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The causal topology of neutral
4-manifolds with null boundary

Nikos Georgiou and Brendan Guilfoyle

Abstract. This paper considers aspects of 4-manifold topology from
the point of view of the null cone of a neutral metric, a point of view we
call neutral causal topology. In particular, we construct and investigate
neutral 4-manifolds with null boundaries that arise from canonical 3-
and 4-dimensional settings.

A null hypersurface is foliated by its normal and, in the neutral case,
inherits a pair of totally null planes at each point. This paper focuses
on these plane bundles in a number of classical settings.

The first construction is the conformal compactification of flat neutral
4-space into the 4-ball. The null foliation on the boundary in this case
is the Hopf fibration on the 3-sphere and the totally null planes in the
boundary are integrable. The metric on the 4-ball is a conformally flat,
scalar-flat, positive Ricci curvature neutral metric.

The second constructions are subsets of the 4-dimensional space of
oriented geodesics in a 3-dimensional space-form, equipped with its
canonical neutral metric. We consider all oriented geodesics tangent
to a given embedded strictly convex 2-sphere. Both totally null planes
on this null hypersurface are contact, and we characterize the curves in
the null boundary that are Legendrian with respect to either totally null
plane bundles. The Reeb vector field associated with the alpha-planes
are shown to be the oriented normal lines to geodesics in the surface.

The third is a neutral geometric model for the intersection of two
surfaces in a 4-manifold. The surfaces are the sets of oriented normal
lines to two round spheres in Euclidean 3-space, which form Lagrangian
surfaces in the 4-dimensional space of all oriented lines. The intersection
of the boundaries of their normal neighbourhoods form tori that we
prove are totally real and Lorentz if the spheres do not intersect.

We conclude with possible topological applications of the three con-
structions, including neutral Kirby calculus, neutral knot invariants and
neutral Casson handles, respectively.
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1. Introduction

This paper considers certain 4-manifolds with boundary which carry a
neutral metric (pseudo-Riemannian of signature (2,2)) with respect to which
the boundary is a null hypersurface. We seek to extract geometric and
topological information from the null cone of such metrics in a number of
canonical situations.

The results can be viewed as the first steps in the development of a neutral
causal topology for 4-manifolds with boundary.1 From this point of view,
section 2 presents the 0-handle of a neutral Kirby calculus, with preferred
curves along which to do surgery. The neutral metric appears to be ideally
suited to 2-handle constructions in which the framing is tracked by the null
cone on the associated tori.

Section 3 develops the theory of knots in tangent hypersurfaces in order to
identify neutral knot invariants in null boundaries, while Section 4 constructs
a local geometric model for the normal neighbourhood of a transverse double
point of a Lagrangian disc.

In more detail, we consider the conformal compactification of an open
neutral 4-manifold. Conformal compactifications of both Riemannian and
Lorentzian 4-manifolds have been long studied [3] [34]. For neutral 4-
manifolds even the flat case has not received much attention. In the next
section we seek to remedy this by providing the canonical example:

Theorem 1.1. There exists a smooth embedding f : (R2,2,G) → (B4, G̃)
and a function Ω : B4 → R: such that

(i) f is a conformal diffeomorphism onto the interior of B4 with f∗G̃ =
Ω2G,

(ii) Ω = 0 on ∂B4 = S3,
(iii) the boundary is null,
(iv) dΩ = 0 on the boundary S3 precisely on an embedded Hopf link.

The metric G̃ on the 4-ball is a conformally flat, scalar-flat neutral metric
with positive definite Ricci tensor, analogous to the Einstein static universe.
Thus, space-like infinity and timelike infinity are Hopf-linked in the bound-
ary of a flat universe with two times.

1Expository video clips explaining the results and motivations of this paper can be
found at the following link: https://www.youtube.com/watch?v=VUlPMPwT-hA

https://www.youtube.com/watch?v=VUlPMPwT-hA
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The null boundary inherits a degenerate Lorentz metric, whose null cone
is a pair of transverse totally null planes at each point (α-planes and β-
planes). In the conformal compactification of R2,2 these plane fields are
both integrable, and contain the tangents to the (1,1) and (1,-1) curves on
the Hopf tori about the link.

This 4-ball should be viewed as the 0-handle of a neutral Kirby calculus so
that one can consider attaching handles along framed curves in the boundary
[17] [27]. In order to carry the neutral metric along, certain causal conditions
must be fulfilled, conditions that mirror the restrictions on neutral metrics
in the compact case [22] [32]. One can then develop neutral surgery on
conformal classes of neutral metrics. In this case, the foliation by Lorentz
tori tracks the framing for such surgery along the Hopf link.

The second type of 4-manifold, detailed in Section 3, are subsets of the
space L(M3) of oriented geodesics in a 3-dimensional space-form (M3, g). It
is well-known that L(M3) admits an invariant neutral metric G [15] [19] [24]
[36] [37].

Given a smoothly embedded surface S ⊂M3, define the tangent hypersur-
face of S, denoted H(S) ⊂ L(M3), to be the set of oriented geodesics that
are tangent to S. This 3-manifold is locally a circle bundle over S, with
projection π : H(S)→ S and fibre generated by rotation about the normal
to S.

In this paper we investigate the geometric properties of H(S) induced by
the neutral metric on L(M3). If S ⊂ M3 is a smooth surface, then H(S) is
an immersed hypersurface which is null with respect to G.

Thus, H(S) is foliated by null geodesics and contains an α-plane and a
β-plane at each point. A knot C ⊂ H(S), which is an oriented tangent line
field over a curve c ⊂ S, is said to be α-Legendrian (β-Legendrian) if its
tangent lies in the α-planes (β-planes, respectively).

Given a contact structure on a 3-manifold with contact 1-form ω, the Reeb
vector field X is characterised by

dω(X, ·) = 0 ω(X) = 1

In the case where S is a strictly convex 2-sphere, the tangent hypersurface
bounds a disc bundle of Euler number 2 in L(M3), and we prove:

Theorem 1.2. If S ⊂ M3 is a smooth convex 2-sphere in a 3-dimensional
space-form, then the α-planes and β-planes of the neutral metric are both
contact.

Moreover, a knot C ⊂ H(S), with contact curve c = π(C) ⊂ S, is α-
Legendrian iff ∀γ ∈ C, γ is tangent to c ⊂ S ⊂M3.

In addition, any two of the following imply the third:

(i) C is β-Legendrian,
(ii) ∀γ ∈ C, γ is normal to c,
(iii) either c is a line of curvature of S, or S is umbilic along c.



480 NIKOS GEORGIOU AND BRENDAN GUILFOYLE

Finally, the Reeb vector field of the α−planes consists of the oriented lines
normal to a geodesic of S.

The proof requires separate formalisms in the flat and non-flat cases.
Section 4 contains a local geometric model of the normal neighbourhood

of an isolated double point on an immersed surface, given by the intersection
of two Lagrangian surfaces in L(R3). These surfaces are the oriented normal
lines to two round spheres in R3 and the boundaries of a normal neighbour-
hood of the surfaces can be identified with the tangent hypersurfaces of the
spheres.

Theorem 1.3. Let S1, S2 ⊂ R3 be round spheres of radii r1 ≥ r2 with
centres separated by a distance l in R3. Then,

(i) H(S1) ∩H(S2) = ∅ if and only if l < r1 − r2,
(ii) H(S1) ∩H(S2) = S1 if and only if l = r1 − r2,
(iii) H(S1) ∩H(S2) = T 2 if and only if r1 − r2 < l ≤ r1 + r2,
(iv) H(S1) ∩H(S2) = T 2

∐
T 2 if and only if r1 + r2 < l.

If l > r1 + r2 so that S1 ∩ S2 = {∅}, then the intersection tori T 2 are
totally real and Lorentz.

In the final section, we discuss these three constructions from a topological
point of view.

2. Conformal compactification

2.1. Neutral geometry. Let us assemble some facts of neutral geometry
that will be required in this paper. The statements are in R4, but hold in
the tangent space at a point in any neutral 4-manifold.

Consider the flat neutral metric G,

ds2 = (dx1)2 + (dx2)2 − (dx3)2 − (dx4)2,

on R4 in standard coordinates (x1, x2, x3, x4). Throughout, denote R4 en-
dowed with this metric by R2,2.

Definition 2.1. The neutral null cone is the set of null vectors in R2,2:

K = {X ∈ R2,2 | G(X,X) = 0}.

The null cone is a cone over a torus, in distinction to the Lorentz R3,1

case where the null cone is a cone over a 2-sphere. To see the torus, note
that the map f : R× S1 × S1 → K

f(a, θ1, θ2) = (a cos θ1, a sin θ1, a cos θ2, a sin θ2) ,

parameterizes the null vectors as a cone over T2.

