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ABSTRACT. In this paper we deal with lacunary and full versions of
the spherical maximal function on the Heisenberg group H", for n > 2.
By suitable adaptation of an approach developed by M. Lacey in the
Euclidean case, we obtain sparse bounds for these maximal functions,
which lead to new unweighted and weighted estimates. In particular, we
deduce the L? boundedness, for 1 < p < oo, of the lacunary maximal
function associated to the spherical means on the Heisenberg group. In
order to prove the sparse bounds, we establish LP? — L? estimates for
local (single scale) variants of the spherical means.
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1. Introduction and main results

A celebrated theorem of Stein [20] proved in 1976 says that the spherical
maximal function M defined by

MExve ()—sup\f*cn \—sup’/ (x —y)do(y)

r>0 r>0"Jy|=r
is bounded on LP(R™), n > 3, if and only if p > n/(n — 1). Here o, stands
for the normalised surface measure on the sphere S, = {x € R" : |z| = r}
in R™. The case n = 2 was proved later by Bourgain [4]. As opposed to
this, in 1979, C. P. Calderén [5] proved that the lacunary spherical maximal
function

Mg S = [ e =)oy
JEL 1 J|y|=27

is bounded on LP(R") for all 1 < p < oo for n > 2.

In a recent article, Lacey [12] revisited the spherical maximal function.
Using a new approach, he managed to prove certain sparse bounds for these
maximal functions which led him to obtain new weighted norm inequalities.
One of the goals in this paper is to adapt the method of Lacey to obtain
sparse bounds for certain spherical means on the Heisenberg group. As
consequences, unweighted and weighted analogues of Calderén’s theorem
follow in this context. Up to our knowledge, these results are new.

Let H" = C™ x R be the (2n + 1)-dimensional Heisenberg group with the
group law

1

(z,t)(w,s) = <z+w,t+s+ §Imz -@).

Given a function f on H", consider the spherical means
1

A f(z,t) :—f*,ur(z,t)—/ f(z—w,t—ilmz~ﬁ) dpy(w)  (1.1)
wl|=r
where i, is the normalised surface measure on the sphere S, = {(z,0) : |z]| =
r}in H". The maximal function associated to these spherical means was first
studied by Nevo and Thangavelu in [17]. Later, improving the results in [17],

Narayanan and Thangavelu [16], and Miiller and Seeger [15], independently,
proved the following sharp maximal theorem: the full maximal function

M f(2,t) := SUIg |Arf(2,1)]
r>

is bounded on LP(H"),n > 2 if and only if p > (2n)/(2n — 1).
In this work we first consider the lacunary maximal function associated
to the spherical means

Mlacf(zat) ‘= Ssup ’Aij(Z,If)’,
JEZ

and prove the following result.

Theorem 1.1. Assume that n > 2. Then the associated lacunary maximal
funcion M. is bounded on LP(H™) for any 1 < p < cc.
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We remark that another kind of spherical maximal function on the Heisen-
berg group has been considered by Cowling. In [6] he studied the maxi-
mal function associated to the spherical means taken over genuine Heisen-
berg spheres, i.e., averages over spheres defined in terms of a homogeneous
norm on H", and proved that it is bounded on LP(H") for p > %, where
Q@ = (2n+2) is the homogeneous dimension of H". Recently, in [9], lacunary
maximal functions associated with these spherical means have been studied
and it has been shown that they are bounded on LP(H") for all p > 1. We
remark in passing that the spherical means (1.1) are more singular, being
supported on codimension two submanifolds as opposed to the one studied
in [6], which are supported on codimension one submanifolds. Even more
singular spherical means have been studied in the literature, see e.g. [28].

Theorem 1.1, as well as certain weighted versions that are stated in Section
5, are standard consequences of the sparse bound in Theorem 1.2. Before
stating the result let us set up the notation. As in the case of R", there is
a notion of dyadic grids on H", the members of which are called (dyadic)
cubes. A collection of cubes § in H" is said to be n-sparse if there are sets
{Esg C §: 5 € S} which are pairwise disjoint and satisfy |Eg| > n|S| for all
S € S. For any cube Q and 1 < p < oo, we define

New= (1 /Q |f<a:>pdx)1/p, (Ne =15 /Q £ (@) ld.

In the above, x = (z,t) € H" and dr = dzdt is the Lebesgue measure on
C™ x R, which incidentally is the Haar measure on the Heisenberg group.
By the term (p, ¢)-sparse form we mean the following:

Aspa(fis f2) = D 1S1{f1)sp(f2)s.0-

SeS
Theorem 1.2. Assumen > 2. Let 1 < p,q < oo be such that (%, %) belongs
to the interior of the triangle joining the points (0,1), (1,0) and @Zi}l’ 321}1)

Then for any pair of compactly supported bounded functions (f1, f2) there
exists a (p, q)-sparse form such that (M f1, f2) < CAspq(fi, f2).

We do not know whether Theorem 1.2 delivers the optimal range of (p, q).
We will return to the study of the sharpness somewhere else.

With a similar procedure, and using the results obtained for the lacunary
case, we can also prove a sparse domination for the full maximal operator
and deduce weighted norm inequalities, see Theorem 6.1 in Subsection 6.3.
Nevertheless, since these results are subordinated to the results for M,
the bounds obtained are expected to be far from optimal. Indeed, as in the
Fuclidean case, the bounds are expected to hold in a quadrangle, rather
than in a triangle, and better estimates along the anti-diagonal should be
achieved.

In proving the corresponding sparse bounds for the spherical maximal
functions on R™, Lacey [12] made use of two features of the spherical means.
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The first one is the LP — L4 estimate, also referred as LP improving estimate,
of the operator S, f = fxo, for a fixed r, in the case of the lacunary spherical
averages, and for a local (single scale) variant of the maximal function, in
the case of the full averages. The second feature is a continuity property
of the difference S, f — 7, S, f, where 7,f(z) = f(xz — y) is the translation
operator. By this we mean a rescaled version of an estimate of the form
|S1 — 7y SillLr—ra < Cly|" for some n > 0. Thus this is essentially a slight
improvement of the LP — L9 estimate, which turns out to be preserved under
small translations, with a gain in y. In the Euclidean case, the LP improving
property of S, already existed in the literature, and the continuity property
could be deduced almost immediately from the well-known estimates for the
Fourier multiplier associated to these spherical means and the LP improving
property.

In our case, LP improving estimates, which are the heart of the matter,
are new and addressed in Section 2 for A,. Our approach to develop the
program and get the LP — L9 estimates is based on spectral methods attached
to the spherical means on the Heisenberg group. The continuity condition,
even though it is a technical estimate that follows from the LP — L9 bounds,
is more difficult to obtain than in the Euclidean case and it is shown in
Section 3. The corresponding results concerning the full case are addressed
in Section 6.

Remark 1.3. As mentioned above, we do not know whether our results are
optimal or not but actually we believe that they are most probably subop-
timal. In particular, for the full spherical maximal function, it is reasonable
to expect the bounds to hold for a range of (p, ¢) contained in a larger quad-
rangle, analogously as in the Euclidean case. Nevertheless, as it will be clear
from the proofs, the procedure to obtain sparse bounds is independent of the
numerology, so the suboptimality of the results are due to the suboptimal
LP — L7 bounds for the single scale operators. The better input LP — L?
estimates would yield better sparse bounds.

The results in this paper are restricted to dimension n > 2. Recently,
in [2], the authors proved that Mgy, acting on a class of Heisenberg radial
functions (i.e., f : H' — C such that f(Rz,t) = f(z,t) for all R € SO(2)), is
bounded on LP(H!) for 2 < p < co. Up to our knowledge, the boundedness
of the full spherical maximal function on the Heisenberg group in the case
n =1 is still open.

Outline of the proofs. We closely follow the strategy of Lacey in
proving Theorem 1.2, but in our case we do not have all the necessary
ingredients at our disposal. Consequently, we have to first prove the LP —
LY estimates of the operator A, on H" and then use them to prove the
corresponding continuity property of the difference A; f — A7, f where now
T, f(x) = f(xy~1) is the right translation by y~! on the Heisenberg group.
We observe that, in the case of the Heisenberg group, the Fourier multipliers
are not scalars but operators and hence the proofs become more involved.
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These results are new and have their own interest. Finally, we will prove the
sparse bounds. We will have to modify appropriately the approach of Lacey,
since we are in a non-commutative setting. This implies, in particular, that
a metric has to be suitably chosen to make the Heisenberg group a space
of homogeneous type. In order to keep the paper self-contained, we present
a full detailed proof of the sparse domination. Along the paper, we will be
assuming that the functions f, fi, and fo arising are non-negative, which we
can always do without loss of generality.

Structure of the paper. In Section 2 we give definitions and facts
concerning the group Fourier transform on H", the spectral description of the
spherical means A,., and we establish LP — LY estimates for these operators.
In Section 3 we prove the continuity property of A, f — A,7, f. In Section 4
we establish the sparse bound and prove Theorem 1.2 and in Section 5 we
deduce unweighted (Theorem 1.1) and weighted boundedness properties of
the lacunary maximal function. Finally, Section 6 is devoted to present the
results for the full maximal function.

2. LP — L9 estimates for the spherical means

The observation that the spherical mean value operator S, f := f * o, on
R"™ is a Fourier multiplier plays an important role in every work dealing with
the spherical maximal function. In fact, we know that

. e g1 (7€)

Fron@) = @m = [ enfio Ty
where J,,/5_; is the Bessel function of order n/2 — 1. As Bessel functions
Jo are defined even for complex values of «, the above allows one to embed
Sy f into an analytic family of operators and Stein’s analytic interpolation
theorem comes in handy in studying the spherical maximal function. In-
deed, this was the technique employed by Strichartz [22] in order to study
LP improving properties of S.. We will use the same strategy to get the L”
improving property of A, on H". Actually, for the spherical means on the
Heisenberg group, there is available in the literature a representation anal-
ogous to (2.1) if we replace the Euclidean Fourier transform by the group
Fourier transform on H", see (2.7).

