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On groupoids and C∗-algebras from
self-similar actions

Valentin Deaconu

Abstract. Given a self-similar groupoid action (G, E) on the path space of
a �nite graph, we study the associated Exel-Pardo étale groupoid G(G, E) and
its C∗-algebra C∗(G, E). We review some facts about groupoid actions, skew
products and semi-direct products and generalize a result of Renault about
similarity of groupoids which resembles Takai duality. We also describe a
general strategy to compute the K-theory of C∗(G, E) and the homology of
G(G, E) in certain cases and illustrate with an example.
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1. Introduction
Informally, a self-similar action is given by isomorphisms betweenparts of an

object (think fractals or Julia sets) at di�erent scales. Self-similar actions were
studied intensely after exotic examples of groups acting on rooted trees and
generated by �nite automata, like in�nite residually �nite torsion groups, and
groups of intermediate growth were constructed by Grigorchuk in the 1980’s.
Using the Pimsner construction from a C∗-correspondence, Nekrashevych in-
troduced the C∗-algebras associated with self-similar group actions in [13, 14],
where important results about their structure and theirK-theorywere obtained.
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Motivated by the construction of all Kirchberg algebras in the UCT class us-
ing topological graphs given by Katsura, in [7] Exel and Pardo introduced self-
similar group actions on graphs and realized their C∗-algebras as groupoid C∗-
algebras.

In this paper, we are interested in self-similar actions of groupoids G on the
path space of �nite directed graphs E as introduced and studied in [10], where
themain goal was to �nd KMS states on some resulting dynamical systems. We
generalize certain results of Exel and Pardo, in particular we de�ne a groupoid
G(G, E) anddiscuss the structure of theC∗-algebraC∗(G, E), de�ned as aCuntz-
Pimsner algebra of a C∗-correspondence over C∗(G). The C∗-algebra C∗(G, E)
has a natural gauge action and contains copies of C∗(E) and C∗(G). In general,
its structure is rather intricate; in a particular case, C∗(G, E) ≅ C∗(E) ⋊ G.

We beginwith a review of étale groupoid homology, thenwe recall some facts
about groupoid actions, skew products and semi-direct products and generalize
a result of Renault about similarity of groupoids in the spirit of Takai duality.
We also describe a general strategy to compute theK-theory ofC∗(G, E) and the
homology of G(G, E) in certain cases. We illustrate with an example.

We expect that many of our results will be true for self-similar actions of
groupoids on the path space of in�nite graphs. For the case when G is a group,
see [8, 11].

2. Homology of étale groupoids
A groupoid G is a small category with inverses. The set of objects is denoted

by G(0). We will use d and t for the domain and terminus maps d, t ∶ G → G(0)
to distinguish them from the range and sourcemaps r, s on directed graphs. For
u, v ∈ G(0), we write

Gu = {g ∈ G ∶ d(g) = u}, Gv = {g ∈ G ∶ t(g) = v}, Gvu = Gu ∩ Gv.

The set of composable pairs is denoted G(2).
An étale groupoid is a topological groupoid where the terminus map t (and

necessarily the domain map d) is a local homeomorphism (as a map from G to
G). The unit space G(0) of an étale groupoid is always an open subset of G.

De�nition 2.1. Let G be an étale groupoid. A bisection is an open subsetU ⊆
G such that d and t are both injective when restricted to U.

Two units x, y ∈ G(0) belong to the same G-orbit if there exists g ∈ G such
that d(g) = x and t(g) = y. We denote by orbG(x) the G-orbit of x. When every
G-orbit is dense inG(0), the groupoidG is calledminimal. An open setV ⊆ G(0)
is called G-full if for every x ∈ G(0) we have orbG(x) ∩V ≠ ∅. We denote by GV
the subgroupoid {g ∈ G | d(g), t(g) ∈ V}, called the restriction ofG toV. When
G is étale, the restriction GV is an open étale subgroupoid with unit space V.

The isotropy group of a unit x ∈ G(0) is the group

Gxx ∶= {g ∈ G | d(g) = t(g) = x},
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and the isotropy bundle is

G′ ∶= {g ∈ G | d(g) = t(g)} =
⋃

x∈G(0)
Gxx .

A groupoid G is said to be principal if all isotropy groups are trivial, or equiva-
lently, G′ = G(0). We say that G is e�ective if the interior of G′ equals G(0).

De�nition 2.2. A second countable groupoid G is ample if it is étale and G(0)
is zero-dimensional; equivalently, G is ample if it has a basis of compact open
bisections. An ample groupoid G is elementary if it is compact and principal.
An ample groupoid is anAF groupoid if there exists an ascending chain of open
elementary subgroupoids G1 ⊆ G2 ⊆ ... ⊆ G such that G =

⋃∞
i=1 Gi.

We recall now the de�nion of homology of étale groupoids which was in-
troduced by Crainic and Moerdijk in [3]. Let A be an Abelian group and let
� ∶ X → Y be a local homeomorphism between two locally compact Haus-
dor� spaces. Given any f ∈ Cc(X,A), we de�ne

�∗(f)(y) ∶=
∑

�(x)=y
f(x).

It follows that�∗(f) ∈ Cc(Y, A). Given an étale groupoidG, letG(1) = G and
for n ≥ 2 let G(n) be the space of composable strings of n elements in G with
the product topology. For n ≥ 2 and i = 0, ..., n, we let )i ∶ G(n) → G(n−1) be
the face maps de�ned by

)i(g1, g2, ..., gn) =
⎧

⎨
⎩

(g2, g3, ..., gn) if i = 0,
(g1, ..., gigi+1, ..., gn) if 1 ≤ i ≤ n − 1,
(g1, g2, ..., gn−1) if i = n.

We de�ne the homomorphisms �n ∶ Cc(G(n), A) → Cc(G(n−1), A) given by

�1 = d∗ − t∗, �n =
n∑

i=0
(−1)i)i∗ for n ≥ 2.

It can be veri�ed that �n◦�n+1 = 0 for all n ≥ 1.
The homology groupsHn(G, A) are by de�nition the homology groups of the

chain complex Cc(G(∗), A) given by

0
�0⟵Cc(G(0), A)

�1⟵Cc(G(1), A)
�2⟵Cc(G(2), A)⟵⋯,

i.e. Hn(G, A) = ker �n∕im �n+1, where �0 = 0. If A = ℤ, we write Hn(G) for
Hn(G,ℤ).

The following HK-conjecture of Matui states that the homology of an étale
groupoid re�nes the K-theory of the reduced groupoid C∗-algebra. Let G be a
minimal e�ective ample Hausdor� groupoid with compact unit space. Then
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Ki(C∗r (G)) ≅
∞⨁

n=0
H2n+i(G), for i = 0, 1.

