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RO(C2)-graded cohomology of equivariant
Grassmannian manifolds

Eric Hogle

Abstract. We compute the RO(C2)-graded Bredon cohomology of cer-
tain families of real and complex C2-equivariant Grassmannians.
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1. Introduction

If V is a representation of the cyclic group C2, then the Grassmannian
Grk(V ) inherits a C2 action. We wish to compute the RO(C2)-graded Bre-
don cohomology of these equivariant spaces for various k and V . In this
paper we present formulas for the cohomologies of two infinite families of
finite Grassmannians on real representations, their complex analogs, and
also the cohomologies of analogous infinite-dimensional spaces. To do this
we use an equivariant version of the Schubert cell construction, giving an
equivariant cellular spectral sequence. In general, the differentials in such
a spectral sequence are unknown. However, we find convenient situations
whose differentials are actually manageable.

We will focus mostly on the real case, postponing complex Grassmannians
until Section 8. The group C2 has two irreducible real representations: Rtriv

Received June 30, 2019.
2010 Mathematics Subject Classification. 55N25, 57R91, 14M15, 51M35.
Key words and phrases. equivariant topology, Grassmannian manifold, Bredon

cohomology.

ISSN 1076-9803/2021

53

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2021/Vol27.htm


54 ERIC HOGLE

with trivial action, and Rsgn on which the nontrivial group element acts
as multiplication by −1. The RO(C2)-graded cohomology can therefore be
regarded as bigraded. Let

Rp,q = (Rtriv)p−q ⊕ (Rsgn)q.

Our cohomology theory is graded by both actual and virtual representations,
so that a space X with a C2-action has cohomology groups Hp,q(X;M) for
any integer values of p and q and any Mackey functor M . We will refer
to p and q as the topological dimension and weight, respectively, and
will sometimes use |x| and w(x) to denote the topological dimension and
weight of a pair x = (p, q). We will also refer to the fixed-set dimension,
p− q = |x| − w(x).

We denote the one-point compactification of a representation by Sp,q =

R̂p,q, whose underlying space is a p-sphere and whose fixed set is a (p −
q)-sphere (hence the definition of fixed-set dimension above). We will be
using the constant Z/2-valued Mackey functor throughout (analogous to Z/2
coefficients in singular cohomology), but these coefficients will be suppressed
in the notation; we will write Hp,q(X) rather than HRp,q(X; Z/2). Note that

RO(C2)-graded Bredon cohomology has a bigraded suspension isomorphism
with respect to these representation spheres:

H̃•,•(Sp,q ∧X) ∼= H̃•−p,•−q(X).

Non-equivariant singular cohomology will also appear, and similarlyH∗sing(X)

will always mean H∗sing(X; Z/2).

Let Grk(Rp,q) denote the manifold of k-planes in p-dimensional real space,
with C2-action induced by that on Rp,q. We are interested in calculating
H•,•(Grk(Rp,q)) as a module over M2 := H•,•(pt), the cohomology of a
point. Because these spaces can be constructed from representation discs
(as we will show in Section 2.3 using Schubert cells), their cohomology is
known to be a free M2-module (see [K] or [HM]) comprised of suspensions

Σa,bM2 = H̃•,•(Sa,b). And so,

H•,•(Grk(Rp,q)) =
⊕
i

Σai,biM2,

where the total number of summands in topological degree d is the rank of
non-equivariant singular cohomology for the underlying space:

#{i : ai = d} = rankHd
sing(Grk(Rp)).

However the associated weights bi were previously known in only a few
easy cases. We produce formulas for more families of Grassmannians, namely
those of the form Grk(Rn,1) and Gr2(Rn,2). It should be noted that while in
the non-equivariant case the Schubert-cell construction gives a chain com-
plex with zero differentials, things will not be so simple here. Whether we
progressively compute cohomologies of subspaces using cofiber sequences,
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or run a single spectral sequence for the Schubert cell filtration, we will, in
general, see many nonzero differentials.

1.1. Preliminaries. The ground ring M2 of our theory is non-Noetherian,
comprised of a polynomial subalgebra Z/2[ρ, τ ] generated by elements ρ ∈
H1,1(pt) and τ ∈ H0,1(pt), an element θ ∈ H0,−2(pt) such that θρ = θτ =
θ2 = 0, and also an infinite family of elements denoted θ

ρiτ j
with the property

that when i′ ≤ i and j′ ≤ j, as the notation suggests, ρi
′
τ j
′ · θ
ρiτ j

= θ
ρi−i′τ j−j′

.

We will want to draw pictures of this ring.
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Figure 1. Several visual representations of M2. Copies of
Z/2 are represented with • in the middle representation. On
the right-hand representation, the groups are merely implied.

In the third part of Figure 1, we have labeled the p-axis (or dimension-
axis) and the q-axis (or weight axis). We see the ring divided into a top cone
consisting of elements of the form ρiτ j and a lower cone of elements θ

ρiτ j
.

Even this last representation can get messy, and so we will often abbreviate
further. For example, we will see later that

H•,•(Gr2(R4,1)) = M2 ⊕ Σ1,1M2 ⊕ (Σ2,1M2)⊕2 ⊕ Σ3,1M2 ⊕ Σ4,2M2

and visualizing this free module will often be easier if we only worry about
the generators of this free M2-module, as in Figure 2.
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Figure 2. Several visual representations of H•,•(Gr2(R4,1)).
The last of these is called a rank chart.

1.2. Warning. The shorthand in the second and third diagrams of Figure
2 can be a mercy, but also runs the risk of deception, as certain bidegrees
appear “empty” but aren’t. For example, while it is clear from the leftmost
diagram (with some squinting) that H2,2 = (Z/2)4, this is not clear at a
glance from the other two; we must remember to imagine the upper and
lower cones.

1.3. A forgetful long exact sequence. The following theorem appearing
in [AM] relates this cohomology theory to singular cohomology (with Z/2
coefficients). Denote the equivariant Eilenberg-MacLane space representing
Hp,q by K(Z/2, p, q).

Theorem 1.1. For fixed q, there is a long exact sequence

· · · → Hp,q(X)
·ρ−→ Hp+1,q+1(X)

ψ−→ Hp+1
sing (X)→ Hp+1,q(X)

·ρ−→ . . .

where ψ is the forgetful map [X,K(Z/2, p, q)]C2−Top → [X,K(Z/2, p)]Top

It is clear that ψ : M2 = H•,•(pt) → H•sing(pt) takes ρ to 0. Notice this

implies that ψ(θ) = 0, since θ is ρ-divisible. We will also make use of the
fact that ψ(τ) = 1. These facts have a nice geometric interpretation using
the Dold-Thom model of Eilenberg-MacLane spaces. We omit this interpre-
tation, but geometric models for ρ, τ and θ can be found in Proposition 4.5
of [May].

Definition 1.2. A representation disc Dp,q = D(Rp,q) is the closed unit
disc in a representation, and a representation cell ep,q is its interior.
A space which can be built from representation cells by the usual gluing
diagrams (now with equivariant attaching maps out of ∂Dp,q) is said to have
a representation cell structure.

We will make use of Kronholm’s1 freeness theorem.

1This theorem is true, however the proof given in [K] is problematic. For another proof
see in [HM].
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Theorem 1.3 (Kronholm). If a (locally finite, finite-dimensional) C2-space
X has a representation cell structure then it has free cohomology:

H•,•(X) =
⊕
i

Σai,biM2 =
⊕
i

H̃•,•(Sai,bi)

for some bidegrees {(ai, bi)}i.

The bidegrees (ai, bi) need not coincide with those of the representation
cells used to build X, as the weights bi may differ. While the cohomologies
of many families of Grassmannians remain unknown, we next present the
known results.

1.4. Formulas. Kronholm calculated the cohomology of the various pro-
jective spaces Gr1(Rp,q) = P(Rp,q). Taking p ≥ 2q,

H•,•(Gr1Rp,q) = M2 ⊕
q−1⊕
i=1

(Σ2i−1,iM2 ⊕ Σ2i,iM2)⊕
p−1⊕

j=2q−1

Σj,qM2.

For example, H•,•(P(R11,4)) is represented below.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

In Section 5 we prove a theorem for the family Grk(Rn,1), extending
results of [K] for Gr2(Rn,1). As in [D], define the M2-rank of a free M2-
module M by letting I = ker(M2 → Z/2) and set

rankp,qM2
(M) = dimZ/2(M/IM)p,q.

Given non-negative, weakly-increasing numbers λ1, λ2, . . . , λk, define the
trace of this collection to be #{i : λi ≥ k− i+ 1} = t. If a λi is interpreted
as a Young diagram, its trace represents the number of boxes on the main
diagonal. See Table 1 for examples. Let part(p, k,m, t) denote the number of
partitions of p into k numbers λi ≤ m having trace t. Using this definition,
we state the following theorem.

Theorem 1.4.

rankp,qM2
H•,•(Grk(Rn,1)) = part(p, k, n− k, q).

In words, the free generators of Hp,q(Grk(Rn,1)) having degree (p, q) are
counted by trace-q Young diagrams of p boxes fitting inside of a k-by-(n−k)
box. This formula lets us calculate cohomologies like that of Gr4(R9,1),
shown in Figure 3.
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Figure 3. Rank chart for H•,•(Gr4(R9,1)).

For example, the 5 in bidegree (6, 2) says that rank6,2
M2

(H•,•(Gr4(R9,1))) =

5 which is counted by part(6, 4, 8− 4, 2), the number of partitions of 6 into
4 numbers each at most 4, with trace t = #{i : λi ≥ k − i+ 1} = 2. These
are the starred entries in Table 1.

Partition of 6 Trace Young Diagram

* 0+0+2+4 2
�

�

∫
* 0+0+3+3 2

�
�

∫
0+1+1+4 1 �

∫
* 0+1+2+3 2

�
�

∫
* 0+2+2+2 2

�
�

∫
1+1+1+3 1 �

∫
* 1+1+2+2 2

�
�

∫
Table 1. Partitions of 6 into 4 nonnegative integers not ex-
ceeding 4, and their trace.

1.5. Comment. The reader may have noticed that the rows of the rank
table in Figure 3 are palindromes. There is a simple combinatorial reason
for this, which we will give in Section 5.3.

In Section 6.5 we will also prove the following:
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Theorem 1.5. The cohomology of Gr2(Rn,2) with n ≥ 6, is given by

H•,•(Gr2(Rn,2)) = M2 ⊕ Σ1,1M2 ⊕ Σ2,1M2 ⊕ Σ2,2M2 ⊕ (Σ3,2M2)⊕2 ⊕ (Σ4,2M2)⊕3

⊕
n−2⊕
p=5

(Σp,2M2)⊕2 ⊕ Σn−1,2M2

⊕ Σ5,3M2 ⊕
n⊕

p=6

(Σp,3M2)⊕2 ⊕ Σn+1,3M2

⊕
n+1⊕
p=8

(Σp,4M2)⊕d
p−7
2 e

⊕
2n−4⊕
p=n+2

(Σp,4M2)⊕(n−1−d
p
2 e)

For example H•,•(Gr2(R10,2)) is represented in Figure 4. Note that each
line of the formula in Theorem 1.5 corresponds to a different circled region.
The first is common to all of them (provided n ≥ 6) and the next two stretch
predictably as n grows. The top row is made up of a region where ranks
increase left-to-right every two steps, and another in which ranks decrease
left-to-right in the same way. For n ≥ 6 it is convenient to organize the
data in this way, but we also calculate these cohomologies for 3 ≤ n < 6 in
Section 6.
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Figure 4. Rank chart for H•,•(Gr2(Rn,2)) with n = 10.