The present section will be organised as follows. In Subsection 2.1 we
will introduce some preliminaries on the group Fourier transform on H". In
Subsection 2.2 we will give the spectral description of the spherical averages
A,, which will involve special Hermite and Laguerre expansions. Sharp
estimates for certain Laguerre functions will be shown in Subsection 2.4.
Then in Subsection 2.5 we will obtain the LP improving property of A,.

d¢ (2.1)

2.1. The group Fourier transform on the Heisenberg group. For
the group H"™ we have a family of irreducible unitary representations )
indexed by non-zero reals A and realised on L?(R"™). The action of my(2,t)
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on L?(R") is explicitly given by

(2, )p(€) = eMePNTEF TV (e 4 y) (2.2)

where ¢ € L?(R") and z = x + iy. By the theorem of Stone and von
Neumann, which classifies all the irreducible unitary representations of H",
combined with the fact that the Plancherel measure for H" is supported
only on the infinite dimensional representations, it is enough to consider the
following operator valued function known as the group Fourier transform of
a given function f on H":

fN) = f(z,t)ma(z,t) dz dt. (2.3)
H»
The above is well defined, e.g., when f € L!(H") and for each \ # 0, f()\) isa
bounded linear operator on L?(R"). The irreducible unitary representations
7\ admit the factorisation 7y (z,t) = e*my(2,0) and hence we can write the
Fourier transform as

~

fN) = : fA2)ma(2,0) dz,
where for a function f on H”, f*(z) stands for the partial inverse Fourier
transform

z) = / TNzt d.

When f € L' N L?(H") it can be easily verified that f()\) is a Hilbert-
Schmidt operator and we have

|1 oPasa=@nt [z

The above equality of norms allows us to extend the definition of the Fourier
transform to all L? functions. It then follows that we have Plancherel the-
orem: f — f is a unitary operator from L?(H") onto L?(R*,Ss, du) where
So stands for the space of all Hilbert-Schmidt operators on L?(R") and
dp(r) = (2m) " Y A" d) is the Plancherel measure for the group H". We
refer to [27] for more details.

2.2. Spectral theory of the spherical means on the Heisenberg
group. As pointed out above, a spectral definition of A, = f % u, was
already given in [16, 17]. For the convenience of the readers we will briefly
recall it in this subsection after providing some necessary definitions that
will be useful in the next sections.

Observe that the definition (2.3) makes sense even if we replace f by a
finite Borel measure p. In particular, fi,.(\) are well defined bounded op-
erators on L?(R") which can be described explicitly. Combined with the
fact that m()\) = F(N)F(A) we obtain Zr\f()\) = f(A\)fir(A). The opera-
tors f1,(\) turn out to be diagonalisable in the Hermite basis. Indeed, if we

let @é, a € N", stand for the normalised Hermite functions on R"™, then
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-\ @) = ¢ 1 (y/[\|r)®) where k = |a|. Here, for any § > —1, ¢ stand
for the normalised Laguerre functions defined by

Nk+ 10+ 1) 2(17"2) 1,2

O i, (2.4

2

where L (r) are the Laguerre polynomials of type §. The Hermite functions
®) are eigenfunctions of the Hermite operator H(\) = —A + A\2|z|2. More
precisely, H(A\)®) = (2|a| + n)|)\| and the spectral decomposition of H(\)

is then written as
o

H(\) =) (2k +n)|[A|Pe()) (2.5)

k=0

where Py () are the Hermite projection operators. It is well known (see [25,
Proposition 4.1]) that

Z i (VAP BV,
Hence we have the relation
Z V(WA Pe(N), (2.6)

which is the analogue of (2.1) in our situation. Thus, as in the Euclidean
case, the spherical mean value operators A, are (right) Fourier multipliers
on the Heisenberg group.

However, in order to define an analytic family of operators containing the
spherical means, it is more suitable to rewrite (2.6) in terms of Laguerre
expansions. For that purpose, we will make use of the special Hermite
expansion of the function f*, which can be put in a compact form as follows.
Let pp(z) = L} (3|7 |z|2)e_i|)‘|"z|2 stand for the Laguerre functions of type
(n — 1) on C". The A-twisted convolution f* %) ¢3(2) is then defined by

Poaed) = [P w)e)ed =T .

It is well known that one has the expansion (see [27, Chapter 3, proof of
Theorem 3.5.6])

) = o)AMY P aer(2),

k=0
which leads to the formula (see [27, Theorem 2.1.1])

e = 0n 7 [T NS P )
- k=0
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Applying this to f * u, we have

1 R

f*pr(z,t) = / e A 4y pr(2) dA

27 J_
where we used the fact that (f * p)*(2) = f* *\ ur(2). It has been also
shown that (see [25, Theorem 4.1] and [17, Proof of Proposition 6.1])

o0
_ El(n—1)!
Foape(z) = 2m) A Y mwﬁ(r)ﬂ 2 03 (2),

k=0

leading to the expansion (see [16, 17])

Acfzt) = (2my ot [~ *Mt(Zw 30w () ) I A

(2.7)
By replacing 1%“1 by wg we get the family of operators taking f into

(27r)”1Z/ e ) (VNP £ 5 @ (2) A" dA (2.8)
k=0 "%

We will consider these operators when studying the LP — L9 estimates of the
spherical mean value operator.

2.3. An analytic family of operators. The Laguerre functions w,‘z can
be defined for all values of § > —1, even for complex § with Red > —1. We
define

Asf(et) = m [ —W(Zw‘”" VD # oh(2) ) AT,

(2.9)
for Re(B8 +mn — 1) > —1. Note that for 5 = 0 we recover Ay, thus A; = Aj.
We will use the following relation between Laguerre polynomials of different
types in order to express Ag in terms of A; (see [18, (2.19.2.2)])

Nk+p+v+1) (! _
LAY (1) = tH(1 — )" L (rt) dt 2.1
valid for Rep > —1 and Rev > 0. We define, for s > 0,
1 [ _.
Pif(zt) = o / e~ MemaMs £A () g (2.11)
u —00

to be the Poisson integral of f in the ¢-variable. We see that, for Re 8 > 0,
Ag is given by the following representation.

Lemma 2.1. Let Re 8 > 0. The operator Ag is given by the formula

I'(B+n)

Al (1) = 25 5

1
/ 82n—1(1 _ 82)’8_1P1_52f * ,U/s(z7 t) ds. (212)
0
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Proof. In view of (2.9), it is enough to verify

I'(B+n)
L(B)I'(n)

= (27T)—n—1/°° —zAt(Z¢ﬁ+n 1 f/\ %, @2(z)>\>\\”d>\.

Note that the left hand side of the above equation is well defined only for
Rep > 0 whereas the right hand side makes sense for all Reg > —n. We
can thus think of the right hand side as an analytic continuation of the left
hand side. In view of (2.11), the Fourier transform of the Poisson integral
P, f in the t-variable can be written as

(Pf)Mz) = e 1Pl A2,

Then, by (2.7) the spherical averages of the Poisson integral P;_.f are
given by

P_gof xps(z,t) =

o0 0o ] N
2m) "y / e~ My (/[N]s)e T A oA ) A dA.
k=0Y"°

1
2 / 2N — $PTIP o f % pus(z,t) ds
0

Integrating the above equation against s2*~1(1 — s2)%~1 ds, we obtain
1
/ 21— HPTIP o f # pg(z,t) ds
0

=0 Y [T
k=0 —>
where
1 1 2
(V) = / 1) 2Pyt (Ns)e N0 g (2.13)
0

Recalling the definition of @b,’;‘_l given in (2.4) we have

1
pr(v/IAD) = W/O (1 —32)5*1L2_1<%32‘)\‘)6*i\>\| ds.

We now use the formula (2.10). First we make a change of variables t — s2
and then choose p =n — 1 and v = 3, so that

R B

a
< (), 51
= ST . (2.14)

The proof follows readily. (]
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In particular, from (2.13) and (2.14) (after a change of variable), in the
proof of Lemma 2.1, we infer the following identity.

Corollary 2.2. Let Re8 > 0 and o > —1. Then, forr > 0,

F(ﬁ +a+ 1) ! o -1« —1r2(1—u)
Tt 1) /0 u*(1 —u)P YR (rvu)e 1 du.
Observe that even for large 3, the operator Az is a convolution operator
with a distribution supported on C™ x {0}. This is in sharp contrast with
the Euclidean case, see [22], and prevents us to have some LP improving
property for large values of 5. In order to overcome this, we slightly modify
the family in Lemma 2.1 and define a new family T3. As we will see below

the modified family of operators T3 has a better behaviour for 8 > 1.
For Re > 0, let

Ut () =

ka(t) = F(lﬁ)tile_t, (2.15)

where tifl =8 X (0,00)(t), which defines a family of distributions on R and
limg_,o kg(t) = do, the Dirac distribution at 0. Given a function f on H"
and ¢ on R we use the notation f *3 ¢ to stand for the convolution in the
central variable:

f*3(z,t) = /OO flz,t —u)p(u) du.

Thus we note that Py_.2f(2,t) = f %3 pi_s2(z,t) where p;_,2 is the usual
Poisson kernel in the one dimensional variable ¢, associated to P;_,. In fact,

ps(t) is defined by the relation [ e py(t)dt = e~ 15 and it is explicitly
known: ps(t) = cs(s? 4+ 16t2)~! for some constant ¢ > 0, see for example
[21]. With the above notation we define the new family by

I'(B+mn)
I(B)L(n)

In other words

Taf(z,t) = /032”_1(1—SQ)ﬁ_lpl_sz(f*ng)*us(z,t)ds. (2.16)

Tﬁf = Ag(f *3 k‘ﬁ).
Lemma 2.3. For Re 3 > 0, the operator Tgf has the explicit expansion

T/gf(Z, t)

—n [ e (ZW’“ V£ 0 2(2)) A A

Proof. The statement follows from Lemma 2.1, (2.9), and from the fact

it _ Xty S—1_—t _ -\ —[
e kp(t dt—/ eMtP e dt = (1 — i)
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This can be verified by considering the function

R S e
F(p,¢) T03) /0 P e dt
defined and holomorphic for Re 8 > 0, Re( > 0. Indeed, when ( is fixed,
with Re > 0, we have the relation F(3,() = (F (8 + 1,¢) which allows us
to holomorphically extend F(8,() in the 8 variable. It is clear that when
¢ >0, F(B,¢) = ¢ P, which allows us to conclude that the Fourier transform
of kg at A is given by (1 —i\)~", as claimed. O

2.4. Spectral estimates. In this subsection we will state and prove sharp
estimates on the normalised Laguerre functions given in (2.4). These es-
timates will be needed to get the L? boundedness of the analytic family
operators that we introduced in the previous subsection.

We begin by expressing 1/12 (r) more conveniently in terms of the standard
Laguerre functions

gy@:<F%+”F“+U

T(k+o+1)

1
) LA
which form an orthonormal system in L%((0,0),dr). In terms of £3(r), we
have
T(k+DTG+1)\5 1
S/ _ of spo(l 2
Pp(r) =2 < Th+ 0+ 1) > r Ck(2r )

Asymptotic properties of E,‘i (r) are well known in the literature and we have
the following result, see [26, Lemma 1.5.3] (actually, the estimates in Lemma
2.4 below are sharp, see [13, Section 2] and [14, Section 7]).