Definition 2.2. A plane P ⊂ R2,2 is totally null if every vector in P is null
with respect to G, and the inner product of any two vectors in P is zero.



NEUTRAL 4-MANIFOLDS WITH NULL BOUNDARY 481

Since every vector that lies in a totally null plane is null, we can picture a
null plane as a cone over a circle in K. A straight-forward calculation shows
that:

Proposition 2.3. A totally null plane is a cone over either a (1,1)-curve
or a (1,-1)-curve on the torus, the former for an α-plane, the latter for a
β-plane.

Here the (1,±1)-curves on the torus are given by the equations θ1± θ2 =
constant. By rotating around the meridian we see that the set of totally
null planes is S1

∐
S1.

The metric has two natural compatible complex structures (up to an
overall sign), which in coordinates (x1, x2, x3, x4) take the form

J+ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 J− =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 .
Proposition 2.4. [16] An α−plane (β−plane) is invariant under the com-
plex structure J+ ( J−), respectively

Note that, in general, these only extend to compatible almost complex
structures on a neutral manifold. The space of compatible almost complex
structures on a neutral 4-manifold is referred to as the hyperbolic twistor
space of the metric [30].

Composition of either of the complex structures with the metric yields a
2-form, which is symplectic in the flat case. However, the 2-form does not
tame the almost complex structure in the sense of Gromov [18] - neutral
metrics walk on the wild side.

Now consider a null vector X ∈ R2,2. The set of vectors orthogonal to X is
3-dimensional and contains the vector X itself. Choosing another null vector
Y which has G(X,Y ) = 1, complete this to a frame {e+, e−, e0 = X, f0 = Y }
such that

G =


1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

 .
Clearly the hypersurface orthogonal to X has a degenerate Lorentz metric
and the set of null vectors at each point consists of two totally null planes,
intersecting along the normal vector X.

In particular, given any null vector X there exists a pair of totally null
planes containing X,

P± = spanR{e+ ± e−, X},
which are exactly the α−planes and β−planes. This structure exists on any
null hypersurface in a neutral 4-manifold and will be considered in some
detail in the constructions of this paper.
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2.2. The conformal compactification of R2,2. We will now conformally
embed R2,2 as an open 4-ball in R4 so that the points at infinity in R2,2 form
the boundary 3-sphere.

First, let us introduce the coordinate change

(x1, x2, x3, x4)→ (R1, R2, θ1, θ2)

defined by the double polar transformation:

x1 + ix2 = R1e
iθ1 x3 + ix4 = R2e

iθ2 . (2.1)

To bring the points at infinity (i.e. R1 or R2 going to infinity) in to a finite
distance define

tan p = R1 +R2 tan q = R1 −R2.

Clearly the coordinates (p, q, θ1, θ2), with

0 ≤ p < π/2 − p ≤ q ≤ p 0 ≤ θ1, θ2 < 2π,

cover all of R2,2. Moreover, infinity has been brought in to the boundary
p = π/2.

This boundary is in fact a 3-sphere bounding a 4-ball B4, as can be seen
by the identification of (z1, z2) ∈ C2 = R4

z1 = p sin(ψ/2)eiθ1 z2 = p cos(ψ/2)eiθ2 , (2.2)

where q = p cosψ with 0 ≤ ψ ≤ π. The boundary is the 3-sphere ∂B4 = S3

of radius π/2 and the tori parameterized by (θ1, θ2) are exactly the Hopf
tori in S3.

Consider the neutral metric G̃ on the 4-ball given by

ds̃2 = dpdq + 1
4 sin2(p+ q)dθ2

1 − 1
4 sin2(p− q)dθ2

2. (2.3)

Under the diffeomorphism f(x1, x2, x3, x4) = (p, q, θ1, θ2) the pull-back of

G̃ is conformal to G: f∗G̃ = Ω2G where Ω is the real map on the 4-ball
Ω = 2 cos p cos q. Note that this vanishes at the boundary p = π/2.

The metric G̃ is obviously conformally flat and is also scalar-flat neutral
metric, being the neutral analog of the Einstein static universe. The Ricci
tensor has non-vanishing components:

R̃pp = R̄qq = 2 R̃θ1θ1 = sin2(p+ q) R̃θ2θ2 = sin2(p− q).
Clearly, the boundary 3-sphere is null and this has interesting conse-

quences. The normal vector lies in the sphere. In general the set of points
on the boundary at which dΩ vanishes would be zero dimensional, the fact
that the hypersurface is null (so that |dΩ| = 0 everywhere on the boundary)
means that the zero locus is 1-dimensional.

A short calculation shows that dΩ = 0 on S3 when q = ±π
2 . Since p = π

2 ,
we have ψ ∈ {0, π} and equations (2.2) tell us that the gradient of the
conformal factor vanishes on a pair of Hopf-linked circles in the boundary.

We have now proven Theorem 1.1 and propose that the four conditions of
this Theorem are natural for the conformal compactification of more general
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neutral 4-manifolds - with the Hopf link replaced by some other link in the
boundary.

The metric induced on a null hypersurface by a neutral metric has degen-
erate signature (0,+,−) and the null cone degenerates to a pair of totally
null planes, called α−planes and β−planes, which intersect on the normal
to the hypersurface, which, being null, lies in the tangent space to the hy-
persurface.

Proposition 2.5. Both the α−planes and β−planes on the boundary are
integrable.

Proof. The pullback of the metric (2.3) onto the boundary 3-sphere p = π
2

is

ds̃2|S3 = 1
4 cos2 q

(
dθ2

1 − dθ2
2

)
,

and so the null cone is spanned by

X± = a
∂

∂q
+ b

(
∂

∂θ1
± ∂

∂θ2

)
.

The 1-forms that vanish on these two planes are proportional to

ω± = dθ1 ∓ dθ2,

so that ω± ∧ dω± = 0 and the distributions are integrable. �

Note here that the null planes intersect the tori q = constant in the (1,1)
and (1,-1) curves, which gives the null cone structure on these Lorentz tori.

The existence of a conformal compactification with null boundary means
that the metric G must be scalar flat at infinity in the original 4-manifold,
since by the well-known conformal change

Ω2R̄ = R− 6Ω4̄Ω + 12|∇̄Ω|2

along the null boundary |∇̄Ω|2 = 0 and so R → 0 as Ω → 0. In the 4-
manifolds we consider, it is scalar flat throughout and so this obstruction
does not arise.
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3. Tangent hypersurfaces

3.1. Flat 3-space.

3.1.1. The neutral metric. Interest in the neutral metric on the space of
oriented geodesics of a 3-dimensional space of constant curvature has grown
recently [15] [19] [24] [36] [37]. The underlying smooth 4-manifold in the R3

case is the total space of the tangent bundle to the 2-sphere L(R3) ≡ TS2,
and we adopt the notation of [20] for the local description.

This identification is made concrete by choosing Euclidean coordinates
(x1, x2, x3) and considering tangent vectors to the unit 2-sphere in the same
R3. Thus, choosing holomorphic coordinates about the north pole on S2,
the tangent vector

V = η
∂

∂ξ
+ η̄

∂

∂ξ̄
,

for η ∈ C is identified with the oriented parameterized line γ : R → R3 :
r 7→ γ(r) given by

z = x1 + ix2 =
2(η − ξ̄2η̄)

(1 + ξξ̄)2
+

2ξ

1 + ξξ̄
r, (3.1)

x3 = −2(ξη̄ + ξ̄η)

(1 + ξξ̄)2
+

1− ξξ̄
1 + ξξ̄

r. (3.2)

Fixing the two complex numbers ξ and η, as we vary r the point (x1, x2, x3)
in R3 moves along a straight line. The parameter r is arc-length along the
line, with r = 0 determining the point on the line that is closest to the
origin.

Moreover, it is easily seen that the direction of the line is ξ, obtained
by stereographic projection from the south pole. The perpendicular dis-
placement of the line from the origin is determined by the complex number
η.

Thus, (ξ, η) are local coordinates on the space of oriented line L(R3) with
the fibre over the south pole removed. A similar local patch obtained by
stereographic projection from the north pole can be glued together to cover
all of the 2-sphere of directions.

Computing the rotation of η as one traverses a circle in the overlap of
the two charts, one obtains a vector bundle with Euler number 2, thus
identifying L(R3) with the total space of the tangent bundle to the 2-sphere
TS2.

In fact L(R3) admits a pair of canonical complex structures J+ and J−
which when expressed in the coordinates (ξ, ξ̄, η, η̄) take the form

J+ =


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 J− =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 .
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In addition, there is a neutral metric G on L(R3) that is invariant under the
Euclidean group, which takes the form

G = 2(1 + ξξ̄)−2Im
(
dη̄dξ +

2ξ̄η

1 + ξξ̄
dξdξ̄

)
. (3.3)

Up to the addition of a spherical factor, this is the unique metric (of any
signature) on the space of lines that is invariant under the Euclidean group
- in any dimension [36].

