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Fixed-point algebras for weakly
proper Fell bundles

Damián Ferraro

Abstract. We de�neweakly proper Fell bundles and construct exotic �xed-
point algebras for such bundles. Three alternative constructions of such alge-
bras are given. Under a kind of freeness condition, one of our constructions
implies that every exotic cross-sectional C*-algebra of a weakly proper Fell
bundle is Morita equivalent to an exotic �xed-point algebra. The other con-
structions are used to show that ours generalizes that of Buss and Echterho�
on weakly proper actions on C*-algebras. We also generalize to Fell bundles
the fact that every C*-actionwhich is proper in Kasparov’s sense is amenable.
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Introduction
Green’s Imprimitivity Theorem [17] implies that given a free and proper ac-

tion � of a locally compact and Hausdor� (LCH) group G on a LCH space X;
the full crossed product C0(X) ⋊� G is strongly Morita equivalent to C0(X∕G),
X∕G being the space of �−orbits. The “large �xed-point algebra” of �, Cb(X)�,
is the set of �xed points of the canonical action � of G on Cb(X) determined
by �, �t(f)(x) = f(�t−1(x)). Note Cb(X)� is C*-isomorphic to Cb(X∕G), hence
C0(X∕G) is C*-isomorphic to a C*-subalgebra of the large �xed-point algebra of
�. That is why C0(X∕G) is called a “�xed-point algebra”.

Green’s Theorem may be used to show that � is amenable in the sense that
C0(X)⋊� G agrees with the reduced cross product C0(X)⋊r� G. Indeed, let I be
the kernel of the regular representation C0(X)⋊� G → C0(X)⋊r� G. This ideal
is induced from some ideal of C0(X∕G), i.e. from a �−invariant open set U ⊂
X. But C0(U) is a �−invariant ideal of C0(X), so using Green’s Theorem once
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again we deduce that I = C0(U) ⋊�|U G. The only way of having C0(U) ⋊�|U G
contained in the kernel of the regular representation is if U = ∅,meaning that
I = {0}.

In [13] Kasparov used proper actions on LCH spaces in order to construct
�xed-point algebras for actions on C0(X)−algebras. The same year Rie�el tried
to give a de�nition of proper action on a C*-algebra without using proper ac-
tions on LCH spaces [18]. Rie�el starts with an action � of a LCH group G on a
C*-algebraA and seeks a de�nition of proper action that allows him to establish
a strongMorita equivalence betweenA⋊�G and a C*-subalgebra of the (large)
�xed-point algebra

M(A)� ∶= {T ∈ M(A)∶ �̃t(T) = T, ∀ t ∈ G},

where �̃ is the natural extension of � to the multiplier algebraM(A).
Rie�el notices that certain Cc(G, A)−valued inner products are positive def-

inite in the reduced crossed product A ⋊r� G, but not in the full (or universal)
oneA⋊�G ≡ A⋊u�G.Kasparov does not have this problem because his proper
actions are always amenable (the full and reduced crossed products agree).

Buss and Echterho� introduced in [6] the concept of the weakly proper ac-
tion. Every Kasparov proper action is weakly proper and any weakly proper ac-
tion is proper in Rie�el’s sense. Even though not every weakly proper action is
amenable, they are nice enough as to be able to prove that the Cc(G, A)−valued
inner products are positive in the full crossed product. Moreover, one even has
Symmetric Imprimitivity Theorems for weakly proper actions [7] (generalizing
Raeburn’s Symmetric Imprimitivity Theorem [16]).

An exotic crossed product for � is a strictly intermediate quotient A ⋊�� G
between A ⋊u� G and A ⋊r� G. Provided that � is weakly proper and satis�es
a certain freeness condition, Buss-Echterho�’s Imprimitivity Theorem assigns
a �xed-point algebra A�

� to every crossed product ⋊� (universal, reduced or
exotic) and establishes a Morita equivalence between A�

� and A⋊�� G.
There have been other attempts to de�ne proper actions on C*-algebras that

have lead to study integrable (or square integrable) actions, see for example [7,
15, 19] and the references therein. Our work can be seen as a generalization of
Buss andEchterho�’s one to Fell bundles, which in turn generalizesKasparov’s.

With some notational e�ort one can extend Buss and Echterho�’s work to
twisted actions and to partial actions, separately. But a natural preservation
instinct should prevent everybody to try give a de�nition of “weakly proper
twisted partial action”. Twisted partial action are de�ned in [8], where it is
shown that under certain hypotheses a Fell bundle can be described as the
semidirect product bundle of a twisted partial action. This is of importance to us
because it says that there is a kind of natural action associated to every Fell bun-
dle. Then (at least in some cases) it should be possible to determine whether
or not an action on a C*-algebra is weakly proper using only the semidirect
product bundle of the action. A step further in this direction would be to state
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the de�nition of weakly proper action itself using the semidirect product bun-
dle. After this one should obtain something very close to a de�nition of weakly
proper Fell bundle. This is what we have done, and we show our results in this
work.

Quite often authors working with Fell bundles assume the bundles are satu-
rated. This is even true in some parts of [12], where Fell bundles are called C*-
algebraic bundles. But we do not want to assume our Fell bundles are saturated
because the semidirect product bundle of a C*-partial action (as considered in
[8]) is saturated if and only if the partial action is global (i.e. just an action).

The “test case” that motivated this work was the semidirect product bundle
of a partial action on a commutative C*-algebra or, equivalently, a C*-partial
action on a commutative C*-algebra. This turned out to be quite important in
the general theory, so we dedicate the �rst section of this work to study this test
case.

In Section 2we give the de�nition of weakly proper andKasparov proper Fell
bundles. We also show that every Kasparov proper Fell bundle is amenable.
Finally, in the last section, we construct the �xed-point algebra of a Fell bundle
and give three di�erent ways of constructing these algebras.

1. Proper partial actions on LCH spaces
Let’s start by recalling some equivalent de�nitions of proper actions on LCH

spaces. Suppose � is an action of the LCH group G on the LCH space X. Then
� is proper if satis�es any (and hence all) the equivalent conditions:

(1) For every pair of compact sets, L,M ⊂ X, the set

((L,M)) ∶= {t ∈ G∶ �t(L) ∩ M ≠ ∅}

has compact closure.
(2) For every pair of compact sets, L,M ⊂ X, the set ((L,M)) is compact.
(3) The map G ×X → X ×X, (t, x) ↦ (�t(x), x), is proper (the preimage of

every compact set is compact).
Let’s translate each one of the conditions above to partial actions and com-

pare the respective candidates for the de�nition of proper partial action. As-
sume � ∶= ({Xt}t∈G , {�t}t∈G) is a LCH partial action, that is, � is a topological
partial action ofG onX in the sense of [2, De�nition 1.1]; with bothG andX be-
ing LCH. By de�nition, for all t ∈ G the set Xt ⊂ X is open and �t ∶ Xt−1 → Xt
is a homeomorphism. The domain and graph of � are, respectively,

Γ� ∶= {(t, x) ∈ G × X∶ x ∈ Xt−1}
Gr(�) ∶= {(t, x, y) ∈ G × X × X∶ x ∈ Xt−1 , y = �t(x)}.

Notice the de�nition of topological partial action implies thatΓ� is open inG×X
and also that Γ� → X, (t, x) ↦ �t(x), is continuous. Besides,Gr(�) determines
�.