Analogous formulas for complex Grassmannians, whose cohomologies look
similar but have generators with twice the topological degree and weight,
will also appear in Section 8.

1.6. Note. It should be remembered that while the rank table in Figure 4
organizes all of the information about a free rank-45 M2-module much more
pleasantly than a list of summands would, it may also leave too much to
the imagination. For example, while bidegree (4, 0) appears empty, actually
H4,0(Gr2(R10,2)) = (Z/2)4, generated by the θ-multiples of the generators of
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three distinct copies of Σ4,2M2, and also the θ
ρ -multiple of the generator of

Σ5,3M2. Likewise H2,3 = (Z/2)4 is generated by τ · 1Σ2,2M2
∈ Σ2,2M2 as well

as ρτ · 1Σ1,1M2
∈ Σ1,1M2, τ2 · 1Σ2,1M2

∈ Σ2,1M2 and ρ2τ · 1Σ0,0M2
∈M2.

1.7. Acknowledgements. This work is based on the author’s doctoral
dissertation. It is the product of many conversations with both his thesis
advisor Dan Dugger and with Clover May, who each came to the rescue
repeatedly. The author is grateful to both of them, as well as to Kelly
Poland for spotting an error, and to the anonymous referee for numerous
useful suggestions. This work was partially funded by University of Oregon
and Gonzaga University.

2. Background on the representation-cell structure

Before we present and prove general results for these cohomologies, we
will work a few manageable examples bare-handed, to give the reader a feel
for equivariant long exact sequence computations. (Note this is distinct from
the spectral sequence approach, which we will also make use of later.)

2.1. Worked example I. This example serves primarily to demonstrate
the phenomenon of the “Kronholm shift,” found in [K] and [HM].

When using a CW structure to calculate the singular cohomology of a
space, we can work iteratively on skeleta, attaching one k-cell at a time.
The cofiber sequence Xn−1 ↪→ Xn → Sk then gives a long exact sequence,

and if we know H i
sing(Xn−1) and the differential H i

sing(Xn−1)
d−→ H i+1

sing(Sk),

we can (at least over Z/2) deduce H i
sing(Xn).

The equivariant situation is analogous: The equivariant cofiber sequence
Xn−1 ↪→ Xn → Sp,q extends to a Puppe sequence

· · · → Σ−1,0Sp,q → Xn−1 ↪→ Xn → Sp,q → Σ1,0Xn−1

yielding a long exact sequence of M2-module maps in cohomology, including
a differential d : H•,•(Xn−1) → H•,•(Σ−1,0Sp,q) = H•+1,•(Sp,q). It turns
out that certain zero differentials in the non-equivariant theory are actually
the “shadows” of something more interesting in the equivariant theory.

Consider Gr1(R3,1), whose underlying space is Gr1(R3) = RP2. We can
build the space from representation cells in two ways (See Figure 5). First,
we can begin with a point, attach a non-trivial line segment e1,1 ∼= R1,1 (thus
building S1,1) and finally attach e2,1 ∼= R2,1 via a degree-two map from its
boundary ∂D2,1 = S1,1. Alternatively, we can build this space by attaching
a fixed interval e1,0 to a point, and then attaching e2,2 to this fixed circle
with a degree-two map.

In the first construction, the cofiber sequence for including the one-skeleton
is S1,1 ↪→ Gr1(R3,1)→ S2,1. The differential d : H̃•,•(S1,1)→ H̃•+1,•(S2,1) ∼=
H̃•,•S1,1 (depicted on the left of Figure 6) must be zero, otherwise the for-
getful map would predict a nonzero map ψ(d) in the non-equivariant cellular
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∗ = X0
// X1

//

��

X2

��

S1,1 S2,1

∗ = X0
// X1

//

��

X2

��

S1,0 S2,2

Figure 5. Fixed points in thick red. Note (taking identi-
fications into account) the fixed circle and (single) isolated
fixed point appearing in each diagram. Below the two con-
structions of Gr1(R3,1) are their filtration quotients.

chain complex. Thus, we know relatively easily that

H•,•(Gr1(R3,1)) = M2 ⊕ Σ1,1M2 ⊕ Σ2,1M2.

However in the second construction for the same space, we have the cofiber
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Figure 6. Differentials from attaching 2-cells.

sequence S1,0 ↪→ Gr1(R3,1)→ S2,2. In this case, the differential

d : H•,•S1,0 = Σ1,0M2 → H•,•S2,2 = Σ2,2M2

cannot be zero, or we would have two conflicting answers. Rather,

d(1Σ1,0M2
) = θ1Σ2,2M2

,

and we have an extension problem with ker(d) and cok(d). While we al-
ready know the answer in this case, this problem is resolved generally by [K]
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and [HM]. Heuristically, the differential into the lower cone causes Σ1,0M2

to ‘shift up’ to become a Σ1,1M2 while Σ2,2M2 ‘shifts down’ to a Σ2,1M2,
replicating the cohomology we expect from the first construction.

2.2. Note. This phenomenon of nonzero differentials into a lower cone
causing shifted weights in the free M2 generators is called a Kronholm
shift. In its simplest version, where just one M2 maps into the lower cone
of another, the sourceM2 shifts up by the difference in fixed set dimension of
the two free generators, and the target M2 shifts down by the same amount.
A more general formula for shifts when an arbitrary number of M2s have
nonzero-differentials to a lower cone appears in [HM].

This trick of deducing properties of unknown differentials in one represent-
ation-cell construction (see Definition 1.2) by leveraging what is known
about another construction continues to be a useful strategy as we move
to larger Grassmannians.

2.3. Schubert cells. Non-equivariantly, Grk(Rn) can be given a cell struc-
ture indexed by Young diagrams fitting inside a k-by-(n− k) rectangle. See
e.g. [Man]. For example, Gr2(R5) can be built with cells indexed by dia-
grams fitting into as follows:

(0, 0)

(0, 1)

(1, 1) (0, 2)

(1, 2) (0, 3)

(2, 2) (1, 3)

(2, 3)

(3, 3)

∅ [1, 2]

[1, 3]

[2, 3] [1, 4]

[2, 4] [1, 5]

[3, 4] [2, 5]

[3, 5]

[4, 5]

Figure 7. Partition tuples, Young diagrams, and jump sequences.

To each Young diagram written as a weakly ascending tuple λ (for ex-
ample corresponds to λ = (1, 3)) we can write a strictly ascending tuple
j = [λi+i]i called the jump sequence. The diagram has jump sequence
[1 + 1, 3 + 2]. These are the symbols on the right-hand side of Figure 7.

These symbols index the cells of the Grassmannian as follows. We can
think of a k-plane in Rn as the rowspace of a k-by-n matrix, and without
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loss of generality, this matrix can be written in a canonical form (lower
triangular reduced row echelon form) so that each row’s last nonzero entry is
a 1, which then clears the column below it. Order these rows by the position
of their last nonzero entry. For example:

rowspace

[
2 −2 10 12 2
21 3 15 18 3

]
= rowspace

[
3 1 0 0 0
4 0 5 6 1

]
:= V 3

4 5 6

.

In this way, every point in the Grassmannian can be sorted into a unique
family, these families indexed by jump sequences which give the locations
of these 1s in their canonical representations. These families are related.
Consider for example the open set containing the four-parameter family of
all planes of the form Vw

x y z

(abbreviating rowspace with rs)

Ω[2,5] = Ω :=

{
rs

[
w 1 0 0 0
x 0 y z 1

]
: w, x, y, z ∈ R

}
⊂ Gr2(R5).

Since

lim
c→∞

rs

[
x 1 0 0 0
cy 0 cz c 1

]
= rs

[
x 1 0 0 0
y 0 z 1 0

]
∈ Ω

and

lim
c→∞

rs

[
c 1 0 0 0
−cx 0 y z 1

]
= lim

c→∞
rs

[
c 1 0 0 0
0 x y z 1

]
= rs

[
1 0 0 0 0
0 x y z 1

]
∈ Ω ,

we have that the closureX[2,5] := Ω[2,5] contains Ω[2,4] and alsoX[2,5] contains
Ω[1,5], or in Young diagrams, Ω ⊂ X ⊂ X and Ω ⊂ X ⊂ X .

The sets Ωj indexed by jump sequences (or equivalently by Young diagrams)
are called Schubert cells, and their closures Schubert varieties. We have
an obvious notion of containment for Young diagrams, to which corresponds
a notion of dominance in jump sequences. We say that a jump sequence
j dominates another jump sequence k, denoted k ≺ j, if each ki ≤ ji.
Containment between Schubert varieties corresponds to containment be-
tween their indexing Young diagrams or equivalently, to dominating jump
sequences. For further details, see Section 3.2 of [Man].

In this way, Young diagrams index a CW structure for the Grassmannian,
each in a diagram corresponding to a degree of freedom, and hence the
number of boxes equals the dimension of the cell attached at that stage of
the construction. (For example, Ω[2,5] = Ω ∼= e4.)
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{
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{
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{
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{
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{
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0
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rs
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∗

1
0

0
∗
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∗

0
1

]}
{

rs
[∗
∗
∗
∗

1
0

0
∗

0
1

]}
{

rs
[∗
∗
∗
∗
∗
∗

1
0

0
1

]}

Ω[1,2] = pt

Ω[1,3]

Ω[2,3] Ω[1,4]

Ω[2,4] Ω[1,5]

Ω[3,4] Ω[2,5]

Ω[3,5]

Ω[4,5]

Figure 8. Free variables denoted by ∗.

It is an important classical fact that if we work over Z/2, the attaching
maps given by this CW construction yield only zero differentials in the chain
complex, and so (for example) we have singular cohomology

H i
sing(Gr2(R5); Z/2) =



Z/2 = 〈[ ]〉 i = 6
Z/2 = 〈[ ]〉 i = 5

(Z/2)2 = 〈[ ], [ ]〉 i = 4

(Z/2)2 = 〈[ ], [ ]〉 i = 3

(Z/2)2 = 〈[ ], [ ]〉 i = 2
Z/2 = 〈[ ]〉 i = 1
Z/2 = 〈[∗]〉 i = 0.

In this notation, the cocycle is the Kronecker dual to Ω , that is, it
evaluates to 1 on Ω and zero on other cells. More generally, cohomology
elements are denoted by the Young diagrams of the Schubert cells to which
they are dual. This preserves the at-a-glance dimension property.

There is also an equivariant version of this story, which we explain next.

2.4. Worked example II. Suppose we are interested in Gr2(R5,2). If we
interpret this as Gr2(Rtriv⊕Rsgn⊕Rtriv⊕Rsgn⊕Rtriv) or Gr2(R+−+−+) for
short, then Ω[2,5] can be seen to be a representation cell. The action of C2
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on this 4-cell, as in the seventh chapter of [FL], is given by

rowspace

[
w

x

1

0

0

y

0

z

0

1

]
7→ rowspace

[
w

x

−1

0

0

y

0

−z
0

1

]
= rowspace

[
−w
x

1

0

0

y

0

−z
0

1

]
and so Ω[2,5](R+−+−+) ∼= e4,2 is a representation cell. It is pleasant to write

this −
+ + − , as we can see topological dimension and weight at a glance from

the number of boxes and minus signs, respectively. Analogous considerations
now give a representation cell construction for the space.