Clearly, the metric is compatible with J+, but not with J−. The complex
structure J+ has played a significant role in holomorphic methods applied
to Euclidean problems, such as monopoles [23] and minimal surfaces [38].

The composition of J+ and the neutral metric G yields a symplectic form

Ω = 2(1 + ξξ̄)−2Re

(
dη̄ ∧ dξ +

2ξ̄η

1 + ξξ̄
dξ ∧ dξ̄

)
. (3.4)

While this symplectic structure does not tame J+, it has the following
property: a surface Σ in L(R3), that is, a 2-parameter family of oriented
lines, is normal to a surface in R3 iff Σ is Lagrangian: ΩΣ = 0 [19].

This symplectic form coincides with the pull-back of the canonical sym-
plectic form Ω′ on T ∗S2 via the round metric on S2, considered as a map
g : TS2 → T ∗S2: Ω = g∗Ω′.

3.1.2. Tangent hypersurfaces. For any smoothly embedded convex sur-
face S ⊂ R3 define the tangent hypersurface H(S) ⊂ L(R3) to be

H(S) = {γ ∈ L(R3) | γ ∈ Tγ∩SS }.
Clearly rotation about the normal to S at a point p generates a circle in
H(S), so that the hypersurface is the unit circle bundle of the tangent bundle
over S.

From now on we assume that S is a closed strictly convex surface, so that
H(S) is an embedded copy of the unit tangent bundle to S and we have no
lines that are tangent to S at more than one point.

Proposition 3.1. The hypersurface H(S) is null with respect to G and
foliated by null circles which are geodesics of the ambient metric.

Proof. Rotating an oriented line about a line in R3 generates a null circle
in L(R3) which is geodesic in TS2 [19]. The tangent to these circles are in
fact normal to H(S) in TS2, as can be seen as follows.

Since S ⊂ R3 is convex it can be parameterized by the direction of its
normal line. In local coordinates we have C → L(R3) : ν 7→ (ξ = ν, η =
η0(ν, ν̄)). It is well known that this is a Lagrangian section of the canonical
bundle π : L(R3)→ S2.

The point along the normal line where it intersects S is determined by
the support function r0 : S → R which satisfies

∂νr0 =
2η̄0

1 + νν̄
. (3.5)
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The sum and difference of the radii of curvature r1 ≥ r2 of S are

r1 + r2 = ψ0 r1 − r2 = |σ0|,
where

ψ0 = r0 + 2(1 + νν̄)2Re ∂ν

[
η0

(1 + νν̄)2

]
σ0 = −∂ν η̄0. (3.6)

We are interested in the oriented lines that are tangent to S, that is, they
are orthogonal to the normal.

Lemma 3.2. The oriented great circle in S2 which is dual to the point with
holomorphic coordinate ν is generated by

ξ =
ν + eiA

1− ν̄eiA
, (3.7)

for A ∈ [0, 2π).

An oriented line (ξ, η) passes through a point (x1, x2, x3) ∈ R3 iff

η = 1
2

(
x1 + ix2 − 2x3ξ − (x1 − ix2)ξ2

)
. (3.8)

Substituting equations (3.1), (3.2) with (ξ, η) = (ν, η0) and r = r0, and
(3.7) into (3.8) yields

η =
η0 − e2iAη̄0 − (1 + νν̄)eiAr0

(1− ν̄eiA)2
. (3.9)

Thus, the hypersurface H(S) is locally parameterized by (3.7) and (3.9)
for (ν, ν̄) varying over the normal directions of S and A ∈ S1.

Pulling back the metric onto H, we find that the induced metric in these
coordinates (making use of equation (3.5) and definitions (3.6)) is

ds2 = − 2

(1 + νν̄)2
Im
[
(σ0 + ψ0e

−2iA)dν2 + σ0e
2iAdνdν̄

]
. (3.10)

Thus the metric is degenerate along the null vector in the A-direction. This
completes the proof. �

The null vectors tangent to H(S) form a pair of planes, the α−planes
and β−planes, which intersect on the null normal. The former planes are
preserved by the complex structure J+ and the latter by J− [16].

The first part of Theorem 1.2 is established by the following proposition:

Proposition 3.3. If S ⊂ R3 is a smooth convex 2-sphere, then the α-planes
and β-planes of H(S) are both contact.

Proof. Consider the induced metric (3.10) and write down the null planes.
In particular,

Lemma 3.4. The vector ~X ∈ T(ν,A)H(S)

~X = a
∂

∂A
+ bRe

[
eiB

∂

∂ν

]
,
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for a, b ∈ R, is null iff either

B = A+
1

2i
ln

(
ψ0 + σ̄0e

−2iA

ψ0 + σ0e2iA

)
or B = A+

π

2
.

The former spans the α−plane, while the latter the β−plane.

The 1-form ω+ that vanishes on the α−plane is

ω+ = −2Im
e−iAψ0 + eiAσ0

1 + νν̄
dν, (3.11)

and so

ω+ ∧ dω+ = −2i(ψ2
0 − σ0σ̄0)

(1 + νν̄)2
dA ∧ dν ∧ dν̄.

For a convex surface ψ2
0 − σ0σ̄0 is never zero and so the distribution of

α−plane is contact.
On the other hand, the 1-form ω− that vanishes on the β−plane is

ω− = 2Re e−iAdν,

and so

ω− ∧ dω− = −2idA ∧ dν ∧ dν̄.
Thus the distribution of β−plane is contact. �

Note that these tangent hypersurfaces sit within a wider class of oriented
lines passing through S making an angle 0 ≤ a ≤ π/2 with the outward
pointing normal:

Ha(S) = {γ ∈ L(R3) | γ ∩ S 6= ∅, < γ̇, N̂ >= cos a },

where γ̇ is the direction of the oriented line γ and N̂ is the unit outward
pointing normal vector.

For a = 0 this hypersurface degenerates to a Lagrangian surface in L(R3),
while for a = π/2 it is the tangent hypersurface. We refer to Ha(S) in the
general 0 < a ≤ π/2 case as the constant angle hypersurface to S which were
first introduced in [20] while constructing a mod 2 neutral knot invariant.

The local equations for the Ha(S) (generalizing equations (3.7) and (3.9))
are

ξ =
ν + εeiA

1− ν̄εeiA
η =

η0 − ε2e2iAη̄0 − (1 + νν̄)εeiAr0

(1− ν̄εeiA)2
(3.12)

where ε = tan(a/2).
For a < π/2, these hypersurfaces are not null but they have the following

property:

Proposition 3.5. A hypersurface Ha(S) with a < π/2 is null exactly at the
oriented lines through an umbilic point on S and at the oriented lines whose
projection orthogonal to the normal is tangent to the lines of curvature of
S.
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Proof. This follows from pulling back the neutral metric (3.3) to the hy-
persurface (3.12) and taking the determinant. The result is

det G|Ha(S) = −2ε2(1− ε2)2(σ0e
2iA − σ̄0e

−2iA)(ψ2
0 − σ0σ̄0)

(1 + ε2)4(1 + νν̄)4
,

and the result follows. �

We return to these hypersurfaces in Section 4 when considering normal
neighbourhoods of Lagrangian discs in L(R3).

Given the two contact distributions, introduce the following terminology:

Definition 3.6. A knot C ⊂ H(S) is α-Legendrian (β-Legendrian) if its
tangent lies in an α−plane (β−plane) at each point.

The contact curve of C is the curve c = π(C) ⊂ S obtained by the canonical
projection π : H(S)→ S.

We now prove the second part of Theorem 1.2.
Let c ⊂ S be a curve on a convex surface parameterized by arc-length

u 7→ (x1(u), x2(u), x3(u)). Let (ν, η0) be the outward pointing normal line
to S along c so that

z = x1 + ix2 =
2(η0 − ν̄2η̄0)

(1 + νν̄)2
+

2ν

1 + νν̄
r0, (3.13)

x3 = −2(νη̄0 + ν̄η0)

(1 + νν̄)2
+

1− νν̄
1 + νν̄

r0. (3.14)

where r0 : S → R is the support function of S.
To find the oriented line fields along c, differentiate equations (3.13) and

(3.14) with respect to u to find

ż =
2

(1 + νν̄)2

[
(ψ0 + σ0ν

2)ν̇ − (ψ0ν
2 + σ0) ˙̄ν

]
ẋ3 = − 2

(1 + νν̄)2
[(ψ0ν̄ − σ0ν)ν̇ + (ψ1ξ1 − σ̄0ν̄) ˙̄ν] ,

where we have substituted for the derivatives of η0 and r0 using equation
(3.5) and the definitions of σ0 and ψ0 which yield:

η̇0 =
∂η0

∂ν
ν̇ +

∂η0

∂ν̄
˙̄ν =

(
ψ0 − r0 +

2ν̄η0

1 + νν̄

)
ν̇ − σ̄0 ˙̄ν

ṙ0 =
∂r0

∂ν
ν̇ +

∂r0

∂ν̄
˙̄ν =

2η̄0

(1 + νν̄)2
ν̇ +

2η0

(1 + νν̄)2
˙̄ν.

