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Comparing multiplicative orders
mod p, as p varies

Matthew Just and Paul Pollack

Abstract. Schinzel and Wójcik have shown that if α, β are rational
numbers not 0 or ±1, then ordp(α) = ordp(β) for infinitely many primes
p, where ordp(·) denotes the order in F×

p . We begin by asking: When
are there infinitely many primes p with ordp(α) > ordp(β)? We write
down several families of pairs α, β for which we can prove this to be
the case. In particular, we show this happens for “100%” of pairs A, 2,
as A runs through the positive integers. We end on a different note,
proving a version of Schinzel and Wójcik’s theorem for the integers of
an imaginary quadratic field K: If α, β ∈ OK are nonzero and neither is
a root of unity, then there are infinitely many maximal ideals P of OK

for which ordP (α) = ordP (β).
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1. Introduction

Let α, β be rational numbers, not 0 or ±1. For all but finitely many primes
p, both α and β are p-adic units, and so it is sensible to talk about their
multiplicative orders upon reduction mod p. Schinzel and Wójcik [SW92],
extending unpublished investigations of J.S. Wilson, J.G. Thompson, and
J.W.S. Cassels, proved that there are infinitely many primes p for which
ordp(α) = ordp(β). Equivalently (since F×p is cyclic), α and β generate the

same subgroup of F×p infinitely often.
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It is an open problem to characterize the triples α, β, γ ∈ Q× \ {±1} for
which ordp(α) = ordp(β) = ordp(γ) infinitely often. But in a recent preprint,
Järviniemi presents such a characterization not just for triples, but for tuples
of any fixed length, conditional on the Generalized Riemann Hypothesis
[Jä20]. (See [PS09] for earlier GRH-conditional results, and [Wój96, Fou18]
for related results conditional not on GRH but on Schinzel’s “Hypothesis H”
[SS58].) Sticking instead to pairs α, β but taking the problem in a different
direction, various authors have investigated the distribution of p for which
ordp(α) | ordp(β) (see [MS00] and [MuSS19]).

It is known that if α, β ∈ Q× \ {±1} and ordp(α) = ordp(β) for all but
finitely many primes p, then α = β or α = β−1 (see [Sch70] or [CRnS97]).
A natural complement to the theorem of Schinzel and Wójcik would be a
characterization of those pairs α, β ∈ Q× \ {±1} for which

ordp(α) > ordp(β) for infinitely many primes p. (1)

Call the (ordered) pair α, β order-dominant if (1) holds.
Under GRH, we have a completely satisfactory classification of order-

dominant pairs. Assume, as above, that α, β ∈ Q× \ {±1}. Then α, β is
order-dominant if and only if α is not a power of β.1 It seems difficult
to obtain a result of comparable strength unconditionally. Our first three
theorems describe partial progress. Each reports on certain families of inte-
gers A,B for which we can prove the order-dominance of A,B without any
unproved hypothesis. We mostly (but not exclusively) restrict attention to
positive integers A,B; this allows us to illustrate the basic methods while
avoiding technical complications. As will become clear shortly, the limi-
tations of our methods manifest already in this restricted situation; given
these limitations, we have tried optimize the exposition for clarity rather
than generality.

Below,
(·
·
)

denotes the Legendre–Jacobi–Kronecker symbol.

Theorem 1.1.

(i) Let A,B be odd positive integers. Then A,B is order-dominant if
either (

−B(1−B)

A

)
= −1 or

(
1−B
A

)
= −1.

(ii) The pair 2, B is order-dominant for every odd positive integer B.
(iii) The pair A, 2 is order-dominant for every odd positive integer A with(−1

A

)
= −1 or

(−2
A

)
= −1, i.e., all odd positive A 6≡ 1 (mod 8).

1The “only if” half is clear. For the “if” direction: When α, β are multiplicatively
independent, Järviniemi [Jä20, Theorem 1.4] proves (under GRH) that ordp(α)/ordp(β)
can be made arbitrarily large, which certainly implies the order-dominance of α, β. When
α, β are multiplicatively dependent but α is not a power of β, the order-dominance of α, β
follows (unconditionally) from an elementary argument with Zsigmondy’s theorem.
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(iv) If A,B are coprime positive integers with B > A4, then −A,B is
order-dominant.