∅

−

−
+

+ −

−
− − − + −

+ −
− +

−
+ + −

+ −
− + −

− + −
+ − +

Figure 9. One representation-cell structure for Gr2(R5,2),
produced by the choice R5,2 ∼= R+−+−+.

Once an ordered decomposition of the representation as a direct sum of
irreducibles is chosen, the process of assigning weights to Schubert cells can
easily be automated. Essentially, to find the weight of a cell, one needs to
count the free variables in the associated matrix which are inverted by the
group action, once the matrix is returned to canonical form. This amounts
to counting the minus signs in a matrix like the third one appearing in Figure
10’s example.

While it is preferable to automate this computation, a formula for count-
ing these minus signs can be given for the ordered decomposition Rs(1) ⊕
Rs(2) ⊕ · · · ⊕Rs(n) with s : [1, n]→ {+,−} by letting λ have jump sequence

j and using the reverse Kronecker delta δ̂i,j = 1− δi,j ,

w
(

Ωλ(Rs(1)s(2)...s(n))
)

=
∑
k∈j

∑
i<k
i 6∈j

δ̂s(k),s(i).
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+ − + − + − − +

rs


∗ ∗ 1 0 0 0 0 0
∗ ∗ 0 1 0 0 0 0
∗ ∗ 0 0 ∗ ∗ 1 0
∗ ∗ 0 0 ∗ ∗ 0 1

 7→ rs

+ − + − + − − +
∗ −∗ 1 0 0 0 0 0
∗ −∗ 0 −1 0 0 0 0
∗ −∗ 0 0 ∗ −∗ −1 0
∗ −∗ 0 0 ∗ −∗ 0 1



= rs


∗ −∗ 1 0 0 0 0 0
−∗ ∗ 0 1 0 0 0 0
−∗ ∗ 0 0 −∗ ∗ 1 0
∗ −∗ 0 0 ∗ −∗ 0 1


Figure 10. The number of minus signs in the canonical ma-
trix gives the weight of the Schubert cell with jump sequence
[3, 4, 7, 8] in the construction associated to R+−+−+−−+.

It is important that a different ordered decomposition of the underly-
ing representation can create a very different equivariant Schubert cell con-
struction. For example, while Ω[2,5](R+−+−+) ∼= e4,2, the decomposition

R5,2 = R+−++− gives Ω[2,5](R+−++−) ∼= e4,4, an ingredient for building the

same space Gr2(R5,2) which does not appear in the R+−+−+ construction.
A representation-cell structure for a space allows for a one-cell-at-at-

time filtration, such that each subsequent inclusion cofiber is a represen-
tation sphere:

X0
// X1

//

��

X2
//

��

. . . // Xi
//

��

. . .

Sp1,q1 Sp2,q2 . . . Spi,qi . . .

This gives rise to the one-cell-at-a-time equivariant cellular spectral
sequence for a Grassmannian, which we will discuss further in the next
section. To a given choice of decomposition for the underlying representation
space, we get a spectral sequence having for its E1 page a free M2-module
with basis elements corresponding to the bidegrees (pi, qi) of these Schubert
cells. We will refer to this data as a table of ingredients where each
Young diagram or jump sequence represents the generator for an M2 in that
bidegree. Denote the ingredient table of a certain decomposition

⊕
R± by

I(± · · ·±). Figure 11 has two depictions of I(R+−+−+) = I(+−+−+).
While the ingredients table is the first page of a spectral sequence, we

will often make use of this data in another way. If we consider attaching
these equivariant cells successively by increasing dimension and then weight,
we can compute the cohomology of filtered subspaces one at a time. That
is, rather than running a spectral sequence, we will repeatedly consider the
long exact sequence corresponding to iteratively building subspaces Xk+1
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3
−
− −

+ −
− + −

− + −
+ − +

2 − + −
−
+ + −

+ −
− +

1 + + −

−
+

∅0

or

[2,4] [3,5] [4,5]
[1,5] [2,5]

[3,4]
[1,3] [1,4]

[2,3]
[1,2]

0 1 2 3 4 5 6

Young diagrams Jump sequences

Figure 11. Ingredients table I(+−+−+) for Gr2(R5,2).

from Xk by attaching one equivariant cell ep,q, giving the cofiber sequence

Xk ↪→ Xk+1 → Sp,q.

Because the differentials d : H•sing(Xk)→ H•+1
sing (Sp) in the non-equivariant

chain complex are all zero, we know that none of the equivariant differen-
tials may send a free generator to another free generator, as the forgetful
map induces a natural map between the equivariant and non-equivariant
long exact sequences for each attachment. Also because we are attaching
cells by increasing weight, any differential carrying a generator into the top
cone would hit τ j times some other generator, which would again imply
an isomorphism non-equivariantly. Because the differentials in a Schubert
cell complex for a Grassmannian must have zero differentials as their non-
equivariant “shadows,” we need only worry about nonzero differentials into
the lower cones of suspensions of M2, which, if they occur, cause Kronholm
shifts.

We return to Gr2(R5,2), again recalling that rather than running a spec-
tral sequence, we are simply computing the cohomology of subspaces as
we attach cells one at at time. From Figure 11 we can see that as we
attach the first few cells, no differentials are possible, and so the cohomolo-
gies of early subspaces are obvious. But when the cell Ω is attached,

a differential between 〈[ ], [ ]〉 and 〈θ[ ]〉 could be either zero or nonzero
without contradicting what is known non-equivariantly. However we can
resolve this ambiguity by making use of another ordered decomposition of
R5,2, the ambient space for our 2-planes. For example we have an equi-
variant homeomorphism Gr2(R+−+−+) ∼= Gr2(R−++−+), induced by the
linear map (x1, x2, x3, x4, x5) 7→ (x2, x1, x3, x4, x5) on the underlying rep-
resentation. This second construction for the space has ingredients table
I(R−++−+), as shown in Figure 12. Again, we can represent cells using
either Young diagrams or jump sequences.

Since after iteratively attaching these ingredients, we must arrive at the
same cohomology, it is now clear that in this second scenario, [1, 3] must
“shift up” by hitting some nonzero combination of θ[1, 4] and θ[2, 3], after
which no other differential can interact with the bidegree (2, 1), recalling that
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3
−
− + −

− +
− + −

+ − −
− + +

2 − −
−
+ −

− +
+ −

−
−

1 + + −

∅0 +

[2,5] [3,5] [4,5]
[1,4] [2,4] [3,4]
[2,3]

[1,5]
[1,2] [1,3]

0 1 2 3 4 5 6

Figure 12. Ingredients table I(−+ +−+) for Gr2(R5,2).

isomorphisms are precluded by our knowledge of the non-equivariant cochain
complex. Thus in the first construction, d : 〈[1, 4], [2, 3]〉 → 〈θ[2, 4]〉 must be
nonzero, so that both H2,1 and H2,2 of Gr2(R+−+−+) contain generators.
As no other differentials are possible in the +−+−+ construction, we now
know that

H•,•(Gr2(R5,2)) =

1 2 3 4 5 6

1

2

3

.

(It is instructive to check what this must mean about the other differentials
in the −+ +−+ construction.2)

This procedure of playing the many different constructions for a Grass-
mannian off of one another can be automated to get a fund of examples.
The theorems and algorithm necessary for this will be described in a forth-
coming paper. But in many cases, we can do even better – see Sections 5
and 6.

3. Jack-O-Lantern modules

Rather than considering successive long exact sequences as in Section 2.1,
we could have used a cellular spectral sequence made by sewing together the
long exact sequences for each cofiber sequence in the filtration

pt // X1
//

��

X2

��

S1,0 S2,2

.

2We must have [1, 3] 7→ θ[1, 4] and [1, 5] 7→ θ[2, 5].
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More generally, when a space X is built one-cell-at-a-time, so that the cofiber
of each subspace inclusion is a single representation sphere,

pt // X1
//

��

X2
//

��

X3
//

��

. . .

Sp1,q1 Sp2,q2 Sp3,q3 . . .

we can make a spectral sequence where each filtration degree contains a
single suspended M2. This spectral sequence is, alarmingly, trigraded, but
if we attach cells in lexicographic order, we can suppress the filtration degree
without losing too much information. Letting r denote filtration degree, we
will have differentials

dk : Ep,q,rk → Ep+1,q,r+k
k .

Figure 13 depicts this approach for one of the constructions in Section 2.1.

E1

1 2 3

1

−1

2

−2

3

−3

4

−4

d1

E2 = E∞

1 2 3

1

−1

2

−2

3

−3

4

−4

Figure 13. Jack-O-lantern modules in a spectral sequence.

While we already know that the reduced cohomology of the space Gr1(R3,1)
from Section 2.1 is the free module Σ1,1M2⊕Σ2,1M2, we see that E∞ is not
itself free. Rather, it is an associated graded of this free module. Loosely,
the summands of E∞ are copies of M2 with pieces cut out of them. This
phenomenon motivates the following definition.

Definition 3.1. Beginning with some suspension Σp,qM2 = M2〈a〉 of M2,
let S be a finite set of homogeneous elements of the lower cone, and consider
the quotient M2〈a〉/SM2〈a〉. Let J be a submodule of this quotient generated by
a finite collection of homogeneous elements of the upper cone, and let these
generators include elements of the form [ρMa] and [τNa] for some M and N .
A Jack-o-lantern module is an M2 module isomorphic to such a module
J . (See Figure 14 for an example.)

We can decompose a Jack-o-lantern module as J = J+ t J− where the
module structure connects J+ to J−. These two parts are
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• An ideal J+ of the upper cone of M2〈a〉 such that for large enough
N and M , both [ρMa] ∈ J+ and [τNa] ∈ J+

and
• A “coideal” J− of the lower cone of M2〈a〉, meaning that if [ θ

ρiτ j
a] ∈

J− then both [ θ
ρi+1τ j

a] ∈ J− and [ θ
ρiτ j+1 ]a ∈ J−, such that for large

enough N and M , both [ θ
ρM
a] ∈ J− and [ θ

τN
]a ∈ J−.

By “the module structure connects J+ to J−” we mean if [ρkτ la], [ θ
ρiτ j

a] ∈ J ,

then θ
ρi+kτ j+l

· [ρkτ la] = [ θ
ρiτ j

a].

Note that M2 itself is trivially a Jack-o-lantern module. These modules
contain elements of the form [τNa] and [ θ

τN
a] sharing a dimension p. Like-

wise there is the largest fixed-set dimension p−q of J+. Together these give
J a well-defined phantom bidegree, the pair (p, q) such that J is a sub-
quotient of Σp,qM2. See Figure 14. Note that while we may write elements
like [τρa], in general there my be no element [a], that is, often Jp,q = 0. We
will sometimes call a the phantom generator.

phantom bidegree

•
[ρ5a]•[τ4a]

•
[ θ
ρ5
a]

• [ θ
τ6
a]

Figure 14. A Jack-o-lantern module. In the language of
definition 3.1, this is (M2〈a〉/SM2〈a〉) 〈[τ4a], [ρτ3a], [ρ2τa], [ρ5a]〉
where S = { θ

ρ4τ
a, θ

ρ2τ4
a, θ

τ5
a}.

Definition 3.2. A Jack-o-lantern map is an M2-module map f : J1 → J2

between Jack-o-lantern modules such that f(J+
1 ) ⊆ J−2 and hence f(J−1 ) = 0.

Note that the kernel and cokernel of a Jack-o-lantern map are both Jack-o-
lantern modules, with J+

1 � (ker f)+and (ker f)− = J−1 while (cok f)+ = J+
2

and J−2 � (cok f)−. See for example Figure 15.