The curve is parameterized by arc length iff

|~T |2 = ż ˙̄z + (ẋ3)2 =
4

(1 + νν̄)2
|ψ0ν̇ − σ̄0 ˙̄ν|2 = 1,

where ~T is the tangent vector to c. That is, there exists β̂ ∈ [0, 2π) such
that

ψ0ν̇ − σ̄0 ˙̄ν =
1

2
(1 + νν̄)eiβ̂,



NEUTRAL 4-MANIFOLDS WITH NULL BOUNDARY 489

inverting this last equation (with the aid of its conjugate)

ν̇ =
(1 + νν̄)

2(ψ2
0 − |σ0|)

[
ψ0e

iβ̂ + σ̄0e
−iβ̂
]
.

Now comparing this with

~T = ż
∂

∂z
+ ˙̄z

∂

∂z̄
+ ẋ3

∂

∂x3
=

2ξ

1 + ξξ̄

∂

∂z
+

2ξ̄

1 + ξξ̄

∂

∂z̄
+

1− ξξ̄
1 + ξξ̄

∂

∂x3

where ξ is given by equation (3.7), we find that the oriented line is tangent

to its contact curve iff β̂ = A. Moreover, the tangent to the curve C ⊂ H(S)
at a point is of the form

~X = a
∂

∂A
+ bRe

[
eiB

∂

∂ν

]
,

for a, b ∈ R with

B = A+
1

2i
ln

(
ψ0 + σ̄0e

−2iA

ψ0 + σ0e2iA

)
.

We conclude by Lemma 3.4 that the tangent vector to a knot C ⊂ H(S) is
contained in an α-plane iff the oriented line field is tangent to its contact
curve.

We now prove the second part of Theorem 1.2.

On the other hand, the normal ~N to the curve c gives rise to the vector
~X with

B = A+
1

2i
ln

(
ψ0 + σ̄0e

−2iA

ψ0 + σ0e2iA

)
+
π

2
,

and this is contained in a β-plane iff either σ0 = 0, in which case the point is
umbilic, or if σ0e

2iA is real, in which case the curve c is a line of curvature.
Similarly, if C is β-Legendrian, then the oriented lines are normal to c iff

either σ0 = 0, in which case the point is umbilic, or if σ0e
2iA is real, in which

case the curve c is a line of curvature.
To prove the final part of Theorem 1.2 consider the contact 1-form ω+

defined in equation (3.11).
The Reeb vector field associated with ω+ is easily found to be

X =
i(1 + νν̄)

2(ψ2
0 − σ0σ̄0)

[
(ψ0e

iA − σ̄0e
−iA)

∂

∂ν
+ (ψ0e

−iA − σ0e
iA)

∂

∂ν̄

]
+

1

2(ψ2
0 − σ0σ̄0)

[
(ψ0ν̄ − σ0ν)eiA + (ψ0ν − σ̄0ν̄)e−iA)

] ∂

∂A

We conclude that flowing by the Reeb vector using a parameter r leads
to the flow

dν

dr
=

i(1 + νν̄)

2(ψ2
0 − |σ0|2)

(
ψ0e

iA − σ̄0e
−iA)

dA

dr
=

1

2(ψ2
0 − |σ0|2)

[
(ψ0ν̄ − σ0ν) eiA + (ψ0ν − σ̄0ν̄) e−iA

]
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This flow can be understood by considering the geodesic flow on S which
induces the following flow on H(S):

dν

dτ
=

(1 + νν̄)

2(ψ2
0 − |σ0|2)

(
ψ0e

iA + σ̄0e
−iA)

dA

dτ
= − i

2(ψ2
0 − |σ0|2)

[
(ψ0ν̄ − σ0ν) eiA − (ψ0ν − σ̄0ν̄) e−iA

]
The Reeb flow is obtained from the geodesic flow by replacing A by A+

π/2. Thus integral curves of the Reeb flow consists of the oriented lines
along a geodesic of S that are orthogonal to the geodesic.

This completes the proof of Theorem 1.2 in the flat case.

3.2. The non-flat case.

3.2.1. The neutral metric. For ε ∈ {−1, 1} consider the following flat
metrics in R4:

〈., .〉ε = ε(dx1)2 + ε(dx2)2 + ε(dx3)2 + (dx4)2.

Let S3
ε = {x ∈ R4 : 〈x, x〉ε = 1} be the 3-(pseudo)-sphere in the Euclidean

space R4
ε := (R4, 〈., .〉ε). Note that S3

1 is the standard 3-sphere, while S3
−1 is

anti-isometric to the hyperbolic 3-space H3.
Let ι : S3

ε ↪→ R4 be the inclusion map and denote by gε the induced metric
ι∗ 〈., .〉ε. The space of oriented geodesics L(S3

ε ) of (S3
ε , gε) is 4-dimensional

and L(S3
1) can be identified with the Grassmannian of oriented planes in R4

1,
while L(S3

−1) can be identified with the Grassmannian of oriented planes in

R4
−1 such that the induced metric is Lorentzian [4].

Thus, L(S3
ε ) is the following sub-manifold of the space Λ2(R4) of bivectors

in R4:

L(S3
ε ) = {x ∧ y ∈ Λ2(R4) : y ∈ TxS3

ε , 〈y, y〉ε = ε}.
In fact, an element x ∧ y ∈ L(S3

ε ) is the oriented geodesic γ ⊂ S3
ε passing

through x ∈ S3
ε and has direction y ∈ TxS3

ε with 〈y, y〉ε = ε.
Endow Λ2(R4) with the flat metric 〈〈., .〉〉ε defined by:

〈〈x1 ∧ y1, x2 ∧ y2〉〉ε = 〈x1, x2〉ε 〈y1, y2〉ε − 〈x1, y2〉ε 〈y1, x2〉ε .
If x∧ y ∈ L(S3

ε ), the tangent space Tx∧yL(S3
ε ) is the vector space consisting

of vectors of the form x∧X+y∧Y , where X,Y ∈ (x∧y)⊥ε = {ξ ∈ Λ2(R4) :
〈ξ, x〉ε = 〈ξ, y〉ε = 0}.

A complex (resp. paracomplex) structure J can be defined in the oriented
plane x ∧ y ∈ L(S3

1) (resp. L(S3
−1)) by Jx = y and Jy = −x (resp. Jy = x)

and let J ′ be the complex structure on the oriented plane (x ∧ y)⊥ε . Define
the endomorphisms J and J′ on Tx∧yL(S3

ε ) as follows:

J(x ∧X + y ∧ Y ) = Jx ∧X + Jy ∧ Y = y ∧X − εx ∧ Y,
and

J′(x ∧X + y ∧ Y ) = x ∧ J ′(X) + y ∧ J ′(Y ).
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For ε = 1 (resp. ε = −1) J is a complex (resp. paracomplex) structure on
L(S3

ε ), while J′ is a complex structure for ε = ±1 [1] [2] [4] [6].
Denoting the inclusion map by ι : L(S3

ε ) ↪→ Λ2(R4), the metric ι? 〈〈., .〉〉ε
is Riemannian and Einstein [31]. The metric Gε = −ι? 〈〈., J ◦ J′.〉〉ε is of
neutral signature, locally conformally flat and is invariant under the natural
action of the group SO((7+ε)/2, (1−ε)/2) of isometries of S3

ε . Additionally,
both structures (L(S3

ε ), J, ι? 〈〈., .〉〉ε) and (L(S3
ε ), J′,Gε) are (para-) Kähler

manifolds [1] [2] [4] [15] [24].

3.2.2. Tangent hypersurfaces. Consider an oriented smooth surface S
of S3

ε given by the immersion φ : S → S3
ε , with S = φ(S). Let (e1, e2) be an

oriented orthonormal frame of the tangent bundle of S and let N be the unit
normal vector field such that (φ, e1, e2, N) is a positive oriented orthonormal
frame in R4

ε . Then

〈φ, φ〉ε = ε 〈e1, e1〉ε = ε 〈e2, e2〉ε = ε 〈N,N〉ε = 1.

For θ ∈ S1, define the following tangential vector fields

v(x, θ) = cos θ e1 + sin θ e2, v⊥(x, θ) = − sin θ e1 + cos θ e2.

