c , where εp = (ε0, . . . , εp−1) ∈ {−1, 1}p, and hence

ψc(ε) = zεp(c). Therefore, for every ε ∈ Σ with preperiod k ≥ 0 and period

p ≥ 1, we have ψc(ε) = g
εpp
c

(
zεp(c)

)
, where εpp = (ε0, . . . , εk−1) ∈ {−1, 1}k

and εp = (εk, . . . , εk+p−1) ∈ {−1, 1}p, adopting the convention that g∅c
denotes the identity map of [−βc, βc]. In particular, there is at most one
map ψc : Σ→ R that satisfies the conditions above.

For ε = (εn)n≥0 a preperiodic sign sequence with preperiod k ≥ 0 and

period p ≥ 1, define εpp = (ε0, . . . , εk−1) ∈ {−1, 1}k, εp = (εk, . . . , εk+p−1) ∈
{−1, 1}p and ψc(ε) = g

εpp
c

(
zεp(c)

)
. If ε is a periodic sign sequence with

period p ≥ 1, then fc ◦ψc(ε) is a fixed point of the map g
σ(ε)p
c since σ(ε)p =

(ε1, . . . , εp−1, ε0), and hence fc ◦ ψc(ε) = ψc ◦ σ(ε). Similarly, if ε ∈ Σ
has preperiod k ≥ 1 and period p ≥ 1, then fc ◦ ψc(ε) = ψc ◦ σ(ε) since
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σ(ε)pp = (ε1, . . . , εk−1) and σ(ε)p = εp. Moreover, for all ε ∈ Σ, we have
ψc(ε) ∈ gε0c ([−βc, βc]), which yields

ε0ψc(ε) ∈
[√
−βc − c, βc

]
⊂ R≥0 .

Thus, the map ψc : Σ→ R so defined has the required properties.
Furthermore, for every ε ∈ Σ, the map ζε : c 7→ ψc(ε) is clearly continu-

ous. �

Remark 2.7. Observe that, if c ∈ (−∞,−2] and ε, ε′ ∈ Σ satisfy ε0 = −ε′0
and σ(ε) = σ (ε′), then ψc(ε) = −ψc (ε′).

Note that the proof of Theorem 2.4 provides explicit formulas for the
maps ζε with ε ∈ Σk,1 and k ≥ 0, which are defined in the statement of the
theorem.

Example 2.8. Suppose that ε = ±1. Then

• for ε ∈ Σ1,1 given by ε0 = ε and ε1 = −1, we have

ζε : c 7→ ψc(ε) = −εαc ;

• for ε ∈ Σ1,1 given by ε0 = ε and ε1 = 1, we have

ζε : c 7→ ψc(ε) = εβc ;

• for ε ∈ Σ2,1 given by ε0 = ε, ε1 = 1 and ε2 = −1, we have

ζε : c 7→ ψc(ε) = ε
√
−αc − c ;

• for ε ∈ Σ2,1 given by ε0 = ε, ε1 = −1 and ε2 = 1, we have

ζε : c 7→ ψc(ε) = ε
√
−βc − c .

Proposition 2.9. Assume that c ∈ (−∞,−2]. Then we have

X k,pc = ψc

(
Σk,p

)
⊂ [−βc, βc]

for all k ≥ 0 and p ≥ 1 (see Figure 4).
Furthermore, if c ∈ (−∞,−2), then the map ψc : Σ→ R is injective.

Proof. For all n ≥ 0, we have f◦nc ◦ψc = ψc◦σ◦n. Consequently, ψc
(
Σk,p

)
⊂

X k,pc for all k ≥ 0 and p ≥ 1.
Now, suppose that c ∈ (−∞,−2). Then, for all ε ∈ Σ and all n ≥ 0, we

have

εnf
◦n
c (ψc(ε)) ∈

[√
−βc − c, βc

]
⊂ R>0 .

Therefore, the map ψc is injective, and, since X k,pc contains at most 2k+p

elements, it follows that ψc
(
Σk,p

)
= X k,pc , for all k ≥ 0 and p ≥ 1.
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−βc −
√
−βc − c

√
−βc − c βc

z

c

−βc

βc

w

Figure 4. Graphs of the maps z 7→ Fn(c, z), with n ∈
{0, . . . , 3}, when c ∈ (−∞,−2].