Lemma 3.3. Let C• =

[
· · · → Ji−1

di−1−−−→ Ji
di−→ Ji+1

di+1−−−→ . . .

]
be a (co)chain

complex of Jack-o-lantern maps. (Definition 3.2 implies d2 = 0). Then the
homology modules Hi(C•) are Jack-o-lantern modules.
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f

J1

J2

ker(f)

cok(f)

Figure 15. A Jack-o-lantern map f of degree (1, 0). The
kernel and cokernel of f are also Jack-o-lantern modules.

Proof. The kernel and cokernel of a Jack-o-lantern map are both Jack-o-
lantern modules. As Ji−1 → ker(di) is a Jack-o-lantern map, we have that
Hi(C•) = cok(Ji−1 → ker(di)) is a Jack-o-lantern module. �

In the next section we will be interested in maps between Jack-o-lantern
modules which areM2-module maps but not necessarily Jack-o-lantern maps.
The following lemma gives a restriction on the topological and fixed-set di-
mensions of the phantom generators of the domain and codomain of such
maps f : J → J ′ with f(J+) ⊆ (J ′)+.

Lemma 3.4. Suppose J and J ′ are Jack-o-lantern modules having phantom
generators α and α′ of phantom bidegrees (p, q) and (p′, q′) respectively. If
f : J → J ′ is a degree-preserving M2-module map carrying an element
of J+ to a nonzero element of (J ′)+, then f |J+ is injective, p ≥ p′ and
p− q ≤ p′ − q′. (Note this implies q ≥ q′).

Proof. Say f([ρiτ jα]) = [ρi
′
τ j
′
α′] but suppose there exists [ρkτ lα] ∈ J+

with f([ρkτ lα]) = 0. Then

ρkτ l[ρi
′
τ j
′
α′] = ρkτ lf([ρiτ jα]) = ρiτ jf([ρkτ lα]) = ρiτ j · 0 = 0.

This makes [ρi
′
τ j
′
α′] an element of (J ′)+ withM+

2 torsion, a contradiction.
Now suppose p < p′. There exists some M such that [τMα] ∈ J . This

element lies to the left of (J ′)+ since every element here has topological
degree at least p′. Thus f([τMα]) = 0, contradicting injectivity.

Similarly, suppose p− q > p′ − q′ and [ρMα] ∈ J . Noting that [ρMα] lies
on a diagonal below (J ′)+, we have f([ρMα]) = 0, a contradiction. �

In the next section and throughout the paper, we will be examining differ-
entials which are M2-module maps of degree (1, 0), and we will be interested
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in maps between Jack-o-lantern modules of certain degrees. This motivates
the following corollary.

Corollary 3.5. Suppose J and J ′ are Jack-o-lantern modules having phan-
tom generators α and α′ of phantom bidegrees (p, q) and (p′, q′) respectively,
with (p, q) ≤ (p′, q′) lexicographically. If d is an M2-module map of degree
(1, 0) sending an element of J+ to a nonzero element of (J ′)+, then p = p′−1

and for large enough N , d([τNα]) = [τN+q−q′α′].

Proof. Write d as a degree-preservingM2-module map d : Σ1,0J → J ′. Note
that p+ 1 ≥ p′ by Lemma 3.4, but p ≤ p′ by the lexicographic ordering. So
either p = p′ or p = p′ − 1.

Suppose for a contradiction that p = p′. Then q ≤ q′ by the lexicographic
ordering. But by the lemma, (p + 1) − q ≤ p′ − q′. So q ≥ q′ + 1 and we
have our contradiction. Thus p = p′ − 1.

Finally for some N we have [τNα] 6= 0, and d([τNα]) = [τN+q−q′α′] by
the injectivity given by the lemma. �

If a map from M2 is zero on the generator, it is identically zero, and in
particular, zero on the lower cone. For Jack-o-lantern modules, we have the
analogous fact:

Lemma 3.6. If f : J → K is an M2-module map from a Jack-o-lantern
module J to any M2 module K, and f |J+ is not injective, then f(J−) = 0.

Proof. By assumption, for some M and N we have [ρMτN1α] ∈ J+ with
f([ρMτN1α]) = 0. Then for any element [ θ

ρiτ j
1α] ∈ J−,

f
([

θ
ρiτ j

1α

])
= f

(
θ

ρM+iτN+j · [ρMτN1α]
)

= θ
ρM+iτN+j f

(
[ρMτN1α]

)
= 0.

�

In the next section, we put these algebraic results to use in cohomology.

4. A theorem restricting Kronholm shifts

Because M2 has nonzero groups in so many bidegrees, when examining
spectral sequences or even just long exact sequences of a pair, there are in
general a lot of algebraically-possible differentials to consider. The follow-
ing theorem helps us rule out some of these possibilities. We first need a
definition.

Definition 4.1. Let Λ be a set with a partial ordering so that any two
elements α, β ∈ Λ have a greatest lower bound, denoted α ∩ β ∈ Λ. A
hierarchical cell structure on a space X is a CW structure with cells

{eλ}λ∈Λ so that each cell eα has an attaching map whose image lies in
⊔
λ<α

eλ.
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Note that a hierarchical cell structure on a space gives subspaces Xα of
the form

Xα =
⊔
λ≤α

eλ

with the properties

• Xα ∩Xβ = Xα∩β and
• (Xα ∪Xα′ )/Xα ∩Xα′ = (Xα/(Xα ∩Xα′ )) ∨ (Xα′/(Xα ∩Xα′ )).

4.1. Example. The setting in which we will use this notion is of course the
Schubert cell construction of the Grassmannian, which gives it a hierarchical
cell structure, by Proposition 3.2.3 of [Man]. Schubert cells are indexed by
Young diagrams, which have a partial ordering under inclusion. In fact, in
this setting,

Xλ =
⊔
λ′≤λ

Ωλ′ = Ωλ,

the closure of the Schubert cell Ωλ, called the Schubert variety. For two
diagrams λ1 and λ2,

Xλ1 ∩Xλ1 = Xλ1∩λ2

and
(Xλ1 ∪Xλ2 )/Xλ1∩λ2 = (Xλ1/Xλ1∩λ2) ∨ (Xλ2/Xλ1∩λ2)

for example in Gr2R5 (see Figure 7)

X ∩X = X ∩ = X

and
(X ∪X )/X = (X /X ) ∨ (X /X ).

4.2. Warning. To avoid confusion, we call the reader’s attention to the
fact that there are two distinct orderings in the following theorem – a partial
ordering corresponding to a hierarchical cell structure, and the lexicographic
order on bidegrees.

We now state the theorem we will use in Section 5 to rule out Kronholm
shifts.

Theorem 4.2. Let X ′ be an equivariant space with a finite hierarchical
representation cell structure. Suppose that X is obtained from a subcomplex
X ′ ⊂ X by attaching a single representation cell eβ ' ep,q whose bidegree is
lexicographically after that of the cells of X ′. Suppose also that the forgetful
cochain complex C•(ψ(X)) corresponding to this construction has only zero

differentials. If, for every cell eα ' ep
′,q′ used in building X ′, either

(i) α 6≤ β or
(ii) p′ − q′ ≤ p− q
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then the cofiber sequence X ′ ↪→ X → Sp,q gives a split short exact sequence
in cohomology, i.e.

H•,•(X) = H•,•(X ′)⊕ Σp,qM2.

To prove this theorem, we need three lemmas. The first makes use of
lexicographic ordering to establish that the spectral sequence of an equivari-
ant space whose attaching maps are forgetfully trivial will be made up of
Jack-o-lantern modules.

Lemma 4.3. Suppose an equivariant representation-cell complex X is built
by attaching cells in lexicographic order. Suppose the associated forgetful
chain complex C•(ψ(X)) has all zero differentials. Then the corresponding
one-cell-at-a-time equivariant spectral sequence E•,•,•• with the lexicographic
filtration of X has a Jack-o-lantern module for the rth filtration of its kth

page, E•,•,rk for all k and r. Furthermore, each differential dk : E•,•,rk →
E•+1,•,r+k
k is a Jack-o-lantern map.

While the previous lemma admits the possibility of nonzero differentials
one might not expect from looking at the forgetful data, the next lemma
makes use of the hierarchical structure to establish a condition in which we
need not worry about surprise differentials.

Lemma 4.4. Under the assumptions of the theorem, if cells eα and then
eβ are used in building a space X, but α 6≤ β, then there is no differential
from the filtration degree of α to that of β in the one-cell-at-a-time spectral
sequence for X.

Our third lemma for this theorem establishes a fact we will use to split a
long exact sequence into short exact sequences in the proof of the theorem.

Lemma 4.5. Let X be a finite filtered space

pt = X0 ⊆ X1 ⊆ · · · ⊆ Xn−1 ⊆ Xn = X.

If every differential of the associated spectral sequence mapping into the
Xn/Xn−1 filtration is zero, then for the cofiber sequence Xn−1

i−→ Xn →
Xn/Xn−1, the map i∗ : H•,•(Xn)→ H•,•(Xn−1) is surjective.

We first prove the lemmas, and then the theorem. While we will not need
the theorem until Section 6, Lemmas 4.3 and 4.4 will be used in Section 5.

Proof of Lemma 4.3. Denote the generator of the ΣαM2 by 1α. On page
one of the spectral sequence there are upper cone elements of the form ρiτ j1α
and lower cone elements θ

ρiτ j
1α. Denote3 such elements surviving to later

pages by [ρiτ j1α] and [ θ
ρiτ j

1α].

3This is possible because the one-cell-at-a-time filtration precludes any elements of the
form [ρiτ j1α + θ

ρi
′
τj
′ 1α′ ], as these are filtration-inhomogeneous.
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Proceed by induction on the page of the spectral sequence. To begin
with, E1 = E•,•,•1 consists of a single suspension of M2 in each nonzero
filtration. Differentials are determined by the image of each 1α. Because
of our lexicographic filtration, the only possible top-to-top differential is of
the form d1(1α) = τ j1α′ . However, as ψ(τ) = 1, this would mean a nonzero
differential in the forgetful setting, a contradiction of our assumption. Thus
the differential d1 forms a complex of (trivial) Jack-o-lantern modules. Hence
by Lemma 3.3, E2 consists of a Jack-o-lantern module in each filtration. See
for example Figure 16.

E1

 
→

→

[ρ2τ1α]

[ θ
ρ2

1α]

E2

Figure 16. A filtration degree of E1 with differential in and
out of that degree, and the corresponding filtration on the
E2 page. Note a connection between upper an lower cones
remains. While [1α] = 0, it is still the case, for example, that
θ
ρ4τ
· [ρ2τ1α] = [ θ

ρ2
1α]. This filtration degree of E•,•,r2 is a

Jack-o-lantern module.

Now assume for induction that the page Ek = E•,•,•k consists of a Jack-o-
lantern module in each nonzero filtration. We must show that the differen-
tials dk are Jack-o-lantern maps. First, there can be no top-to-top map on
the Ek page: By Corollary 3.5, such a map would carry a nonzero element
[τN1α] to the nonzero element [τN

′
1α′ ], where N ′ = N+(w(α)−w(α′)). But

considering the forgetful map ψ yields a contradiction, as we see a nonzero
differential ψ(dk) : 1α 7→ 1α′ , in the non-equivariant spectral sequence, con-
tradicting our assumption about the forgetful chain complex.