The natural translation of conditions (1-3) above are
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(P1) For every pair of compact sets, L,M ⊂ X, the set

((L,M)) ∶= {t ∈ G∶ �t(L ∩ Xt−1) ∩ M ≠ ∅} (1.1)

has compact closure.
(P2) For every pair of compact sets, L,M ⊂ X, the set ((L,M)) is compact.
(P3) The map F� ∶ Γ� → X × X, (t, x) ↦ (�t(x), x), is proper.

Sometimes we write ((L,M))� instead of ((L,M)), specially if it is not clear
which partial action must be used to compute ((L,M)).

The following examples show the conditions above are not equivalent.

Example 1.1 ([2, Example 1.2]). Let ' be the �ow of the vector �eld f∶ ℝ2 ⧵
{(0, 0)} → ℝ2, f(x, y) = (1, 0). Then ' de�nes a partial action of ℝ on X ∶=
ℝ2⧵{(0, 0)} that we now describe. Given t ∈ ℝ, letXt beX⧵{(st, 0)∶ s ∈ [0, 1]}.
Then 't ∶ X−t → Xt is given by 't(x, y) = (x + t, y).We leave to the reader to
verify that ' satis�es (P1). But ' does not satisfy (P2) because for the closed
segments L ∶= [(−2, 1), (−1, 0)] andM = [(1, 1), (1, 0)], ((L,M)) = (2, 3] is not
compact.

Example 1.2 ([2, Example 1.4]). Let G ∶= ℤ2 act partially on X = [0, 1] by the
partial action such that �0 = idX and �1 = id[0,1∕2). Since every subset of G is
compact, � satis�es (P2). But � does not satisfy (P3) because Γ� = F−1� (X × X)
is not compact.

With the previous examples and some extra work one can show that

Proposition 1.3. For every LCH partial action �, (P3)⇒(P2)⇒(P1) but none of
the converses holds in general (as the previous examples have shown).

Proof. Assume � satis�es (P3) and take two compacts sets, L,M ⊂ X. Take
a net {ti}i∈I ⊂ ((L,M)). Then for all i ∈ I there exists xi ∈ L ∩ Xt−1i such
that �ti (xi) ∈ M. Thus {(ti, xi)}i∈I ⊂ F−1� (L × M) and there exists a subnet
{(tij , xij )}j∈J converging to some (t, x) ∈ F−1� (L × M). Thus, x ∈ Xt−1 , x =
limj xij ∈ L, �t(x) = limj �tij (xij ) ∈ M and this implies limj tij = t ∈ ((L,M)).
Hence (P3) implies (P2), which in turn implies (P1) because all the compact
sets of G are closed. �

A key feature of proper actions is that one can construct �xed-point algebras
with them. In the topological context this means that the orbit space is a LCH
space. So let’s de�ne the orbit space of a topological partial action and let’s try
to see if any of the conditions (P1-P3) guarantees a LCH orbit space.

De�nition 1.4. Let � = ({�t}t∈H , {Yt}t∈H) be a topological partial action. The
orbit of a set U ⊂ Y is de�ned as [U]� ∶= ∪t∈H�t(U ∩ Yt−1) and the orbit of
a point y ∈ Y is [y]� ∶= [{y}]�. A subset U ⊂ Y is said to be invariant (or
�−invariant) if [U]� ⊂ U (or, equivalently, U = [U]�).
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Note that U ⊂ [U]� because for t = e, �t(U ∩ Xt−1) = U. Besides, [U]� is
invariant because the properties of set theoretic partial actions imply

[[U]�]� =
⋃

t,s∈H
�t(�s(Xs−1 ∩ U) ∩ Xt−1)

=
⋃

t,s∈H
�t(�s(Xs−1 ∩ U) ∩ �s(Xs−1 ∩ Xt−1))

=
⋃

t,s∈H
�t(�s(Xs−1 ∩ Xs−1t−1 ∩ U)) =

⋃

t,s∈H
�ts(Xs−1 ∩ Xs−1t−1 ∩ U)

⊂
⋃

t,s∈H
�ts(Xs−1t−1 ∩ U) ⊂ [U]� ⊂ [[U]�]�.

Remark 1.5. If U ⊂ V ⊂ Y then [U]� ⊂ [V]�. This implies [U]� is the smallest
invariant set containing U. Note also that [U]� is open if U is.

Remark 1.6. The whole space Y is the disjoint union of the orbits of its points.
Indeed, it is clear that y ∈ [y]� for all y ∈ Y. Assume y, z ∈ Y are such that
[y]� ∩ [z]� ≠ ∅. Then there exists r, s ∈ H such that y ∈ Xr−1 , z ∈ Xs−1 and
�r(y) = �s(z). Hence, by the de�nition of partial action, y ∈ Xr−1 ∩ Xr−1s and
�s−1r(y) = �s−1(�r(y)) = z. Thus z ∈ [y]� and this implies [z]� ⊂ [y]�. By
symmetry we get that [z]� = [y]�.

It is evident that the relation y ∼ z ⇔ [y]� = [z]� is an equivalence relation.
This relation is open in the sense that

[U]� = {z ∈ Y∶ [z]� ∩ U ≠ ∅}
is open if U is.

De�nition 1.7. The orbit space of � is Y∕� ∶= {[y]� ∶ y ∈ Y}, the canoni-
cal projection is �∶ Y → Y∕�, y ↦ [y]�, and the topology of Y∕� is {U ⊂
Y∕�∶ �−1(U) is open}.

The canonical projection is continuous, open and surjective. Hence the orbit
space of a topological partial action on a locally compact space is always locally
compact. The next example shows that condition (P2) does not guarantee a
Hausdor� orbit space.

Example 1.8. Let G = ℤ2 act partially on X = [−2, 2] by the partial action
� = ({�0, �1}, {X, (−1, 1)}) with �0 ∶= idX and �1∶ (−1, 1) → (−1, 1) given by
�1(x) = −x. Then � satis�es (P2) and [1]� ≠ [−1]�, but every open invariant
subset containing 1 intersects every open invariant subset containing −1. Thus
X∕� is not Hausdor�, but it is locally compact.

Now we relate the orbit space of a topological partial action with the orbit
space of its topological enveloping action, as de�ned in [2, De�nition 1.2] and
whose existence and uniqueness are ensured by [2, Theorem 1.1]. The topo-
logical enveloping action of � is, up to a conjugation by a homeomorphism, a
topological (global) action �e ofH on a topological space Ye such that:
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∙ Y is an open subset of Ye.
∙ For all t ∈ H, Yt = Y ∩ �et (Y).
∙ For all t ∈ H and y ∈ Yt−1 , �t(y) = �et (y).
∙ Ye =

⋃
t∈H �

e
t (Y) or, equivalently, Y

e = [Y]�e .

Proposition 1.9. Let � be a topological partial action of H on Y and �e the en-
veloping action of �, acting on the enveloping space Ye. Then the map Y∕� →
Ye∕�e, [y]� ↦ [y]�e , is de�ned and is a homeomorphism.

Proof. We claim that [y]�e ∩ Y = [y]�, for all y ∈ Y. Indeed, it is clear that
[y]� ⊂ [y]�e ∩ Y. Conversely, if z ∈ [y]�e ∩ Y then there exists t ∈ H such that
�et (y) = z ∈ Y. Thus y ∈ Y ∩ �et−1(Y) = Yt−1 and �t(y) = �et (y) = z. Hence
z ∈ [y]�.