Recently, this conjecture was the source of intense research. It was con-
�rmed for several groupoids like AF-groupoids, transformation groupoids of
Cantorminimal systems, groupoids of shifts of �nite type andproducts of group-
oids of shifts of �nite type (see [12]). The homology of ample Hausdor� group-
oids was investigated in [9], with emphasis on the Renault-Deaconu groupoids
associated to k pairwise-commuting local homeomorphisms of a zero dimen-
sional space. It was shown that the homology of k-graph groupoids can be com-
puted in terms of the adjacency matrices, using spectral sequences and a chain
complex developed by Evans in [6]. The HK-conjecture was also con�rmed for
groupoids on one-dimensional solenoids in [20]. Recently, counterexamples to
the HK-conjecture of Matui were found by Scarparo in [18] and by Ortega and
Sanchez in [16].

3. Groupoid actions and similarity
We recall the concept of a groupoid action on another groupoid from [1],

page 122 and from [5].

De�nition 3.1. A topological groupoid G acts (on the right) on another topo-
logical groupoidH if there are a continuous open surjection p ∶ H → G(0) and
a continuous mapH ∗ G → H, write (ℎ, g) ↦ ℎ ⋅ g where

H ∗ G = {(ℎ, g) ∈ H × G ∣ t(g) = p(ℎ)}
such that

i) p(ℎ ⋅ g) = d(g) for all (ℎ, g) ∈ H ∗ G,
ii) (ℎ, g1) ∈ H ∗ G and (g1, g2) ∈ G(2) implies that (ℎ, g1g2) ∈ H ∗ G and

ℎ ⋅ (g1g2) = (ℎ ⋅ g1) ⋅ g2,

iii) (ℎ1, ℎ2) ∈ H(2) and (ℎ1ℎ2, g) ∈ H ∗ G implies (ℎ1, g), (ℎ2, g) ∈ H ∗ G
and

(ℎ1ℎ2) ⋅ g = (ℎ1 ⋅ g)(ℎ2 ⋅ g),

iv) ℎ ⋅ p(ℎ) = ℎ for all ℎ ∈ H.
The action is called free if ℎ ⋅ g = ℎ implies g = p(ℎ) and transitive if for all
ℎ1, ℎ2 ∈ H there is g ∈ G with ℎ2 = ℎ1 ⋅ g.

Note that if G acts on H on the right, we can de�ne a left action of G on H
by taking g ⋅ ℎ ∶= ℎ ⋅ g−1 and vice versa.

Example 3.2. Given a topological groupoid G, a G-module in [19] is a topolog-
ical groupoid A with domain and terminus maps equal to p ∶ A → G(0) such
thatAx

x is an abelian group for all x ∈ G(0), G acts onA as a space and such that
for each g ∈ G the action map �g ∶ Ad(g) → At(g) is a group homomorphism.
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In particular, A can be a trivial group bundle G(0) × D for D an abelian group
and �g = idD for all g ∈ G.

Remark 3.3. If G acts on the groupoid H, then G acts on the unit space H(0)

using the restriction p0 ∶= p|H(0) ∶ H(0) → G(0) and we have p = p0◦t = p0◦d,
where d, t ∶ H → H(0). In particular,

p(ℎ−1) = p0(t(ℎ−1)) = p0(d(ℎ)) = p(ℎ).

Using the fact that ℎ = ℎd(ℎ) = t(ℎ)ℎ, it follows that

ℎ ⋅ g = (ℎ ⋅ g)(d(ℎ) ⋅ g) = (t(ℎ) ⋅ g)(ℎ ⋅ g),

so we deduce that d(ℎ ⋅ g) = d(ℎ) ⋅ g and t(ℎ ⋅ g) = t(ℎ) ⋅ g.

De�nition 3.4. If G acts on H, then the semi-direct product groupoid H ⋊ G,
also called the action groupoid, is de�ned as follows. As a set,

H ⋊G = H ∗ G = {(ℎ, g) ∈ H × G ∣ t(g) = p(ℎ)}

and the multiplication is given by

(ℎ, g)(ℎ′ ⋅ g, g′) = (ℎℎ′, gg′),

when t(g′) = d(g) and d(ℎ) = t(ℎ′).

In a semi-direct product, the inverse is given by

(ℎ, g)−1 = (ℎ−1 ⋅ g, g−1)

and we get

(ℎ, g)−1(ℎ, g) = (ℎ−1 ⋅ g, g−1)(ℎ, g) = ((ℎ−1 ⋅ g)(ℎ ⋅ g), d(g)) = (d(ℎ) ⋅ g, d(g)),

(ℎ, g)(ℎ, g)−1 = (ℎ, g)(ℎ−1 ⋅ g, g−1) = (t(ℎ), t(g)).

Since d(g) = p(d(ℎ) ⋅ g) and t(g) = p(t(ℎ)), the unit space of H ⋊ G can be
identi�ed withH(0) and then we make identi�cations

d(ℎ, g) ≡ d(ℎ) ⋅ g, t(g, ℎ) ≡ t(ℎ).

There is a groupoid homomorphism

� ∶ H ⋊ G → G, �(ℎ, g) = g

with kernel �−1(G(0)) = {(ℎ, p(ℎ)) ∣ ℎ ∈ H} isomorphic toH.

Remark 3.5. The notion of groupoid action on another groupoid includes the
action of a groupoid on a space and the action of a group on another group
by automorphisms. A particular situation is when G1, G2 are groupoids and Z
is a (G1, G2)-space, i.e. Z is a left G1-space, a right G2-space and the actions
commute. Then G1⋉Z is a right G2-groupoid and Z⋊G2 is a left G1-groupoid.
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De�nition 3.6. Suppose now that G, Γ are étale groupoids and that � ∶ G → Γ
is a groupoid homomorphism, also called a cocycle. The skewproduct groupoid
G×� Γ is de�ned as the set of pairs (g, 
) ∈ G ×Γ such that (
, �(g)) ∈ Γ(2) with
multiplication

(g, 
)(g′, 
�(g)) = (gg′, 
) if (g, g′) ∈ G(2)

and inverse
(g, 
)−1 = (g−1, 
�(g)).

In a skew product, we have d(g, 
) = (d(g), 
�(g)) and t(g, 
) = (t(g), 
). Its
unit space is

G(0) ∗ Γ = {(u, 
) ∈ G(0) × Γ ∶ �(u) = d(
)}.
In particular, if G,H are étale groupoids and G acts on H on the right, for

the groupoid homomorphism � ∶ H ⋊ G → G, �(ℎ, g) = g we can form the
skew product (H ⋊ G) ×� G made of triples (ℎ, g, g′) ∈ H × G × G such that
p(ℎ) = t(g) and (g′, g) ∈ G(2), with unit spaceH(0) ∗ G and operations

(ℎ, g, g′)(ℎ′, g′′, g′g) = (ℎ(ℎ′ ⋅ g−1), gg′′, g′),

(ℎ, g, g′)−1 = (ℎ−1 ⋅ g, g−1, g′g).