Now either dk is zero on the top cone, and hence identically zero by
Lemma 3.6 and hence trivially a Jack-o-lantern map, or else dk maps the
top cone to the bottom cone, and is a Jack-o-lantern map since θ2 = 0.
Again applying Lemma 3.3, Ek+1 consists of Jack-o-lantern modules. This
completes the induction.

�
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Proof of Lemma 4.4. For our space X with a hierarchical cell structure
satisfying the assumptions of the theorem, let α be the index of a cell at-
tached before the cell eβ such that α 6≤ β, and define

Y = Xα ∪Xβ =

⊔
λ≤α

eλ

 ∪
⊔
λ≤β

eλ


and

Z = Xα ∩Xβ =
⊔

λ<α and
λ<β

eλ.

Then Y/Z is a wedge of spaces

Y/Z = (Xα)/Z ∨ (Xβ)/Z =: A ∨B

and there are quotient maps Y → A ∨ B → A which respect the filtration
grading of the spectral sequence. Thus any element [x]Y ∈ E•,•,•k (Y ) with
the filtration degree of α corresponds to an element [x]A ∈ E•,•,•k (A). Be-
cause α is in the highest nontrivial filtration of A, [x]A is a permanent cycle.
We now have the commuting diagram

[x]A_

��

E•,•,•k (A) //

dk
��

E•,•,•k (Y )

dk
��

[x]Y_

��

0 E•+1,•,•+k
k (A) // E•+1,•,•+k

k (Y ) 0

and so in particular the differential between the filtration degrees of α and
β is zero in E•,•,•• (Y ). Now the inclusion i : Y ↪→ X induces a surjective
spectral sequence map i∗ : E•,•,•1 (X) → E•,•,•1 (Y ), and so a nonzero α-
to−β differential in E•,•,•• (X) would imply one in E•,•,•• (Y ). Thus no such
differential can exist. �

Finally, we prove Lemma 4.5 by a diagram chase:

Proof of Lemma 4.5. Naming the inclusions

pt
i0−→ X1

i1−→ . . .
in−2−−−→ Xn−1

in−1−−−→ Xn

recall that we build the spectral sequence by weaving together the long exact

sequences of the cofiber sequences Xk
ik−→ Xk+1

qk−→ Xk/Xk−1.
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. . . H( Xn
Xn−1

)
q∗n // HXn

i∗n−1

��

. . . H(
Xn−1

Xn−2
)
q∗n−1

// H(Xn−1)

i∗n−2

��

δ // H( Xn
Xn−1

) . . .

. . . H(
Xn−2

Xn−3
)
q∗n−2

// H(Xn−2)

i∗n−3
��

δ // H(
Xn−1

Xn−2
) . . .

...
...

i∗0

��

...

. . . H( X0
X−1

)
q∗0 // HX0

δ //

i∗−1

��

H(X1
X0

) . . .

HX−1

q∗n // HXn

i∗n−1

��

b
� q∗n−1

// a
_

i∗n−2

��

δ // H( Xn
Xn−1

)

c
� q∗n−2

// i∗n−2(a)
_

i∗n−3
��

δ // . . .

...

i∗0

��

...

q∗0 // HX0
δ //

i∗−1

��

. . .

0

Assuming all differentials to H
(

Xn
Xn−1

)
are zero, we wish to show that

i∗n−1 is surjective. Consider an element a ∈ H(Xn−1).
If i∗n−2(a) = 0, by exactness there exists b with q∗n−1(b) = a, and then by

assumption d1(b) = (δ ◦ q∗n−1)(b) = δ(a) = 0 and so by exactness a lies in
the image of i∗n−1.

If i∗n−2(a) 6= 0 but i∗n−3(i∗n−2(a)) = 0, then by exactness there is some c
so that q∗n−2(c) = i∗n−2(a). Since d2(c) = δ(a) = 0, we again have a in the
image of i∗n−1 by exactness.

Since H(X−1) = 0, eventually we are guaranteed some (i∗k ◦ i∗k+1 ◦ · · · ◦
i∗n−2)(a) = 0 and hence some x ∈ H( Xk

Xk−1
) such that q∗k+1(x) = (i∗k+1 ◦ · · · ◦

i∗n−2)(a), and since dk(x) = δ(a) = 0, again a is mapped to by i∗n−1. Hence
i∗n−1 is surjective. �

We can now prove the theorem.

Proof of Theorem 4.2. Again filterX one-cell-at-a-time lexicographically,
meaning by increasing topological dimension and then increasing weight. Let
n denote the filtration degree of the cell added to X ′ to form X. This filtra-
tion gives a trigraded spectral sequence, as discussed in Section 3. We claim
there are no differentials hitting any nonzero elements of the nth filtration
degree H•,•(Xn/Xn−1) = H•,•(X/X′). To see this, consider each lower filtra-
tion degree k < n, which corresponds to some eα used in building X ′. Either
condition (i) holds (α 6≤ β), in which case by Lemma 4.4, dn−k(x) = 0 for all
x of filtration degree k, or else condition (ii) holds. In this case, by Lemma
4.3 dn−k is a Jack-o-lantern map, and so dn−k(x) = 0 for all x of filtration
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degree k, as no top-to-bottom differential is possible. In either case, no dif-
ferential ever hits the filtration degree of β. By Lemma 4.5, this means that
H•,•(Xn)→ H•,•(Xn−1) is surjective. Now consider the long exact sequence

in cohomology corresponding to the cofiber sequence Xn−1
i−→ Xn → Sp,q.

H•−1,•(Xn)→ H•−1,•(Xn−1)
0−→ H•,•(Sp,q)→ H•,•(Xn)→ H•,•(Xn−1)

0−→ . . .

This decomposes into short exact sequences

0→ Σp,qM2 → H•,•(Xn)→ H•,•(Xn−1)→ 0

for all •. Since H•,•(Xn−1) is free by Theorem 1.3 (or alternatively since
M2 is injective by [May]) the short exact sequence of modules is split, and
the theorem is proved. �

5. Grassmannians Grk(Rn,1)

We are now ready to tackle the Grassmannian. We begin by introducing
a statistic of Young diagrams which will be useful for classifying Schubert
cells in the family of spaces Grk(Rn,1). Fix n and k < n. Given a partition
λ = (λ1, . . . , λk) with λi ≤ λi+1, define trace(λ) = #{i : λi ≥ k − i + 1}.
Visually, this is the number of squares lying on the diagonal of a Young
diagram of this partition. See Figure 17 for examples. Recall that the
jump sequence j = [j1, . . . , jk] corresponding to a partition λ is given by
ji = λi + i. The values of this sequence tell us where the 1s land in the
Schubert cell matrix corresponding to λ. We can also formulate trace as
trace(j) = #{i : ji > k}.

trace(3, 3, 3) = trace([4, 5, 6]) = 3 trace(1, 3, 3) = trace([2, 5, 6]) = 2

trace(2, 2, 2) = trace([3, 4, 5]) = 2 trace(0, 1, 3) = trace([1, 3, 6]) = 1

Figure 17. Traces of Young diagrams and jump sequences

The following lemma uses trace to compute weight.

Lemma 5.1. For the Schubert cell structure on Grk(Rn,1) corresponding to

the decomposition Rn,1 = Rk−1
triv ⊕R1

sgn ⊕Rn−ktriv , the weight of a Schubert cell
Ωλ is exactly the trace of λ.
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Proof. Fix a Young diagram λ = (λ1, . . . , λk) fitting inside of a k× (n− k)
grid. Recall it has jump sequence [λ1 + 1, . . . , λk + k] corresponding to the
location of 1s in the family of matrices whose rowspaces make up Ωλ. One
of two cases holds. Either

• No element of the jump sequence equals k, in which case each row
with a jump exceeding k contains a − in dimension k (see the top
two examples in Figure 18). So the number of − is #{i : ji > k} =
#{i : ji ≥ k + 1} = trace(λ).
or
• A 1 does lie in column k, say in row r. Then

trace(λ) = #{i : ji > k} = #{i : i > r} = k − r,

which also equals the number of − appearing to the left of this 1 in
row r (see bottom examples in Figure 18). This is because when a
matrix which is acted upon and rewritten in canonical Schubert cell
form (as on page 65), the r-th row will be multiplied by -1, changing
the sign on each of the k − r variables in that row.

Recall that the topological dimension of a Schubert cell corresponds to the
number of boxes in its Young diagram, and the weight to the number of
these − boxes. And so w(λ) = trace(λ). �

+ + − 1 0 0

+ + − 0 1 0

+ + − 0 0 1


w(3, 3, 3) = w([4, 5, 6]) = 3

+ 1 0 0 0 0

+ 0 − + 1 0

+ 0 − + 0 1


w(1, 3, 3) = w([2, 5, 6]) = 2− − 1 0 0 0

+ + 0 1 0 0

+ + 0 0 1 0


w(2, 2, 2) = w([3, 4, 5]) = 2

1 0 0 0 0 0
0 − 1 0 0 0
0 + 0 + + 1


w(0, 1, 3) = w([1, 3, 6]) = 1

Figure 18. k = 3, some cells in I(+ +−+ ++) for Gr3(R6,1).

Let part(p, k,m, t) denote the number of partitions of p into k non-
negative numbers not exceeding a maximum value m, such that the Young
diagram corresponding to the partition has trace t. Lemma 5.1 says that in
building Grk(Rn,1) using I(Rk−1

triv ⊕ Rsgn ⊕ Rn−ktriv ), the number of (p, q)-cells
is part(p, k, n− k, q).

5.1. Example. In the ingredients table I(+ +−+ + + ++) for Gr3(R8,1),

the number of (11, 2)-cells is part(11, 3, 5, 2) = 2. This counts and ,

but does not count, for example, (too many terms) or (a term
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exceeds 5) or the trace-3 diagrams or , which correspond instead to
(11, 3)-cells.

Now that we know the combinatorics of this construction, we show that
the corresponding equivariant cellular spectral sequence collapses.

Lemma 5.2. All differentials are zero in the cellular spectral sequence for
Grk(Rn,1) corresponding to the ordered decomposition Rn,1 = Rk−1

triv ⊕Rsgn⊕
Rn−ktriv .

Proof. In order for a nonzero differential to exist, there must be some Young
diagrams α and β in bidegrees allowing for a map from the generator of α
to the lower cone of β (by Lemma 4.3), and also with α ⊂ β (by Lemma
4.4). The bidegree requirement demands that the fixed-set dimension of
α is greater than that of β. That is, denoting the topological degree of λ
by |λ|, we must have |α| − w(α) > |β| − w(β). However, as α ⊂ β, the
diagram β could be built from α by successively adding blocks. Each block
would increase topological dimension by one, but could increase the trace
(and hence by Lemma 5.1 the weight w) by at most one. Thus α ⊂ β
implies |α| − w(α) ≤ |β| − w(β). These conflicting requirements show that
no differentials are possible if Grk(Rn,1) is built in this way. �

5.2. Example. Suppose α = (8) = so that |α| − w(α) = 8− 1.

• If β = (1, 8) = , then although α ⊆ β, there is no differential
to the filtration of β as 8 − 1 6> |β| − w(β) = 9 − 1. That is, θβ is
too low for a differential from α to reach it.

• On the other hand if β = (3, 3, 3) = then |β| − w(β) = 9 − 3 <
8 − 1, however, this doesn’t fit: α 6⊆ β and so there is still no
differential, by Lemma 4.4.

Theorem 1.4 is now immediate. We restate it here:

Theorem 5.3.

rankp,qM2
H•,•(Grk(Rn,1)) = part(p, k, n− k, q).