The function Y → Ye∕�e, y ↦ [y]�e , is continuous and constant in the
�−orbits. Moreover, it is surjective because [Y]�e = Y. Then there exists a
unique continuous and surjective map ℎ∶ Y∕� → Ye∕�e, ℎ([y]�) = [y]�e .
Note ℎ is injective because, if ℎ([y]�) = ℎ([z]�), then [y]� = ℎ([y]�) ∩ Y =
ℎ([z]�) ∩ Y = [z]�.We also have that ℎ is open because if U ⊂ Y is open, then
ℎ([U]�) = [U]�e is open. �

The next result and (its consequence) Remark 1.12 are our main reasons to
adopt condition (P3) as the de�nition of proper partial action.

Proposition 1.10. Let � be a LCH partial action of G on X and let �e be its en-
veloping action, acting on the enveloping space Xe. Then the following are equiv-
alent:

(1) �e is a proper LCH action.
(2) Given a net {(ti, xi)}i∈I ⊂ Γ� such that {(�ti (xi), xi)}i∈I ⊂ X×X converges

(to a point of X × X), there exists a subnet of {(ti, xi)}i∈I converging to a
point of Γ�.

(3) � satis�es condition (P3), that is: F� ∶ Γ� → X×X, F�(t, x) = (�t(x), x),
is proper.

Proof. Assume (1) and take a net {(ti, xi)}i∈I ⊂ Γ� such that

(�ti (xi), xi) → (y, x) ∈ X × X.

Take compact neighborhoods of x and y, U and V, respectively. Then there
exists i0 ∈ I such that {(ti, xi)}i≥i0 ∈ F−1�e (U × V). Hence there exists a subnet
{(tij , xij )}j∈J converging to a point (t, z) ∈ G × X.We then have z = limj xij =
limi xi = x because X is Hausdor� and �et (x) = limj �etij (xij ) = limj �tij (xij ) =
y ∈ X. Thus x ∈ X ∩ �et−1(X) = Xt−1 ,meaning that (t, x) ∈ Γ�.

Nowassume (2) holds and take a compact setL ⊂ X×X and anet {(ti, xi)}i∈I ⊂
F−1� (L). Then {(�ti (xi), xi)}i∈I ⊂ L has a converging subnet and, by passing to
a subnet again, we get a subnet {(tij , xij )}j∈J converging to a point (t, x) ∈ Γ�
and such that {(�ti (xi), xi)}i∈I converges to some (y, z) ∈ L.We then have z = x
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and, by continuity, �t(x) = limj �tij (xij ) = y. This implies (t, x) ∈ F−1� (L).Now
(3) follows because the net {(tij , xij )}j∈J ⊂ F−1� (L) converges to (t, x) ∈ F−1� (L).

Suppose � satis�es (3). Note that Xe =
⋃

t∈G �
e
t (X) is locally compact be-

cause it is the union of open locally compact subsets.
To show thatXe is Hausdor� it su�ces, by [2, Proposition 1.2], to showGr(�)

is closed in G × X × X. Take a net {(ti, xi, yi)}i∈I ⊂ Gr(�) converging to (t, x, y).
Then {(ti, xi)}i∈I ⊂ Γ� and {(�ti (xi), xi)}i∈I = {(yi, xi)}i∈I converges to (y, x). By
taking a compact neighborhood of (y, x), L, and considering F−1� (L) we get a
subnet {(tij , xij )}j∈J converging to some (s, z) ∈ F−1� (L) ⊂ Γ�. Since G × X is
Hausdor�, (t, x) = (s, z) ∈ Γ� and by continuity we get �t(x) = limi �ti (xi) =
limi yi = y. This means that (t, x, y) ∈ Gr(�). Hence Gr(�) is closed and Xe is
Hausdor�.

Take a compact set L ⊂ Xe × Xe and a net {(ti, xi)}i∈I ∈ F−1�e (L). Then there
exists a subnet {(tij , xij )}J∈J such that {(�

e
tij
(xij ), xij )}j∈J ⊂ L converges to a point

(y, x) ∈ L. Take r, s ∈ G such that �es (y), �er(x) ∈ X. Note that

lim
j
�er(xij ) = �er(x) ∈ X lim

j
�estij r−1

(�er(xij )) = �es (y) ∈ X.

Since X is open in Xe there exists j0 ∈ J such that, for all j ≥ j0, �er(xij ) ∈ X
and �estij r−1

(�er(xij )) ∈ X.

Let U ⊂ X × X be a compact neighborhood of (�es (y), �er(y)). Then the net
{(stijr

−1, �er(xij ))}j≥j0 is contained in F−1� (U) and, by passing to a subnet and
relabeling, we can assume {(stijr

−1, �er(xij ))}j∈J converges. In particular we get
that {tij }j∈J converges to some t ∈ G. This implies {(tij , xij )}J∈J converges to
(t, x) and (t, x) ∈ F−1�e (L) because (�

e
t (x), x) = limj(�etij (xij ), xij ) ∈ L. �

De�nition 1.11. A LCH partial action � is proper if it satis�es the equivalent
conditions of Proposition 1.10.

Remark 1.12. The orbit space of every proper LCH partial action � is LCH. In-
deed, this in known to hold for global actions, in particular for �e. Hence the
same holds for � by Proposition 1.9.

At this point Proposition 1.10 becomes amachine to construct every possible
proper LCH partial action: just take a proper LCH (global) action and restrict
it to an open set. Let’s be more precise about this.

Consider a proper LCH action � of G on Y, (t, y) ↦ �t(y), and let Z ⊂ Y be a
�−invariant open subset. Then the action �|Z of G on Z given by (t, z) ↦ �t(z)
is a LCH action. Notice that given compact sets L,M ⊂ Z, the set ((L,M))�|Z =
((L,M))� is compact. Hence �|Z is proper because it is global an satis�es (P2).

Now assume Z is an arbitrary open subset of Y and let �|Z be the restriction
of � to Z, as in [2, Example 1.1]. That is to say �|Z ∶= ({Zt}t∈G , {�t}t∈G) is the
topological partial action such thatZt = Z∩�t(Z) and �t(z) = �t(z) for all t ∈ G
and z ∈ Zt−1 . Then �|Z is LCH and it is proper because its enveloping action
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�|[Z]� is LCH and proper. If we now go back to Proposition 1.10, we see that
�e|X = � is LCH and proper if and only if �e is LCH and proper. We then have
proved the following.

Remark 1.13. The restriction of every proper LCH action to an open set is a
proper LCH partial action. Moreover, every proper LCH partial action arises in
this way.

We hope to have exhibited enough reasons to adopt our de�nition of proper
partial actions.

2. Weakly proper Fell bundles
We start this section by recalling some facts about Fell bundles, after which

we construct the primal examples of weakly proper Fell bundles.

2.1. Fell bundles and notation. When we say ℬ = {Bt}t∈G is a Fell bundle
we mean that G is a LCH group and that each set Bt is the �bre over t ∈ G
of a C*-algebraic bundle (as de�ned [12, VIII 16]). The modular function of G
will be denoted ∆ and dt will indicate integration with respect to a �xed left
invariant Haar measure of G.