It remains to prove that X k,p−2 ⊂ ψ−2
(
Σk,p

)
for all k ≥ 0 and p ≥ 1. Fix

k ≥ 0 and p ≥ 1, and suppose that z ∈ X k,p−2 . Then, for all c ∈ (−∞,−2),
we have

min
ε∈Σk,p

|z − ψc(ε)| ≤

 ∏
ε∈Σk,p

|z − ψc(ε)|

 1

2k+p

= |Fk+p(c, z)− Fk(c, z)|
1

2k+p .

As the maps ζε, with ε ∈ Σk,p, are continuous at −2, it follows that z ∈
ψ−2

(
Σk,p

)
. Thus, the proposition is proved. �

Remark 2.10. Applying Montel’s theorem, it follows from Proposition 2.9
that, for every c ∈ (−∞,−2], the filled-in Julia set of fc – that is, the set of
points z ∈ C that have bounded forward orbit under fc – is also contained
in [−βc, βc].

Note that the map ψ−2 is not injective. More precisely, we have the
following:
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Proposition 2.11. For all ε 6= ε′ ∈ Σ, ψ−2(ε) = ψ−2 (ε′) if and only
if there exists an integer k ≥ 2 such that ε, ε′ ∈ Σk,1, εj = ε′j for all

j ∈ {0, . . . , k − 3}, εk−2 = −ε′k−2, εk−1 = ε′k−1 = −1 and εk = ε′k = 1.

Proof. Suppose that ε 6= ε′ ∈ Σ satisfy ψ−2(ε) = ψ−2 (ε′). Then, for all
n ≥ 0, we have

εnf
◦n
−2 (ψ−2(ε)) ≥ 0 and ε′nf

◦n
−2 (ψ−2(ε)) ≥ 0 .

Since ε 6= ε′, it follows that there is an integer k ≥ 0, which we may
assume minimal, such that f◦k−2 (ψ−2(ε)) = 0. For all j ∈ {0, . . . , k − 1},
the inequalities above are strict, and hence εj = ε′j . Moreover, we have

f
◦(k+1)
−2 (ψ−2(ε)) = −2 and f◦n−2 (ψ−2(ε)) = 2 for all n ≥ k + 2, which yields
εk+1 = ε′k+1 = −1 and εn = ε′n = 1 for all n ≥ k + 2. Thus, the sign
sequences ε and ε′ have the desired form.

Conversely, observe that, for ε ∈ Σ2,1 with ε1 = −1 and ε2 = 1, we have

ψ−2(ε) = ε0
√
−β−2 − (−2) = 0 .

Therefore, if k ≥ 2 and ε ∈ Σk,1 satisfies εk−1 = −1 and εk = 1, then

ψ−2(ε) = g
(ε0,...,εk−3)
−2

(
ψ−2

(
σ◦(k−2)(ε)

))
= g

(ε0,...,εk−3)
−2 (0)

does not depend on εk−2. This completes the proof of the proposition. �

Remark 2.12. It follows from Proposition 2.9 and Proposition 2.11 that, for

all k ≥ 0 and p ≥ 1, the set X k,p−2 contains exactly 2p elements if k = 0 and

2k+p − 2k−1 + 1 elements if k ≥ 1.

Remark 2.13. Note that we can actually describe the map ψ−2 : Σ → R
explicitly. For ε ∈ Σ, define the sequence (δn(ε))n≥0 ∈ {0, 1}Z≥0 by

δn(ε) =

{
δn−1(ε) if εn = 1

1− δn−1(ε) if εn = −1
,

where δ−1(ε) = 0 by convention. Then the map ψ−2 : Σ→ R is given by

ψ−2(ε) = 2 cos

(
π

+∞∑
n=0

δn(ε)

2n+1

)
.

3. Back to the parameter space

We shall now exploit the statements given in Section 2 to get results
concerning the parameter space.

Remark 3.1. By definition, for every point a ∈ C and every parameter c ∈ C,

c ∈ Sa if and only if a ∈ Xc and, for all k ≥ 0 and p ≥ 1, c ∈ Sk,pa if and

only if a ∈ X k,pc .
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Proposition 3.2. For every a ∈ C, we have

Sa ⊂ {c ∈ C : |c| ≤ Ra} ,

where Ra = |a|2 +
√
|a|2 + 1 + 1.