Proof. By Lemma 5.1, we have a cellular spectral sequence for Grk(Rn,1)
with generators on the E1 page corresponding to Young diagrams, with
topological dimension given by number of boxes, and weight given by trace.
By Lemma 5.2, this spectral sequence immediately collapses. �

5.3. Comment. In Section 1.5, we observed that the rows of the rank
charts of cohomologies H•,•(Grk(Rn,1)) are palindromes. We can deduce
this from the fact that rankp,qM2

H•,•(Grk(Rn,1)) counts Young diagrams of p

boxes with trace q fitting inside of a k-by-(n − k) box. To have trace q, a
Young diagram must have a q-by-q square as its southwest corner, with any
additional boxes lying in a region to the north or to the east of this square.
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complement

regions

complement

regions

complement

regions

complement

regions

complement

regions

Figure 19. Bijection between rank6,2
M2

and rank12,2
M2

in H•,•(Gr4(R9,1)).

For example, considering Gr4(R9,1), trace-2 diagrams take the form

k = 4


? ?
? ?
� ? ? ?

� ? ? ?︸ ︷︷ ︸
n−k=5

⊆ .

For a given trace q, the topological dimension p of a Young diagram (corre-
sponding to the number of boxes) is p = q2 + # ? where

0 ≤ # ? ≤ (k − q)q + q(n− k − q).

If we take the complementary diagram in these north and east regions, we
get a diagram of dimension

q2 + (k − q)q + q(n− k − q)−# ? = nq − p.

This process is clearly reversible, and forms a bijection. For example Figure
19 demonstrates this bijection in H•,•(Gr4(R9,1)) to show why rank6,2

M2
=

rank2∗9−6,2
M2

= rank12,2
M2

= 5.
More generally, this bijection proves:

Theorem 5.4.

rankp,qM2
H•,•(Grk(Rn,1)) = ranknq−p,qM2

H•,•(Grk(Rn,1)).

It would be nice if this apparent duality could be given a geometric in-
terpretation. We do not know one.
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6. Grassmannians Gr2(Rn,2)

6.1. Comment. In this section we work up to a general formula for the
cohomology of Gr2(Rn,2) somewhat slowly, starting with calculations for
small n which rely on observations about multiple Schubert cell construc-
tions. We do this until we reach a value of n after which we can use the
same construction each time, with no new differentials appearing.

This approach – comparing multiple constructions to deduce unknown
differentials – can be automated to perform further calculations not appear-
ing in this paper. In fact a Sage program generating a fund of computations
by investigating all possible constructions first motivated these results. We
hope to write more about this soon.

6.2. When n = 3. It happens that Gr2(R3,2) is actually isomorphic to
Gr1(R3,1) and so we have technically already done this computation in 2.1.
Nonetheless, the decomposition R3,2 = Rsgn ⊕ Rtriv ⊕ Rsgn = R−+− gives

I(+−+) = −
−
+

∅

with no possible differentials, since 7→ would give a nonzero map in
singular cohomology, and so H•,•Gr2(R3,2) = M2⊕Σ1,1M2⊕Σ2,1M2. By the
forgetful long exact sequence in 1.1, we can also say that each of these three
generators maps to the unique Schubert class in their topological dimension.
We represent this information by labeling generators in the rank chart by
their image under ψ.

1 2

1

∅

or in jump-sequence notation, 1 2

1

[1, 2]

[1, 3] [2, 3]

.

6.3. When n = 4. Next consider Gr2(R4,2). Two ingredients tables are
shown in Figure 20.

−
− −

+ −
− +

− + −
−
+

∅

.
− −

−
−

−
+ −

− +
+ −

∅ +

Figure 20. Ingredients tables I(−+−+) and I(+−−+) for Gr2(R4,2).

If we knew every cofiber sequence differential, we could iteratively attach
the cells using just one construction, computing the cohomology of the sub-
spaces using the long exact sequence for each cofiber Xk ↪→ Xk+1 → Sαk un-
til arriving at the answer. Considering the first construction, this is straight-
forward while building the two-skeleton, as no nonzero differentials were
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possible. However, when attaching the e3,3 labeled to this two-skeleton
whose cohomology must be M2 ⊕ Σ1,1M2 ⊕ (Σ2,1M2)⊕2, we have a possible
differential and, naively, no way to determine whether it is nonzero.

1 2 3

1

2

3

∅

? θ·

Figure 21. One stage of the − + −+ construction, corre-
sponding to the cofiber sequence for including the 2-skeleton
into the 3-skeleton.

If the differential is zero, we next attach an e4,2 which has no possible
differentials for bidegree reasons, and so our answer would be M2⊕Σ1,1M2⊕
(Σ2,1M2)⊕2⊕Σ3,3M2⊕Σ4,2M2. This is where the second construction comes
in. Notice the Σ3,3M2 in our first hypothetical scenario. In the second
construction of Figure 20, no chain of events can end with a generator in
this bidegree: The would have to shift up, which could only happen if a
later cell of fixed-set dimension 0 were attached (see [HM] for more details
on Kronholm shifts). As this cannot happen, our mystery differential in the
first construction must be non-zero, so that after the resulting shift, we have

H•,•(Gr2(R4,2)) = M2 ⊕ Σ1,1M2 ⊕ Σ2,1M2 ⊕ Σ2,2M2 ⊕ Σ3,2M2 ⊕ Σ4,2M2.

Thus we have now answered the question of the module structure of
H•,•(Gr2(R4,2)). We can also ask about the image of these generators under
the forgetful map ψ in terms of Schubert elements. Most of the generators
of this free module have an obvious image under ψ, as there is a unique
generator in most dimensions of the non-equivariant cohomology. But there
is some room for ambiguity in dimension 2.
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1 2 3 4

1

2

∅

x

y

Figure 22. H•,•(Gr2(R4,2)). We choose a generator in each
bidegree with a free summand. The image under ψ in dimen-
sions other than 2 is unambiguous. What can be said about
the choices ψ(x) and ψ(y)? (Note we choose a generator
because for example we could replace y with y′ = y + ρx.)

We wish to know the images under ψ of x and y. The span of ψ(x)

and ψ(y) is that of the non-equivariant Schubert classes and . But

it isn’t clear yet who is sent where. Consider the inclusion Gr2(R+−−)
i−→

Gr2(R+−−+). Note that from Figure 20, Gr2 R4,2/Gr2 R3,2 can be built from a

point and cells of weight two in such a way that H̃2,1( Gr2 R4,2/Gr2 R3,2) = 0.
We have long exact sequences in both equivariant and singular cohomology:

H̃2,1(Gr2R3,2)

H̃2,1(Gr2R4,2)

H2
sing(Gr2R3,2)

H2
sing(Gr2R4,2)ψ

ψ

i∗ i∗

H̃2,1( Gr2 R4,2/Gr2 R3,2) = 0

x +

In the diagram for H̃2,1, since i∗ is injective, the element x is sent to
(the unique nonzero element – see Section 6.2) which is then sent to the

corresponding Schubert class by the forgetful map ψ. This element has

two preimages in H2
sing Gr2(R4,2), the elements and + . This leaves

four possibilities:

ψ(x) = and ψ(y) = (1)

ψ(x) = and ψ(y) = + (2)

ψ(x) = + and ψ(y) = (3)

ψ(x) = + and ψ(y) = (4)
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Note that actually (1) and (2) are equivalent up to the change of basis x′ = x
and y′ = y+τx. Cases (3) and (4) are also equivalent under the same change
of basis.

To resolve the remaining ambiguity, define the self-map P : Gr2(R4,2)→
Gr2(R4,2) by V 7→ V ⊥. After ψ, P ∗ maps Young diagrams to their trans-
poses (see Appendix A, Corollary A.8). This makes scenario (1) ∼ (2) im-
possible by looking at H2,1: While we would have P ∗(ψ(x)) = P ∗( ) = ,
the element 6∈ ψ(P ∗(H2,1)) = ψ(H2,1). And so, up to choice of generator

in H2,2, which we will denote by / , we can represent H•,•(Gr2(R4,2)) as

1 2 3 4

1

2

∅

+

/

Figure 23. The rank table for H•,•(Gr2(R4,2)), with gener-
ators labeled by their images under ψ.

Note that this version is indeed compatible with P ∗. In H2,1 the involu-

tion fixes + = + and in H2,2, P ∗ interchanges / and / .

And so in addition to knowing the module structure of this cohomology, we
know the action of the forgetful map in terms of Schubert classes. This is
a first step towards determining the equivariant Schubert calculus, which is
outside the scope of this paper.

6.4. Gr2(Rn,2) for n = 5, 6 or 7.

Now things start to become more straightforward.

Begin with the following ingredients table for Gr2(R5,2):

I(+−+−+) =

−
− −

+ −
+ − −

− + −
+ − +

− + −
−
+ + −

+ −
− +

− + −
−
+

∅

.

First observe that this construction of Gr2(R+−+−+) inherits the Kronholm
shift of its subspace Gr2(R+−+−). The inclusion i : R+−+− ↪→ R+−+−+
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induces

i∗ : H2,1(Gr2R5,2)→ H2,1(Gr2R4,2) = Z/2.

If Gr2(R+−+−+) didn’t also have a differential hitting θ , then we would
have H2,1(Gr2R5,2) = (Z/2)2, giving i∗ a nonzero kernel, and also

ψ : H2,1(Gr2R5,2) ↪→ H2
sing(Gr2(R5)) = (Z/2)2

would be an isomorphism. Since in singular cohomology the inclusion in-
duces an isomorphism i∗ : H2

sing(Gr2(R5))→ H2
sing(Gr2(R4)), this would be

a failure of naturality. Hence we again have nonzero d : 〈 , 〉 → 〈θ 〉.
Since no other possible nonzero differentials arise in the first construction

for bidegree reasons, we have re-derived the cohomology deduced in Example
2.4. We are now also justified in labeling these generators with their images
under ψ, since each topological dimension above the second has generators
in only one weight. So we may represent H•,•(Gr2(R5,2)) as in Figure 24.

1 2 3 4 5 6

1

2

3

∅

+

/ , ,

Figure 24. A representation of H•,•(Gr2(R5,2))

We will not continue further with these forgetful map calculations, but
see Section 6.6 for further discussion of difficulties with this question.

As we continue to investigate Gr2(Rn,2) for larger n, we will see that no
new differentials ever arise if we use I(+−+−+ . . .+). At first this is trivial.
We switch to jump sequence notation for space reasons, omitting the square
brackets but parenthesizing a few elements to discuss. For Gr2(R6,2), the
ingredients table is
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I(+−+−++) =

5,6
(2, 4) 3,5 3,6

4,5
4,6

1,5 1,6
2,5
3,4

2,6

1,3 (1,4)
(2,3)

1,2

0 2 4 6 8

and for Gr2(R7,2), the ingredients table is

I(+−+−+ + +) =

5,6 5,7 6,7
(2, 4) 3,5 3,6

4,5
3,7
4,6

4,7

1,5 1,6
2,5
3,4

1,7
2,6

2,7

1,3 (1,4)
(2,3)

1,2

0 2 4 6 8 10

.

The only possible differentials, just for bidegree reasons, would occur be-
tween the parenthetical entries. That is, with the exception of [2, 4] = ,
no other generator has a weight high enough that its lower cone falls within
range of a possible differential. Again by naturality this one Kronholm shift
occurs, and we have our answer.