Lemma 2.4 ([26]). For k € N, let us set v := (4k + 26 + 1). Then for
6 > —1, we have the following:

(vr)72, 0<r<i
—= 1 v
vr) 4 =< r<sz
cim <o d @) L, vSTss
v ) S << ¥
e, r> 3%,

where v > 0 is a fixed constant.

From the above estimates of Ei we can obtain the following estimates for
the normalised Laguerre functions wi.

Lemma 2.5. For k € N, let us set v := (4k+ 206 +1). Then, for a > 0 and
0 > —1 such that 6 + % — 2a > 0, we have the uniform estimates

1, if |Al <
ARV < C
Sllip(l/| |) ‘wk( | |)| = {|)\|2a—5—é’ Zf‘)\‘ >

R =R =

I



642 S. BAGCHI, S. HAIT, L. RONCAL AND S. THANGAVELU

Proof. Since
Lk+ 1D+ 1)

T(k+o+1)

<Ck+20+1)7°,
we need to bound 1

«a —6/2p8 (

(A AN 228 (S 1)),
When L < 1)\ < £ we have the estimate
vIAD R (VAN < C A2,
From here, since —2a + 6 + % >0, A2 < v|A|, we get
WA R (VIADI < CIAPe0 12,

When 4§ < 1[A| < 22, |)| is comparable to v and hence we have

3
(

On the region |\ > 37” we have exponential decay. Finally, the estimate
supy, (AP (/[A])| < C for 0 < |A| < L is immediate, in view of Lemma
2.4. With this we prove the lemma. O

2.5. LP — L9 estimates. After the preparations in the previous subsec-
tions, we will proceed to prove the LP — LY estimates of the operator Aj.
We will show that when 8 = 1 4+ i7, the operator Tj defined in (2.16)

is bounded from LP(H™) into L°°(H") for any p > 1, and that for certain
negative values of 3, T is bounded on L?(H™). We can then use analytic
interpolation to obtain a result for Ty = Ag = A1. We shall use the following
definition: A function ®(z) analytic in the open strip 0 < Re(z) < 1, and
continuous in the closed strip, will be called of admissible growth (cf. [19])
if

sup sup log|®(z +iy)| < Ae”, a <.

ly|<r 0<e<1
Proposition 2.6. Assume that n > 1. Then for any 6 > 0, v € R,

[T14iv flloe < CLNIf 11455
where C1(7y) is of admissible growth.

Proof. For § =1+ i it follows that

IT(1 + iy +n)| /1 o1
n=lp s(z,t)d
|F(1+Z’y)|2r(n) 0 S 1—82(f *3 SD)*H (Z ) S

where ¢(t) = e"x(0,00)(t). Since ¢ > 0 it follows that

|T1+’i’7f<za t)’ <

Pi_o(f*39) = @x3p1 e %3 [ < pxs M f
where My f is the Hardy-Littlewood maximal function in the ¢-variable (we
will use the notation My, f for the Hardy-Littlewood maximal functions in
all the variables in Section 6). Here we have used the following well known
fact: Let ¢ be a non-negative, integrable and radially decreasing function
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on R and set 95(t) = s~ 4)(t/s). Then sup,- |g * ¥s(t)| < CMg(t) for any
locally integrable function g on R where M g stands for the Hardy-Littlewood
maximal function on R. Thus we have the estimate

1
Tiin 0] < C10) | (M f 5090+ (e 052 s

Now we make the following observation: suppose K (z,t) = k(|z|)¢(t), where
k is a non-negative function on [0, c0). Then

f*K(z,t)= /0 (f *3 ) * ,us(z,t)kz(s)s%f1 ds,

which can be verified by recalling the definition of the spherical means f
ws(z,t) in (1.1) and integrating in polar coordinates. This gives us

Tiin f (2,)] < CL(v) My f * K (2, 1)
where K(z,t) = x|,<1(2)@(t). As M, f € L'™(H") and K € L(H") for
any q > 1, by Holder we get
| T1i flloo < CrONIMELS li45 < CrOD N fllts-
(]

In the next proposition we show that Tj is bounded on L?(H") even for
some values of 8 < 0.

Proposition 2.7. Assume thatn > 1 and 8 > —%5 +%. Then for any v € R
[Ts1iv fll2 < Co(M)I Fl2-

Proof. In view of Lemma 2.3 and Plancherel theorem for the Fourier trans-
form on R and special Hermite expansions on C", we only have to check
(observe that |(1 —i\)| = (1 4+ A\?)1/?),

|(1=i0) " CF I = (147 P T (VN < Cal)

where C3(7) is independent of & and \. When v = 0, it follows from the
estimates of Lemma 2.5 (with o = 0) that

L+ X)) PP I < CAP s
for [A| > 1 (actually, for [A| > 1), which is bounded for 3 > —2 + % For

v # 0 we can express ¢y T ((/IN]) in terms of 4P T ((/[N]) for a
small enough € > 0 and obtain the same estimate. Indeed, by Corollary 2.2
with « = 8 —e+n —1 and 8 = € + iy, and using the asymptotic formula
(1 + iv)| ~ V2r|v|=1/2e=m1/2 a5 v — oo (see for instance [21, p. 281
bottom note]), we get

Biy+n—1 _ (B +iv+n)
[ VIl = ‘21“(5+i’y)1“(,8—5+n)

1
X / 35*‘5*"*1(1 _ S)EHW*I@DS—H”*(\/W)efiw(lfs) ds
0
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B ol I G S L(1 = g)eHir-1 et —3lN-s)
N ’7‘6 Sy ‘ S) wk (\/W)e 4 ds|,

where the constant depends on 8. Now, by the estimate for ¢i in Lemma
2.5 (for @ = 0) and the integrability of the function s#—¢tn=1(1 — s)s+7—1
we have

(L4 2P VIAD] < O Py P tos - et ma=1s,

For || > 1, the above is bounded for 3 —& > —% + £ with € small enough.
The proof is complete. U

Theorem 2.8. Assume thatn > 1 ande > 0. Then A; : LP(H") — LI(H")
for any p, q such that
3 - 1 < 3n+1—6¢ 1 3
3n+4—6s p 3n+4—6c q 3n+4—6¢

Proof. Let us consider the following holomorphic function «(z) on the strip
{z: 0 < Rez < 1}, given by a(z) = (2 — 1 —¢)(z — 1) + 2. We have
a(0) = -2 +1+cand a(l) = 1. Then, T, is an analytic family of linear
operators and it was already shown that T}, is bounded from L'+°(H")

to L*°(H™). Therefore, we can apply Stein’s interpolation theorem. Letting
z = u + tv, we have

a(z) =0 < (Z—;—5>(u—l)+u—0<:>u—m.
Since € > 0 is arbitrary, we obtain
To(uy = LP* (H") — L (H")
where
3 < 1 < 3n+1—6¢ 1 _ 3
3n+4 — 6¢ 3n+4—6¢e’ Gu 3n+4—6¢e’
and this leads to the result. O

Corollary 2.9. Assume thatn > 1. Then
Ay LP(H™) — LY(H")
whenever (%, %) lies in the interior of the triangle joining the points (0,0), (1,1)

and (gﬁﬂl,ﬁ), as well as the straight line segment joining the points

(0,0),(1,1), see S!, in Figure 1.

Proof. The result follows from Theorem 2.8 after applying Marcinkiewicz
interpolation theorem with the obvious estimates

[Af Il < Al AL lloo < (I lloo-
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Q=

(0
3n+1 3n+l1 )

3n+4’ 3n+4

o

Q=

__——'5(377,4—1 3 )
3n+4’ 3n+4

\
=

(0,0)
FIGURE 1. Triangle S/, shows the region for LP— L7 estimates
for A1. The dual triangle S,, is on the top.

Remark 2.10. Observe that the results in this section are valid for dimensions
n > 1. The restriction n > 2 will arise in Proposition 3.1 as a consequence of
the restriction of the parameter d on the available estimates for the Laguerre
functions in Lemmas 2.4 and 2.5, which are sharp. Consequently, the rest
of results from Proposition 3.1 on, and in particular the main results in
this paper (Theorems 1.1 and 1.2), are restricted to dimensions n = 2 and

higher.
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3. The continuity property of the spherical means

In the work of Lacey [12] dealing with the spherical maximal function on
R™, the continuity property of the spherical mean value operator, described
in the Introduction, played a crucial role in getting the sparse bounds for
the spherical maximal function. It was obtained by combining the LP — L4
estimates and L? estimates that were easily deduced from the known decay
estimates of the Fourier multiplier associated to the spherical means. In
the case of the Heisenberg group, the analogous property for A, is stated in
Corollary 3.5 below. In order to achieve Corollary 3.5, we will appeal to the
LP improving estimates in Corollary 2.9 along with suitable L? estimates.
But in our setting, these L? estimates are not that immediate to obtain, since
the associated multiplier is an operator-valued function. This means that
we are led to prove good decay estimates on the norm of an operator-valued
function, which is nontrivial.

In what follows, for z = (z,t) € H", we will denote by |z| = |(z,t)] =
(|2]* 4 t*)'/* the Koranyi norm on H".

Proposition 3.1. Assume that n > 2. Then for y € H", |y| < 1, we have
A1 = Ai7yllp2s 2 < Clyl
where T, f(x) = f(zy™') is the right translation operator.

Proof. For f € L?(H") we estimate the L? norm of A;f — A;(7,f) using
Plancherel theorem for the Fourier transform on H". Recall that A; f(z) =

f * p1(x) so that Zl\f()\) = F(NET(N), where 7i7()) is explicitly given by
) =3 v (VD POV
k=0
We also have

I = [ ey m@)ds = Fm ).

Thus by the Plancherel theorem for the Fourier transform we have

1ALf = Av(my )3 = en /OO IF OV = )BTV [[Fis A"

Since the space of all Hilbert-Schmidt operators is a two sided ideal in the
space of all bounded linear operators, it is enough to estimate the operator
norm of (I — mx(y))pi(A) (for more about Hilbert-Schmidt operators see
[23]). Again, i7(\) is self adjoint and my(y)* = m(y~!) and so we will
estimate 1 (A\) (I — mA(y)).