Remark 3.7. Given a groupoid homomorphism � ∶ G → Γ, there is a left action
�̂ of Γ on the skew product G ×� Γ given by


′ ⋅ (g, 
) = (g, 
′
).

Proof. We check all the properties de�ning a groupoid action. First, we de�ne
the continuous open map

p ∶ G ×� Γ → Γ(0), p(g, 
) = t(
)

and note that d(
′) = t(
) = p(g, 
). Now, p(g, 
′
) = t(
′) and if (
1, 
2) ∈
Γ(2), then

(
1
2) ⋅ (g, 
) = (g, 
1
2
) = 
1 ⋅ (
2 ⋅ (g, 
)).
Also, if (g, 
), (g′, 
�(g)) ∈ G ×� Γ are composable with product (gg′, 
), then


′ ⋅ (gg′, 
) = (gg′, 
′
) = (g, 
′
)(g′, 
′
�(g)) = (
′ ⋅ (g, 
))(
′ ⋅ (g′, 
�(g))).

The last condition to check is t(
) ⋅ (g, 
) = (g, 
), which is obvious. �

We de�ne a right action of Γ on G×� Γ by (g, 
) ⋅ 
′ = (g, 
′−1
), and we form
the semi-direct product (G ×� Γ)⋊ Γmade of triples (g, 
, 
′) ∈ G ×Γ×Γ such
that (
, �(g)) ∈ Γ(2) and t(
′) = p(g, 
) = t(
), with unit space G(0) ∗ Γ and
operations

(g, 
, 
′)(g′, 
′−1
�(g), 
′′) = (gg′, 
, 
′
′′),
(g, 
, 
′)−1 = ((g−1, 
�(g)) ⋅ 
′, 
′−1) = (g−1, 
′−1
�(g), 
′−1).

For the next result, which resembles Takai duality, see De�nition 1.3 in [17],
Proposition 3.7 in [12] and De�nition 3.1 in [9].
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Theorem 3.8. Let G,H, Γ be étale groupoids such that G acts on H and such
that � ∶ G → Γ is a groupoid homomorphism. Then, using the above notation,
(H ⋊ G) ×� G is similar toH and (G ×� Γ) ⋊ Γ is similar to G.

Proof. Recall that two (continuous) groupoid homomorphisms �1, �2 ∶ G1 →
G2 are similar if there is a continuous function � ∶ G(0)1 → G2 such that

�(t(g))�1(g) = �2(g)�(d(g))
for all g ∈ G1. Two topological groupoids G1, G2 are similar if there exist con-
tinuous homomorphisms � ∶ G1 → G2 and  ∶ G2 → G1 such that  ◦� is
similar to idG1 and �◦ is similar to idG2 .

To show that (H ⋊ G) ×� G is similar toH, we de�ne

� ∶ (H ⋊ G) ×� G → H, �(ℎ, g, g′) = ℎ ⋅ g′−1,

 ∶ H → (H ⋊ G) ×� G,  (ℎ) = (ℎ, p(ℎ), p(ℎ))
and

� ∶ H(0) ∗ G → (H ⋊ G) ×� G, �(u, g) = (u ⋅ g−1, g, p(u)).
We check that

(�◦ )(ℎ) = �(ℎ, p(ℎ), p(ℎ)) = ℎ ⋅ p(ℎ)−1 = ℎ
and that

(∗) �[t(ℎ, g, g′)](ℎ, g, g′) = ( ◦�)(ℎ, g, g′)�[d(ℎ, g, g′)].
We have

t(ℎ, g, g′) = (ℎ, g, g′)(ℎ, g, g′)−1 = (ℎ, g, g′)(ℎ−1 ⋅ g, g−1, g′g) =
= (ℎ(ℎ−1 ⋅ g ⋅ g−1), gg−1, g′) = (t(ℎ), t(g), g′) ≡ (t(ℎ), g′),

and
�(t(ℎ), g′) = (t(ℎ) ⋅ g′−1, g′, p(t(ℎ)).

The left-hand side of (∗) becomes

(t(ℎ) ⋅ g′−1, g′, p(t(ℎ))(ℎ, g, g′) = (ℎ ⋅ g′−1, g′g, p(t(ℎ)) = (ℎ ⋅ g′−1, g′g, t(g′)).
Now,

( ◦�)(ℎ, g, g′) =  (ℎ⋅g′−1) = (ℎ⋅g′−1, p(ℎ⋅g′−1), p(ℎ⋅g′−1) = (ℎ⋅g′−1, t(g′), t(g′)),

d(ℎ, g, g′) = (ℎ, g, g′)−1(ℎ, g, g′) = (ℎ−1 ⋅ g, g−1, g′g)(ℎ, g, g′) =
= ((ℎ−1 ⋅ g)(ℎ ⋅ g), g−1g, g′g) = (d(ℎ) ⋅ g, d(g), g′g) ≡ (d(ℎ) ⋅ g, g′g),

and

�(d(ℎ) ⋅ g, g′g) = (d(ℎ) ⋅ g ⋅ (g′g)−1, g′g), p(d(ℎ) ⋅ g)) = (d(ℎ) ⋅ g′−1, g′g), d(g)).
The right-hand side becomes

(ℎ ⋅ g′−1, t(g′), t(g′))(d(ℎ) ⋅ g′−1, g′g, d(g)) = (ℎ ⋅ g′−1, g′g, t(g′)),
so (∗) is veri�ed.



930 VALENTIN DEACONU

To show that (G ×� Γ) ⋊ Γ is similar to G, we de�ne
� ∶ (G ×� Γ) ⋊ Γ → G, �(g, 
, 
′) = g,

 ∶ G → (G ×� Γ) ⋊ Γ,  (g) = (g, �(t(g)), �(g))
and

� ∶ G(0) ∗ Γ → (G ×� Γ) ⋊ Γ, �(u, 
) = (u, �(u), 
−1).
We have

(�◦ )(g) = �(g, �(t(g)), �(g)) = g
and we need to verify that

(∗∗) �(t(g, 
, 
′))(g, 
, 
′) = ( ◦�)(g, 
, 
′)�(d(g, 
, 
′)).
We compute

t(g, 
, 
′) = (g, 
, 
′)(g, 
, 
′)−1 = (g, 
, 
′)(g−1, 
′−1
�(g), 
′−1) =
= (t(g), 
, t(
′)) ≡ (t(g), 
)

and
�(t(g), 
) = (t(g), �(t(g), 
−1),

so the left-hand side of (∗∗) becomes

(t(g), �(t(g)), 
−1)(g, 
, 
′) = (g, �(t(g)), 
−1
′).
Also

( ◦�)(g, 
, 
′) = (g, �(t(g)), �(g)),
d(g, 
, 
′) = (g, 
, 
′)−1(g, 
, 
′) = (g−1, 
′−1
�(g), 
′−1)(g, 
, 
′) =

= (d(g), 
′−1
�(g), d(
′)) ≡ (d(g), 
′−1
�(g)),
�(d(g), 
′−1
�(g)) = (d(g), �(d(g), �(g)−1
−1
′),

and the right-hand side is

(g, �(t(g)), �(g))(d(g), �(d(g)), �(g)−1
−1
′) = (g, �(t(g)), 
−1
′),
so (∗∗) is veri�ed. �

For skew products and semi-direct products of groupoids, there are Lyndon–
Hochschild–Serre spectral sequences for the computation of their homology,
see [3] and [12].