For example, it follows from Theorem 1.1 and its proof (see Remark
2.1(ii)) that if A and B are any of 2, 3, 5, or 7, and A 6= B, then there
are infinitely many primes p with ordp(A) > ordp(B).

When (A,B) ∈ {(2, 3), (3, 2), (2, 5), (5, 2)}, Theorem 1.1 was implicitly
proved by Banaszak in [Ban98] (see the proofs of Theorems 1 and 2 in
[Ban98]), although his results were not stated this way. Our proofs are
essentially the same as his for these cases.

Theorem 1.1(iii) leaves untouched the pairs A, 2 with A ≡ 1 (mod 8).
We can show that most such pairs are order-dominant. In fact, we have the
following stronger result.

Theorem 1.2. The pair A, 2 is order-dominant for almost all positive in-
tegers A, meaning that the set of exceptional A has asymptotic density 0.

(Note that Theorem 1.2, unlike Theorem 1.1(iii), allows A to be even.) The
proof of Theorem 1.2 begins by establishing an explicit (though slightly
technical) sufficient condition for A, 2 to be order-dominant, involving prop-
erties of Fermat numbers. The A for which this condition fails, which we
term anti-elite numbers, are then shown to be rare. See Remark 3.3 for the
list of anti-elite A up to 150.

The proofs of Theorems 1.1 and 1.2, when they succeed, prove more than
the order-dominance of α, β. For all the pairs handled there, what is actu-
ally proved is that for infinitely many primes p, the ratio ordp(α)/ordp(β) is
a positive even integer. Evenness stems from the fact that the primes p we
produce have α not a square modulo p, which we detect by quadratic reci-
procity. One might hope to use higher reciprocity laws to generate further
examples of order-dominant pairs. Our next theorem, whose proof depends
on cubic reciprocity, is a modest step in this direction.

Theorem 1.3. Let A be an integer for which 3 - A and A2 6≡ 1 (mod 9). For
infinitely many primes p, the ratio ordp(A)/ordp(−3) is an integer multiple
of 3. Thus, both A,−3 and A, 3 are order-dominant.

(To see the claim about A, 3, observe that ordp(3) is at most twice ordp(−3),
and so at most two-thirds of ordp(A).) Unfortunately, the proof of Theorem
1.3 is not very amenable to generalization, although certain other pairs with
B = ±3� (i.e., ±3 times a square) could be treated in a similar fashion.
Analogously, the law of biquadratic reciprocity could be used to establish
order-dominance of certain pairs A,B with B = −�.

One consequence of Theorem 1.3 is that the pair 4, 3 is order-dominant.
This could certainly not be proved by the methods of Theorem 1.1 or 1.2,
since 4 is a square modulo every p.

Theorems 1.1, 1.2, and 1.3 (as well as their methods of proof) still leave
us quite far from the GRH-conditional characterization of order dominant
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pairs. An interesting, difficult-seeming test case is the problem of proving
that

ordp(17) > ordp(2) for infinitely many primes p.

We hope that interested readers will take up this challenge!
Our final theorem is of a quite different nature. We prove the analogue

of Schinzel and Wójcik’s result for the integers of an imaginary quadratic
field.

Theorem 1.4. Let K be an imaginary quadratic field with ring of integers
OK . For nonzero α, β ∈ OK , neither of which is a root of unity, there are
infinitely many prime ideals P of OK for which α and β generate the same
subgroup of (OK/P )×.

For example, 1 + i and 2 + i generate the same subgroup of (Z[i]/(π))×

for infinitely many Gaussian primes π.
While the proof of Theorem 1.4 follows the same basic strategy as [SW92],

there are essential differences. It is important for us to have available auxil-
iary primes ` for which the `th power map, mod `, is induced by a nontrivial
automorphism of K. In fact, we will use that all primes ` ≡ −1 (mod ∆)
have this property, where ∆ is the discriminant of K; this explains the
requirement in the theorem that K is imaginary.