We denote Cc(ℬ) the set of continuous cross sections of ℬ with compact
support. This set is a normed *-algebra with pointwise vector space opera-
tions, convolution product f ∗ g(t) ∶= ∫G f(s)g(s

−1t) ds, involution f∗(t) =
∆(t−1)f(t−1)∗ and norm ‖f‖1 ∶= ∫G ‖f(t)‖ dt. The ‖ ‖1−completion of Cc(ℬ),
L1(ℬ), is the L1−cross-sectional algebra of [12, VIII 5]. The (universal) cross-
sectional C*-algebra ofℬ, C∗(ℬ), is the enveloping C*-algebra of L1(ℬ). By [12,
VIII 16.4], L1(ℬ)may be considered as a dense *-subalgebra of C∗(ℬ).

The space Cc(ℬ) carries the so called inductive limit topology, which we de-
scribe here following [12, II 14.2]. Given a compact setK ⊂ G we denoteCK(ℬ)
the subset of Cc(ℬ) formed by all the elements whose support is contained in
K. Then CK(ℬ) is a Banach space with the norm ‖f‖∞ ∶= supt∈G ‖f(t)‖. The
inductive limit topology of Cc(ℬ) is the largest topology making Cc(ℬ) a locally
convex space and �K ∶ CK(ℬ) → Cc(ℬ) continuous (for every compact K ⊂ G).
This description implies ‖ ‖1 is inductive-limit continuous.

The unit �breBe is a C*-algebrawith the operation inherited fromℬ.Besides,
each �bre Bt is a Be − Be−Hilbert bimodule with action by multiplication and
left and right inner products (a, b) ↦ a∗b and (a, b) ↦ ab∗, respectively.

We will work with Hilbert modules and inner products quite a lot. When
doing so the notation below will prove to be useful.

Notation 2.1. Given sets U and V, a topological vector spaceW, a binary op-
eration U × V → W, (u, v) ↦ u ⋅ v, and subsets A ⊂ U and B ⊂ V, we denote
A ⋅ B the closed linear span of {a ⋅ b∶ a ∈ A, b ∈ B}.

Notation 2.2. Given a C*-algebra A and a right A−Hilbert module V with
inner product ⟨ , ⟩, we denote B(V) the C*-algebra of adjointable operators
on V. The “ket-bra” operator associated to u, v ∈ V is |u⟩⟨v| ∈ B(V), with
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|u⟩⟨v|w ∶= u⟨v, w⟩. The C*-algebra of generalized compact operators on V,
K(V), is the closed linear span of the ket-bra operators. Hilbert spaces are re-
garded as right ℂ−Hilbert modules, so their inner products are linear in the
second variable. We identify the multiplier algebra of A, M(A), with B(A) and
B(V) = M(K(V)).

2.1.1. Crossed product norms. The universal crossed product norm

‖ ‖u∶ Cc(ℬ) → [0, +∞)

is given by ‖f‖u ∶= ‖f‖C∗(ℬ) and it is the largest C*-norm on Cc(ℬ) domi-
nated by ‖ ‖1. In [10, Proposition 2.6] Exel andNg construct a *-homomorphism
Λ∶ L1(ℬ) → B(L2e (ℬ)) such that Λfg = f ∗ g for all f, g ∈ Cc(ℬ). The regular
representation ofC∗(ℬ) is the unique *-homomorphismC∗(ℬ) → B(L2e (ℬ)) ex-
tending Λ, which we also denote Λ. By de�nition, the reduced cross-sectional
C*-algebra of ℬ is C∗r (ℬ) ∶= Λ(C∗(ℬ)). We canonically identify C∗r (ℬ) with
the completion of Cc(ℬ) with respect to the reduced crossed product norm
Cc(ℬ) → [0, +∞), ‖f‖r ∶= ‖Λf‖.

A crossed product norm on Cc(ℬ) is any C*-norm ‖ ‖ such that ‖ ‖r ≤ ‖ ‖ ≤
‖ ‖u.We say ‖ ‖ is exotic if ‖ ‖r ≠ ‖ ‖ ≠ ‖ ‖u and ℬ is amenable if ‖ ‖r = ‖ ‖u.
Given a crossed product norm � of Cc(ℬ)we can form the completion C∗�(ℬ) of
Cc(ℬ)with respect to �, thus obtaining a C*-algebra which we call the �−cross-
sectional C*-algebra of ℬ.

For every *-representation�∶ C∗�(ℬ) → B(V) (withV aHilbert space) the re-
striction �|Cc(ℬ) extends to a *-representation �

′∶ L1(ℬ) → B(V). By [12, VIII
13.2], �′ is the integrated form of a unique *-representation T∶ ℬ → B(V).
Since L1(ℬ) is a dense *-subalgebra of C∗(ℬ), we may consider the integrated
form T̃ of T as a *-representation ofC∗(ℬ). If q� ∶ C∗(ℬ) → C∗�(ℬ) is the canon-
ical quotient map, then �◦q� = T̃. In case � is faithful, we may identify C∗�(ℬ)
with the closed linear span of {T̃f ∶ f ∈ Cc(ℬ)}, what we will do more than
once.

2.2. Primal examples. Let � = ({Xt}t∈G , {�t}t∈G) be a LCH partial action of
G on X. The natural partial action of G on C0(X) de�ned by �, � = �(�) ∶=
({C0(Xt)}t∈G , {�t}t∈G), is given by �t(f)(x) = f(�t−1(x)) for all f ∈ C0(Xt−1),
x ∈ Xt.

In general, by a C*-partial action wemean a partial action on a C*-algebra as
in [2, De�nition 2.2]. The correspondence � ⇝ �(�) is bijective between LCH
partial actions and C*-partial actions on commutative C*-algebras.

Given a C*-partial action � = ({Bt}t∈G , {�t}t∈G) of G on B, the semidirect
product bundle of �, ℬ�, is the Banach subbundle {(t, a)∶ a ∈ Bt, t ∈ G} of the
trivial Banach bundle B × G over G together with the product and involution
given by

(s, a)∗ = (s−1, �s−1(a∗)) (s, a)(t, b) = (st, �s(�s−1(a)b)).
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Exel de�nes (in [8]) semidirect product bundles even for twisted partial ac-
tions. Although our theory will cover this kind of bundles, we will not have to
deal with them explicitly. Following Exel we will write a�s instead of (s, a). So
Bs�s is actually the �bre (s, Bs) of ℬ� over s ∈ G. This notation is convenient
because we canonically identify the �bre Be�e = B�e (over the group’s unit e)
with B. Under this identi�cation Bs is a C*-ideal of B�e, not the �bre Bs�s.

In case B = C0(X) and � = �(�), we write A� instead of ℬ�(�).We call A�
the semidirect product bundle of �.

De�nition 2.3. A primal example of a weakly proper Fell bundle is the semidi-
rect product bundle of a proper LCH partial action.

Recall from [1] (and from [3] for non discrete groups) that every Fell bundle
ℬ = {Bt}t∈G de�nes a topological partial action �̂ ofG on the spectrum B̂e of the
unit �bre Be. Given t ∈ G, the set Iℬt ∶= BtB∗t is an ideal of Be, so the spectrum
̂Iℬt is an open subset of B̂e. The homeomorphism �̂t ∶ Îℬt−1 → Îℬt is the Rie�el
homeomorphism associated to the Iℬt−1 − Iℬt −equivalence bimodule Bt.