Theorem 3.9. Let G, Γ be étale groupoids.
(1) Suppose that � ∶ G → Γ is a groupoid homomorphism. Then there exists a

spectral sequence

E2p,q = Hp(Γ,Hq(G ×� Γ)) ⇒ Hp+q(G),
whereHq(G ×� Γ) is regarded as a Γ-module via the action �̂ ∶ Γ ↷ G ×� Γ.

(2) Suppose that ' ∶ Γ ↷ G is a groupoid action. Then there exists a spectral
sequence

E2p,q = Hp(Γ,Hq(G)) ⇒ Hp+q(Γ ⋉ G),
whereHq(G) is regarded as a Γ-module via the action '.



ON GROUPOIDS AND C∗-ALGEBRAS FROM SELF-SIMILAR ACTIONS 931

Note that for G an ample Hausdor� groupoid and � ∶ G → ℤ a cocycle, we
have the following long exact sequence involving the homology of G and the
homology of G ×� ℤ,

0⟵ H0(G)⟵ H0(G ×� ℤ)
id−�∗⟵ H0(G ×� ℤ)⟵H1(G)⟵⋯

⋯⟵Hn(G)⟵ Hn(G ×� ℤ)
id−�∗⟵ Hn(G ×� ℤ)⟵Hn+1(G)⟵⋯

Here �∗ is the map induced by the action �̂ ∶ ℤ ↷ G ×� ℤ (see Lemma 1.3 in
[15]).

4. Self-similar groupoid actions and their C∗-algebra
We recall some facts about self-similar groupoid actions and their Cuntz-

Pimsner algebras from [10]. Let E = (E0, E1, r, s) be a �nite directed graph
with no sources. For k ≥ 2, de�ne the set of paths of length k in E as

Ek = {e1e2⋯ek ∶ ei ∈ E1, r(ei+1) = s(ei)}.
The maps r, s are naturally extended to Ek by taking

r(e1e2⋯ek) = r(e1), s(e1e2⋯ek) = s(ek).
We denote by E∗ ∶=

⋃
k≥0 E

k the space of �nite paths (including vertices) and
by E∞ the in�nite path space of E with the usual topology given by the cylinder
sets Z(�) = {�� ∶ � ∈ E∞} for � ∈ E∗.

We can visualize the set E∗ as indexing the vertices of a union of rooted trees
or forest TE given by T0E = E∗ and with edges

T1E = {(�, �e) ∶ � ∈ E∗, e ∈ E1 and s(�) = r(e)}.

Example 4.1. For the graph

u v w

e2

e3

e4

e5

e6

e1

the forest TE looks like

u v w

e1 e3

e1e1
⋮

e1e3
⋮

e3e2
⋮

e3e6
⋮

e2 e6

e2e1
⋮

e2e3
⋮

e6e4
⋮

e6e5
⋮

e4 e5

e4e2
⋮

e4e6
⋮

e5e2
⋮

e5e6
⋮
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Recall that a partial isomorphism of the forest TE corresponding to a given
directed graph E consists of a pair (v, w) ∈ E0 × E0 and a bijection g ∶ vE∗ →
wE∗ such that

∙ g|vEk ∶ vEk → wEk is bijective for all k ≥ 1.
∙ g(�e) ∈ g(�)E1 for � ∈ vE∗ and e ∈ E1 with r(e) = s(�).

The set of partial isomorphisms of TE forms a groupoid PIso(TE) with unit
space E0. The identity morphisms are idv ∶ vE∗ → vE∗, the inverse of g ∶
vE∗ → wE∗ is g−1 ∶ wE∗ → vE∗, and the multiplication is composition. We
often identify v ∈ E0 with idv ∈ PIso(TE).

De�nition 4.2. Let E be a �nite directed graph with no sources, and let G be
a groupoid with unit space E0. A self-similar action (G, E) on the path space of
E is given by a faithful groupoid homomorphism G → PIso(TE) such that for
every g ∈ G and every e ∈ d(g)E1 there exists a unique ℎ ∈ G denoted by g|e
and called the restriction of g to e such that

g ⋅ (e�) = (g ⋅ e)(ℎ ⋅ �) for all � ∈ s(e)E∗.

Remark 4.3. It is possible that g|e = g for all e ∈ d(g)E1, in which case

g ⋅ (e1e2⋯en) = (g ⋅ e1)⋯ (g ⋅ en).
We have

d(g|e) = s(e), t(g|e) = s(g ⋅ e) = g|e ⋅ s(e), r(g ⋅ e) = g ⋅ r(e).
In particular, the source map may not be equivariant as in [7]. It is shown in
Appendix A of [10] that a self-similar group action (G, E) as in [7] determines
a self-similar groupoid action (E0 ⋊ G,E) as in De�nition 4.2, where E0 ⋊ G
is the semi-direct product or the action groupoid of the group G acting on E0.
Note that not any self-similar groupoid action comes from a self-similar group
action, as seen in our example below.

Proposition 4.4. A self-similar groupoid action (G, E) as above extends to an
action of G on the path space E∗ and determines an action of G on the graph TE ,
in the sense that G acts on both the vertex space T0E and the edge space T1E and
intertwines the range and the source maps of TE , see De�nition 4.1 in [5].