We make use of the fact that for every o € U(n) there is a unitary
operator py (o) acting on L?(R™) such that my(0z,t) = ur(0)*mr(2,t)pr(0)
for all (z,¢t) € H". Indeed, this follows from the well known Stone-von
Neumann theorem which says that any irreducible unitary representation
of the Heisenberg group which acts like "I when restricted to the center
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is unitarily equivalent to my. Moreover, u) has an extension to a double
cover of the symplectic group as a unitary representation and is called the
metaplectic representation, see [8, Chapter 4, Section 2].

Given y = (z,t) € H" we can choose o € U(n) such that y = (|z|oe,t)
where e; = (1,0, ....,0). Thus

mA(y) = pa(e) ma(lzler, )pr(o).

Also, it is well known that uy(o) commutes with functions of the Hermite
operator H(\) given in (2.5). Since p1(A) is a function of H(X) it follows
that

(MU = ma(2,1) = palo) BN I = ma(lzler, 1)) pa(o).-
Thus it is enough to estimate the operator norm of 7 (A)(I — mx(|zle1,t)).
In view of the factorisation 7y (|z|e1,t) = ma(|2]e1,0)mx(0,t) we have that

I - 7T)\(|Z’61, t)
=1- 7r)\(\z]61, 0)’/’1’)\(0, t) = (I - 7T)\(O, t)) + (I - 71')\(‘2”61, 0))7T)\(0, t)
so it suffices to estimate the norms of uy(A\)(I — mx(0,¢)) and p1(N)(I —
ma(|zle1,0))mA(0, t) separately. Moreover, we only have to estimate them for
|A| > 1 as they are uniformly bounded for [A| < 1.
Assuming |A| > 1 we have, in view of (2.2),

A = mA(0,8)9(€) = (1 — ™) a(N)e(€), ¢ € LA(R").

By mean value theorem, the operator norm of (1 — ei’\t)ﬁI(A) is bounded by
CltH)\lSléplth_l(v [AD] < Cl||A|= = D+2/3

where we have used the estimate in Lemma 2.5 (for & = 1). Thus for n > 2,
[ET N = 70(0,8)) [l 22 < Ct] < Cl(2, 1)

In order to estimate 11 (\)(I — mx(]z|e1,0)) we recall that

mA(lzler, 0)p(€) = eXFrp(), € LAR™).

Since we can write
1
(1= &) = —infaley [ e = Nl (2] €
0

with a bounded function my(|z|,§), it is enough to estimate the norm of the

operator |z|u1(A) My where Myp(&) = A1p(€).

Let A(\) = 8%1 + A& and A(N)* = _8%1 + [A|&1 be the annihilation and
creation operators, so that we can express My as My = £(A(X) + A(N)*).
Thus it is enough to consider |z|u7(A)A(X) and |z|u1(X)A(N)*. Moreover,
as the Riesz transforms H(\)~'/2A()\) and H(\)~'/2A()\)* are bounded on
L?(R™) we only need to consider | 2|z (A\)H(X)Y/2. But the operator norm of

fin(A)H (N2 is given by supy,((2k +n)|A|)Y/2|42 1 (\/]A])] which, in view of
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Lemma 2.5 (for a = 1/2), is bounded by C|\|~(*~1)+2/3_ Thus for n > 2 we
obtain

11 (NI = ma(lzler, 0) |22 < Clz| < Cl(z,1)].
This completes the proof of the proposition. (Il

Remark 3.2. Observe that the result above is restricted to the case n > 2,
and this is due to the restriction on the available sharp estimates for the
Laguerre functions, see Lemmas 2.4 and 2.5 (in particular, we are using
Lemma 2.5 with § = n —1). We do not know whether there is a way to
reach n = 1 with our approach.

Corollary 3.3. Assume that n > 2. Then for y € H", |y| < 1, and
for (%, %) in the interior of the triangle joining the points (0,0),(1,1) and
(3n+1 3
3n+4’ 3n+4

), there exists 0 < v < 1 such that we have the inequality
A1 — Ar7yllp e < Clyl”,
where 7, f(x) = f(zy~1) is the right translation operator.

Proof. The result follows by Riesz-Thorin interpolation theorem, taking
into account Corollary 2.9 and Proposition 3.1. U

We need a version of the inequality in Corollary 3.3 when A; is replaced
by A,. This can be easily achieved by making use of the following lemma
which expresses A, in terms of A;. Let 6,.¢(w,t) = p(rw,r?t) stand for the
non-isotropic dilation on H".

Lemma 3.4. For any r > 0 we have A, f = 5;1A1(5,«f.

Proof. This is just an easy verification. Since

A0, f(z,t) = / f(rz —rw,r’t — %7’2 Im(z - w))du; (w)

|w[=1

it follows immediately

(67 1A16,f)(2,t) = / flz—rw,t — %rlm(z cw))dpt(w) = Arf(z,t).

|w[=1

O

Corollary 3.5. Assume that n > 2. Then for y € H" |y| < r, and

for (%, é) in the interior of the triangle joining the points (0,0),(1,1) and
(3n+1 3

3n+4’ 3n+4

), there erists 0 < v < 1 such that we have the inequality

11
[Ar — ApyllLr 00 < C'Tf”]y|”r(2”+2)(g*;).

Proof. Observe that é(ryf) = 75-1,(d, f), which follows from the fact that

0, : H* — H" is an automorphism. The corollary follows from Corollary
(2n+2)

3.3, Lemma 3.4, and the fact that ||0,f||, =r 7 forany 1 <p<oo. O
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4. Sparse bounds for the lacunary spherical maximal
function

Our aim in this section is to prove the sparse bounds for the lacunary
spherical maximal function stated in Theorem 1.2. In doing so we closely
follow [12] with suitable modifications that are necessary since we are dealing
with a non-commutative set up. We can equip H" with a metric induced by
the Koranyi norm which makes it a space of homogeneous type. On such
spaces there is a well defined notion of dyadic cubes and grids with properties
similar to their counter parts in the Euclidean setting. However, we need to
be careful with the metric we choose since the group is non-commutative.

Recall that the Koranyi norm on H" is defined by |z| = |(2,t)| = (|2|* +
tz)l/ 4 which is homogeneous of degree one with respect to the non-isotropic
dilations. Since we are considering f * pu, it is necessary to work with the
left invariant metric dy (x,y) = |z~ 'y| = d (0,27 'y) instead of the standard
metric d(z,y) = |zy~!| = d(0,2zy~1), which is right invariant. The balls and
cubes are then defined using dr. Thus B(a,r) = {z € H" : a7 12| < r}.
With this definition we note that B(a,r) = a-B(0,r), a fact which is crucial.
This allows us to conclude that when f is supported in B(a,r) then f*pu is
supported in B(a,r+ s). Indeed, as the support of pg is contained in B(0, s)
we see that f x ps is supported in B(a,r) - B(0,s) C a- B(0,7) - B(0,s) C
B(a,r + s).

Theorem 4.1. Let n € (0,1) with n < 1/96. Then there exists a countable
set of points {z]lf’a vedt, ke€Z, a=1,2,...,N and a finite number of
dyadic systems D := Upez Dy, Dy = {Qllf’a 1 v € o} such that
(1) For every o € {1,2,...,N} and k € Z we have
i) H" = Ugepe @ (disjoint union).
i) QPeD*=QNPe{lPQ}.
iii) ko o pa o B(z],f’a,l—gnk) C Qlﬁ’a C B(zllf’a,élnk). In this
situation z5® is called the center of the cube and the side length
UQE™) is defined to be n.
(2) For every ball B = B(x,r), there exists a cube Qp € Uy D% such that
B C Qp and £(Qp) = n*~', where k is the unique integer such that
nk-ﬁ-l <r< ’f]k

Proof. It follows from Theorem 4.1, the proof of Lemma 4.12, Remark
4.13 and Theorem 2.2 in [11], where the choices ¢9 = 1/4 and Cy = 2 in
[11, Theorem 2.2] are made so that the property (2) holds (see [11, Lemma
4.10]). O

We will first prove a lemma that is the analogue of [12, Lemma 2.3].

Lemma 4.2. Let f1 and fy be supported on a cube @ and let £(Q) = r.
For (%, %) in the interior of the triangle joining the points (0,1),(1,0) and
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3nt+1l 3nd41
(3n54> 3nrq)s there holds

[(Arfr = Arry f1, f2)l S 1y/rl” QI @p(f2) Qs lyl <7
for some v > 0.

1
7

Proof. By Holder’s inequality and Corollary 3.5 for the pair (%, 7 ) we have,

for |y| < r,
[(Arfi = Arry fr, f2)] < 1Arf1 = Arry fillg [l 2l

1

< CrP DG | Al el

— Cr PG QI () gl fo) e
S1QI7 #1QI Iy () o fe) 0

< |Q\7"7V|y‘y<f1>Q,p<f2>Q,qv

as |Q| is comparable to r2"+2. O
Lemma 4.3. Let 0 <n < %. For Q with £(Q) = n*, k € Z, we consider
Vg ={P €Dy : Blzp,n"") C Q}
and define
Aof = Apa(Fly)

where Vo = Upey, P. Then, for any f supported in Q, the support of Aqf
s also contained in (). Moreover,

N
A f <) Ag(f).

a=1QeDY

Proof. Observe that for any z € H" there exists P € D} 43 such that
x € P C B(zp,4n**3). Then P C B(zp,n*!) C Q for some Q in D,
for some o. Therefore P € Vp and hence x € V. This proves that
H = Y, UQeDg Vg, hence we have f < SN ZQGD? f1y,, and conse-
quently A, ri2f < 25:1 ZQeDg Aqf. It remains to be proved that Agf
is supported in ). Now assume that supp f C @ and recall A, k2 f (x) =
f*pppr2(x). Then it is enough to show that supp A, x+2(f1p) C B(zp, nk+)
for every P € V. Indeed,

supp(f1p) * pye+2 C (supp(f1lp)) - (Supp pe+2) C zP-B(O,nk+2)-B(0,(5k+2)

which is contained in B(zp,n*T!) C @ by the definition of V. Observe
that the above argument fails if we use balls defined by the standard right
invariant metric. The lemma is proved. O

Remark 4.4. Actually we can take any 7 > 0 when considering A, x+2(f1v,)
in Lemma 4.3 (and in Theorems 1.1 and 1.2), in particular we could consider
the means Ay-m(f1ly,), m € Z, or even more general Asm(f1y,), for any
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0 > 0. In that case we have to do some modifications in defining Ag f, where
one has to use the fact that if n < % then the number of points of the form
8™, m € Z, lying between 7/ and 7/*!, j € Z, does not depend on j.