As in the flat case, the tangent hypersurface H(S) in L(S3
ε ) is the image of

the immersion φ : S × S1 → L(S3
ε ) : (x, θ) 7→ φ(x) ∧ v(x, θ).

Identify ei with dφ(ei) and assume that (e1, e2) diagonalize the shape
operator, that is, h(ei, ej) = kiδij , where ki and h denote the principal
curvatures and second fundamental form, respectively.

If ∇ denotes the Levi-Civita connection of the induced metric φ∗gε and
setting v1 :=

〈
∇e1v, v⊥

〉
ε

and v2 :=
〈
∇e2v, v⊥

〉
ε
, the derivative of φ is given

by:

dφ(e1) = v1φ ∧ v⊥ + k1 cos θ φ ∧N + sin θ v ∧ v⊥

dφ(e2) = v2φ ∧ v⊥ + k2 sin θ φ ∧N − cos θ v ∧ v⊥

dφ(∂/∂θ) = φ ∧ v⊥.

 (3.15)

A direct computation shows that

Gε(dφ(∂/∂θ), dφ(e1)) = Gε(dφ(∂/∂θ), dφ(e2)) = 0.

In addition, dφ(∂/∂θ) is null, that is,

Gε(dφ(∂/∂θ), dφ(∂/∂θ)) = 0.

Now, a brief computation gives

Gε(dφ e1, dφ e1)Gε(dφ e2, dφ e2)−Gε(dφ e1, dφ e2)2 = −(k2 sin2 θ+k1 cos2 θ)2.

Thus, dφ(∂/∂θ) is a tangential vector field and a normal vector field of the

hypersurface H(S). The induced metric φ
∗Gε is of signature (+− 0).
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Let ρ1 = dφ(e1) and ρ2 be defined by

ρ2 =
2k1v2 cos θ sin θ + (k1 cos2 θ − k2 sin2 θ)v1

k1 cos2 θ + k2 sin2 θ
φ∧v⊥+k1 cos θ φ∧N−sin θ v∧v⊥.

(3.16)
Consider the null vectors e+ and e− by e+ = ρ1 + ρ2 and e− = ρ1 − ρ2.

If e0 = dφ(∂/∂θ), define the null planes Π+ := span{e+, e0} and Π− :=
span{e−, e0}. A brief computation shows that

Π+ = span{φ ∧ v⊥, φ ∧N} and Π− = span{φ ∧ v⊥, v ∧ v⊥}.

Proposition 3.7. The plane Π+ is an α-plane, while Π− is a β-plane.

Proof. If ξ ∈ Π+, we have that ξ = ξ1 φ ∧ v⊥ + ξ2 φ ∧N and thus,

J′ξ = −ξ1 φ ∧N + ξ2 φ ∧ v⊥ ∈ Π+.

Therefore, the null plane Π+ is J′-holomorphic and since it is totally null, it
is therefore an α-plane.

If ξ ∈ Π− we have that ξ = ξ1 φ ∧ v⊥ + ξ2 v ∧ v⊥. Then,

Jξ = ξ1 v ∧ v⊥ − εξ2 φ ∧ v⊥ ∈ Π−,

which shows that Π− is J-holomorphic, and thus, Π− is a β-plane. �

The following proposition establishes the first part of Theorem 1.2 in the
non-flat cases:

Proposition 3.8. Let S be a smooth oriented convex surface in S3
ε and let

H(S) be its tangent hypersurface. Then, (H(S),Π+) and (H(S),Π−) are
both contact 3-manifolds.

Proof. Assuming that S is convex, we have that k1k2 > 0 and thus

k1(x) cos2 θ + k2(x) sin2 θ 6= 0, ∀ (x, θ) ∈ H(S).

Set η1 = φ ∧ v⊥, η2 = φ ∧ N and η3 = v ∧ v⊥. We simply write ei for
the tangential vector fields dφ̄(ei) and ∂/∂θ for the tangential vector field
dφ̄(∂/∂θ). Then solving the relations (3.15) for ηi we have

η1 = ∂/∂θ

η2 =
cosθ

k1 cos2 θ + k2 sin2 θ
e1+

sin θ

k1 cos2 θ + k2 sin2 θ
e2−

v1 cos θ + v2 sin θ

k1 cos2 θ + k2 sin2 θ
∂/∂θ

η3 =
k2 sin θ

k1 cos2 θ + k2 sin2 θ
e1−

k1 cos θ

k1 cos2 θ + k2 sin2 θ
e2−

v1k2 sin θ − v2k1 cos θ

k1 cos2 θ + k2 sin2 θ
∂/∂θ.

Thus, {η1, η2, η3} are tangential vector fields and let ηi be the dual or-
thonormal frame. Then ηiηj = δij and ηi ∈ T ∗(H(S)).

Observe that Π+ is generated by the vectors η1, η2, and thus η3(Π+) = 0.
If (e1, e2, dθ) is the dual frame of (e1, e2, ∂/∂θ) we have

η3 = sin θ e1 − cos θ e2.
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Hence,

η3 ∧ dη3 = e1 ∧ e2 ∧ dθ. (3.17)

which implies that η3 ∧ dη3 6= 0 and thus (H(S),Π+) is a contact manifold.
The β-plane Π− is generated by the vectors η1, η3, and thus η2(Π−) = 0.

A brief computation gives

η2 = k1 cos θ e1 + k2 sin θ e2, (3.18)

and then,

η2 ∧ dη2 = −k1k2 e
1 ∧ e2 ∧ dθ.

Using the fact that S is convex, it follows that η2 ∧ dη2 6= 0 and thus
(H(S),Π−) is a contact manifold. �

For any smoothly embedded convex surface of S ⊂ S3
ε consider the con-

stant angle hypersurface Ha(S) of L(S3
ε ) which is the set of all oriented

geodesics passing through S and making an angle a with the normal vector
field N of S. As in the flat case, H0(S) is a Lagrangian surface in L(S3

ε ),
while Hπ/2(S) is the tangent hypersurface. The following Proposition covers
the other cases:

Proposition 3.9. For a ∈ (0, π/2), the hypersurface Ha(S) is null exactly
at the oriented geodesics either

(1) passing through an umbilic point on S, or
(2) whose direction projected to the tangent bundle TS is tangent to a

line of curvature of S.

Proof. Let φ be an immersion of S in S3
ε and consider, as before, the ori-

ented orthonormal frame (φ, e1, e2, N), where (e1, e2) are the principal di-
rections.

For a ∈ (0, π/2), the hypersurface Ha(S) is given by the image of the
immersion

φ̄a(x, θ) = φ(x) ∧ va(x, θ),
where, x ∈ S and θ ∈ [0, 2π) with

va(x, θ) = (cos θ e1(x) + sin θ e2(x)) sin a+N cos a.

Consider the following normal vector field of Ha(S):

Na = −
(

cos θ
〈
∇e1va, ξ2

〉
ε

+ sin θ
〈
∇e2va, ξ2

〉
ε

)
φ ∧ ξ1 + cos a va ∧ ξ1

− cos a
(

sin θ
〈
∇e1va, ξ2

〉
ε
−cos θ

〈
∇vava, ξ2

〉
ε

)
φ∧ξ2,

where ∇ denotes the Levi-Civita connection of gε. Then,

G(Na, Na) = (k2 − k1) cos2 a sin 2θ,

and the Proposition follows. �
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Let S be a smooth convex 2-sphere in S3
ε and let C : I → H(S) : u 7→ φ(u)∧

v(u) be an α-Legendrian curve, where the curve φ(u) in S is parameterised
by the arc-length u.

By definition we have Ċ = φ̇ ∧ v + φ ∧ v̇ ∈ span{φ ∧ v⊥, φ ∧N}, and thus
there exist two real functions λ1 and λ2 such that

φ̇ ∧ v + φ ∧ v̇ = λ1φ ∧ v⊥ + λ2φ ∧N.

We have

φ̇ ∧ v + φ ∧ (v̇ − λ1v
⊥ − λ2N) = 0. (3.19)

If φ̇ = a1v + a2φ + a3v
⊥ + a4N , it is obvious that a3 = a4 = 0. Then

φ̇ = a1v + a2φ and since
〈
φ, φ̇

〉
ε

= 0 we have that a2 = 0. Then φ̇ = a1v

and since |φ̇|2ε = ε we have that either a1 = 1 or a1 = −1. In any case,

v = a1φ̇ and thus,

C = φ ∧ v = φ ∧ a1φ̇,

where a2
1 = 1.