Proof. Indeed, the vertex space T0E = E∗ is �bered over G(0) = E0 via the map
� ↦ r(�). For (�, �e) ∈ T1E we set s(�, �e) = �e and r(�, �e) = �. Since
r(�e) = r(�), the edge space T1E is also �bered over G(0). The action of G on T1E
is given by

g ⋅ (�, �e) = (g ⋅ �, g ⋅ (�e)) when d(g) = r(�).
Since

s(g ⋅ (�, �e)) = s(g ⋅ �, g ⋅ (�e)) = g ⋅ (�e) = g ⋅ s(�, �e)
and

r(g ⋅ (�, �e)) = r(g ⋅ �, g ⋅ (�e)) = g ⋅ � = g ⋅ r(�, �e),
the actions on T0E and T1E are compatible. �
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The faithfulness condition ensures that for each g ∈ G and each � ∈ E∗ with
d(g) = r(�), there is a unique element g|� ∈ G satisfying

g ⋅ (��) = (g ⋅ �)(g|� ⋅ �) for all � ∈ s(�)E∗.
ByProposition 3.6 of [10], self-similar groupoid actions have the following prop-
erties: for g, ℎ ∈ G, � ∈ d(g)E∗, and � ∈ s(�)E∗,

(1) g|�� = (g|�)|�;
(2) idr(�)|� = ids(�);
(3) if (ℎ, g) ∈ G(2), then (ℎ|g⋅�, g|�) ∈ G(2) and (ℎg)|� = (ℎ|g⋅�)(g|�);
(4) g−1|� = (g|g−1⋅�)−1.

De�nition 4.5. The C∗-algebra C∗(G, E) of a self-similar action (G, E) is de-
�ned as the Cuntz-Pimsner algebra of the C∗-correspondence

ℳ =ℳ(G, E) = X(E) ⊗C(E0) C∗(G)

over C∗(G). Here X(E) = C(E1) is the C∗-correspondence over C(E0) associ-
ated to the graph E and C(E0) = C(G(0)) ⊆ C∗(G). The right action of C∗(G) on
ℳ is the usual one and the left action is determined by the representation

W ∶ G → ℒ(ℳ), Wg(ie ⊗ a) = {
ig⋅e ⊗ ig|ea if d(g) = r(e)
0 otherwise,

where g ∈ G, ie ∈ C(E1) and ig ∈ Cc(G) are point masses and a ∈ C∗(G). The
inner product ofℳ is given by

⟨� ⊗ a, � ⊗ b⟩ = ⟨⟨�, �⟩a, b⟩ = a∗⟨�, �⟩b
for �, � ∈ C(E1) and a, b ∈ C∗(G).

Remark 4.6. Recall that the operations on X(E) are given by

(� ⋅ a)(e) = �(e)a(s(e)), ⟨�, �⟩(v) =
∑

s(e)=v
�(e)�(e), (a ⋅ �)(e) = a(r(e))�(e)

for a ∈ C(E0) and �, � ∈ C(E1). The elements ie⊗1 for e ∈ E1 form a Parseval
frame forℳ and every � ∈ ℳ is a �nite sum

� =
∑

e∈E1
ie ⊗ ⟨ie ⊗ 1, �⟩.

In particular, if X(E)∗ denotes the dual C∗-correspondence, then
ℒ(ℳ) = K(ℳ) ≅ X(E) ⊗C(E0) C∗(G) ⊗C(E0) X(E)∗ ≅ Mn ⊗C∗(G),

where n = |E1|. The isomorphism is given by

iej ⊗ ig ⊗ i∗ek ↦ ejk ⊗ ig
for E1 = {e1, ..., en} and for matrix units ejk ∈ Mn. There is a unital homomor-
phismK(X(E)) → K(ℳ) given by

ie ⊗ i∗f → ie ⊗ 1⊗ i∗f.
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Since our groupoids have �nite unit space E0, the orbit space for the canon-
ical action of G on E0 is �nite, and C∗(G) is the direct sum of C∗-algebras
of transitive groupoids. Each such transitive groupoid will be isomorphic to
a groupoid of the form V × H × V with the usual operations, for some sub-
set V ⊆ E0 and isotropy group H, hence its C∗-algebra will be isomorphic to
C∗(H) ⊗M|V|.

We recall the following result, see Propositions 4.4 and 4.7 in [10].

Theorem 4.7. If Ug, Pv and Te are the images of g ∈ G, v ∈ E0 = G(0) and of
e ∈ E1 in the Cuntz-Pimsner algebra C∗(G, E), then

∙ g ↦ Ug is a representation by partial isometries of G with Uv = Pv for
v ∈ E0;

∙ Te are partial isometries with T∗eTe = Ps(e) and
∑

r(e)=v
TeT∗e = Pv;

∙ UgTe = {
Tg⋅eUg|e if d(g) = r(e)
0, otherwise

and UgPv = {
Pg⋅vUg if d(g) = v
0, otherwise.

There is a gauge action 
 of T on C∗(G, E) such that 
z(Ug) = Ug, and 
z(Te) =
zTe for z ∈ T.

Given � = e1⋯en ∈ E∗ with ei ∈ E1, we let T� ∶= Te1⋯Ten . Then C
∗(G, E)

is the closed linear span of elements T�UgT∗� , where �, � ∈ E∗ and g ∈ Gs(�)s(�) .

For each k ≥ 1, considerℱk the closed linear span of elements T�UgT∗� with
�, � ∈ Ek and g ∈ Gs(�)s(�) . Then the �xed point algebra ℱ(G, E) ∶= C∗(G, E)T

under the gauge action is isomorphic to lim,,→ℱk. We have

ℱk ≅ ℒ(ℳ⊗k) ≅ X(E)⊗k ⊗C(E0) C∗(G) ⊗C(E0) X(E)∗⊗k

using the map T�UgT∗� ↦ i� ⊗ ig ⊗ i∗� , where i� ∈ X(E)⊗k = C(Ek) are point
masses. The embeddings ℱk ↪ ℱk+1 are determined by the map

� = �W ∶ C∗(G) → ℒ(ℳ), �W(ig) = Wg.
In particular, for a ∈ C∗(G) we get

�(a) =
∑

e∈E1
�ie⊗1,a∗(ie⊗1),

where ��,�(�) = �⟨�, �⟩. The embeddings ℱk ↪ ℱk+1 are then

�k(i� ⊗ ig ⊗ i∗� ) =
⎧

⎨
⎩

∑

x∈d(g)E1
i�y ⊗ ig|x ⊗ i∗�x, if g ∈ Gs(�)s(�) and g ⋅ x = y

0, otherwise.

Remark 4.8. The C∗-algebra C∗(G, E) can be described as the crossed product
of ℱ(G, E) by an endomorphism and in many cases, knowledge about K∗(ℱk)
is su�cient to determine K∗(ℱ(G, E)) and K∗(C∗(G, E)). For the case when G
is a group, see section 3 in [14]. In the particular case when g|e = g for all g ∈ G
and e ∈ d(g)E1 we have C∗(G, E) ≅ C∗(E) ⋊ G.
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5. Exel-Pardo groupoids for self-similar actions
In this section, we generalize results from [7] and we de�ne the groupoid

associated to a self-similar action of a groupoid G on the path space of a �nite
directed graph E with no sources.