6.5. When n = 8.
However, when we get to Gr2(R8,2), we have I(+−+−+ + ++) =

(5,6) 5,7 5,8
6,7

6,8 7,8

2,4 3,5 3,6
4,5

3,7
4,6

3,8
4,7

4,8

1,5 1,6
2,5
3,4

1,7
2,6

1,8
2,7

(2, 8)

1,3 1,4
2,3

1,2

0 2 4 6 8 10 12

with a differential possible (at least in terms of the bigrading) from [2, 8] to
θ[5, 6], or in Young notation, 7→ θ . But notice that whereas our
nonzero differential back in Section 6.3 had both and fitting inside of

, that is not the case here.



88 ERIC HOGLE

This is significant because as seen in Section 2.3, containment of subva-
rieties corresponds to containment of Young diagrams. As 6⊂
or equivalently in jump sequence notation, as [2, 8] 6≺ [5, 6], we know that
X[2,8] 6⊆ X[5,6] and so by Theorem 4.2, attaching Ω[5,6] creates no nonzero
differentials.

In fact, this generalizes for Gr2(Rn,2) with n ≥ 8. If we chose the identifi-
cation Rn,2 = R+−+−⊕(R+)n−4, the representation cell structure and hence
the ingredients table I(R+−+− ⊕ (R+)n−4) is as follows. A jump sequence
[j1, j2], will give rise to a cell of topological dimension (j1−1) + (j2−2) and
by observation will have weight w([j1, j2]) =

1 if [j1, j2] = [1, 3], [1, 4] or [2, 3] from

[
1

0 − 1

]
,

[
1

0 + − 1

]
,

[
− 1

+ 0 1

]

2 if [j1, j2] = [3, 4] or [2,≥ 5] from

[
+ − 1

+ − 0 1

]
,

[
− 1

+ 0 + − + . . . + 1

]

2 if [j1, j2] = [1,≥ 5] from

[
1

0 − + − + . . . + 1

]

3 if [j1, j2] = [2, 4] or [3,≥ 5] from

[
− 1

− 0 − 1

]
,

[
+ − 1

+ − 0 − + . . . + 1

]

3 if j1 = 4 from

[
− + − 1

+ − + 0 + . . . + 1

]

4 if j1 ≥ 5 from

[
+ − + − + . . . + 1

+ − + − + . . . + 0 + . . . + 1

]
.

For example Gr2(R10,2) has ingredients I(+−+−+ + + + ++) =

5,6 5,7 5,8
6,7

5,9
6,8

5,10
6,9
7,8

6,10
7,9

7,10
8,9

8,10 9,10

(2,4) 3,5 3,6
4,5

3,7
4,6

3,8
4,7

3,9
4,8

3,10
4,9

4,10

1,5 1,6
2,5
3,4

1,7
2,6

1,8
2,7

1,9
2,8

1,10
2,9

2,10

1,3 (1,4)
(2,3)

1,2

0 5 10 15

.

For generators above topological dimension 3, the only possible differentials
(that is, possible with respect to bidegree) supported by these generators
would be maps from α in bidegree (x, 2) to θβ for generators β in (x+ 1, 4).
These α will have jump sequences [1, x + 2] or [2, x + 1], while the β’s
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jump sequence could be [5, x− 1], [6, x− 2], [7, x− 3] etc. In any case, the
second number in the jump sequence of each α will be larger than that of
a corresponding β, so there is no dominance relation, or in terms of Young
diagrams, α 6⊆ β. Now by Theorem 4.2 this differential is actually zero.

And so with the exception of the lone nonzero differential to θ[2, 4], i.e.
θ , all differentials are zero. We can now count the number of generators
ending up in each bidegree. Row by row, if M = H•,•(Gr2(Rn,2)) for n ≥ 8,

rankp,0
M2
M =

{
1 p = 0

0 else.

rankp,1
M2
M =

{
1 p = 1, 2

0 else

rankp,2
M2
M =


3 p = 4

2 p = 3 or 5 ≤ p ≤ n− 2

1 p = 2, n− 1

0 else

rankp,3
M2
M =


2 6 ≤ p ≤ n
1 p = 5, n+ 1

0 else

rankp,4
M2
M =


dp−72 e 8 ≤ p ≤ n+ 1

n− 1− dp2e n+ 2 ≤ p ≤ 2n− 4

0 else

This can also be rewritten to obtain the equally unattractive formula of
Theorem 1.5.

6.6. Warning. We must be careful not to get carried away in assuming
that the images under ψ of these generators correspond to the Schubert
cells which are their “reason” for appearing where they do in cohomology4.
For example, in constructing Gr2(R3,1), we have I(−+ +) =

∅

which must shift to

∅

because, for example, Gr2(R3,1) ∼= Gr1(R3,1). (See Section 2.1.) However
when we proceed to build Gr2(R4,2) by attaching the remaining cells of
I(−+ +−) =

4Notice that we stopped labeling generators with their forgetful images at Gr2(R5,2).
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∅ ,

there are no possible nonzero differentials, and so we may be tempted to
keep these Young diagram labelings, and assert that the forgetful map

ψ : H•,•(Gr2(R4,2))→ Hsing(Gr2(R4))

sends these generators to the non-equivariant Schubert cell corresponding to
those Young diagrams. In fact we know from Section 6.3 that this is false.
Each attachment of a new cell raises doubts as to the forgetful image of the
cohomology. Put another way, maps in equivariant cohomology induced by
inclusion of Grassmannians need not respect Schubert symbols in singular
cohomology.

For this reason, when we looked at the ingredients table for Gr2(R10,2)
above, while we know all of the differentials, and thus the ranks in each
dimension, we don’t (yet) have a good reason to assign to these generators
the Schubert symbols we would naturally wish to.

7. Some infinite Grassmannians

We can now also deduce the cohomologies of the analogous infinite Grass-
mannians which follow from these results. As a consequence of Theorem 6.2
of [HM], the infinite Grassmannian Gr2(R∞,2) will have free cohomology
and a zero lim1 term, and so from Theorem 1.5, the rank table begins

2

1

2 2

2

1

1

2

1

23

1 2

2

1

8

2 2 2 2 2 . . .

2 2 2 2 2 . . .

1 2 2 3 3 . . .

and then as dimension increases,

Theorem 7.1. For p ≥ 8,

rankM2 H
p,•(Gr2(R∞,2)) =


dp−7

2 e • = 4

2 • = 3

2 • = 2

0 else.
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Similarly, as a consequence of Theorem 5.3,

Theorem 7.2.

rankM2 H
p,q(Grk(R∞,1)) = part(p, k,∞, q).

Using the logic from Comment 5.3 which considers a q-by-q square with
a region north and a region to the east, this formula can also be expressed
(for p ≥ q2)

rankM2 H
p,q(Grk(R∞,1)) =

q(k−q)∑
i=1

part(i, k − q, q, ∗) part(p− q2 − i, q, ∗, ∗)

where the ∗ denotes omitting that restriction, so part(a, b, c, ∗) counts parti-
tions of a into b parts not exceeding c but having any trace, and part(a, b, ∗, ∗)
counts partitions of a into b numbers of any size and trace.

8. Complex Grassmannians

Modified statements of the results of this paper also apply to complex
Grassmannians. Note that while in the real case, a Schubert cell indexed by a
partition λ of some integer |λ| corresponds to a |λ|-disc, that is, Ωλ(R) ' e|λ|,
in the complex case, each complex variable contributes two real dimensions:
Ωλ(C) ' e2|λ|.

Define Ctriv and Csgn analogously so in Csgn we have z 7→ −z, and then

let Cp,q = Cp−qtriv ⊕C
q
sgn as in the real case. For each partition λ fitting inside

a k-by-(n−k) rectangle, whenever Grk(Rp,q) has Ωλ(R) ∼= ea,b, the complex
Grassmannian Grk(Cp,q) has Ωλ(C) ∼= e2a,2b. Recall that a differential d :

Σa,bM+
2 → Σa′,b′M−2 is possible only when a′ − b′ < a − b. Because this is

equivalent to the inequality 2a′−2b′ < 2a−2b, the possible differentials on the
E1 page of a cellular filtration spectral sequence of a complex Grassmannian
occur between the same Schubert cell filtrations as in the real case. And if
the same possible differentials are, in fact nonzero, the Kronholm shifts (see
formulas in [HM]) will be twice as large in the complex case, meaning the
same possible differentials present themselves on E2, and so on.

8.1. Warning. Because of the essentially un-geometric approach to differ-
entials in this paper, we have no reason to claim that a nonzero differential
in the real case must correspond to a nonzero differential in the complex
case, or vice versa.

However, because the arguments in Lemma 5.1 are almost identical with
complex variables, we may conclude that in the Cn,1 = Ck−1

triv ⊕ Csgn ⊕
Cn−ktriv construction of Grk(Cn,1), the trace of a Schubert cell determines its

weight: Ωλ(C) ' e2|λ|,2 traceλ. As the complex Grassmannian still satisfies
the assumptions of Theorem 4.2, we have the analogous theorem:
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Theorem 8.1. If p or q is odd, rankp,qM2
H•,•(Grk(Cn,1)) = 0, while

rank2p,2q
M2

H•,•(Grk(Cn,1)) = part(p, k, n− k, q).

Because the arguments of Section 6 are identical if we just double every
bidegree, and the “perp map” argument in Appendix A applies to both the
real and complex case, we can also conclude

Theorem 8.2.

rankp,qM2
H•,•(Gr2(Cn,2)) =

{
rank

p
2
, q
2

M2
H•,•(Gr2(Rn,2)) p and q even

0 else.

8.2. Remark. We can also give C the conjugation action, z 7→ z̄. Note that
Cconj

∼= R2,1. And so Grk(Cnconj) has Schubert cells Ωλ
∼= e2|λ|,|λ|. Purely for

degree reasons, no possible differentials α→ θ
ρiτ j

β exist when α has bidegree

(2x, x) and β has bidegree (2y, y). Thus the spectral sequence for Grk(Cnconj)

collapses on the first page. Denoting ri = dimH2i
sing(Grk(Cn); Z/2), we have

H•,•(Grk(Cnconj)) =

k(n−k)⊕
i=0

(Σ2i,iM2)ri .

8.3. Example. Consider Gr2(C4
conj). The action on the Schubert cell

Ω =

{
rowspace

[
z1 1 0 0
z2 0 z3 1

]
: zi ∈ C

}

=

{
rowspace

[
x1 + y1i 1 0 0
x2 + y2i 0 x3 + y3i 1

]
: xi, yi ∈ R

}
' e6

sends [
x1 + y1i 1 0 0
x2 + y2i 0 x3 + y3i 1

]
7→
[
x1 − y1i 1 0 0
x2 − y2i 0 x3 − y3i 1

]
and so Ω ' e6,3. Analogous consideration for the other Schubert cells give

a spectral sequence whose E1 page has generators as shown.

1 2 3 4 5 6 7 8

1

2

3

4

∅
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As this collapses,

H•,•(Gr2(C4
conj)) = M2 ⊕ Σ2,1M2 ⊕ (Σ4,2M2)⊕2 ⊕ Σ6,3M2 ⊕ Σ8,4M2.

8.4. Remark. Finally, the observations in Section 7 can be similarly du-
plicated to infinite complex Grassmannians by replacing every Σa,bM2 with
Σ2a,2bM2. This includes the family Grk(C∞conj), which satisfies the finite-type

condition of [HM].

Appendix A. The perp map

The goal of this appendix is to show how the map induced in singular
cohomology by the “perpendicular complement” map of Grassmannians acts
on Schubert symbols. This result is needed in section 6.3.