It would be interesting to relax the restriction in Theorem 1.4 that α and
β be integers of the field K. While our method of proof works for many
pairs of nonintegral α, β ∈ K, an elegant general statement does not seem
forthcoming by these arguments.

Notation and conventions. Since ordP (·) is being used for the multiplica-
tive order mod P , the P -adic valuation will be denoted vP (·). We use λ(·)
for Carmichael’s function; that is, λ(n) is the exponent of the multiplicative
group mod n. We write 〈g〉 for the cyclic subgroup generated by a group
element g.

We say that a statement about positive integers n holds whenever n is
sufficiently divisible if there is a positive integer K such that the statement
holds for all n divisible by K!. Note that if each of two statements holds
whenever n is sufficiently divisible, then their conjunction holds for all suffi-
ciently divisible n. One should think of the requirement that n be sufficiently
divisible as analogous to the condition, in real analysis, that ε be sufficiently
close to 0. In fact, this is a bit more than an analogy: Asking that n be
sufficiently divisible amounts precisely to asking that n be close enough to
0 in Ẑ, the profinite completion of the integers.

The requirement of sufficient divisibility will come up in the following
way. We have a commutative ring R, an ideal I for which R/I is finite,
and an element A ∈ R that is invertible modulo I. Then An ≡ 1 (mod I)
whenever n is sufficiently divisible. Of course, it is simple enough here to say
that the congruence holds whenever n is divisible by #(R/I)×. But later
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it will be convenient to suppress explicit mention of the required divisibility
conditions.

2. First examples of order-dominant pairs: Proof of
Theorem 1.1

Suppose that p is a prime with
(
A
p

)
= −1 and that p divides An − B for

some even positive integer n. Since B ≡ An ≡ (An/2)2 (mod p), we see that

• B is in the subgroup generated by A mod p, and
• B is a square mod p.

Since A is not a square mod p, it cannot be that A is in the subgroup
generated by B mod p. Hence, 〈B mod p〉 ( 〈A mod p〉, and ordp(A) >
ordp(B). So to prove A,B is order-dominant, it suffices to produce infinitely
many primes p of this kind.

Consider the situation where A,B are odd and positive with
(−B(1−B)

A

)
=

−1. Then A is coprime to both B and 1−B. We will locate primes p with
ordp(A) > ordp(B) from among the prime divisors of

An −B
B − 1

,

for suitably chosen positive integers n. Loosely speaking, what we show is
that as n gets more and more divisible, our procedure reveals larger and
larger primes p with ordp(A) > ordp(B). (Precisely: As n approaches 0 in

Ẑ, the discovered prime p approaches ∞ in R̄ = R ∪ {±∞}.)
If n is sufficiently divisible, then An−B

B−1 = An−1
B−1 − 1 ∈ Z+, and (since

gcd(A, 4(B−1)) = 1) in fact An−B
B−1 ≡ −1 (mod 4). By quadratic reciprocity

(for the Jacobi symbol) and the first supplementary law,(
A

(An −B)/(B − 1)

)
= (−1)(A−1)/2

(
(An −B)/(B − 1)

A

)
=

(
−1

A

)(
−B(B − 1)

A

)
=

(
−B(1−B)

A

)
= −1.

Thus, we can choose p dividing An−B
B−1 with

(
A
p

)
= −1. Assuming that n is

even (which holds whenever n is sufficiently divisible), we are in the situation
described in the first paragraph of this section, and so ordp(A) > ordp(B).

It remains to see that infinitely many distinct p arise in this construction.
For that, it is enough to show that if p is a fixed prime and n is sufficiently
divisible, then p does not divide An−B

B−1 . If p divides A, then p - An − B

for any n, and so p - An−B
B−1 . So suppose p - A. If n is sufficiently divisible,

An ≡ 1 (mod p(B − 1)) and so An−B
B−1 ≡ −1 (mod p). Hence, p - An−B

B−1 .
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Now suppose that A,B are odd and positive with
(
1−B
A

)
= −1. Again, A

is coprime to B − 1. We look at primes dividing expressions of the form

BAn − 1

B − 1
.

If n is sufficiently divisible, then

BAn − 1

B − 1
∈ Z+, with

BAn − 1

B − 1
≡ 1 (mod 4).