As in [7], we �rst de�ne the inverse semigroup

S(G, E) = {(�, g, �) ∶ �, � ∈ E∗, g ∈ Gs(�)s(�) } ∪ {0}

associated to the self-similar action (G, E), with operations

(�, g, �)(�, ℎ, !) =
⎧

⎨
⎩

(�, g(ℎ|ℎ−1⋅�), !(ℎ−1 ⋅ �)) if � = ��
(�(g ⋅ �), g|�ℎ, !) if � = ��
0 otherwise

and (�, g, �)∗ = (�, g−1, �) for �, �, �, ! ∈ E∗. These operations make sense
since

d(g) = s(�) = t(ℎ|ℎ−1⋅�) and d(g(ℎ|ℎ−1⋅�)) = s(!(ℎ−1 ⋅ �)) when � = ��,

d(g|�) = s(�) = t(ℎ) and d(g|�ℎ) = s(!) when � = ��.
Note that (�, g, �)(�, ℎ, !) = (�, gℎ, !) and the nonzero idempotents are of the
form z� = (�, s(�), �).

The inverse semigroup S(G, E) acts on the in�nite path space E∞ by partial
homeomorphisms. The action of (�, g, �) ∈ S(G, E) on � = �� ∈ �E∞ is given
by

(�, g, �) ⋅ �� = �(g ⋅ �) ∈ �E∞.
The action ofG on E∞ is de�ned by g ⋅� = �, where for all nwe have �1⋯�n =
g ⋅ (�1⋯�n). Note that r(g ⋅ �) = g ⋅ r(�) = g ⋅ s(�) = s(�), so the action is well
de�ned.

The groupoid of germs associated with (S(G, E), E∞) is

G(G, E) = {[�, g, �; �] ∶ �, � ∈ E∗, g ∈ Gs(�)s(�) , � ∈ �E∞}.

Two germs [�, g, �; �], [�′, g′, �′; �′] in G(G, E) are equal if and only if � = �′
and there exists a neighborhood V of � such that (�, g, �) ⋅ � = (�′, g′, �′) ⋅ � for
all � ∈ V. We obtain that � = ��� for � ∈ E∗ and � ∈ E∞, with r(�) = s(�)
and r(�) = s(�). Moreover,

�′ = �(g ⋅ �), �′ = ��, and g′ = g|�.

The unit space of G(G, E) is

G(G, E)(0) = {[�, s(�), �; �] ∶ � ∈ �E∞},

identi�ed with E∞ by the map [�, s(�), �; �] ↦ �.
The terminus and domain maps of the groupoid G(G, E) are given by

t([�, g, �; ��]) = �(g ⋅ �), d([�, g, �; ��]) = ��.
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If two elements 
1, 
2 ∈ G(G, E) are composable, then


1 = [�1, g1, �2; �2(g2 ⋅ �)], 
2 = [�2, g2, �; ��]
for some �1, �2, � ∈ E∗, � ∈ E∞, (g1, g2) ∈ G(2) and in this case


1
2 = [�1, g1g2, �; ��].
In particular,

[�, g, �; ��]−1 = [�, g−1, �; �(g ⋅ �)].
The topology on G(G, E) is generated by the compact open bisections of the

form
B(�, g, �; V) = {[�, g, �; �] ∈ G(G, E) ∶ � = �� ∈ V},

where �, � ∈ E∗, g ∈ Gs(�)s(�) are �xed, and V ⊆ Z(�) = �E∞ is an open subset.

De�nition 5.1. A self-similar groupoid action (G, E) is called pseudo free if for
every g ∈ G and every e ∈ d(g)E1, the condition g ⋅e = e and g|e = s(e) implies
that g = r(e).

Remark 5.2. If (G, E) is pseudo free, then g1 ⋅ � = g2 ⋅ � and g1|� = g2|� for
some � ∈ E∗ implies g1 = g2.

Proof. Indeed, since g−12 g1 ⋅ � = � and g−12 g1|� = g−12 |g1⋅�g1|� = d(g1|�) =
s(�), it follows that g−12 g1 = r(�), so g1 = g2. �

Theorem 5.3. If the action of G on E is pseudo free, then the groupoid G(G, E)
is Hausdor� and its C∗-algebra C∗(G(G, E)) is isomorphic to the Cuntz-Pimsner
algebra C∗(G, E).

Proof. Since (G, E) is pseudo free, it follows that [�, g, �; �] = [�, g′, �; �] if
and only if g = g′. Moreover, the groupoid G(G, E) is Hausdor�, see Proposi-
tion 12.1 in [7]. Using the properties given in Theorem 4.7 and the groupoid
multiplication, the isomorphism � ∶ C∗(G, E) → C∗(G(G, E)) is given by

�(Pv) = �B(v,v,v;Z(v)),
�(Te) = �B(e,s(e),s(e);Z(s(e))),
�(Ug) = �B(t(g),g,d(g);Z(d(g)))

for v ∈ E0, e ∈ E1 and g ∈ G. Here �A is the indicator function of A. �

Recall that ample Hausdor� groupoids which are similar or Morita equiva-
lent have isomorphic homology, see Lemma 4.3 and Theorem 3.12 in [9]. The
general strategy of computing the homology of the ample groupoid G(G, E) is
the following.

There is a cocycle � ∶ G(G, E) → ℤ given by [�, g, �; �] ↦ |�| − |�| with
kernel

ℋ(G, E) = {[�, g, �; �] ∈ G(G, E) ∶ |�| = |�|}.
It follows from Theorem 3.9 that we have a spectral sequence

E2p,q = Hp(ℤ,Hq(ℋ(G, E))) ⇒ Hp+q(G(G, E)).
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Nowℋ(G, E) =
⋃

k≥1ℋk(G, E) where

ℋk(G, E) = {[�, g, �; �] ∈ G(G, E) ∶ |�| = |�| = k}.
There are groupoid homomorphisms

�k ∶ ℋk(G, E) → G, �k([�, g, �; �]) = g
and ker �k is AF for all k ≥ 1. Indeed, consider Rk the equivalence relation
on Ek such that (�, �) ∈ Rk if there is g ∈ G with g ⋅ s(�) = s(�). Then the
map [�, g, �; �] ↦ ((�, g), (�, �)) gives an isomorphism betweenℋk(G, E) and
(E∞ ⋊ G) × Rk, so ker �k is isomorphic to E∞ × Rk. It follows that we have
another spectral sequence

E2p,q = Hp(G,Hq(ker �k)) ⇒ Hp+q(ℋk(G, E)).
It is known that H0(ker �k) ≅ K0(C∗(ker �k)) and Hq(ker �k) = 0 for k ≥
1. Also, ker �k is similar with ℋk(G, E) ×�k G. Assuming that we computed
Hq(ℋk(G, E)) for all k, then

Hq(ℋ(G, E)) = lim,,→
k→∞

Hq(ℋk(G, E))

can be computed using the inclusion maps
jk ∶ ℋk(G, E) ↪ ℋk+1(G, E), jk([�, g, �; �x�]) = [�y, g|x, �x; �x�],

where x ∈ E1 and g ⋅ x = y.