Throughout the appendix, let F denote either R or C as desired.

Definition A.1. Given a partition λ = (λ1, λ2, . . . , λk), corresponding to a
Schubert cell in Grk Fn, define the transpose λT by

λT = (#{j : λj > n− k − 1},#{j : λj > n− k − 2}, . . . ,
#{j : λj > 1},#{j : λj > 0}) .

Or more briefly,

λTi = #{j : λj > n− k − i} for 1 ≤ i ≤ n− k.

This partition corresponds to a Schubert cell in Grn−k Fn.

As we might hope, the Young diagram of λT looks like that of λ but
reflected across a diagonal.

A.1. Example. If we consider as indexing a cell of Gr3(F7) then

T
= (0, 1, 3)T

= (#{i : λi > 7− 3− 1},#{i : λi > 2},#{i : λi > 1},#{i : λi > 0})
= (#∅,#{2},#{2},#{1, 2})
= (0, 1, 1, 2)

= .

A.2. Note. The four-tuple (0, 1, 1, 2) indexes a cell in Gr4(F7). Had we
instead considered as indexing a cell of, for example, Gr5(F12) then
we would have (0, 0, 0, 1, 3)⊥ = (0, 0, 0, 0, 1, 1, 2), which indexes a cell of
Gr7(F12).

Up to this point, when we expressed a Schubert cell as the collection
of k-planes which are rowspaces of matrices of a certain form, we haven’t
bothered to make explicit reference to a choice of basis for Fn. Now we will
need to.
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Definition A.2. If we let {ei}ni=1 be the standard orthonormal basis of Fn,
we will wish to denote the reverse basis {en−i+1}ni=1 by {êi}ni=1. We will
give subscripts to the rowspace operator, so that for a basis {bi}ni=1 and a
matrix M , rowspace{bi}(M) denotes the F-span of the {bi}-linear combina-
tions taken from the rows of M , that is

rowspace{bi}

x1,1 . . . x1,n
...

. . .
...

xk,1 . . . xk,n

 =

〈
n∑
j=1

xi,jbj


k

i=1

〉
F.

In particular, we have

rowspace{ei}

x1,1 . . . x1,n
...

. . .
...

xk,1 . . . xk,n

 = rowspace{êi}

x1,n . . . x1,1
...

. . .
...

xk,n . . . xk,1


= rowspace{êi}

xk,n . . . xk,1
...

. . .
...

x1,n . . . x1,1

 .
Definition A.3. Let Ωλ denote the Schubert cell in the standard basis, while

Ω̂λ means the Schubert cell defined with respect to the reverse basis. So if

M is a matrix such that rowspace{ei}M ∈ Ωλ, then rowspace{êi}M ∈ Ω̂λ.

Consider the equivariant homeomorphism

P : Grk(Fp,q)→ Grp−k(Fp,q)

V 7→ V ⊥

sending each k-plane V ∈ Grk(Fp,q) to its perpendicular complement (with
respect to the dot product), the (p−k)-plane P (V ) = V ⊥ ∈ Grp−k(Fp,q). It
is a useful fact that this is a cellular map under the Schubert construction,
mapping Schubert cells in a given flag indexed by λ bijectively onto Schubert
cells in the reverse flag with transpose Young diagrams:

P (Ωλ) = Ω̂λT .

Before proving this fact, we give an example.

A.3. Example. Take Ω in Gr2 F5. This is the collection of F-planes of
the form

V = rowspace{ei}

[
x1,1 1 0 0 0
x2,1 0 x2,3 x2,4 1

]
for all x1,1, x2,1, x2,3, x2,4 ∈ F. A vector ~y = (y1, . . . , y5) is perpendicular to
this plane if y1x1,1 + y2 = 0 and also y1x2,1 + y3x2,3 + y4x2,4 + y5 = 0. These
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relations let us write ~y just in terms of y1, y3 and y4:

~y = (y1,−y1x1,1, y3, y4,−(y1x2,1 + y3x2,3 + y4x2,4)) = y1(1,−x1,1, 0, 0,−x2,1)

+ y3(0, 0, 1, 0,−x2,3)

+ y4(0, 0, 0, 1,−x2,4).

in other words,

{~y : ~y ⊥ V } = rowspace{ei}

1 −x1,1 0 0 −x2,1

0 0 1 0 −x2,3

0 0 0 1 −x2,4

 ∈ P (Ω )
.

Changing to the reverse flag, we have

V ⊥ = rowspace{êi}

−x2,4 1 0 0 0
−x2,3 0 1 0 0
−x2,1 0 0 −x1,1 1

 ∈ Ω̂ = Ω̂
( )

T ⊂ Gr3(F5).

Since (V ⊥)⊥ = V , this map is invertible, and so Ω and Ω̂ are in

bijective correspondence.

To prove that this phenomenon persists generally, we need two lemmas.
The first is fairly obvious.

Definition A.4. A Boolean matrix is one whose entries consist of 0 and 1.

Lemma A.5. Boolean matrices with monotone columns are determined by
their column sums. Similarly, boolean matrices with monotone rows are
determined by their row sums.

Proof. If a boolean matrix A = [~a1 ~a2 . . . ~ak] has columns ~ai, each of
which is weakly increasing, and the sum of the entries in ~ai is s, then that
column’s last s entries are 1, and the rest 0. The proofs if we replace
“increasing” with “decreasing” or “columns” with “rows” are analogous. �

The second lemma is a combinatorial identity.

Lemma A.6. Fix n and a partition λ having k < n terms not exceeding
n− k. Let H be the complement of the jump sequence for λ:

H = [1, n] \ {λl + l : 1 ≤ l ≤ k}.

Index H by H = {hi}n−ki=1 such that hi ≤ hi+1. Then for each i we have

#{j : λj + j > hi and 1 ≤ j ≤ k} = #{j : λj > i− 1 and 1 ≤ j ≤ k}.

Proof. To prove that these sets have the same size, we will view their
cardinalities as the sums of columns in boolean arrays. Define, for i ∈
[1, n− k] and j ∈ [1, k] the quantities

χi,j =

{
1 λj + j > hi

0 else
and ξi,j =

{
1 λj > i− 1

0 else.
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We can now rephrase the lemma as the claim that for all i,
∑

j χi,j =
∑

j ξi,j .

Note that the (n−k)-by-k boolean arrays [χ] and [ξ] are monotonic in both i
and j, and hence by Lemma A.5, determined by these sums of their columns.
They are also determined by the sums of their rows. And fixing j,∑

i

χi,j = #{i : λj + j > hi} = #{hi : hi < λj + j}

= # ([1, λj + j] \ {λl + l : 1 ≤ l ≤ j})
= (λj + j)− j
= λj

while ∑
i

ξi,j = #{i : λj > i− 1} = #{1, 2, . . . , λj} = λj .

Hence, in fact χi,j ≡ ξi,j for all i and j. This proves the lemma. �

A.4. Example. In Example A.3, n = 5, k = 2 and λ = [1, 3] so H =
[1, 5] \ {2, 5} = {1, 3, 4} = {h1, h2, h3}, and χi,j ≡ ξi,j , each have table

j \ i 1 2 3
1 1 0 0
2 1 1 1

.

For example, χ3,2 = 1 because 3 + 2 > 4 and ξ3,2 = 1 because 3 > 3− 1.
And so

#{j : λj + j > h1} =2 = #{j : λj > 1− 1}
#{j : λj + j > h2} =1 = #{j : λj > 2− 1}
#{j : λj + j > h3} =1 = #{j : λj > 3− 1}.

Theorem A.7. The perp map P : Grk(Fn) → Grn−k(Fn) is a homeo-
morphism sending each Schubert cell Ωλ ⊆ Grk(Fn) homeomorphically to

Ω̂λT ⊆ Grn−k(Fn), for each λ indexing Schubert cells of Grk(Fn).

Proof. Let λ = [λ1, λ2, . . . , λk], and H = [1, n] \ {λl + l : 1 ≤ l ≤ k}. If
V ∈ Ωλ,

V = rowspace{ei}


x1,1 . . . x1,λ1 1 0 . . . 0 0 . . . 0
x2,1 . . . x2,λ1 0 x2,λ1+2 . . . 1 0 . . . 0
...

...
...

...
...

...
...

xk,1 . . . xk,λ1 0 xk,λ1+2 . . . 0 xk,λ2+3 . . .



=

〈
∑
i∈H

i<λj+j

xj,iei + eλj+j


k

j=1

〉
.
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for some xi,j ∈ F. A vector ~y = (y1, . . . , yn) lies in P (V ) = V ⊥ if it is
perpendicular to each row of the matrix, which gives the relations

yλ1+1 = −
∑

i<λ1+1

yix1,i

yλ2+2 = −
∑
i∈H

i<λ2+2

yix2,i

...

yλj+j = −
∑
i∈H

i<λj+j

yixj,i

expressible in the standard basis {ei}ni=1,

~y =
∑
i∈H

yiei−
k∑
j=1

 ∑
i∈H

i<λj+j

yixj,i

 e(λj+j) =
∑
i∈H

yi

ei − ∑
{j:λj+j>i}

xj,ieλj+j


And so the vector ~y lies in the span〈
ei −

∑
{j:λj+j>i}

xj,ieλj+j

〉
i∈H

=

〈 ∑
{j:λj+j>i}

(−xj,iên−λj−j+1) + ên−i+1

〉
i∈H.

This is rowspace{êi}M for an (n − k)-by-n matrix M . For each of the
n−k values in H, we want to count the number of free variables xj,i in that

row. Enumerating H = {hi}n−ki=1 and fixing i, by Lemma A.6 and Definition
A.1, this number is

#{j : λj + j > hi} = #{j : λj ≥ i− 1}
= #{j : λj ≥ n− k − (n− k + 1− i)}
= (λT )(n−k+1)−i.

In other words, if r counts up from the bottom row, the rth row has λTr free
variables.

And so P (Ωλ) = Ω̂λT . �

Finally, we want to deduce the action of the map induced by P on singular
cohomology.

Corollary A.8. For P : Grk(Fn) → Grn−k(Fn) the perp map, P ∗([Ωλ]) is
[ΩλT ] for every λ indexing a cell of Grk(Fn).

When the perp map is a self-map (and involution) of Grk(F2k,q), Corol-
lary A.8 can be used to rule out certain possibilities of the forgetful image
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of generators. We do this in Section 6.3 when computing the images of
generators of H•,•(Gr2R4,2) under ψ.

Proof of Corollary A.8. In this paper, we refer to elements of cellular
cohomology by their dual cells. That is, if F = R, the element [ ] ∈
H3(Grk Rn) is the class of the cocycle defined by Ωλ 7→ δλ, . For any two

orthonormal bases {bi} and {βi} of Rn, there exists a path γ : I → SO(n)
so that γ(0)bi = bi for 1 ≤ i ≤ n, γ(1)bi = βi for 1 ≤ i < n and either
γ(1)bn = βn or γ(1)bn = −βn. When M is the matrix corresponding to
some partition λ, the map rowspace{β1,...,βn}M 7→ rowspace{β1,...,−βn}M is
a homeomorphism of Ωλ, and so in either case this one-parameter family

shows that [Ω̂λ] = ±[Ωλ] = [Ωλ], as we are working mod 2. Of course, if
F = C, as U(n) is path-connected, we needn’t even worry about this ±βn
issue.

And so by Theorem A.7, P ∗([Ωλ]) = [Ω̂λT ] = [ΩλT ]. �
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