Indeed, let 0 < n < 9—16, that is fixed due to the fact that we are dealing
with a space of homogeneous type. For Q with £(Q) = n* we consider

Vo={P ¢ Dl}:+3 : B(zP,nkH) CQ}.
Let, for any ¢ > 0,
@i — {m c 7 - nk+3 < Cm S nk+2 or nk-‘rQ < Cm S nk+3}
and define
AQf = Z AC"L(f]'VQ)

¢
meo;

where Vg = Upey, P. Suppose f is supported in Q. Since the support of
each A¢m(f1y,) is contained in @, then the support of Ag f is also contained
in (). Moreover,

N
sup Aenf <3 > Aq(f).

meey, a=1QeDY

Now, as the number of terms in @i does not depend on k, Agf satisfies
Lemma 4.2 with constant independent of k.

Observe also that in particular, we can choose ¢ = 1/2 in the reasoning
above, which is the standard lacunary case. In order to avoid additional
notation, we just chose ( = 7 in Lemma 4.3. Nevertheless, for the main
results, we will keep the standard lacunary notation.

In view of Lemma 4.3 it suffices to prove the sparse bound for each
Mpo f = supgepe A f for a =1,2,...,N. To see this, recall that, by The-
orem 4.1, for each fixed a and k we have H" = Ugepe@ (disjoint union).
Since the support of Ag f is contained in () it follows that

> Ag(f) < Mpaf.

QeDg
Let us fix then D = D®. We will linearise the supremum. Let us assume
that f is supported in a cube Qy € D, and let D(Qo) be the collection of all
dyadic subcubes of Q. We define

Eg:={ze€Q:Aqf(z) > sup Apf(z)}

1
2 PeD(Qo)
for @ € D(Qo). Note that for any x € H" there exists a @ € Q such that

Aqf(x) sup  Apf()

Z —
2 peD(Qo)
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and hence x € Eq. If we define Bg = Eg \ UgogEq:, then {Bg : Q €
D(Qo)} are disjoint and also, Ugep(gy)Bo = Ugen(@o) Eq- For f1, f2 > 0 it
then follows that

( sup Apf1,f2>—Z/E sup  Apfi(z)fo(x) dz

PeD(Qo) Qe0’ Eq PED(Qo)

Defining (f2)q := f21p, we will deal with Zer )<AQf1, (f2)q)-

Lemma 4.5. Let 1 < p,q < oo be such that ( ) in the interior of the

triangle joining the points (0, 1), (1,0) and (ggﬂl, §n+4) Let f1 = 1 and let

fo be any bounded function supported in Qy. Let Cy > 1 be a constant and
let Q be a collection of dyadic subcubes of Qo € D for which the following

holds
{f)op
sup sup
Q'EQQ:Q'CQCQo <f1>Qo,p

< Cb. (4.1)

Then there holds

D {Agf1, (£2)Q) S (F1)Qow(F2)Q0.a Qol-
QeQ

Proof. We perform a Calderon—Zygmund decomposition of f; at height
2Co(f1)Qo,p- Let us denote by B the resulting collection of (maximal) dyadic
subcubes of Qg so that

(f)Qp > 2Co(f1)Qo.p- (4.2)
Set f1 = g1 + b1, where ||g1]/z~ < (f1)Q,,p and

= (fi—¢ Z S (= {fA)p)1p = Z By, (4.3)

PeB Jj=so+1 PeB(j) j=so+1
where £(Qp) = n*° and B( ) ={P € B:{(P)=1n"}. Now

1S (Aof, (2)0)] < S 1{Aqar, (f2)o) + 3 1{Agbs, (f2)q)-

QeQ QeQ QeQ
Hence
> {Agar, (f2)0)) S D 1 Aqaillsoll f215,h
Qe QeQ

S (F1)Qop(f2)Qo1lQol S (f1)Qo.p(f2)Qo.q|Qol-
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We now make the following useful observation. For all Q € Q and P € B, if
PNQ # 0 then P is properly contained in Q). For otherwise, Q C P and by
the assumption on Q, we get (f1)p, < Co(f1)qQ,p- But this contradicts the
Calderén-Zygmund decomposition since (f1)pp > 2Co(f1)Q,,p- Therefore,
for any @ € Q with £(Q) = n® we have

(Agb1, (f2)Q) = > (AqBu;, (f2)Q) = > _(AgBissj: (f2)q)
j>s 7=1
and so

’ Z Ale, f2 Z Z | AQBls+J> f2) >|

QeQ J=1QeQ
By making use of the mean zero property of by, we see that

|<AQB18+37 f2) >|—|<Bls+J’AQ(f2) )|

< ‘/AQ f2)Q(2) By s4j(z) dz|
PeB(s+j)

|‘// [AD(f2)q(x) — A (f2)Q(a")] B syj(x) da da'|.

PGB

In the 1ntegral with respect to 2’ we make the change of variables 2’ = xy~!

and note that P~'z € P~!'P (here we have used the standard notation: for
subsets A, B C H" we have AB = {ab : a € A,b € B} and also A~! =
{a_ :a € A}). Since P C B(zp,4n°7) = zp - B(0,4n°17) it follows that
P~ C B(0,4n°*7)2p" and hence P~'P C Py = B(0,8p*%7) c B(0,n**7~1)
(observe that for the above argument it is important that the balls are
defined using the left invariant metric). Thus we have

|<AQBl s+i» (f2)o

PeB "/ 1P/ AQ F2)a TyAb(fZ)Q(x)]Bl,s+j($)da:dy
|P0| P/‘f2 )(Aq — AqgTy- )Bl,s+j($)|dwdy
1
S ) aoy| @B Lstest(f)e)eqdy
(s+j—1)v

< ”7@1<Bl,s+j1@>Q,p<<fz>Q>Q,q

= 9" QUBy 51£10) Q0 (f2)Q) Q.

where we used Lemma 4.2 in the third inequality.
Now we will prove

Y 1QUBLs+1@)0p(f21Bg) @ S 1Q0l(f)Qop(f2)Qoas  (44)
QReQ
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for all j > 1 and for all 1 < p,q < oo such that (%,%
the triangle joining the points (0, 1), (1,0) and (1,1) (including the segment
joining (0, 1) and (1,0), excluding the endpoints).

Let us fix the integer j. From the definition and (4.1) it follows that we
can dominate

) are in the interior of

|B1s+jl S (f1)Quple, + 15,
where Ey = F ; are pairwise disjoint sets in Qg as s varies, and Fy = F ;
are pairwise disjoint sets in F'. This produces two terms to control. For the
first one, we will show that

(Maor D, 1QIAE)ep(f21l80)00 S 1Q0l(f)oop(f2)Qea  (45)
QeQ
First we consider the case when 1/p+1/¢=1,1i.e. p=¢, for 1 < p < 0.

Z |Q’<1ES>Q,p<f21BQ>Q,p’ = Z (/;IES dm)l/P</Q|f2($)’pllBQ d$>1/p/

QeQ QeQ
< (Z/lEsda;)l/”(Z/ ’f2($)’pl1Bde>1/p-
Qea’@ QeQ’@

On the one hand, from the disjointness of By,

> [ 1h@P ngde= [ p@r < (g | B d)ie
Q 0

Qe
— QoI ()8
On the other hand, as F; N Q are disjoint subsets of Qg we finally obtain

5 /QlEsdxz ST IENQ| < Qo

QeQ QeQ
Thus the required inequality (4.4) is proved for the first term in the case
1/p+1/g=1. Inthecase 1/p+1/g=1+4+7>1,set 1/p=1/p— 7. Then,
1/p+1/g=1, and p < p, so that
<1E,9>Q7p<f21BQ>Q7(I S <1E.s>Q,13<f2lBQ>Q,q-

Then, (4.5) follows from the previous case since 1/p+1/¢ = 1.
Concerning the second term, we will show that

> 1RI A D oplfolBy)0q S 1Qol{f1)qun(F2) Q0 (4.6)
QeQ

Again, the inequality holds in the case of 1/p+1/¢=1. For 1/p+1/q =
1+ 7 > 1, we define p as above. By using the stopping condition (4.2) we
have then

(1r )Qp(f21B0)Qq S (1m)0, (1) Q5 f21Bg) Q.-
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From this and by using the previous case, since 1/p + 1/¢q = 1, we can
conclude (4.6), and therefore (4.4). The proof is complete. (]

Let us proceed to prove Theorem 1.2. We will state it also here, for the
sake of the reading.

Theorem 4.6. Assumen > 2. Let 1 < p,q < oo be such that (%, é) belongs
to the interior of the triangle joining the points (0,1), (1,0) and (ggi}l, gZLlL)

Then for any pair of compactly supported bounded functions (fi, f2) there
ezists a (p, q)-sparse form such that (Maef1, f2) < CAspq(f1, f2).

Proof. Fix a dyadic grid D and consider the maximal function
Mp fi1(z) = sup [Aqfi(z)].
QeD

We can assume that f; is supported in Qg so that Agfi = 0 for all large
enough cubes. According to this, we will therefore prove the sparse bound
for the maximal function

Mpng, fi(x) = sup |Ag fi(x)].
QeD

From this, it follows that Mj,. is bounded by the sum of a finite number
of sparse forms. By the definition of supremum, given fq, fo, there is a
sparse family of dyadic cubes Sy so that supg As p.q(f1, f2) < 2Asyp.4(f1, f2)-
Therefore, the claimed sparse bound holds.

As explained above, by linearising the supremum it is enough to prove
the sparse bound for the sum

> (Aofi, folag) (4.7)

QeEDNQo

for the collection of pairwise disjoint Bg C @ described just before Lemma
4.5.