We turn now to the proof of the second part of Theorem 1.2 in the non-flat
case in 3 steps.
(i) and (ii) imply (iii):

The fact that C is β-Legendrian implies that there exist functions a, b
along the curve φ such that,

Ċ = φ̇ ∧ v + φ ∧ v̇ = aφ ∧ v⊥ + bv ∧ v⊥, (3.20)

and since C = φ ∧ v is normal to the curve φ we have that〈
φ̇, v
〉
ε

= 0.

Since N is the unit normal vector field of S
〈
φ̇, N

〉
ε

= 0, and therefore

φ̇ = ±v⊥. Now, (3.20) yields φ∧ (v̇−av⊥) = 0, which implies v̇ = µφ+av⊥.
Then

〈v̇, N〉ε = 0, (3.21)

and since

0 =
〈
Ṅ , φ

〉
ε

= −
〈
φ̇, N

〉
ε

=
〈
v⊥, N

〉
ε
,

we have that Ṅ = λv⊥ = λφ̇ and therefore φ is a line of curvature.
On the other hand,

0 = 〈v̇, N〉ε = −〈v,∇v⊥N〉ε = 〈cos θe1 + sin θe2, A(− sin θe1 + cos θe2)〉ε
= 〈cos θe1 + sin θe2,− sin θAe1 + cos θAe2〉ε = ε (k2 − k1) cos θ sin θ,

which shows that S is umbilic along the curve φ.
(i) and (iii) imply (ii):
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The fact that C is β-Legendrian gives (3.20). Suppose that the curve φ is

also a line of curvature. Then Ṅ = λφ̇, where λ is a non zero function along
the curve. We also have,

φ̇ = a1v + a2⊥v⊥.

From (3.20) we have

a2v
⊥ ∧ v + φ ∧ v̇ = aφ ∧ v⊥ + bv ∧ v⊥,

which gives φ ∧ (v̇ − av⊥) = 0, and thus v̇ = av⊥ + µφ. Then, 〈v̇, N〉ε = 0,
which yields,

0 = 〈v̇, N〉ε = −
〈
v, Ṅ

〉
ε

= −λ
〈
v, φ̇
〉
ε
.

It follows that
〈
φ̇, v
〉
ε

= 0 and hence C = φ ∧ v is normal to the curve φ.

Suppose now that S is umbilic along the curve φ = φ(u), i.e., k1 = k2.
The relation (3.20) implies

(φ̇+ bv⊥) ∧ v + φ ∧ (v̇ − av⊥) = 0,

which gives the following equations:

φ̇ = −bv⊥ + µv and v̇ = av⊥ + sφ.

Then 〈v̇, N〉ε = 0 and hence,

0 =
〈
v, Ṅ

〉
ε

=
〈
v,∇φ̇N

〉
ε

=
〈
v,∇−bv⊥+µvN

〉
ε

= −b 〈v,∇v⊥N〉ε + µ 〈v,∇vN〉ε .

The fact that S is umbilic along the curve, implies that 〈v,∇v⊥N〉ε = 0.
Then

0 = µ 〈v,∇vN〉ε = −εµ(k1 cos2 θ + k2 sin2 θ),

and since S is convex, we have that k1 cos2 θ + k2 sin2 θ 6= 0. It follows that

µ = 0 and thus φ̇ = −bv⊥. Therefore,
〈
φ̇, v
〉
ε

= 0 and hence C = φ ∧ v is

normal to the curve φ = φ(u).
(ii) and (iii) imply (i):

The fact that C is normal to φ = φ(u) implies that
〈
φ̇, v
〉
ε

= 0. Suppose

that the curve φ is a line of curvature. Then Ṅ = λφ̇, where λ is a non zero
function along the curve. We also have that,

φ̇ = a1v + b1v
⊥. (3.22)

Since

〈v̇, N〉ε = −
〈
Ṅ , v

〉
ε

= −λ
〈
φ̇, v
〉
ε

= 0,

we obtain

v̇ = a2φ+ b2v
⊥. (3.23)
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Using (3.22) and (3.23) we have:

Ċ = φ̇ ∧ v + φ ∧ v̇ = (a1v + b1v
⊥) ∧ v + φ ∧ (a2φ+ b2v

⊥)

= −b1v ∧ v⊥ + b2φ ∧ v⊥ ∈ Π−,

and thus C is β-Legendrian.
Suppose that S is umbilic along the curve φ and that C is normal to φ =

φ(u). Then
〈
φ̇, v
〉
ε

= 0 and hence the equation (3.22) becomes φ̇ = b1v
⊥.

It follows that 〈v̇, φ〉ε = −
〈
φ̇, v
〉
ε

= 0 and

〈v̇, N〉ε = −
〈
v, Ṅ

〉
ε

= −
〈
v,∇φ̇N

〉
ε

= −〈v,∇v⊥N〉ε = ε (k1 − k2) cos θ sin θ = 0.

Thus,

φ̇ = b1v
⊥ and v̇ = b2v

⊥.

Therefore,

Ċ = φ̇ ∧ v + φ ∧ v̇ = −b1v ∧ v⊥ + b2φ ∧ v⊥ ∈ Π−,

which shows again that C is β-Legendrian.
We prove the final part of Theorem 1.2 for the case of L(S3) while, the

proof for the case of L(H3) is similar. Consider the contact 1-form η3 of the
contact manifold (H(S),Π+) given in equation (3.17).

A brief computation shows that the Reeb vector field X associated with
η3 is

X =
〈
v,∇v⊥v⊥

〉
φ ∧ v⊥ + (k1 − k2) cos θ sin θ φ ∧N + v ∧ v⊥.

Let C(t) = φ(t) ∧ v(t) be a smooth regular curve in H(S), where t is the

arclength of the contact curve φ = φ(t) and for every t, the velocity Ċ(t) is
a Reeb vector. It then follows,

φ̇ ∧ v + φ ∧ v̇ =
〈
v,∇v⊥v⊥

〉
φ ∧ v⊥ + (k1 − k2) cos θ sin θ φ ∧N + v ∧ v⊥,

which yields,

φ̇ = −v⊥ v̇ =
〈
v,∇v⊥v⊥

〉
v⊥ + (k1 − k2) cos θ sin θ N, (3.24)

Thus, 〈
φ̇, v
〉

= −
〈
v⊥, v

〉
= 0.

Therefore, the curve C(t) is formed by the oriented geodesics that are orthog-
onal to the contact curve φ and therefore we have proved the first statement.

Using that
〈
φ̇, φ̇

〉
= 1, we have

φ̈ = −v̇⊥ = −φ+
〈
v,∇v⊥v⊥

〉
v + (k1 sin2 θ + k2 cos2 θ)N. (3.25)
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Denoting the vector fields dφ(∂/∂t), dφ(∂/∂θ) by ∂/∂t, ∂/∂θ, respectively
and using (3.24), we have

∇∂/∂θ∇v⊥ = −∇∂/∂θ∇∂/∂t = −∇∂/∂t∇∂/∂θ = ∇v⊥∇∂/∂θ. (3.26)

Note that〈
v,∇e1v⊥

〉
= 〈e1,∇e1e2〉

〈
v,∇e2v⊥

〉
= 〈e2,∇e2e1〉 ,

and thus for i = 1, 2,

(∂/∂θ)
〈
v,∇e1v⊥

〉
= 0, (∂/∂θ)

〈
v,∇e2v⊥

〉
= 0.

We then have,

−
〈
v,∇vv⊥

〉
= − cos θ

〈
v,∇e1v⊥

〉
− sin θ

〈
v,∇e2v⊥

〉
= (∂/∂θ)

(
− sin θ

〈
v,∇e1v⊥

〉
+ cos θ

〈
v,∇e2v⊥

〉)
=

〈
∂v/∂θ,∇v⊥v⊥

〉
+
〈
v,∇∂/∂θ∇v⊥v⊥

〉
,

and using (3.26) we get〈
v,∇vv⊥

〉
= −

〈
v⊥,∇v⊥v⊥

〉
−
〈
v,∇v⊥∇∂/∂θv⊥

〉
= 〈v,∇v⊥v〉 ,
= 0 (3.27)

Using (3.27), along the contact curve φ, we have:

〈e1,∇e1e2〉 = 〈e2,∇e2e1〉 = 0,

and therefore,〈
v,∇v⊥v⊥

〉
= − cos θ 〈e1,∇e1e2〉 − sin θ 〈e2,∇e2e1〉

= 0 (3.28)

Substituting (3.28) into (3.25) we get

φ̈ = −v̇⊥ = −φ+ (k1 sin2 θ + k2 cos2 θ)N.

Hence φ̈ lies in the plane φ ∧ N and thus ∇φ̇φ̇ = 0. Thus the Reeb vector

field is the oriented lines tangent to S that are orthogonal to a geodesic.
This completes the proof of Theorem 1.2. �

4. Intersection tori of null hypersurfaces

Given a smooth convex surface S ⊂ R3, the set of oriented outward-
pointing normal geodesics forms a surface Σ in L(R3) which is Lagrangian
and totally real away from umbilic points on S [15] [19].