The partial action �̂ described before is compatible with the natural quotient
map q∶ B̂e → Prim(Be) (from the spectrum to the primitive ideal space) given
by q([�]) = ker(�),where [�] is the unitary equivalence class of the irreducible
representation �. This means that there exists a unique topological partial ac-
tion �̃ of G on Prim(Be) such that �̃t maps Ot−1 ∶= Prim(Iℬt−1) bijectively to
Ot = Prim(Iℬt ) sending ker(�) to ker(�̂t(�)).

For a primal example ℬ = A� we have �̂ = �, so the identity A� = A�
implies � = � and there is no possible ambiguity in our last de�nition above. It
also follows that, for an arbitrary LCH partial action �, A� is a primal example
of a weakly proper Fell bundle if and only if � is proper.

In order to motivate our de�nition of weakly proper Fell bundle, and to jus-
tify the term “weakly proper” we are using, let’s put Buss and Echterho�’s
weakly proper actions [7] in the context of Fell bundles.

A C*-action � of G on B is weakly proper if there exists a proper LCH action
� of G on Y together with a *-homomorphism �∶ C0(Y) → M(B) such that,
with � = �(�),

∙ B = �(C0(Y))B. By Cohen-Hewitt’s Theorem this is equivalent to say
every b ∈ B admits a factorization b = �(f)c.

∙ For all f ∈ C0(Y), b ∈ B and t ∈ G, �(�t(f))�t(b) = �t(�(f)b).
In the situation above one can construct the function

A� × ℬ� → ℬ�, (f�s, b�t) ↦ �(f)�s(b)�st,

which we interpret as an action of A� on ℬ� . The properties satis�ed by this
action motivate the following.

De�nition 2.4. Let A = {At}t∈G and ℬ = {Bt}t∈G be Fell bundles over G.We
say a functionA×ℬ → ℬ, (a, b) ↦ a ⋅ b, is an action ofA onℬ by adjointable
maps if



FIXED-POINT ALGEBRAS FOR FELL BUNDLES 953

(1) For all a ∈ As, b ∈ Bt and s, t ∈ G, a ⋅ b ∈ Bst.
(2) For all s, t ∈ G and b ∈ Bt the function As → Bst, a ↦ a ⋅ b is linear.
(3) For all a, c ∈ A and b ∈ ℬ, a ⋅ (c ⋅ b) = (ac) ⋅ b.
(4) For all a ∈ A and b, d ∈ ℬ, (a ⋅ b)∗d = b∗(a∗ ⋅ d).
(5) For all b ∈ Be the function A → ℬ, a ↦ a ⋅ b, is continuous.

We say the action is nondegenerate if for all t ∈ G, (AtAt−1) ⋅Be = BtBt−1 (recall
Notation 2.1).

In the conditions above there exists a unique *-homomorphism �∶ Ae →
M(Be) such that �(a)b = a ⋅ b. If we were working with semidirect product
bundles ℬ = ℬ� and A = A�, then this map � would be exactly the map
�∶ C0(X) → M(B) (after the identi�cation Ae = C0(X) and Be = B). The
di�erence between weakly proper actions and Kasparov proper actions is that
the latter assume � is central (i.e. the image of � is contained in the center
ZM(Be)).

De�nition 2.5. A Fell bundle ℬ over G is weakly proper if there exists a pri-
mal example of a weakly proper Fell bundle over G, A, and a nondegenerate
action ofA onℬ by adjointable maps. If, in addition, the map �∶ Ae →M(Be)
described above is central, we say ℬ is Kasparov proper.

Example 2.6. Every primal example of a weakly proper Fell bundle, say A, is
weakly proper. Indeed, one just needs to consider the multiplication ofA as an
action of A on A.

Wewill show later (in Corollary 2.14) that a semidirect product bundleA� of
a LCHpartial action� is weakly proper if and only if� is proper. So theExample
above produces all weakly proper Fell bundles coming from semidirect product
bundles of LCH partial actions.

The non degeneracy requirement in De�nition 2.5 is motivated by condition
(C1) in the example below (and to exclude the zero action).

Example 2.7 (Weakly proper partial actions). Consider a C*-partial action � =
({Bt}t∈G , {�t}t∈G) of G on B for which there exists a proper LCH partial action
� = ({Xt}t∈G , {�t}t∈G) of G on X and a *-homomorphism �∶ C0(X) → M(B)
such that, with � = �(�), the following conditions hold:
(C1) For all t ∈ G, Bt = �(C0(Xt))B. By Cohen-Hewitt’s factorization Theorem

this implies for every b ∈ Bt and t ∈ G there exists f ∈ C0(Xt) and c ∈ Bt
such that b = �(f)c.

(C2) For all t ∈ G, f ∈ C0(Xt−1) and b ∈ Bt−1 , �(�t(f))�t(b) = �t(�(f)b).
Then the semidirect product bundle ℬ� is weakly proper with respect to the
action

A� × ℬ� → ℬ�, (f�t, b�s) ↦ �t(�(�t−1(f))b)�ts. (2.1)
Note that the map above is de�ned because �(C0(Xt−1))Bs ∈ Bt−1 ∩ Bs, for all
s, t ∈ G. Thus �t(�(C0(Xt−1))Bs) ⊂ Bt ∩ Bst. One can not de�ne the action of
(2.1) if in (C1) one requires, for example, Bt = �(C0(Xt))Bt. The reader may
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explore other alternatives, but the author must say (C1) is the only satisfactory
condition he has been able to �nd.

It is not straightforward to verify (2.1) de�nes an action by adjointable maps.
After some attempts to do this one feels that the computations needed are quite
similar to those necessary to show the semidirect product bundle of a C*-partial
action is a Fell bundle. We leave to the reader the adaptation of Exel’s method
to do this, see [8] (fortunately there are no twists here).

The action of a Fell bundle on another has some extra properties that we
summarize below.

Proposition 2.8. If A × ℬ → ℬ, (a, b) ↦ a ⋅ b, is an action of the Fell bundle
A = {At}t∈G on the Fell bundleℬ = {Bt}t∈G by adjointable maps then:

(1) For all s, t ∈ G the map As × Bt ↦ Bst, (a, b) ↦ a ⋅ b, is bilinear.
(2) For all a ∈ A and b, c ∈ ℬ, a ⋅ (bc) = (a ⋅ b)c.
(3) For all a ∈ A and b ∈ ℬ, ‖ab‖ ≤ ‖a‖‖b‖ and (a ⋅ b)∗(a ⋅ b) ≤ ‖a‖2b∗b.
(4) The actionA ×ℬ → ℬ, (a, b) ↦ a ⋅ b, is continuous.
(5) For all t ∈ G, At ⋅ Be = Ae ⋅ Bt = Bt.

Proof. Clearly themap from (1) is linear in the �rst variable, to show it is linear
in the second variable take a ∈ As, b, c ∈ Bt and � ∈ ℂ. Then, with z ∶=
a ⋅ (b + �c) − (a ⋅ b + �[a ⋅ c]),

‖z‖2 = ‖z∗z‖ = ‖(b + �c)∗(a∗ ⋅ z) − b∗(a∗ ⋅ z) − �[b∗(a∗ ⋅ c)]‖ = 0.