Given 1 < p,q < oo so that Corollaries 2.9 and 3.5 hold for (
have to produce a sparse family S of subcubes of Qg such that

(Mprgofi, f2) <2 Y (Aqf1, fale) < C Y ISI(f1)sp(f2)sg

QeDNQo SeS

1 1
) W

where for each S € S, there exists Fg C S with [Fg| > $[S|.
We first prove (4.7) when f; is the characteristic function of a set F' C Q.
Consider the collection &g, of maximal children P C Qg for which

(f)pp > 2(f1)Qop-

Let Eq, = Upeg,, - For a suitable choice of ¢;, > 1 we can arrange |Eq,| <
2|Qol. We let Fp, = Qo \ Eg, so that |Fg,| > $|Qo|. We define

QQZ{QEDﬂQoiQﬂEQO:@}. (4.8)
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Note that when @ € Qg then (f1)gp < 2(f1)Q,p- For otherwise, if (f1)gp >
2(f1)Qy,p then there exists P € £g, such that P O @, which is a con-
tradiction. For the same reason, if Q' € Qp and Q' C Q C Qo then

(fi)op < 2(f1)Qo,p- Thus

sup  sup  (f1)Qp < 2(f1)Qo.p-
Q'€Qo Q:Q'CQCQo

Note that for any @ € D N Qo, either Q € Qp or Q C P for some P € Eg,.
Thus

S (Agh.faley) = > (Aofi folso) + D> Y (Agh, f2ls,)

QeDNQo QEQo Pegg, QCP

for any Q € Qo, Q C Fp, and hence

Z (Agf1, f2lBy) = Z (Ag f1, folrg, 1Bg)-
Qeo Q€eQo

Applying Lemma 4.5 we obtain

> {Agfi, fals,) < ClQol{f1)qop(Ff21F0, ) Qo
QeQo

Let {P;} be an enumeration of the cubes in £g,. Then the second sum

above is given by

oo

Z Z <AQf1>f2]-BQ>‘

Jj=1QeP;ND
For each j we can repeat the above argument recursively. Putting everything
together we get a sparse collection & for which

Y. (Agfi folpg) < C Y ISII(f1)splfoles)s,: (4.9)

QeDNQo SeS

This proves the result when f; = 1p. We pause for a moment to remark
that we have actually proved a sparse domination stronger than the one
stated in the theorem. However, we are not able to prove such a result for
general fi.

Now we prove the theorem for any bounded f; > 0 supported in Q.
We start as in the case of f; = 1p but now we define Qg using stopping
conditions on both f; and fo. Thus we let £g, stand for the collection of
maximal subcubes P of Qq for which either (fi)p, > 2(f1)Qyp Or (f2)pq >
2(f2)Qo,q- As before, we define Eq, = Upegg, and Fg, = Qo \ Eq, so that

|Fo,| > Q0. We let
Q={QeDNQy:QNEg, =0}
Then it follows that

sup  sup  (f1)Qp < 2(f1)Qop
Q'€Q0 Q:Q'CQCQo
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and

sup  sup  (f2)Q.q < 2(f2)Qo.q
QIEQ Q:Q'CQCQo

If we can show that

> {Aghi, fals,) < ClQol{f1)Qop(F2) Qo (4.10)
QeQo

for some p > p, then we can proceed as in the case of fi = 1y to get the
sparse domination

(Mpf1) < C Y ISI(f1)s(f2)sa

SeS
In order to prove (4.10) we make use of the sparse domination already
proved for fi = 1p. Defining E,, := {x € Qp : 2™ < fi(z) < 2™t}
and fi,, = filg,,, we have the decomposition fi = > = fim (since fi is
bounded it follows that E,, = 0 for all m > mg for some mo € Z). By
applying the sparse domination (4.9) to 1z, we obtain the following:

m

D (Aqfim, folBy) <2 Y (AQlg,,, folp,)
QeQo QeQo

=2 N " (Aglp,,, folrg, 15,)
QeQo

< 2m+1 Z <AQ1Em7 f21FQ0 ]-BQ>
QeQoND

< C2™ N (8|1, ) sp(fol R, ) S
SeSm

where in the last three lines we used that for any Q € Qy, Q C Fgp,, (4.8)
and (4.9). In the above sum, (folp, )sq = 0 unless SNEFy, # 0. If S C Fy,
then by the definition of Qg in (4.8) it follows that S € Qp and

(folrg,)sq < (f2)sq < enl(f2)Qo-
If SN Fg, # 0 as well as SN Eg, # 0, then for some P € £g,, P C S. But
then by the maximality of P we have

<f21FQO>S7q < (f2)s.g < 2(f2)Qu.a-
Using this we obtain
> (AQfims falpg) < C2" Hfa)goa Y 1SI(1E,) s
QGQO SeSm
By Lemma 4.9 we get

Z <AQf17m’f21BQ> < 02m+1<f2>Q07Q<1Em>Q0,p1|Q0‘
QEeQo
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for some p; > p. As fi =), fim it follows that

Z (AQ f1m; f2lBQ> < C(f2)Q0.q/Qol Z2m<1Em>Qovﬂ1'
QeQo m

We now claim that (see Lemma 4.8 below)

> 2™M{1E)Qoer < CllftllLor (@ aw (4.11)

where LA1(Qo, du) stands for the Lorentz space defined on the measure
space (Qo,du), du = @dm. We also know that on a probability space, the

L, (Qp,dp) norm is dominated by the LP(Qo,du) norm for any p > p;
(Lemma 4.7). Using these two results we see that

> {Aghf, f21B,) < C(f2)Q0.alQ0l{f1)Goe-
QEQ

Hence (4.10) is proved and thus completes the proof of Theorem 4.6. O

It remains to prove Lemma 4.7 and the claim (4.11). The first one is a
well known fact which we include here for the sake of completeness.

Lemma 4.7. On any probability space (X, dp), LP(X,dp) C L™ (X, du) for
p>r.

Proof. Recall that the Lorentz spaces LP9(X,du) are defined in terms of
the Lorentz norms (see [10])

oo 7, L . adt % .
1l = 4 (S @) )" ifg <,
supgso t7 f* () if ¢ = oo,

where f*(t) stands for the non-decreasing rearrangement of f. When f €
LP(X,du), as dp is a probability measure, we know that the distribution
function df(s) of f is bounded by 1 and hence f*(t) =0 for ¢t > 1. Now

o) 1 L,
1l = /0 () dt = /0 £ 5 (1) dt.

By Holder’s inequality

1z e < ( /0 1t—ffdt)l/p/( /0 iy dt)” e /0 1 f*(t)”dt)l/p

where C,, < oo since p’ < r’. This proves the claim since

(/01 f*(t)pdt>; = 1 lzr(x,dp)-

The claim (4.11) is the content of the next lemma.
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Lemma 4.8. Let f =Y fm, fm = flg, where E,, = {x € Q : 2™ <
|f(x)| < 2™}, We consider the probability measure dy = |Qo| 'dz on
X = Q. Then for any r > 1 we have

Z 2" (1B, Qor < O fllzr1(Qo.dp)-

Proof. We recall the following definition of the Lorentz norm in terms of

df (s): N
[fllzrr (xdw) = /0 df(s)% ds.

As df(s) is a decreasing function of s we have
2m+1

£ lersiean =3 [ dro)r s
>3 dp@m)r (- 2m)

1 m 1 m

=5 > df@myrem.

On the other hand, as f,,, = f1g,,, it follows that
W(Ep) = df(2™) — df (2F1) < df(2™),

and consequently,
Lom m\Lom
ZM(Em)’“2 < de(2 )7 2™ <2 fll e x dpy-
m m

This proves the lemma. ([

In proving Theorem 4.6 we have made use of the following lemma, which is
proved in [12, Proposition 2.19]. We include a proof here for the convenience
of the reader.

Lemma 4.9 ([12]). Let S be a collection of sparse subcubes of a fized dyadic
cube Qo and let 1 < s <t < oo. Then, for a bounded function ¢,

D (D)@l S (@)got|Qol-
QEeS
Proof. By sparsity,

D (0)0slQl =D (D)l

QEeS Qes

< (Do) (i)

Qes QeS

s 1/ / /
< (S uemiiel) 1o < e liQol .

QeS
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5. Boundedness properties for the lacunary spherical
maximal function

Consequences inferred from sparse domination are well-known and have
been studied in the literature. We refer to [1, Section 4] for an account of the
same. In particular, sparse domination provides unweighted and weighted
inequalities for the operators under consideration.

The strong boundedness is a result by now standard, see [7], also [12,
Proposition 6.1]. Our Theorem 1.1 follows from Theorem 1.2 and Proposi-
tion 5.1.

Proposition 5.1 ([7]). Let 1 <r < s < oco. Then,

Ars(fr, f2) S W falleell follpr, 7 <p <.

For the sake of completeness we reproduce the proof, which is quite simple:
as the collection S is sparse, we have

Ars(f1, f2) <CZ/ (fr)sr(f2)sslpgda

Ses

where Eg C S are disjoint with the property that |Eg| > n|S|. The above
leads to the estimate

Al ) €€ [ (il (@) 7 (o of (@) V"o

where My h stands for the Hardy-Littlewood maximal function of A. In view
of the boundedness of My, an application of Holder’s inequality completes
the proof of the proposition.

A weight w is a non-negative locally integrable function defined on H"™.
Given 1 < p < oo, the Muckhenhoupt class of weights A, consists of all w
satisfying

-1 1—p/
[w]a, := Slép<w>Q<O'>% <oo, o:=w F

where the supremum is taken over all cubes @ in H”. On the other hand, a
weight w is in the reverse Holder class RH,, 1 < p < oo, if

[w]rh, = SgP<W>Z;1 (w)q@p < oo,

again the supremum taken over all cubes in H".
The following theorem was shown in [3, Section 6].

Theorem 5.2 ([3]). Let 1 < py < q(, < co. Then,

3
Apnao (1 f2) < 00l - [0l o YUl 2l oy, 90 < <

-1
with o = max { —1- qo .
p—17 g{—

"6
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In view of Theorem 5.2 and Theorem 1.2 we can obtain the following
corollary: it provides unprecedented weighted estimates for the lacunary
maximal spherical means in H". We only state a qualitative result in order
to simplify the presentation.

Corollary 5.3. Let n > 2 and define

1 3 3n+1
1 {1_[)03n+1’ 0<50§3n+4’
3n+1 1 3n+1
(1/]90) 3 <1 - 50)7 3n+4 < > < 1.

Then M, is bounded on LP(w) for w € Ay, N RH(¢>(1/po)’/p)’ and all 1 <
po <p < (6(1/po))"-

6. The full maximal function

As in the case of the lacunary spherical maximal function we can also
deduce sparse bounds for the full maximal function.

Theorem 6.1. Assume n > 2. Let 1 < p,q < oo be such that (l,%)

belongs to the interior of the triangle joining the points (0, 1), ( 2;1, 21n) and
(321%, gZi%) Then for any pair of compactly supported bounded functions

(f1, f2) there exists a (p,q)-sparse form such that
(Meanf1, f2) < CAspg(f1, f2)-

Weighted norm inequalities for the full maximal function are implied from
the sparse domination result, see Subsection 6.3. As explained in the Intro-
duction, we expect that the range will not be sharp.