Moreover,(
A

(BAn − 1)/(B − 1)

)
=

(
(BAn − 1)/(B − 1)

A

)
=

(
1−B
A

)
= −1.

Hence, there is a prime divisor p of (BAn − 1)/(B − 1) with
(
A
p

)
= −1.

Assuming n even, 1/B ≡ An ≡ (An/2)2 mod p, and so (reasoning as in the
first paragraph of this section) 〈1/B mod p〉 ( 〈A mod p〉. Hence, ordpA >
ordp(1/B) = ordpB. That infinitely many distinct p arise follows from the
observation that for any fixed p not dividing A, and all n that are sufficiently
divisible, BAn−1

B−1 ≡
B−1
B−1 ≡ 1 (mod p).

We turn now to (ii). To handle pairs 2, B with B odd and positive, we
look at p dividing

4 · 2n −B
|4−B|

.

Whenever n is sufficiently divisible,

4 · 2n −B
|4−B|

∈ Z+, and
4 · 2n −B
|4−B|

≡ ±3 (mod 8).

Thus,
(

2
(4·2n−B)/|4−B|

)
= −1. Choose p dividing 4·2n−B

|4−B| with
(
2
p

)
= −1. Then

B ≡ 2n+2 ≡ (2(n/2+1))2 (mod p), and so 〈B mod p〉 ( 〈2 mod p〉. Hence,
ordp(2) > ordp(B). Infinitely many distinct p arise this way since, for each

fixed odd prime p and all n that are sufficiently divisible, 4·2n−B
|4−B| ≡

4−B
|4−B| ≡

±1 (mod p).
We breeze over the proof of (iii), concerning pairs A, 2 with

(−1
A

)
= −1,

since the argument parallels the ones already described. This time one
looks at primes dividing 2An − 1, with n sufficiently divisible. If

(−1
A

)
= 1

but
(−2
A

)
= −1, one considers prime divisors of An − 2, with n sufficiently

divisible. We leave the details to the reader.
Finally we treat (iv). Let A,B be coprime integers larger than 1 with

B > A4. We look at primes dividing

A4+n −B
B −A4

.

For each prime p,

vp

(
A4+n −B
B −A4

+ 1

)
= vp(A

n − 1) + vp(A
4)− vp(B −A4).
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If p is fixed and n is sufficiently divisible, then the right-hand side is positive
and in fact exceeds vp(4A): If p | A, this is clear, since vp(B−A4) = 0 while
vp(A

4) > vp(4A). If p - A, we use that vp(A
n − 1) can be made arbitrarily

large by making n sufficiently divisible. It follows that A4+n−B
B−A4 is an integer

for all sufficiently divisible n and that

A4+n −B
B −A4

≡ −1 (mod 4A).

Hence,
( −4A
(A4+n−B)/(B−A4)

)
=
(−4A
−1
)

= −1. (We have
(−4A
−1
)

= −1 since

−4A is an example of a negative discriminant; one reference for this is

[MoV07, §9.3].) Choose a prime p dividing A4+n−B
B−A4 with

(−4A
p

)
= −1. Since

p | (−A)4+n −B and −A is not a square mod p, a familiar argument shows
that ordp(−A) > ordp(B). Our above calculation with valuations implies

that if p is fixed, then vp(
A4+n−B
B−A4 ) = 0 for all sufficiently divisible n, and so

this construction produces infinitely many different primes.

Remarks 2.1.

(i) A slight variant of the proof of Theorem 1.1(iv) establishes the fol-
lowing more general result. Let A,B be integers larger than 1. Let
r0 be a nonnegative integer such that vp(A

r0) ≥ vp(B) for all primes
p dividing A, and let r be an even integer with r > r0+3. If B > Ar,
then −A,B is order-dominant.

Using this result, it is straightforward to show that for each fixed
A > 1, and almost all positive integers B (in the sense of asymptotic
density), the pair −A,B is order-dominant.

(ii) The cases discussed in Theorem 1.1 were chosen as representative of
the basic method, but there are pairs of positive integers not covered
by the conditions of Theorem 1.1 which can be shown order-dominant
by this same strategy. One such pair is 3, 7 (look at primes dividing
7·3n−1

2 ), and another is 2, 6 (look at primes dividing 2n+1 − 3).