This implies z = 0, that is a ⋅ (b + �c) = a ⋅ b + �[a ⋅ c].
The proof of (2) is quite similar to the previous one. If z = a ⋅ (bc) − (a ⋅ b)c,

then
‖z‖2 = ‖z∗z‖ = ‖(bc)∗(a∗ ⋅ z) − c∗b∗(a∗ ⋅ z)‖ = 0.

Hence (2) follows.
To prove (3) take a ∈ As and b ∈ Bt and note that (a ⋅b)∗(a ⋅b) = b∗(a∗a ⋅b).

For every c ∈ Ae there exists a unique �c ∈ M(Be) such that �cx = c ⋅ x.
In fact the map �∶ Ae → M(Be), c ↦ �c, is a *-homomorphism. Consid-
ering the �bre Bt as a right Be−Hilbert module (with inner product ⟨x, y⟩ =
x∗y) we have a nondegenerate *-homomorphism '∶ Be → B(Bt) such that
'(x)y = xy. If '∶ M(Be) → B(Bt) is the unique extension of ', then since
every *-homomorphism between C*-algebras is contractive we have

(a ⋅ b)∗(a ⋅ b) = ⟨b, '(�a∗a)b⟩ ≤ ‖'(�a∗a)‖⟨b, b⟩ ≤ ‖a∗a‖b∗b = ‖a‖2b∗b,

where we have used that a∗a ≥ 0 in Ae. Then ‖a ⋅ b‖ = ‖(a ⋅ b)∗(a ⋅ b)‖1∕2 ≤
‖a‖‖b‖.

To prove (4) take a net {(ai, bi)}i∈I ⊂ A×ℬ converging to (a, b) ∈ A×ℬ. Let
{(si, ti)}i∈I ⊂ G × G and (s, t) ∈ G × G be such that ai ∈ Asi , bi ∈ Bti , a ∈ As
and b ∈ Bt. Then si → s, ti → t, ai ⋅ bi ∈ Bsiti and siti → st.

Fix " > 0. Then, since ℬ has approximate units, there exists u" ∈ Be such
that ‖b − u"b‖ < "(1 + ‖a‖)−1. Take i" ∈ I such that ‖bi − u"bi‖ < "(1 + ‖a‖)−1
and ‖ai‖ < ‖a‖ + 1 for all i ≥ i". Our construction implies that, for all i ≥ i",



FIXED-POINT ALGEBRAS FOR FELL BUNDLES 955

‖ai ⋅ bi − ai ⋅ (u"bi)‖ = ‖ai ⋅ (bi − u"bi)‖ < ". Now the de�nition of action by
adjointable maps and claim (2) imply

lim
i
ai ⋅ (uibi) = lim

i
(ai ⋅ u")bi = (a ⋅ u")b = a ⋅ (u"b).

Besides, ‖a ⋅ b − a ⋅ (u"b)‖ < ". Now we can use [11, II 13.12] to deduce that
limi ai ⋅ bi = a ⋅ b, thus the proof of (4) is complete.

Regarding (5), by considering Bt as a right Be−Hilbert module we deduce
that

Bt = BtB∗t Bt = AtA∗
t ⋅ Bt ⊂ At ⋅ (At−1 ⋅ Bt) ⊂ At ⋅ Be ⊂ Bt

and also that

Bt = BeB∗eBt = (AeA∗
e ⋅ Be)Bt = Ae ⋅ (Ae ⋅ Bt) ⊂ Ae ⋅ Bt ⊂ Bt.

Now the proof is complete. �

The next Lemma may look harmless or even unnecessary, but it is of key
importance to us because it relates a LCH partial action � with the action ofA�
on a Fell bundle.

Lemma 2.9. Let � be a LCH partial action of G on X, ℬ a Fell bundle over G,
A� × ℬ → ℬ, (a, b) ↦ a ⋅ b, a nondegenerate action by adjointable maps and
set � ∶= �(�). If the map �∶ Ae →M(Be), �(x)y ∶= x ⋅ y, is central, then

�t(f)�e ⋅ bc = b(f�e ⋅ c), ∀ t ∈ G, f ∈ C0(Xt−1), b ∈ Bt, c ∈ ℬ.

Proof. Fix s, t ∈ G and f ∈ C0(Xt−1). Themaps Bt×Bs → Bts given by (b, c) ↦
�t(f)�e ⋅ bc and (b, c) ↦ b(f�e ⋅ c) are continuous and bilinear. Besides Bt =
C0(Xt)�t ⋅ Be and Bs = BeBs, thus we may assume b = u�t ⋅ v and c = zw for
some u ∈ C0(Xt), v ∈ Be, z ∈ Be and w ∈ Bs. By considering Bs and Bt as a
right Be − Be−Hilbert bimodules we deduce that

b(f�e ⋅ c) = (u�t ⋅ v)([f�e ⋅ z]w) = u�t ⋅ ([v�(f)z]w) = u�t ⋅ ([�(f)vz]w)
= u�tf�e ⋅ (vc) = �t(�t−1(u)f)�t ⋅ (vc) = �t(f)u�t ⋅ (vc)
= �t(f)�eu�t ⋅ (vc) = �t(f)�e ⋅ (u�t ⋅ (vc)) = �t(f)�e ⋅ bc.

�

In the C*-algebraic context, if A acts on B and B on C by nondegenerate
actions by adjointable maps, then one can de�ne a nondegenerate action of A
on C by adjointable maps. This is also true for Fell bundles.

Proposition 2.10. LetA = {At}t∈G , ℬ = {Bt}t∈G andC = {Ct}t∈G be Fell bundles
over G and A × ℬ → ℬ, (a, b) ↦ a ⋅ b, and ℬ × C → C, (b, c) ↦ b ⋄ c,
nondegenerate actions by adjointable maps. Then there exists a unique action by
adjointable mapsA × C → C, (a, c) ↦ a ⋆ c, such that a ⋆ (b ⋄ c) = (a ⋅ b) ⋄ c
for all (a, b, c) ∈ A × ℬ × C.Moreover, ⋆ is nondegenerate.
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Proof. Fix s, t ∈ G. In order to show there exists a unique bounded bilinear
map Fs,t ∶ As×Ct → Cst such that Fs,t(a, b⋄c) = (a⋅b)⋄c for all (a, c) ∈ As×Ct
and b ∈ Be, it su�ces to show that ‖

∑n
j=1(a ⋅ bj) ⋄ cj‖ ≤ ‖a‖‖

∑n
j=1 bj ⋄ cj‖,

for all n ∈ ℕ, b1, … , bn ∈ Be and c1, … , cn ∈ Ct.
Take b1, … , bn ∈ Be and c1, … , cn ∈ Ct. De�ne u ∶=

∑n
j=1 bj ⋄ cj and v ∶=∑n

j=1(a ⋅ bj) ⋄ cj. Consider the map �∶ Ae →M(Be) given by �(x)y = x ⋅ y and

let �∶ M(Ae) → M(Be) be the unique extension of �. Ifw is the positive square
root of ‖a‖2 − a∗a inM(Ae), then

‖a‖2u∗u − v∗v =
n∑

i,j=1
‖a‖2c∗i (b

∗
i bj ⋄ cj) − c∗i ([b

∗
i (a

∗a ⋅ bj)] ⋄ cj)

=
n∑

i,j=1
c∗i ([b

∗
i �(w

∗w)bj] ⋄ cj)

=
n∑

i,j=1
(�(w)bi ⋄ ci)∗(�(w)bj ⋄ cj) ≥ 0.