We will make use of the fixed time estimates for the operator A, from
Section 2 trivially integrating in the r-variable and the known LP estimates
for Mgy to show the following theorem for the local (full) maximal operator.
This theorem will be later used to prove Theorem 6.1. Let us define, for
some 0 < < 1,

Msf(z,t) == sup [A,f(z,1)].
1<r<o—1

Theorem 6.2. Assume thatn > 2 and 0 < § < 1. Then
Mg : LP(H") — LI(H")

whenever (l %) lies in the interior of the triangle joining the points (0,0),

(2371 , 2= 1) (gﬁﬂ, 3n6+7)’ as well as the straight line segment joining
the pomts (0,0), (27221, 237—11)_

Let 0 < 6 < 1. Observe that, for f > 0, by Fundamental Theorem of
Calculus we obtain

51 d
sup (A1 =Laft+ [ gt (G ar
1 r

1<r<s-1
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Holder’s inequality twice gives, for any g > 1,
1/q
La(Hnx[1,6-1])
(6.1)

Since we already have LP — L9 estimates for A;f (see Corollary 2.9), we
will only deal with B, f := %Arf to get the LP — L9 estimates for Msf in
Theorem 6.2.

We will also use Corollary 3.5 in order to prove a continuity condition
of Msf. The program is completely analogous to the lacunary case, only
requiring more technical effort. We will omit the details in many instances.

1M Fll oy < 143 Fll gy + 1 Ar Fll gl 1 g

6.1. LP — L9 estimates for the derivatives of the spherical means
Recall the expansion of A, f in (2.7). Now using the fact that B, f = d’/‘ Af,
we get the following expression for B, f

Befzt) = 2yt [ e LZ (— Ayt (/Taim)
& =0
k:|)\|7"

VA V/IIN) 7 b I 62

where we have used the fact that d%Lg( ) = —L&*!, see [24, Chapter V.
For u > 0, we define

Bf(et) = (2m) 7 [~ (Y (= R (V)
- k=0
- B e () P o o) AP, (63)

for Re(28+mn —1) > —1. If 3 =0 we have B? = B,
Let us consider also a rescaling of the formula (2.12) namely, the operator
(Ag)y given by

n 1
(Ag)uf(z,t) = 2%/0 s (1 — 82 Py oy f * puus(2, 1) ds.

Next we use the above expression along with the fact that

d
Blf(z,t) = — uf (2,
to get the following expression for Bg I

Lemma 6.3.
Blf(et) =20 ot

r'e2s)r(n)u

1 2s(2
% / 82n71(1 o 52)2671(6n 4 w>P 2(1—s2) f * uus(z t) ds
0 1—s2
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r28+n) [t 5, 4 2251
_QW/O s (L= )T Quaa—st) f# us(2,1) ds

reg+n) [, 2281 @
F(25)F(n)u/0 § (1_3 ) %Pu?(l—s?)f*ﬂus(zat) ds,

where Qsf = f xqs and qs(t) = c% for some positive constant c.

+ 2

Proof. From Lemma 2.1 we get

1
3 (25‘*'71)/ -1,y 2v28-1 4
B f( ) 2F( ) ( ) $ (1 S ) duPuQ(l—SQ)f*Mus(zat) ds
['(28 +n) -1 2\28—1 d
+2I‘( B )/ s (1—s%) Puz(l,sz)f*duuus(z,t)ds.
Define
r28+n) (1 5, 4 d
1.8 __ o \&p T 2n—1/1 _ .2\26-1 4
B, f(z,t) = 2F(2,6’)I‘(n) /0 s (1—s%) duPuz(l_Sz)f * lys(z, 1) ds.
and
r28+n) (1, _ d
2.8 _ 2n—1/1 _ .2\28—1 @
B:P f(z,t) 27F(25)F(n) /0 s (1 =) P gy f * duuus(z,t) ds.
Now d%Puz(l_sz) = fx %pu2(1_s2). Hence
d 1
%PuQ(lfsQ) =[x a(puz(lfSQ) - Qu2(1752))‘
Thus
B.Pf(z1)
re2s+n) [, 1
= 2IW/O 82 1(1_32>26 1;(]3“2(1_52)—Qu2(1_82))f*uus(z,t) dS.

Also we have

I'(26 +n) _ s d
2.8 _ 2n—1 28-1 sa
B f(2.0) = 2t / (1= P Prayyf # S (2,1 ds
L28+n) [ 5y 281
= _2uF7 ; 2ns (1—5% P2 f * pus(z,t) ds
I'26+n ! " -
+ 21%/0 s7(28 — 1)(28)(1 = $*)* 2 Pp_gay [ # pus(,) ds
r26+n) [' 5, . d
2y , T P e
Adding B}L’B f and BZ’B f, we get the required result. O

We define a new family by
Tof = By (f =3 kag)
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where kg is as in (2.15). For 8 = 0, we have T3 = BY = B;. Analogously as
in Lemma 2.3 we can prove the following.

Lemma 6.4. The operator Tgf has the explicit expansion

Tof (2,1) = (27) ! /OO M- (Y (- @wi“"‘l(m)
> k=0

Y e V) PR e 1B [N

The next step is to show that when 3 = 1+iv, 73 is bounded from L?(H")
into L>°(H") for any p > 1, and that for certain negative values of 3, 73 is
bounded on L?(H").

Proposition 6.5. Let n > 1. For any 6 > 0, v € R,

[Tivin flloo < CrIN S ll145,
where C1(7y) is of admissible growth.

Proof. Let ¢(t) = te™"x(g,00)(t). For 8 =1+ iy it follows that

Titinf| = 1By (f #3 ki) (2,1)]

C@2+2iy+n)| (1 g0
— 20”77 F(2+2i7)|2r(n)/(; s 1P(1—52)(f *3 ¢) *,U,S<Z,t) ds
P2 +2iy+n)| (1 5y
+%r@+2mﬂ%ﬁgz;5 Qu—s2)(f *3 ¥) * s(2,1) ds
(2 + 2iy + )|

! d
2n 2
w@+mwmmAs(LﬂﬂﬁﬂlﬂUﬁWHm®ﬂw

Let us denote the right hand side of the above equation as I; + Is + I3. Since
1 >0, we get

P 2(f*31) = *3py_y2 *3 f < b x3 MYLf
and
Q1_p2(f *31) = *3 q1_p2 *3 f < %3 M f-

Thus we have the estimate

1
14 Bl < C0) [ (M o) e, 052 .
0
Analogously as in the proof of Proposition 2.6 we deduce
I + Ip| < Cy(v) MRy, f * K(2,t)

where K(z,t) = x|z1<1(2)0(t). As M} f € L'(H") and K € L(H") for
any q > 1, by Holder we get

1 + Lol < CLNIMiLf 145 < C1(M) 1 f 145
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Also we have
IT(2 + 2i7y) + n)|
IT(2 + 2i7)|2T'(n)
where we have used that (1— 82)%])(1_82) = —8P(1—s2) + 8q(1—s2)- Reasoning
in the same way as above, we get

[I3] < Ci(v) ML * K (2,1),

|I3] <2

1
/0 S2n+1(P(1,S2) + Qi_s2)(f *3 ) * ps(2,t) ds,

and by Holder

I3]0 < CLODIMELf 146 < C1N fll145-
Finally
[Tiin flloo < 11+ L2lloo + [M3]loo < Cr(M) | f |145-
O

With an argument analogous to Proposition 2.7, it can be shown that 73
is bounded on L?(H") for some 3 < 0.

Proposition 6.6. Assume that n > 2 and 8 > —7 + % Then for any
7 ER,
1 Ts4ir fllz < Co(V)[ f1]2-

Proof. We have to check that
— )‘| y+n— k )‘| y+n
(1 3y Blygoemenas 3y o BN oo /3 < uo)

where Cy(7) is independent of k£ and A\. When v = 0, it follows from the
estimates of Lemma 2.5 (with a = 0, 1) that

ol 2gene KA 9pm
(142277 Blyzan=t iy + ML g2oin /)
< |)\|—26(|)\|—2ﬁ—(n—1)+§ + |)\|—2E—n+§)
< CIA[TA8nHS,

for [A] > 1, which is bounded for 3 > —% + % For v # 0 we can express
wzﬁﬂ'ﬁn*l(\d)\b in terms of wzﬁfﬁnﬂ(\/ |A]) for small enough ¢ > 0 and

obtain the same estimate. The proof is complete. O

Let us consider the following holomorphic function «(z) on the strip {z :
0 <Rez <1}, given by a(z) = (2 — 3 —¢)(2— 1)+ for asmall e > 0. We
have al(0) = =% + 5 + ¢ and (1) = 1. Then, Ty,) is an analytic family of
linear operators. In view of Propositions 6.5 and 6.6, we can apply Stein’s
interpolation theorem. Letting z = u + v, we have
3n—5—12

5}

4 12
Since € > 0 is arbitrary, we obtain

7:)4(u) [P (Hn) — LI (Hn)
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where
6 1 3n+1—12¢ 1 6

— << —, — =
N+7—-12 p, In+T7—-12¢ q, 3In+T7—12¢
This leads to the following result.

Theorem 6.7. Assume thatn > 2 ande > 0. Then By : LP(H") — L9(H")
for any p, q such that

6 <1<3n+1—125 1 6
3n+7—12 p  3n47—12’ g 3n+7-—12

A version of the inequality in Theorem 6.7 when B is replaced by B, can
be accomplished easily. First we have the scaling lemma below, we omit the
details.

Lemma 6.8. For any r > 0 we have B, f = %5;1316Tf.
From Theorem 6.7 and Lemma 6.8 we can prove
Corollary 6.9. Assume that n > 2. Then
1Bofllansz < Sr@ G570 1,
r

3n+7 3n+7
3l <P < T -

for any
We are now in position to prove Theorem 6.2.

Proof of Theorem 6.2. Let us denote by F,, the triangle with vertices
(0,1), (2"71 L ) and (3”+1 3"“), and its dual F/,, the triangle with ver-

on ’2% o BT 37?11 )
tices (0,0), ( S5m0 “om ) and (3Z+7v 3n+7)'

The triangle F) is contained in the triangle S/, see Figure 2. Hence

A1 fllg < c|lfllp for all (%, %) € F/. Using this and Corollary 6.9 we get,
in view of (6.1), the estimate HM(;fH% < f|fllp for 3T < p < 3"T+7.

3n+1
On the other hand, we also have ||[Msf|l, < c|f|l, for all p > 522, by
[15] or [16]. After applying Marcinkiewicz interpolation theorem we get the
required result. O

Remark 6.10. Actually, a scaling argument allows to state a result for the
local maximal function taken over §**1 < ¢ < 6%, for any k € Z.