3. Almost all pairs A, 2 are order-dominant: Proof of
Theorem 1.2

The basic idea for the proof of Theorem 1.2 is encapsulated in the next
lemma. Let Fn = 22

n
+ 1 (for n = 0, 1, 2, 3 . . . ), the nth Fermat number. It

is well-known that the Fn are pairwise relatively prime and that if p is a
prime divisor of Fn, where n ≥ 2, then ordp(2) = 2n+1 and 2n+2 | p− 1 (see
pages 5, 84 of [Rib96]).

Lemma 3.1. Suppose A is a positive integer with the property that(
A

Fn

)
= −1 for infinitely many positive integers n.

Then A, 2 is order-dominant.
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Proof. Choose n ≥ 2 with
(
A
Fn

)
= −1. There is a prime p dividing Fn

with
(
A
p

)
= −1, and for this prime, A(p−1)/2 ≡ −1 (mod p). Hence, ordp(A)

divides p − 1 but does not divide p−1
2 , forcing v2(ordp(A)) = v2(p − 1). It

follows that

ordp(A) ≥ 2v2(p−1) ≥ 2n+2 > 2n+1 = ordp(2).

Since p > ordp(A) ≥ 2n+2, and n can be chosen arbitrarily large, there are
infinitely many p with ordp(A) > ordp(2). �

Primes A failing the hypothesis of Lemma 3.1 appear already in the lit-
erature; Müller [Mü07] calls these anti-elite primes. That is, A is anti-elite if(
A
Fn

)
= 1 for all large enough positive integers n. We will call any integer A

satisfying this condition an anti-elite integer.
As Müller observed, trivial changes to the proof of Theorem 4 in [KLS02]

show that anti-elite primes are sparse within the collection of all primes.
Specifically, the count of anti-elite primes not exceeding x is O(x/(log x)3/2),
for all x ≥ 2.2 In view of Lemma 3.1, to prove Theorem 1.2 it is enough to
show that only o(x) positive integers A ≤ x are anti-elite, as x → ∞. We
prove this in the following more precise form.

Theorem 3.2. For each ε > 0 and all x > x0(ε), the number of anti-elite
A ∈ (1, x] is Oε(x/(log x)1−ε).

Proof. Write A = A0A1, where A1 is the largest odd divisor of A. We will
assume that v2(λ(A1)) < T − 2, where

T :=

⌊
log(log x/ log log x)

log 2

⌋
.

If v2(λ(A1)) ≥ T − 2, then there is a prime p dividing A with p ≡ 1
(mod 2T−2), and the number of such A ≤ x is

� x
∑
p≤x

p≡1 (mod 2T−2)

1

p
� x

log log x

2T−3
� x(log log x)2

log x
,

which is Oε(x/(log x)1−ε). Here the sum on p has been estimated by the
Brun–Titchmarsh inequality [MoV07, Theorem 3.9, p. 90] and partial sum-
mation.

We fix a nonnegative integer t < T −2 and count the number of anti-elite
A ∈ (1, x] with v2(λ(A1)) = t. For each such A, the sequence {

(
A
Fn

)
}n≥t+2 is

purely periodic. Indeed, if n ≥ t+2, then n ≥ 2, so that Fn ≡ 1 (mod 8) and

2A stronger upper bound of O(x/(log x)2) is claimed in [KLS02]. Just [Jus20] points
out a small error in the proof and notes that, when corrected, 2 must be replaced by
3/2. In fact, one can recover an estimate almost as strong as originally claimed by a
modification of the proof; see the end of our §3.
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2
Fn

)
= 1. Hence,

(
A
Fn

)
=
(
A1
Fn

)
=
(
Fn
A1

)
, which depends only on Fn modulo

A1. In turn, Fn = 22
n

+ 1 mod A1 depends only on 2n modulo λ(A1). Write

λ(A1) = 2v2(λ(A1))B,

where B is odd. Since n ≥ t = v2(λ(A1)), the residue class of 2n mod
λ(A1) is determined by 2n modulo B, which depends only on n modulo
λ(B). Collecting our results, we see that {

(
A
Fn

)
}n≥t+2 is purely periodic

(with period dividing λ(B)).
Since A is anti-elite, it must be that each Fn with n ≥ t + 2 satisfies(
A
Fn

)
= 1. In particular,(

A

Fn

)
= 1 for all n with t+ 2 ≤ n < T. (2)

Factor A = ps, where p is prime, p ≡ 1 (mod 2t). Our argument to bound
the number of remaining A assumes two different forms according to the
sizes of p and s.