Proof. Suppose that c ∈ Sa. Then, by Proposition 2.2, we have

|c| − |a|2 ≤ |fc(a)| ≤ ρc ,

and hence ϕ (|c|) ≤ |a|2, where ϕ : R≥0 → R is given by

ϕ(x) = x− 1 +
√

1 + 4x

2
.

The map ϕ is strictly increasing and satisfies ϕ (Ra) = |a|2. Thus, the
proposition is proved. �

Now, let us give a more extensive description of Sa when a ∈ (−∞,−2]∪
[2,+∞).

Given ε = ±1, let Σk,p
ε – with k ≥ 0 and p ≥ 1 – be the set defined by

Σk,p
ε =

{
ε = (εn)n≥0 ∈ Σk,p : ε0 = ε

}
,

and let Σε be the set defined by

Σε =
⋃

k≥0, p≥1
Σk,p
ε = {ε ∈ Σ : ε0 = ε} .

For all k ≥ 0 and p ≥ 1, the set Σk,p
ε contains exactly 2k+p−1 elements –

each of them being completely determined by the choice of its terms with
index in {1, . . . , k + p− 1}.

Suppose that a ∈ (−∞,−2] ∪ [2,+∞). Then

• for ε ∈ Σ2,1
sgn(a) given by ε1 = −1 and ε2 = 1, the map

sgn(a)ζε : c 7→
√
−βc − c

is strictly decreasing on (−∞,−2] and we have ζε (c−a ) = a, where
c−a is the parameter defined by

c−a = −a2 −
√
a2 + 1− 1 ∈ S2,1a ;

• for ε ∈ Σ1,1
sgn(a) given by ε1 = 1, the map

sgn(a)ζε : c 7→ βc

is strictly decreasing on (−∞,−2] and we have ζε (c+a ) = a, where
c+a is the parameter defined by

c+a = −a2 + |a| ∈ S1,1a .

Remark 3.3. Note that, for every a ∈ C with |a| ≥ 2, we have Ra = −c−|a|.
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c−a c+
a −2

c 0

2

a

z

Figure 5. Graphs of the maps ζε, with ε ∈ Σ2,1
sgn(a), when

a ∈ [2,+∞).

Theorem 3.4. Assume that a ∈ (−∞,−2]∪[2,+∞). Then there is a unique
map

γa : Σsgn(a) → (−∞,−2]

that satisfies ζε (γa(ε)) = a for all ε ∈ Σsgn(a) (see Figure 5).
Furthermore, we have

Sk,pa = γa

(
Σk,p

sgn(a)

)
⊂
[
c−a , c

+
a

]
,

for all k ≥ 0 and p ≥ 1, (see Figure 6) and the map γa is injective.

Claim 3.5. If a ∈ (−∞,−2]∪ [2,+∞) and γ ∈ (−∞,−2], then a has at most
one preimage under ψγ .

Proof of Claim 3.5. If γ ∈ (−∞,−2), then the map ψγ is injective.
If γ = −2 and ε ∈ Σ satisfies ψγ(ε) = a, then we have

2 ≤ |a| = |ψ−2(ε)| ≤ β−2 = 2 ,

so ψ−2(ε) = sgn(a)β−2, and, by Proposition 2.11, it follows that ε is the

sign sequence in Σ1,1
sgn(a) given by ε1 = 1. Thus, the claim is proved. �

Proof of Theorem 3.4. For every ε ∈ Σsgn(a), we have

sgn(a)ζε
(
c−a
)
≥
√
−βc−a − c

−
a = |a| and sgn(a)ζε

(
c+a
)
≤ βc+a = |a| ,

and hence, by the intermediate value theorem, there exists γa(ε) ∈ [c−a , c
+
a ]

such that ζε (γa(ε)) = a. Now, note that, if ε ∈ Σk,p
sgn(a) – with k ≥ 0 and
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c−a c+
a

c 0

a

z

Figure 6. Graphs of the maps c 7→ Fn(c, a), with n ∈
{0, . . . , 3}, when a ∈ [2,+∞).