6. Example
Consider again the graph from Example 4.1

u v w

e2

e3

e4

e5

e6

e1

with E0 = {u, v, w} and E1 = {e1, e2, e3, e4, e5, e6}.
Consider the groupoid G with unit space G(0) = {u, v, w} and generators

a, b, c where d(a) = u, t(a) = d(b) = v, d(c) = t(b) = w.

u v w

a
b

c

We de�ne the action of G by
a ⋅ e1 = e2, a|e1 = u, a ⋅ e3 = e6, a|e3 = b,
b ⋅ e2 = e5, b|e2 = a, b ⋅ e6 = e4, b|e6 = c,
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c ⋅ e4 = e2, c|e4 = a−1, c ⋅ e5 = e6, c|e5 = b.
The actions of a−1, b−1, c−1 and their restrictions are then uniquely determined:

a−1 ⋅ e2 = e1, a−1|e2 = u, a−1 ⋅ e6 = e3, a−1|e6 = b−1,

b−1 ⋅ e5 = e2, b−1|e5 = a−1, b−1 ⋅ e4 = e6, b−1|e4 = c−1,
c−1 ⋅ e2 = e4, c−1|e2 = a, c−1 ⋅ e6 = e5, c−1|e6 = b−1.

The actions of the units u, v, w and their restrictions are

u ⋅ e1 = e1, u|e1 = u, u ⋅ e3 = e3, u|e3 = v, v ⋅ e2 = e2, v|e2 = u,

v ⋅ e6 = e6, v|e6 = w, w ⋅ e4 = e4, w|e4 = v, w ⋅ e5 = e5, w|e5 = v.
This data determine a pseudo free self-similar action of G on the path space

of E. We can characterize the action by the formulas

a ⋅ e1� = e2�, a ⋅ e3� = e6(b ⋅ �), b ⋅ (e2�) = e5(a ⋅ �),

b ⋅ e6� = e4(c ⋅ �), c ⋅ e4� = e2(a−1 ⋅ �), c ⋅ e5� = e6(b ⋅ �)
where � ∈ E∗, and these determine uniquely an action of G on E∗ and on the
graph TE .

We will prove that G is a transitive groupoid with isotropy isomorphic to ℤ,
hence C∗(G) ≅ M3(C(T)) since |E0| = 3. Indeed, there is only one orbit for the
action ofG on its unit space, and let’s show that the cyclic groupGuu = ⟨a−1cba⟩
is isomorphic to ℤ. Since

(a−1cba) ⋅ e1 = (a−1cb) ⋅ e2 = (a−1c) ⋅ e5 = a−1 ⋅ e6 = e3
and

(a−1cba) ⋅ e3 = (a−1cb) ⋅ e6 = (a−1c) ⋅ e4 = a−1 ⋅ e2 = e1,
it follows that (a−1cba)n is not the identity for n odd. Now

(a−1cba)|e1 = (a−1cb)|a⋅e1a|e1 = (a−1cb)|e2(a
−1c)|b⋅e2b|e2 =

= (a−1c)|e5a = a−1|c⋅e5c|e5a = (a|a−1⋅e6)
−1ba = b−1ba = a

and similarly
(a−1cba)|e3 = a−1cb.

We deduce

(a−1cba)2|e1 = (a−1cba)|(a−1cba)⋅e1(a
−1cba)|e1 = (a−1cba)|e3a = a−1cba.

By induction,
(a−1cba)2k|e1 = (a−1cba)k.

We consider the action of (a−1cba)2k on su�ciently long paths of the form � =
e1⋯e1 and after repeatedly reducing by factors of 2, we arrive at (a−1cba)2k|� =
(a−1cba)m withm odd, in particular

(a−1cba)2k ⋅ �e1 = �(a−1cba)m ⋅ e1 = �e3,
so (a−1cba)n is not the identity for n even. It follows that Guu = ⟨a−1cba⟩ is
isomorphic to ℤ.
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An isomorphism of G with the groupoid G(0) × ℤ × G(0) is given by the map

a ↦ (v, 1, u), b ↦ (w, 1, v), c ↦ (v, 1, w),
and Guu ≅ {(u, k, u) ∶ k ∈ 2ℤ} ≅ ℤ. In this case, since |E1| = 6 and C∗(G) ≅
M3(C(T)), it follows that

ℱk ≅ ℒ(ℳ⊗k) ≅ X(E)⊗k ⊗C(E0) C∗(G) ⊗C(E0) X(E)∗⊗k ≅ M3⋅6k (C(T)),
soK0(ℱk) ≅ ℤ ≅ K1(ℱk) andℱ(G, E) is anAT-algebra. Recall that the embed-
dings ℱk ↪ ℱk+1 are determined by

�k(i� ⊗ ig ⊗ i∗� ) =
⎧

⎨
⎩

∑

x∈d(g)E1
i�y ⊗ ig|x ⊗ i∗�x, if g ∈ Gs(�)s(�) and g ⋅ x = y

0, otherwise.

In particular,

i� ⊗ ia ⊗ i∗� ↦ i�e2 ⊗ iu ⊗ i∗�e1 + i�e6 ⊗ ib ⊗ i∗�e3 ,
i� ⊗ ib ⊗ i∗� ↦ i�e5 ⊗ ia ⊗ i∗�e2 + i�e4 ⊗ ic ⊗ i∗�e6 ,
i� ⊗ ic ⊗ i∗� ↦ i�e2 ⊗ ia−1 ⊗ i∗�e4 + i�e6 ⊗ ib ⊗ i∗�e5 .

To compute the K-theory of ℱ(G, E), we �rst determine the maps

Φi = [�k]i ∶ Ki(C∗(G)) ≅ ℤ → Ki(ℒ(ℳ)) ≅ ℤ
for i = 0, 1. Since K0(C∗(G)) is generated by [iu] and

iu ↦ ie1 ⊗ iu ⊗ i∗e1 + ie3 ⊗ iv ⊗ i∗e3 ,
it follows that Φ0 is multiplication by 2. Since K1(C∗(G)) is generated by [ziu +
iv + iw] and

ziu + iv + iw ↦ z(ie1 ⊗ iu ⊗ i∗e1 + ie3 ⊗ iv ⊗ i∗e3)+
+ie2 ⊗ iu ⊗ i∗e2 + ie6 ⊗ iw ⊗ i∗e6 + ie4 ⊗ iv ⊗ i∗e4 + ie5 ⊗ iv ⊗ i∗e5 ,

it follows that Φ1 is also multiplication by 2. We obtain

K0(ℱ(G, E)) ≅ ℤ[1∕2] ≅ K1(ℱ(G, E)).
WecandescribeC∗(G, E) as the crossed product of the simpleAT-algebraℱ(G, E)
by an endomorphism. Using [4], its K-theory is given by

K0(C∗(G, E)) ≅ ker(id − Φ1) ⊕ ℤ∕(id − Φ0)ℤ ≅ 0,
K1(C∗(G, E)) ≅ ker(id − Φ0) ⊕ ℤ∕(id − Φ1)ℤ ≅ 0.