Suppose first that s ≤
√
x, so that x/s ≥

√
x. It follows from (2) that

p, s are prime to
∏
t+2≤n<T Fn, and that(
p

Fn

)
=

(
s

Fn

)
whenever t+ 2 ≤ n < T. (3)

We view s as fixed and count the number of corresponding p. Let F =∏
t+2≤n<T Fn. Keeping in mind that p ≡ 1 (mod 2t), we deduce from (3)

that p belongs to one of
∏
t+2≤n<T (12φ(Fn)) = 2t−T+2φ(F ) coprime residue

classes modulo 2tF . (We use here that each symbol
( ·
Fn

)
is a nontrivial

quadratic character mod Fn, since Fn is not a square.) Notice that

F <
T−1∏
n=0

Fn = FT − 2 < FT .

So by our choice of T , and the inequality t < T − 2, we have 2tF < 2tFT =
xo(1) (as x → ∞). Since p = A/s ≤ x/s, the Brun–Titchmarsh inequality
tells us that the number of possibilities for p is O(2−T x

s log x). Summing on

s ≤
√
x shows that the number of possible A in this case is

� x

2T
� x log log x

log x
.

Now suppose that s >
√
x. Then p ≤ x/s <

√
x. From (2), we have with

m = A that

1

2T−t−2

∏
t+2≤n<T

(
1 +

(
m

Fn

))
= 1.
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Since the above left-hand side is nonnegative for every m, we conclude that
an upper bound for the count of remaining A is

1

2T−t−2

∑
p≤
√
x

p≡1 (mod 2t)

∑
s≤x/p

∏
t+2≤n<T

(
1 +

(
sp

Fn

))
.

Expanding the product and bringing the sums on s, p inside gives a main
term of size

1

2T−t−2

∑
p≤
√
x

p≡1 (mod 2t)

∑
s≤x/p

1� 1

2T−t
x

∑
p≤
√
x

p≡1 (mod 2t)

1

p

� x log log x

2T
� x(log log x)2

log x
.

There are also 2T−t−2 − 1 error terms of the form 1
2T−t−2

∑
p,s

(ps
D

)
, where

D is the product of some nonempty subset of {Ft+2, Ft+3, . . . , FT−1}. Since
Fermat numbers are pairwise coprime, D is not a square, and

( ·
D

)
is a

nontrivial Dirichlet character modulo D. Moreover, D ≤ F = xo(1). Using
the trivial bound of D for a nontrivial character sum mod D, we see that∑

p≤
√
x

p≡1 (mod 2t)

∑
s≤x/p

(
ps

D

)
=

∑
p≤
√
x

p≡1 (mod 2t)

(
p

D

) ∑
s≤x/p

(
s

D

)

� D
∑
p≤
√
x

p≡1 (mod 2t)

1� Dx1/2.

Hence, the errors contribute � Dx1/2 � x2/3. This is negligible compared
to our main term, and so the number of A that arise in this second case is
O(x(log log x)2/ log x).

Assembling our results, we have proved that for each t, the number of
corresponding A is O(x(log log x)2/ log x). It remains to sum on t. But
there are only O(log log x) possible values of t, and so the total number of
anti-elite A ≤ x is O(x(log log x)3/ log x), which is Oε(x/(log x)1−ε). �

Remark 3.3. The anti-elite numbers up to 150 are

1,2, 4, 8, 9,13, 15, 16,17, 18, 21, 25, 26, 30, 32, 34, 35, 36, 42, 49, 50, 52, 60,

64, 68, 70, 72, 81, 84,97, 98, 100, 104, 117, 120, 121, 123, 128, 135, 136, 140, 144.