This implies ‖
∑n

j=1(a ⋅ bj) ⋄ cj‖ ≤ ‖a‖‖
∑n

j=1 bj ⋄ cj‖ (i.e. ‖v‖ ≤ ‖a‖‖u‖).
Now we de�ne A × C → C, (a, c) ↦ a ⋆ c, in such a way that for a ∈ As

and c ∈ Ct, a ⋆ c = Fs,t(a, c). Clearly, ⋆ satis�es conditions (1) and (2) from
De�nition 2.4.

Take (a, b, c) ∈ A × ℬ × C and (r, s, t) ∈ G3 such that a ∈ Ar, b ∈ Bs
and c ∈ Ct. In order to compute a ⋆ (b ⋄ c) we take an approximate unit of ℬ,
{uj}j∈J ⊂ Be. Then the continuity of the actions and of the maps Fp,q (p, q ∈ G)
implies

a ⋆ (b ⋄ c) = lim
j
a ⋆ (uj ⋄ b ⋄ c) = lim

j
(a ⋅ uj) ⋄ (b ⋄ c)

= lim
j
(a ⋅ ujb) ⋄ c = (a ⋅ b) ⋄ c.

Now we show condition (3) from De�nition 2.4 using the identity we have
just proved. For all a, d ∈ A and c ∈ C we have

a ⋆ (d ⋆ c) = lim
j
a ⋆ (d ⋆ [uj ⋄ c])

= lim
j
a ⋆ ((d ⋅ uj) ⋄ c) = lim

j
(a ⋅ (d ⋅ uj)) ⋄ c

= lim
j
(ad ⋅ uj) ⋄ c = lim

j
(ad) ⋆ (uj ⋄ c) = (ad) ⋆ c.
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To prove (4) from De�nition 2.4 take a ∈ A and c, f ∈ C. Then
(a ⋆ c)∗f = lim

j
(a ⋆ (uj ⋄ c))∗f = lim

j
((a ⋅ uj) ⋄ c)∗f = lim

j
c∗((a ⋅ uj)∗ ⋄ f)

= lim
j
lim
k
c∗((a ⋅ uj)∗uk ⋄ f) = lim

j
lim
k
c∗(u∗j (a

∗ ⋅ uk) ⋄ f)

= lim
j
lim
k
c∗(u∗j ⋄ (a

∗ ⋅ uk) ⋄ f) = lim
j
lim
k
(uj ⋄ c)∗((a∗ ⋅ uk) ⋄ f)

= lim
j
lim
k
(uj ⋄ c)∗(a ⋆ (uk ⋄ f)) = lim

j
(uj ⋄ c)∗(a ⋆ f) = c∗(a ⋆ f).

Let’s show (5) fromDe�nition 2.4. Note that by constructionwe get ‖a⋆c‖ ≤
‖a‖‖c‖, for all (a, c) ∈ A × C. Fix c ∈ Ce and take a net {ai}i∈I ⊂ A converging
to a ∈ At. Given " > 0 take u" ∈ Be (for example one of the terms of {uj}j∈J)
such that ‖c − u" ⋄ c‖ < "(1 + ‖a‖)−1. Then
lim
i
ai ⋆ (u" ⋄ c) = lim

i
ai ⋆ (u" ⋄ c) = lim

i
(ai ⋅ u") ⋄ c = (a ⋅ u") ⋄ c = a ⋆ (u" ⋄ c).

and ‖a ⋆ (u" ⋄ c) − a ⋆ c‖ < ". Besides, taking i" ∈ I such that ‖ai‖ < ‖a‖ + 1
for all i ≥ i", we get that ‖ai ⋆ (u" ⋄ c) − ai ⋆ c‖ ≤ ‖a‖‖u" ⋄ c − c‖ < " for all
i ≥ i". Now [11, II 13.12] implies limi ai ⋆ c = a ⋆ c.

Finally, ⋆ is nondegenerate because for all t ∈ G
AtAt−1 ⋆ Ce = AtAt−1 ⋆ (Be ⋅ Ce) = (AtAt−1 ⋅ Be) ⋄ Ce = BtBt−1 ⋄ Ce = CtCt−1 .
Now the proof is complete. �

We have de�ned weakly proper Fell bundles using actions of primal exam-
ples of weakly proper Fell bundles. Then one might de�ne “weakly weakly
proper Fell bundles” using actions ofweakly proper Fell bundles and so on. For-
tunately “weaklyn proper Fell bundles” = “weakly proper Fell bundles”. This
fact andCorollary 2.14 (whichwe suggest to consult at this point) kind of justify
our choice of the name “primal example”.

Corollary 2.11. If ℬ is a weakly proper Fell bundle over G and C is a Fell bun-
dle over G admitting a nondegenerate action by adjointable maps of ℬ, then C is
weakly proper.

Proof. Let � be a proper LCH partial action such that A� acts on ℬ by a non-
degenerate action by adjointable maps. Proposition 2.10 gives a nondegenerate
action by adjointable maps of A� on C, thus C is weakly proper. �

2.3. Kasparov proper Fell bundles and amenability. The main result in
this (sub)section states that every Kasparov proper Fell bundle is amenable in
the sense that its full and reduced cross-sectional C*-algebras agree; what we
will prove using the following.

Theorem 2.12. Let � be a LCH partial action of G on X, ℬ a Fell bundle over G
and A� × ℬ → ℬ, (a, b) ↦ a ⋅ b, a nondegenerate action by adjointable maps.
Denote �̂ the topological partial action G on Prim(Be) de�ned by ℬ (described
after De�nition 2.3). If the map �∶ C0(X) → M(Be) given by �(f)b = (f�e) ⋅ b
is central, then there exists a continuous function ℎ∶ Prim(Be) → X such that
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(1) For all t ∈ G, ℎ−1(Xt) = Ot (recall Ot ∶= {P ∈ Prim(Be)∶ BtB∗t ⊈ P}).
(2) For all t ∈ G and P ∈ Ot−1 , ℎ(�̃t(P)) = �̃t(ℎ(P)).

Proof. Recall that the �bre over t ∈ G ofA� isAt ∶= C0(Xt)�e.As done before
we denote � (instead of �(�)) the C*-partial action de�ned by � on C0(X).We
identifyC0(X)withAe canonically and think ofC0(Xt) as an ideal ofAe.Adirect
computation shows that AtA∗

t = C0(Xt).
Themap � is nondegenerate because �(C0(X))Be = (C0(X)�eC0(X)�e) ⋅Be =

Be.ByDauns-Ho�man’s Theorem there exists a continuousmapℎ∶ Prim(Be) →
X such that, for all a ∈ C0(X), b ∈ Be and P ∈ Prim(Be), �P(a�e ⋅ b) =
a(ℎ(P))�P(b); where �P ∶ Be → Be∕P is the canonical quotient map.