6.2. The continuity property of a local variant of the maximal
function. We start with the following proposition.

Proposition 6.11. For all (%, é) in the interior of the triangle ¥, , there
exists v > 0 so that for all 0 < e < %, we have
H sup  |Arf — ASf‘Hq N EVHpr- (6.4)
s,r€[1,67 1)

|s—r|<e
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Q=

0

. (3n+‘1\ Snt1)
“ 3n+7 3n+T7
\

\% 1
(1,0) »
1
67 (171)
R
2
(Qn—l 2n—1) !
2n 7 2n "
i 1
II !
[
/I !
N 1
y [
y 1
A 1
1 1
y 1
y [
1 1
/
.O’(SnJr' 6 )
-7 3n+7’ 3n+7
/’ 1
-7 1
z--" 1
(0,0) Lo»

FIGURE 2. Triangle F) shows the region for LP — L7 esti-
mates for Ms. The dual triangle F,, is on the top. The outer
(dashed) triangles correspond to the lacunary triangles S/,

(bottom) and S,, (top).

Proof. It suffices to prove a version of statement at the point (3, 3), and
then interpolate to the other points in the interior of F/,. First we have, by

Fundamental Theorem of Calculus and Holder inequality,

d
R A ]
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This gives us

1 1
| S[llp ; |Arf = Asfl||, < ce2 |0, Arfll L2 @nxns-1) S €211 fl2-
s,re[1,0~

|s—r|<e

Moreover, from Theorem 6.2,
11 )
| suwp Arflag < Ufllpos  for (=) €F,

ref[l,6—1] Ppo

which gives

1 1
| s JAS = Afl]yy Sl for (o —) €FL (65)
s,re[1,671) Po 4o
|s—r|<e
Then the proposition follows immediately by using interpolation. ([

Theorem 6.12. For all (%, %) in the interior of ¥, , we have for some
V= I/(n7p7q) > 0?

| sup [Arf = Aery flllg S I fllp, Tyl < 1.
1<r<—1

Proof. For (%, %) in the interior of the triangle S/, we have, by Corollary
3.5,
[Ar = Arryllirsce Syl Jyl <1, (6.6)

for a choice of v = v(n,q,s) > 0. The triangle F] is contained in the
triangle S,. Thus, if 7 C [1,67!] is a finite set, it follows from the previous
statement that

. 11
Isup|Arf = Aty flllpe S 8TV I f s () €Fhe (67)
reT b1 P2

Take 7 to be a |y|Y-net in [1,671]. Then for any r € [1,57!] there exists
ro € T such that |[r —rg| < |y|”. Moreover, by triangular inequality we have

|A7~f - TyArf‘ < ’Arf - Arof’ + ’Arof - TyArof’ + ’TyArof - TyATf|
which gives

| sup ’Arf_TyArf’”q < H Sup ’Arf_ASf’Hq""H sup H‘Arf_TyArf‘Hq'
r€[1,671] s,re(1,671 teT
[s—r|<e

The final result follows by using Proposition 6.11 and the inequality (6.7).
O

We need a different version of the inequality in Theorem 6.12 when the
interval 1 < r < 6! is replaced by o+l < < §F. First we have a slight
generalisation of Lemma 3.4.

Lemma 6.13. Letr = ¢r' for some fived £. Then we have A, f = §,-1 A dpf .
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Proof.
Arf(z,t):/ f(z—w,t—%lmz-@)dur(w)
wl|=r
1

:/ f(z=rw,t— - Imrz ®) du (w)

fuwl=1 2
1

:/ f(z—fr’w,t—flmfr’z-w) dpq (w)

|w|=1

:/ Sef (€ Ly —rlw, 0~ 2t—§Im€ rz-@)d,ul(w)
|w|=1
— 6 ASef(2,1).

Finally, we can deduce the following.

Corollary 6.14. Assume that n > 2. For all (%, %) in the interior of the

2n—1 2n71) d (3n+1 6
2n 7 2n 3n+7° 3n+7

some v =v(n,p,q) >0 and |6’€%‘ <1,

triangle joining the points (0,0), ( ), we have for

| s [Af = Amyfllly S |5 | s CT G £

Skt1<r<sk

Proof. Let r € [0*T1 6. We have r = 6**1¢/ for some ' € [1,671]. To
avoid confusion in the notations, we denote ¢ = §**!. From Lemma 6.13 we
get

A f — Apry = 8p-1 400 f — 0p-1A60(Ty f).
Also we observe that dy(7, f) = 74-1,(d¢f). Hence
Arf — Apry = 601 Apbof — 0p-1 Aprmp-1, (00 f).

This gives, for (f 7) eF,

n 1
I sup  |AS — Aryllly = ("5 sup |Apdef — Ay def|llg

SR+ <p< bk 1<r'<o—1

n+2)1 Y v
< D312 5

~

n L1y Yy
<€(2 +2)(5 p)‘z‘ Hf”p

Above, the first inequality follows from Theorem 6.12 and for the second

inequality we have used the fact that ||0,f], =
is proved.

. The corollary

O
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6.3. Sparse bounds and boundedness properties. The strategy to get
Theorem 6.1 is the same as in the lacunary case, now making use of Corollary
6.14. We only provide the details of the main differences. First, a lemma
analogous to Lemma 4.3 holds, and the proof is exactly the same.

Lemma 6.15. Let 0 < 6 < 9—16. For Q with £(Q) = 6%, k € Z, we consider
Vo ={P € Di,y: B(zp,6") C Q}
and define

Mof = sup Ar(flyy)
§k+3 <p< gkt

where Vg = UpeVQP. Then

N
sup A<D Y Mf.
RIS <oht? a=1QeDg

It suffices to prove the sparse bound for each of the maximal operators

Mpa f := sup MQf, 1<a<N. (6.8)
QeD~
We fix a grid, and write D = D*. With the same linearisation argument
as in Section 4, by denoting D(Qg) the collection of all dyadic subcubes of
Qo € D, we define
1

EQ::{aCGQ:]\7@]‘(1‘)22 sup Mpf(ac)}

PeD(Qo)

for @ € D(Qop). Note that for any x € H" there exists a @ € D(Qp) such
that

— 1 —
Mg f(z) > 5 sup Mpf(x)
PeD(Qo)

and hence x € Eg. Now we define By = Eqg \ UgogFEq, so that {Bg :
Q € D(Qo)} are disjoint and moreover Ugep(gy)Bg = Ugen(q,) Fq- Then
it follows that

( sup Mgf,g) <2 > (Mo f1, f215,)-
QED(Qo) QeD(Qo)

Thus, defining (f2)q := f21p, we deal with ZQGD(QO)<MQf17 (f2)0)-

Lemma 6.16. Let 1 < p,q < oo be such that (%, %) in the interior of the
triangle joining the points (0, 1), (2’;;1, ﬁ) and (ggi%, gZI%) Let f1 =1p

and let fo be any bounded function supported in Qq. Let Cy > 1 be a constant
and let Q be a collection of dyadic subcubes of Qg € D for which the following

holds
sup  sup hlep < Cp. (6.9)

Q€2 Q:Q'cQcQo (f1)Qop
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Then there holds
> (Mo i, (£2)0) S 1Qol{f1)Qop(f2) Qo
QeQ

Proof. We perform a Calderén—Zygmund decomposition of f; = g1 + b;
at height 2Cy(f1)Q,p as in (4.3), where the bad cubes B result from the
collection of (maximal) dyadic subcubes of Qg so that

(f)gp > 2Co(f1)Qo.p- (6.10)

We aim to bound the bilinear form

| > (Mo fi, (£2)0)]

QeQ

The term carrying the good function g; is bounded analogously as in Lemma
4.5. For the term involving by, we have, for any Q € Q with ¢(Q) = §°,

‘ Z Mle, f2 Z Z | MQBl s+k>s f2) >‘

QeQ k=1QecQ
As shown in [12, Lemma 3.4], we can replace MQd)(x) by
Lod(x) := Arg (2)0(x) Ly ()

where ¢ : Q — [6°73,§°72] is a measurable function.
By making use of the mean zero property of by, we see that

\(LQBl s+is (f2)Q)| = [(By, s+j7LZQ(f2)Q>\

< ‘/ LQ f2)Q(x)Bis+j(x )dx’
PEB(s+7)

_ / / L (f2)(@) — Lo (f2)o ()] Br (@) de d’
PeB

= LQ f2)o(@) — Ty LG (fa)Q ()] Bi stj(x) d dy

| 1

PeB P

< / [(f2)Q(@)(Lg — LoT—y) B1,s+j(z)| dz dy,
|P0| P

where Py = B(0,5°t/~!) and we used that P~z ¢ P~'P Cc Py. Now
\LQf(UC) —Lomyf(x)| < sup  |Aqf(x) — Arm_y f(2)].
55+3§7‘§65+2

Then, under the assumptions of (1/p,1/q) in Corollary 6.14, it follows
Vo 11
ILof = Lor-yflly < || 8V 2@ )£, for al (5,?) € F).

§5+3
So for all (zl?’ %) e F,,

[(L@B1,g—j, (f2)Q)]
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< L

~ Pl Jp,

= 0"|Q(B1g-110)er((f2)Q)auq
Finally, recall the inequality (4.4)

> QB +i1Q)@p(f2180) 0.0 S 1Q0l{f1) Qo (f2) Qo
QeQ

for all j > 1 and for all 1 < p,q < oo such that (%,%) are in the inte-
rior of the triangle joining the points (0,1), (1,0) and (1, 1), including the
segment joining (0, 1) and (1,0), excluding the endpoints (observe that this
triangle contains the triangle given by the assumptions of the lemma). This
concludes the proof of the lemma. O

Y )V (j+2)(n+2)($—%)HBl

§s+3 7q*j1Q||p”(f2)Qquy

The proof of Theorem 6.1 now follows the same steps of the proof of
Theorem 1.2 with Ag f replaced by Mg f. We omit the details.

From the sparse domination results, analogously as in the lacunary case,
a number of weighted estimates can be immediately deduced.

Corollary 6.17. Let n > 2 and define

T \VY6n2-n—7(2n-1 1 1 3n+l _ 1 2n—1
¢(1/p0) In—7 ( 2n po) + 2n7  3n+7 < PO < T

16 1 3n+1

1 _{1_]203n+l’ 0<§0§3ni77
Then Mgy s bounded, on LP(w) for w € Apjpy N RH g1 /pg)/py and all
1 <po <p<(é(1/po)).
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