Now we compute the homology of the Exel-Pardo groupoid G(G, E). Its unit
space E∞ is a disjoint union of three Cantor sets uE∞∪vE∞∪wE∞. The kernel
of the cocycle � ∶ G(G, E) → ℤ, �([�, g, �; �]) = |�| − |�| is the minimal
groupoid

ℋ(G, E) =
⋃

k≥1
ℋk(G, E),

where
ℋk(G, E) = {[�, g, �; �] ∈ G(G, E) ∶ |�| = |�| = k}
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is isomorphic to (E∞⋊G)×Rk via the map [�, g, �; �] ↦ ((�, g), (�, �)), where
Rk is the equivalence relation on Ek given by (�, �) ∈ Rk if there is g ∈ G with
s(�) = g ⋅ s(�). Since G is transitive, C∗(Rk) ≅ M6k and it follows that the
groupoidℋk(G, E) is equivalent with E∞ ⋊ G. There is a groupoid homomor-
phism �k ∶ ℋk(G, E) → G given by [�, g, �; �] ↦ gwith kernel equivalent with
the space E∞. Since the groupoid G is Morita equivalent with the group ℤ, we
deduce

Hq(ℋk(G, E)) ≅ Hq(E∞ ⋊G) ≅ Hq(G, C(E∞, ℤ)) ≅ Hq(ℤ, C(uE∞, ℤ)).
It follows that

H0(ℋk(G, E)) ≅ ker(id − �∗), H1(ℋk(G, E)) ≅ coker(id − �∗),
where �∗ is induced by the action of G on C(E∞, ℤ) and Hq(ℋk(G, E) ≅ 0 for
q ≥ 2. Since the action of G on E∞ is free and transitive, it follows that

H0(ℋk(G, E)) ≅ H1(ℋk(G, E)) ≅ C(uE∞, ℤ).
Note thatH0(ℋk(G, E)) andH1(ℋk(G, E)) are generated by the indicator func-
tions of bisections B(�, s(�), �; V) and B(�, g, �; V) for �, � ∈ Ek, g ∈ Gs(�)s(�) and
for open subsets V ⊆ Z(�) and V ⊆ Z(�), respectively. Also, [�B(�,g,�;V)] =
[�B(�′,g′,�′;V′)] if and only if V = V′.

Using the map

jk ∶ ℋk(G, E) ↪ ℋk+1(G, E), jk([�, g, �; �x�]) = [�y, g|x, �x; �x�],
we obtain thatH0(ℋk(G, E)) → H0(ℋk+1(G, E)) is given by

[�B(�,u,�;V)] ↦ [�B(�e1,u,�e1;V)] + [�B(�e3,v,�e3;V)]
andH1(ℋk(G, E)) → H1(ℋk+1(G, E)) is given by

[�B(�,u,�;V)] ↦ [�B(�e1,u,�e1;V)] + [�B(�e3,v,�e3;V)].
We obtainHi(ℋ(G, E)) = lim,,→

k→∞
(C(uE∞, ℤ), 2) ≅ ℤ[1∕2] for i = 0, 1.

Now the groupoidℋ(G, E) is similar to G(G, E)×�ℤ, so we have a long exact
sequence

0⟵ H0(G(G, E))⟵ H0(ℋ(G, E))
id−�∗⟵ H0(ℋ(G, E))⟵ H1(G(G, E))

↑

0⟶ H2(G(G, E))⟶ H1(ℋ(G, E))
id−�∗⟶ H1(ℋ(G, E))

where �∗ is the map induced by the action �̂ ∶ ℤ ↷ G(G, E) ×� ℤ which takes
(
, n) into (
, n + 1).

The map �∗ ∶ H0(G(G, E) ×� ℤ) → H0(G(G, E) ×� ℤ) is given by

[�B(�,s(�),�;Z(�))×{0}] ↦ [�B(�,s(�),�;Z(�))×{1}]
Consider U = B(�, u, �e1; Z(�e1)) × {1} ⊆ G(G, E) ×� ℤ with

U−1 = B(�e1, u, �; Z(�)) × {0}.



ON GROUPOIDS AND C∗-ALGEBRAS FROM SELF-SIMILAR ACTIONS 941

Since

U−1(B(�, u, �; Z(�)) × {1})U = B(�e1, u, �e1; Z(�e1)) × {0},
it follows that inH0(G(G, E) ×� ℤ) we have

[�B(�,u,�;Z(�))×{1}] = [�B(�e1,u,�e1;Z(�e1))×{0}]
and

�∗([�B(�,u,�;Z(�))×{0}]) = [�B(�e1,u,�e1;Z(�e1))×{0}].
Hence, �∗ on H0(G(G, E) ×� ℤ) ≅ H0(ℋ(G, E)) ≅ ℤ[1∕2] is multiplication by
1∕2.

Similarly, �∗ ∶ H1(G(G, E) ×� ℤ) → H1(G(G, E) ×� ℤ) is given by

[�B(�,g,�;Z(�))×{0}] ↦ [�B(�,g,�;Z(�))×{1}]
and if U = B(�, u, �e1; Z(�e1) × {1} ⊆ G(G, E) ×� ℤ we have

U−1(B(�, u, �; Z(�)) × {1})U = B(�e1, u, �e1; Z(�e1)) × {0}.
It follows that inH1(G(G, E) ×� ℤ) we have

[�B(�,u,�;Z(�))×{1}] = [�B(�e1,u,�e1;Z(�e1))×{0}]
and

�∗([�B(�,u,�;Z(�))×{0}]) = [�B(�e1,u,�e1;Z(�e1))×{0}],
so �∗ on H1(G(G, E) ×� ℤ) ≅ H1(ℋ(G, E)) ≅ ℤ[1∕2] is also multiplication by
1∕2.

From the long exact sequence, we obtain

H0(G(G, E)) ≅ coker(id − �∗), H2(G(G, E)) ≅ ker(id − �∗)
and

0 → coker(id − �∗) → H1(G(G, E)) → ker(id − �∗) → 0.
It follows that

H0(G(G, E)) ≅ H1(G(G, E)) ≅ H2(G(G, E)) ≅ 0
andHq(G(G, E) ≅ 0 for q ≥ 3.
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