Anti-elite primes are shown in bold.

The proof of Theorem 3.2 is a more careful variant of the proof of Theorem
4 in [KLS02], the primary difference being that we keep track of the exact
value of t (the original argument only tracked whether t was small or large,
in a certain sense). Inserting this idea back into [KLS02] will show that the
count of elite primes up to x is Oε(x/(log x)2−ε), essentially recovering the
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bound of O(x/(log x)2) claimed in [KLS02]. Under GRH, the first author

showed in [Jus20] that the count of elite primes up to x is Oε(x
5/6+ε); the

present method allows us to replace 5/6 by 3/4.

4. Order-dominant pairs A,−3 and A, 3: Proof of
Theorem 1.3

Let ζ = e2πi/3 = −1+
√
−3

2 . Below, we work in the ring Z[ζ] = OK , where

K = Q(ζ). Let λ = 1− ζ, so that λ2 = −3ζ and the ideal (λ2) = (3).
Take first the case when A is even. Thinking of n as sufficiently divisible

(and in particular, even), we set

β := An/2 −
√
−3

and we attempt to evaluate the cubic residue symbol
(
A
β

)
3
. Since

√
−3 =

2ζ + 1, we have

β = An/2 − 1− 2ζ. (4)

Since 3 - A, for sufficiently divisible n we find that An/2 ≡ 1 (mod 3), so
that

β ≡ −2ζ (mod λ2).

Hence, ζ2β is congruent, modulo λ2, to a rational integer coprime to 3; that
is, ζ2β is primary in the sense required for an application of Eisenstein’s `th
power reciprocity law with ` = 3 (see, e.g., pp. 206–207 of [IR90]). By that
law, we deduce that (for sufficiently divisible n)(

A

β

)
3

=

(
A

ζ2β

)
3

=

(
ζ2β

A

)
3

=

(
−ζ2
√
−3

A

)
,

so that (
A

β

)2

3

=

(
−3ζ

A

)
3

=

(
λ2

A

)
3

=

(
λ

A

)2

3

,

forcing
(
A
β

)
3

=
(
λ
A

)
3
, since

(
A
β

)
3

and
(
λ
A

)
3

are third roots of unity. From the

supplementary laws for Eisenstein reciprocity (see p. 365 of [Lem00]),(
λ

A

)
3

=

(
ζ

A

) 1
2
(3−1)

3

=

(
ζ

A

)
3

= ζ(A
2−1)/3.

Since A2 6≡ 1 (mod 9), the exponent on ζ is not a multiple of 3. Thus,(
A
β

)
3
6= 1. In particular, A is not a cube modulo β, in Z[ζ].

Since A is even, we see from (4) that when β is written as a Z-linear
combination of 1, ζ, the coefficient of 1 and the coefficient of ζ are relatively
prime. For any β of this kind, a straightforward calculation shows that the
canonical map Z → Z[ζ]/(β) is surjective, and so induces an isomorphism
Z/(Nβ) ∼= Z[ζ]/(β). Thus, the calculation of the last paragraph implies
that A is not a cube modulo Nβ = An + 3, in Z. If A were a cube modulo
every prime factor of An + 3, then A would be a cube modulo An + 3, by
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Hensel’s lemma and the Chinese remainder theorem. (We use here that A is
prime to An + 3, and that 3 - An + 3.) So we can choose a prime p dividing
An + 3 with A not a cube modulo p.

If n is sufficiently divisible, then 3 | n. Then An ≡ −3 (mod p) implies
that −3 is a cube modulo p and that −3 mod p belongs to the subgroup
generated by A mod p. Since A is not a cube mod p, we see A is not in the
subgroup generated by −3, and thus 〈−3 mod p〉 ( 〈A mod p〉. It follows
that ordp(A)/ordp(−3) is an integer larger than 1. To see that this integer
is a multiple of 3, notice that p ≡ 1 (mod 3) (otherwise, A would be a cube
mod p), that v3(ordp(A)) = v3(p − 1) (since A is a not a cube) and that
v3(ordp(−3)) < v3(p−1) (since −3 is a cube). Thus, v3(ordp(A)/ordp(3)) ≥
1.