p ≥ 1 – and γ ∈ (−∞,−2] satisfy ζε(γ) = a, then ε is a preimage of a

under ψγ , and in particular γ ∈ Sk,pa . Therefore, by Claim 3.5, the map

γa so defined is injective, and, as Sk,pa contains at most 2k+p−1 elements,

it follows that γa

(
Σk,p

sgn(a)

)
= Sk,pa , for all k ≥ 0 and p ≥ 1. Thus, for

every ε ∈ Σsgn(a), γa(ε) is the unique parameter γ ∈ (−∞,−2] that satisfies
ζε(γ) = a. This completes the proof of the theorem. �

Remark 3.6. Applying Montel’s theorem, it follows from Theorem 3.4 that,
for every a ∈ (−∞,−2] ∪ [2,+∞), the set of parameters c ∈ C for which
the point a has bounded forward orbit under fc is also contained in the line
segment [c−a , c

+
a ].

Note that, when a is an integer, the set Sa has the following arithmetic
property (when a = 0, compare [HT15, Corollary 3.4]):

Proposition 3.7. For every a ∈ Z, the set Sa is contained in the set of
algebraic integers and is invariant under the action of Gal

(
Q/Q

)
.

Proof. For all k ≥ 0 and p ≥ 1, the polynomial Fk+p(c, a)−Fk(c, a) is monic
with integer coefficients since a ∈ Z. Thus, the proposition is proved. �
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We shall now prove Theorem 1.7, which we recall below.

Theorem 1.7. Assume that a and b are two integers with |b| > |a|. Then

• either a = 0, |b| = 1 and Sa ∩ Sb = {−2,−1, 0},
• or a = 0, |b| = 2 and Sa ∩ Sb = {−2},
• or |a| ≥ 1, |b| = |a|+ 1 and Sa ∩ Sb =

{
−a2 − |a| − 1,−a2 − |a|

}
,

• or |b| > max {2, |a|+ 1} and Sa ∩ Sb = ∅.

Lemma 3.8. Assume that m ∈ Z and c is an algebraic integer whose all
Galois conjugates lie in the interval (m− 2,m]. Then c = m− 1 or c = m.

Proof of Lemma 3.8. Set α = c−m+ 1. Then α is an algebraic integer
whose all Galois conjugates α1, . . . , αd lie in the interval (−1, 1]. Therefore,
we have

d∏
j=1

αj ∈ (−1, 1] ∩ Z = {0, 1} ,

and it follows that either αj = 0 for some j ∈ {1, . . . , d}, which yields α = 0,
or αj = 1 for all j ∈ {1, . . . , d}. Thus, either c = m− 1 or c = m. �

Proof of Theorem 1.7. For a proof of the case a = 0 and |b| = 1, we refer
the reader to [Bu18, Proposition 6].

Thus, we may assume that |b| ≥ 2. By Proposition 3.2, Theorem 3.4 and
Proposition 3.7, the set Sa ∩ Sb is contained in the set of algebraic integers,
is invariant under the action of Gal

(
Q/Q

)
and satisfies

Sa ∩ Sb ⊂ {c ∈ C : |c| ≤ Ra} ∩
[
c−b , c

+
b

]
.

Suppose that a = 0. Then we have

c+b = −b2 + |b| ≤ −2 = −Ra ,

with equality if and only if |b| = 2. Therefore, Sa ∩ Sb ⊂ {−2} if |b| = 2

and Sa ∩ Sb = ∅ otherwise. Conversely, observe that −2 ∈ S2,1a ∩ S1,1b when
|b| = 2.

Now, suppose that |a| ≥ 1. Then we have

c+b − 2 < −Ra = −a2 −
√
a2 + 1− 1 < −a2 − |a| = c+b if |b| = |a|+ 1

and

c+b = −b2 + |b| < −a2 −
√
a2 + 1− 1 = −Ra if |b| ≥ |a|+ 2 .

Therefore, Sa∩Sb ⊂
{
−a2 − |a| − 1,−a2 − |a|

}
if |b| = |a|+1 by Lemma 3.8

and Sa∩Sb = ∅ otherwise. Conversely, observe that −a2−|a|−1 ∈ S1,2a ∩S1,2b
and−a2−|a| ∈ S1,1a ∩S1,1b when |b| = |a|+1. Thus, the theorem is proved. �
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