A normal neighbourhood of Σ can be constructed by considering the set

Na(Σ) = {γ ∈ L(R3) | ∃γ0 ∈ Σ s.t. γ ∩ γ0 = p ∈ S and γ̇ · γ̇0 ≥ cos a },
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for a ∈ [0, π/2). It is not hard to see that N0(Σ) = Σ, while for a > 0 the
4-manifold Na(Σ) is a disc bundle over Σ which is a normal neighbourhood
of Σ in L(R3). Moreover the boundary of the normal neighbourhood are the
constant angle hypersurfaces introduced in Section 3: ∂Na(Σ) = Ha(S).

Thus for a = π/2, the null hypersurface Hπ/2(S) = H(S) that we have
been studying are the boundaries of the normal neighbourhood of Lagrangian
surfaces in L(R3).

Consider as a local geometric model, a pair of Lagrangian discs intersect-
ing at an isolated point, given by the oriented outward-pointing normal lines
to two convex spheres S1 and S2, viewed as surfaces Σ1 and Σ2 in L(R3).

These intersect in two points Σ1 ∩ Σ2 = {γ1, γ2}, which when viewed in
R3 are the pair of oriented lines through the centers of S1 and S2, where
the following min/max quantities of the two-point distance function are
attained:

min
p1∈S1

max
p2∈S2

d(p1, p2) and max
p1∈S1

min
p2∈S2

d(p1, p2).

To remove the doubling due to orientation, choose γ1 say and consider
only discs D1 ⊂ S1 and D2 ⊂ S2 about the associated points of intersection
γ1 ∩ Sk for k = 1, 2. Let Σ1 and Σ2 be the oriented normal lines to these
discs so that Σ1 ∩ Σ2 = {γ1}.

About each disc the boundary of a normal neighbourhood as constructed
above is H(Dj) and the intersection H(D1)∩H(D2) is the disjoint union of
two tori - each common tangent line to D1 and D2 has two orientations.

For simplicity, let S be a round sphere of radius r0 and centre the origin
(0, 0, 0) in R3. The set of oriented lines normal to S is equal to the set of
oriented lines passing through the origin. This is an embedded holomor-
phic Lagrangian sphere Σ ≡ S2 given by the zero section of TS2. In local
coordinates this is ξ 7→ (ξ, η = 0).

On the other hand, the set of oriented lines tangent to S can be charac-
terized as those oriented lines whose perpendicular distance from the origin
is r0. The perpendicular distance to the origin of an oriented line (ξ, η) is
given by:

χ =
2|η|

1 + ξξ̄
.

The hypersurface H(S) is given locally by

ξ =
ν + eiA

1− ν̄eiA
η = 1

2(1 + ξξ̄)r0e
iA = − (1 + νν̄)

(1− ν̄eiA)2
r0e

iA,

for (ν,A) ∈ C× S1.
Note that passing to the constant angle hypersurface Ha(S) here does not

change the picture, as the constant angle hypersurface of a round sphere with
a given radius is the tangent hypersurface of a round sphere with a different
radius.
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Proof of Theorem 1.3:
Consider the intersection of the two such tangent hypersurfaces H(S1)

and H(S2), where S1 and S2 are spheres of radii r1 ≥ r2, respectively, whose
centres are separated by a distance l. By a translation and a rotation move
the centre of the larger sphere to the origin and the centre of the smaller
sphere to the positive x3 axis. The Lagrangian sections Σ1 and Σ2 then
intersect at the oriented line along the x3-axis

The hypersurface H(S1) is given by

2|η|
1 + ξξ̄

= r1,

while we can translate H(S2) by l to move the centre to the origin which
yields a change η → η + lξ and then it is given by

2|η + lξ|
1 + ξξ̄

= r2.

These are the two equations we must solve to find the intersection.
The first equation is readily solved in polar coordinates

ξ = Reiθ η = 1
2(1 +R2)r1e

iψ,

for R ∈ R+, θ ∈ [0, 2π) and ψ = ψ(R, θ).
Substituting this into the second equation yields

l2
R2

(1 +R2)2
+ lr1 cos(ψ − θ) R

1 +R2
+

1

4
(r2

1 − r2
2) = 0.

The set of solutions to this equation depends upon the relative values of
l, r1 and r2. Switching to spherical polar coordinates by the substitution
R = tan(φ/2), we can write this as a quadratic equation for eiψ thus:

lr1 sinφ e2i(ψ−θ) +
(
l2 sin2 φ+ r2

1 − r2
2

)
ei(ψ−θ) + lr1 sinφ = 0.

A solution of this only exists if the discriminant is non-positive, so that

eiψ =
(
−K ±

√
1−K2 i

)
eiθ,

where K(φ) is the function

K =
r2

1 − r2
2 + l2 sin2 φ

2lr1 sinφ
.

Clearly we must have K2 ≤ 1 for there to be a solution, which implies that

r1 − r2 ≤ l sinφ ≤ r1 + r2. (4.1)

Thus, for a solution to exist we must have l ≥ r1 − r2, i.e. one sphere
cannot lie completely inside the other sphere. When equality holds, the
surfaces S1 and S2 intersect at a single point p, and the solution set is a
circle (parameterized by θ) with φ = π/2. This is the circle of oriented
lines in the common tangent plane TpS1 = TpS2 which forms a null curve in
L(R3).
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On the other hand, the surfaces S1 and S2 intersect for r1−r2 < l ≤ r1+r2

and the tangent lines (with both orientations) to the intersection circle are
contained in both H(S1) and H(S2). In fact, H(S1) ∩ H(S2) = T 2 in this
range and the intersection set is connected.

One of the circle factors in the torus T 2 = S1×S1 is paramtererized by θ,
which generates rotations about the axis of symmetry through the centers
of the spheres. The second circle factor comes about by fixing θ and varying
φ from φ = sin−1(r1 − r2)/l (one solution), through sin−1(r1 − r2)/l < φ <
sin−1(r1 + r2)/l (two solutions) to φ = sin−1(r1 + r2)/l (one solution).

This last circle can be identified with the intersection of the boundary of
the image of S2 with the horizon, as seen by someone standing on S1. As
the person moves on S1 towards S2 these points of intersection trace out a
circle, starting with a single point of internal tangency (when S2 is below
the horizon), then two points as S2 rises over S1, ending with a single point
of external tangency to the horizon.

Finally, if l > r1 + r2, the intersection set has two connected components,
both tori, which are related by flipping the orientation of the common tan-
gent lines.

Let us now compute the induced metric on the solution set when l >
r1 − r2, i.e. the intersection tori. The torus is given by local sections in
polar coordinates

ξ = Reiθ η = 1
2(1 +R2)r1

(
−K ±

√
1−K2 i

)
eiθ,

with

K =
(r2

1 − r2
2)(1 +R2)2 + 4l2R2

4lr1R(1 +R2)
.

This surface has a complex point iff at the point [19]

σ = −∂ξη̄ = −1
2e
−iθ
(
∂R −

i

R
∂θ

)
η̄ = 0.

For the torus, a computation shows that

|σ|2 =
r2

1r
2
2l

2 cos2 φ(
l2 sin2 φ− (r1 − r2)2

) (
(r1 + r2)2 − l2 sin2 φ

) ,
On the other hand, the pullback of the symplectic form (3.4) to a section is

Ω|Σ = λ
2idξ ∧ dξ̄
(1 + ξξ̄)2

= Im
[
∂ξ

(
η

(1 + ξξ̄)2

)]
2idξ ∧ dξ̄;

which in our case is

λ = − l(l2 sin2 φ− r2
1 − r2

2) cosφ

2[
(
l2 sin2 φ− (r1 − r2)2

) (
(r1 + r2)2 − l2 sin2 φ

)
]
1
2

.

Thus the determinant of the metric induced on T 2 by the neutral metric
(3.3) is [19]

det G|T 2 = λ2 − |σ|2 = −1
4 l

2 cos2 φ,
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If r1−r2 < l < r1+r2 then the surfaces S1 and S2 intersect on a circle and the
tangent lines to this circle are common to H(S1) an H(S1). These lines are
horizontal, so φ = π/2 along them. Thus, when the surfaces intersect, the
tangent hypersurfaces intersect along a torus that is Lorenz and totally real,
except at a curve of complex points where the induced metric is degenerate.

If l > r1 +r2 then the surfaces S1 and S2 do not intersect, φ > π/2, and so
the tangent hypersurfaces intersect along a pair of tori (opposite orientations
on the same line) that are totally real and Lorentz.