We have shown so far that if n is sufficiently divisible, one can find a
prime factor of An+3 with ordp(A)/ordp(3) an integer multiple of 3. To see
that infinitely many distinct primes arise, notice that all of the p produced
by this construction are odd and coprime to A. Then observe that if p is
any fixed prime not dividing 2A, then An + 3 ≡ 4 6≡ 0 (mod p) whenever n
is sufficiently divisible.

The proof is essentially the same when A is odd, except that now one
should set β := 1

2(An/2 −
√
−3). It is also useful to observe that

(
2
A

)
3

=(
A
2

)
3

=
(
1
2

)
3

= 1. We leave the details to the reader.

5. Equal orders in imaginary quadratic rings: Proof of
Theorem1.4

Let K be a quadratic field of discriminant ∆ < 0, and let α, β be distinct
nonzero elements of OK , neither of which is a root of unity. Let I be the
largest ideal divisor of (β − α) coprime to (α). The prime ideals P referred
to in the conclusion of Theorem 1.4 will come to us as divisors of the (ideal)
expression

(βα` − 1)/I,

where ` is a prime number for which `+ 1 is sufficiently divisible. It is im-
portant to note that any “sufficiently divisible” hypothesis on `+1 is always
satisfied by infinitely many primes `; this follows, e.g., from Dirichlet’s the-
orem on primes in progressions. (For an elementary proof of the −1 mod M
case of Dirichlet’s theorem used here, see §50 of [Nag51].)

If `+1 is sufficiently divisible, then α`+1 ≡ 1 (mod I), so that α(βα`−1) ≡
β − α ≡ 0 (mod I). Hence, (βα` − 1)/I is a nonzero, integral ideal of OK .
Since ∆ | `+ 1 when `+ 1 is sufficiently divisible,

√
∆
`
≡ ∆(`−1)/2√∆ ≡

(
∆

`

)√
∆ ≡

(
∆

−1

)√
∆ ≡ −

√
∆ (mod `).
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So using a bar for complex conjugation (identified with the nontrivial auto-
morphism of K), α` ≡ ᾱ (mod `), and

N((βα` − 1)/I) = N(βα` − 1)/N(I)

≡ N(βᾱ− 1)/N(I) (mod `).

In the last line, division by N(I) mod ` is to be understood as multiplication
by the inverse of N(I) mod `. The rational number N(βᾱ−1)/N(I) exceeds
1, since

N(βᾱ− 1)−N(I) ≥ N(βᾱ− 1)−N(β − α)

= (βᾱ− 1)(β̄α− 1)− (β − α)(β̄ − ᾱ)

= (ββ̄ − 1)(αᾱ− 1) = (Nα− 1)(Nβ − 1) > 0.

It follows that if `+ 1 is sufficiently divisible,

N(βᾱ− 1)/N(I) 6≡ 1 (mod `).

Thus, there must be a prime ideal P of OK dividing (βα` − 1)/I with
N(P ) 6≡ 1 (mod `), i.e., with ` - (OK/P )×. Since βα` ≡ 1 (mod P ), we
deduce that 〈β mod P 〉 = 〈α−` mod P 〉 = 〈α mod P 〉.

To show that infinitely many such P arise, we show that any fixed P is
coprime to (βα` − 1)/I for all ` with ` + 1 sufficiently divisible. This is
clear if P | (α). Otherwise, choose k for which P k ‖ (β − α). Then P k ‖ I.
Whenever `+ 1 is sufficiently divisible,

α(βα` − 1) ≡ (β − α) (mod P k+1),

which implies that P k ‖ (βα` − 1). But then P - (βα` − 1)/I.

Remark 5.1. It would seem interesting to consider the problems of this
paper for other algebraic groups. For instance, fix an elliptic curve E over
Q of positive rank, and suppose that P,Q ∈ E(Q) are points of infinite order.
Under what conditions on P,Q are there infinitely many primes p (a) for
which P and Q have the same order in E(Fp)? (b) for which the order of P
in E(Fp) is larger than the order of Q?
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