This completes the proof of Theorem 1.3.

5. Neutral causal topology

This section contains a discussion of the preceding constructions with a
view to explaining the motivation behind them, to put them in a broader
context and to indicate their possible applications to 4-manifold topology.

Neutral metrics offer us geometric tools that are sensitive to the under-
lying topology, at the level of the metric, rather than its curvature. This
can be seen from a geometric, analytic and topological perspective. While
the individual scenarios are classical in some sense, it is their concatenation
that is of particular interest.

As the discussion necessitates spanning a number of areas, the bibliog-
raphy will be selective rather than exhaustive. Further aspects of neutral
metrics which we do not discuss can be found for example in [5] [8] [28] [29]
and references therein.

A fundamental observation is that, point-wise, the null cone of a neutral
metric is a cone over a torus. Since the cross-section is not simply con-
nected, under the right circumstances, it is possible to encode topological
information in the null cone of a neutral metric.

Put another way, the metric must fit with the underlying 4-manifold topol-
ogy and so, for example, there are obstructions to their existence. For com-
pact smooth 4-manifolds the matter is clarified by the following theorem,
which uses Hirzebruch and Hopf’s 1950’s work on plane fields [22]:

Theorem 5.1. [26] [32] Let N4 be a smooth compact 4-manifold admitting
a neutral metric. Then

χ(N4) + τ(N4) = 0 mod 4 and χ(N4)− τ(N4) = 0 mod 4,

where χ(N4) is the Euler number and τ(N4) the Hirzebruch signature of N4.
Moreover, if N4 is simply connected, these conditions are sufficient for the

existence of a neutral metric.

Thus, neither S4 nor CP2 admit a neutral metric, while K3 manifolds
do. If one demands further that the neutral metric is Kähler with respect
to some compatible complex structure, then the list of compact manifolds
becomes smaller [35]. Thus, a K3 manifold admits a neutral metric, but not
a neutral Kähler metric.



502 NIKOS GEORGIOU AND BRENDAN GUILFOYLE

One motivation for this paper is to consider the extension of the above
to 4-manifolds with boundary and to ask: what does the null boundary
geometry see of the interior of a neutral 4-manifold?

Similar to the holographic principle, but predating it by 60 years, the
X-ray transform, or strictly speaking its symmetric reduction to the Radon
transform, is used every day in hospitals’ CAT-scans and achieves this feat
at the level of functions [10].

That is, given a real-valued function on L(R3) (the difference between
intensities along a ray, or oriented geodesic) reconstruct a function on R3

(the material density). The compatibility requirement is that the function
on L(R3) satisfy the flat ultra-hyperbolic equation [25].

Hilbert and Courant showed that the appropriate cauchy hypersurface
for the ultra-hyperbolic equation is null - as otherwise there are consistency
conditions on the cauchy data in the initial value formulation [7]. Thus we
encounter our first evidence, from analysis, that null boundaries are natural
for neutral metrics.

The nullity of the boundary introduces more structure than in the Rie-
mannian case, in particular, a null foliation. Moreover, the neutral metric
has more structure again than a Lorentz metric with null boundary, namely,
two distributions of totally null planes. It is to this structure that we look
for echoes of the interior geometry.

It also follows from Hirzebruch and Hopf that all open 4-manifolds admit
a neutral metric, and so the question arises about the compactification of
such neutral 4-manifolds. Since the null cone is preserved by conformal
transformations, it is natural then to look at the conformal compactification
of open neutral 4-manifolds. In Section 2 we investigated the simplest case,
neutral flat 4-space.

Note that in this paper, the conformal compactification has non-empty
boundary, in contrast to earlier consideration of neutral conformal compact-
ifications into a 4-manifold without boundary [39].

Conformal compactifications of both Lorentz and Riemannian cases have
been considered in some detail (e.g. [3] [34]). In the Riemannian case it
is natural to assume that the gradient of the conformal factor is nowhere
zero on the boundary, while in the Lorentzian case it vanishes at points (at
i0, i± [34]). In the neutral case we consider, it vanishes along a link in the
boundary (property (iv) in Theorem 1.1) and this is the manner in which
the geometric topology intervenes.

For a flat 4-dimensional universe with two times, the spacelike and time-
like infinities are Hopf linked in the boundary. This is the simplest situation
and one would expect these linked infinities to also link to whatever topology
the boundary has.

What’s more, the boundary is foliated by Lorentz tori about the link.
This feature persists for other neutral conformal compactifications and is
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amenable to surgery along the link in a manner that preserves the null cone
structure.

Indeed, it should be possible to do surgery at infinity and preserve not just
the conformal structure, but certain curvature conditions. What precisely
the conditions are depends on the amount of flexibility required. We can
impose a stiff restriction such as Kähler or a softer one such as anti-self dual,
scalar flat.

Certainly all of the examples considered in this paper are conformally flat
and scalar flat, and this is a natural class in which to do the surgery. In
fact, by 2-handle attachments to the 4-ball one can generate the conformal
compactifications of all of the oriented geodesic spaces L(M3). We postpone
the details of this aspect to a later paper.

The fact that the α-planes and β-planes are integrable in the boundary
gives a sense in which the conformal compactification is asymptotically well-
behaved. This can be traced back to the fact that R2,2 is 2-connected at
infinity and therefore the neutral metric has nothing to hang on to at infinity.
This observation suggests the use of neutral metrics to detect topology at
infinity via their conformal compactifications.

This example represents the 0-handle in a neutral version of Kirby calculus
[17] [27] and therefore acts as a basis for handle-body constructions. The
degenerate Lorentz structure on the boundary has preferred curves along
which to attach 2-handles and the Lorentz tori give framings in the right
circumstances.

In contrast, in the tangent hypersurfaces of Section 3 the α-planes and
β-planes were found to be contact. The boundary is not a 3-sphere but a
circle bundle with Euler number 2 over a 2-sphere. The fibres are null and
the totally null planes rotate around the fibre as one traverses a fibre.

The neutral 4-manifold bounded by the tangent hypersurface and its gen-
eralisation, the constant angle hypersurface, were introduced in [20] to prove
a global version of a classical result of Joachimsthal.

The study of Legendrian knots and their invariants is a well-established
area in symplectic topology [13] [14]. Generally the knots are in the 3-sphere,
but many results extend to more general contact 3-manifolds. In Section
3, we have a non-simply connected 3-manifold with a pair of independent
contact structures.

A curve C on the null boundary H(S) corresponds to an oriented tangent
line field along a curve c in S. The classical Thurston-Bennequin index and
the rotation index of the curve C can be expressed in terms of the twisting
of the oriented line and the rotation of c in S through the neutral structure.

The fact that the Reeb vector field is the set of normal lines to the
geodesics on the surface is important. This means that Reeb chords - Reeb
flow-lines that begin and end on a Legendrian knot, minimize the induced
two point distance function on the knot. Reeb chords play a critical role
in knot contact homology [11] as they represent crossings in the Legendrian
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projection. Further details of these neutral knot invariants will appear in a
future paper.

Many peculiarities of 4-dimensional manifolds (as distinct from higher di-
mensions) arise because generic 2-discs are only immersed rather than em-
bedded and one loses the ability to contract loops across such discs. Thus,
attempts to exploit assumptions of simple connected-ness become more dif-
ficult and higher dimensional techniques fail.

The local model of these double points and their normal neighbourhood
play key roles in our understanding of 4-manifolds (or lack thereof). In
particular, the intersection of the boundaries of the normal neighbourhoods
are tori, called distinguished in [27] and characteristic in [21]. It is this basic
model we set out to find a neutral geometric interpretation for in Section 4.

In the first instance, the intersecting discs should be flexible enough to
be pushed around and stretched, for example in Casson’s famous “finger-
move” [21]. In the geometric category, Lagrangian discs are certainly flexible
enough for this task since they satisfy the h-principle [12].

The boundary of a normal neighbourhood of these Lagrangian discs can
be identified with the tangent hypersurface introduced in Section 3. The
work of Casson in the 1970’s involves repeated attempts to remove unwanted
intersections by adding thickened discs that remove the double point. The
issue, peculiar to dimension 4, is that such discs may themselves have double
points, leading to an iterative chain of operations seeking to push the double
point out to infinity.

While Casson achieved this at a homotopic level, giving rise to flexible
handles, it certainly fails in the smooth category due to implications of the
work of Donaldson [9]. A motivation for the present work is to explore this
gap by geometerizing the boundary with a neutral metric and carrying it
along in this iterative construction.

In Section 4 we found a geometric model for the intersection torus of
a double point. Similar natural neutral constructions exist for the other
elements of the Casson handle, such as the Whitehead double, although in
the tangent model a twisted version is more natural. Further details of these
constructions will be given in a future paper.
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