Fix t ∈ G.Given P ∈ ℎ−1(Xt), take a ∈ C0(Xt) such that a(ℎ(P)) = 1 and b ∈
Be such that �P(b) ≠ 0. Then �P(a�e ⋅ c) = a(ℎ(P))�P(c) ≠ 0 and we conclude
thatC0(Xt)�e ⋅Be = AtA∗

t ⋅Be = BtB∗t is not contained inP,meaning thatP ∈ Ot.
Assume, conversely, that we have P ∈ Ot. SinceC0(Xt)�e ⋅Be = BtB∗t ⊈ P, there
exists a ∈ C0(Xt) and b ∈ Be such that 0 ≠ �P(a�e ⋅ b) = a(ℎ(P))�P(b). Hence
a(ℎ(P)) ≠ 0 and this implies P ∈ Xt.

It is now time to prove claim (2). Take t ∈ G and P ∈ Ot−1 . By construction
(see [3]) the representation

�∶ Be → B(Bt ⊗�P (Be∕P)), �(b)(c ⊗ �P(d)) = bc ⊗ �P(d),

has kernel �̃t(P). Then, for all a ∈ C0(Xt−1) and c ∈ Be, we have �(a�e ⋅ c) =
a(ℎ(�̃t(P)))�(c). Take z ⊗ �P(w), z′ ⊗ �P(w′) ∈ Bt ⊗�P (Be∕P). Recalling our
inner products are linear in the second variable and using Lemma 2.9 we get

a(ℎ(�̃t(P)))�P(w∗z∗c∗z′w′) = a(ℎ(�̃t(P)))⟨c(z ⊗ �P(w)), z′ ⊗�P(w′)⟩
= ⟨�(a∗�e ⋅ c)(z ⊗ �P(w)), z′ ⊗�P(w′)⟩
= �P(w∗(a∗�e ⋅ cz)∗z′w′)
= �P(w∗z∗c∗

⏟ ⏟ ⏟
∈Bt−1

a�e ⋅ z′w′)

= �P(�t−1(a)�e ⋅ w∗z∗c∗z′w′
⏟⎴⎴⏟⎴⎴⏟

∈Be

)

= �t−1(a)(ℎ(P))�P(w∗z∗c∗z′w′).

Since �P(w∗z∗c∗z′w′) can not be null for all z ⊗ �P(w), z′ ⊗ �P(w′) ∈ Bt ⊗�P
Be∕P, we conclude that

a(ℎ(�̃t(P))) = a(�t(ℎ(P))) ∀a ∈ C0(Xt).

Noticing that ℎ(�̃t(P)), �t(ℎ(P)) ∈ Xt and recalling that C0(Xt) separates the
points of Xt we deduce that ℎ(�̃t(P)) = �t(ℎ(P)). �

Corollary 2.13. Every Kasparov proper Fell bundleℬ = {Bt}t∈G is amenable. In
case Prim(Be) is Hausdor�, the partial action �̃ of G on Prim(Be) is proper.
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Proof. We can use the notation and hypotheses of Theorem 2.12, with the ad-
ditional assumption that � is proper. The transformation group (Xe, G) de�ned
by the enveloping action �e is amenable in the sense of [5, De�nition 2.1] by [5,
Examples 2.7 (3)]. Besides, we can think of ℎ∶ Prim(Be) → X as a map from
Prim(Be) to Xe which is �̃ − �e equivariant. Then ℬ is amenable by [3, Theo-
rem 6.3], because condition (1) of that Theorem should be read “(Xe, G) is an
amenable transformation group” in our context1.

Now assume Prim(Be) is Hausdor� (hence LCH). We will use condition (2)
of Proposition 1.10 to show �̃ is proper. Take a net {(ti, Pi)}i∈I ⊂ Γ�̃ such that
{(�̃ti (Pi), Pi)}i∈I converges to (Q, R) ∈ Prim(Be)×Prim(Be).Then {(ti, ℎ(Pi))}i∈I ⊂
Γ� and {(�ti (ℎ(Pi)), ℎ(Pi))}i∈I converges to (ℎ(Q), ℎ(R)). There exists a subnet
{(tij , Pij )}j∈J such that {(tij , ℎ(Pij ))}i∈I ⊂ Γ� converges to a point (t, x) ∈ Γ�. By
construction ℎ(R) = limj ℎ(Pij ) = x ∈ Xt−1 . Since R ∈ ℎ−1(Xt−1) = Ot−1 , we
obtain (t, R) ∈ Γ�̃ is the limit of {(tij , Pij )}j∈J . �

Corollary 2.14. Let� be a LCHpartial action ofG onC0(X).ThenA� is aweakly
proper Fell bundle if and only if � is proper (i.e. A� is a primal example).

Proof. Themultiplier algebra ofC0(X)�e is (C*-isomorphic to)Cb(X) andhence
commutative. Thus the direct implication follows from Corollary 2.13 because
�̃ = �. For the converse just consider A� acting on A� by multiplication. �

3. Fixed-point algebras
As wementioned in the Introduction, the analysis of the primal examples of

weakly proper Fell bundles plays an important role in the general theory.

3.1. Primal examples. Let � be a proper LCH partial action of G on X and
denote � the respective partial action on C0(X). The enveloping action and en-
veloping spaces of � will be denoted �e and Xe, respectively. We view C0(X)
as an ideal of C0(Xe) and �e ∶= �(�e) as the enveloping action of � (in the
C*-algebraic sense [2]).

The partial crossed product C0(X) ⋊� G is, by de�nition, the cross-sectional
C*-algebra ofA�, C∗(A�).The bundleA� is an hereditary subbundle ofA�e and
thus we can view C0(X)⋊�G as a full hereditary C*-subalgebra of C0(Xe)⋊�e G
[4]. Recall from Corollary 2.13 that the full and reduced cross-sectional C*-
algebras are the same in the present situation.

The set of compactly supported continuous cross-sections of A�, Cc(A�), is
formed by functions of the form f†∶ G → A�, t ↦ f(t)�t, with

f ∈ C�c (G, C0(X)) ∶= {g ∈ Cc(G, C0(X))∶ g(t) ∈ C0(Xt), ∀ t ∈ G}.
Let’s recall the construction of a C0(Xe∕�e) − C0(Xe) ⋊�e G−bimodule E�e

performed in [17]. We are not assuming �e is free, then we will not be able to
guarantee E�e is an equivalence bimodule.

1This is so becausewe are using the term amenable following [10]. This notion of amenability
is also known as weak containment.
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The �e−orbit of a point x ∈ Xe will be denoted [x]. Recall from Proposition
1.9 that we may thinkX∕� = Xe∕�e by identifying [x] = [x]�e with [x]�, for all
x ∈ X.

ConsiderE�e ∶= Cc(Xe)with the preC0(X∕�)−left Hilbert module structure
given by

fg(x) = f([x])g(x) ⟨g, ℎ⟩([x]) ∶= ∫
G
(gℎ)(�et−1(x)) dt,

for all f ∈ C0(X∕�), g, ℎ ∈ Cc(Xe) and x ∈ X.
Routine computations show that the operations above are compatible and

that one can complete Cc(Xe) to get a left C0(X∕�)−Hilbert module E�e . In fact
one can use the Stone-Weierstrass Theorem to show the ideal

span{⟨g, ℎ⟩∶ g, ℎ ∈ Cc(X)}

is dense in Cc(X∕�) in the inductive limit topology (as de�ned in [12, II 14.2]).
Thus E�e is in fact a full left Hilbert module.

Full and reduced crossed products agree here, then one may appeal to [18]
to describe the right C0(Xe) ⋊�e G structure of E�e (even if �e is not free). For
g, ℎ ∈ Cc(Xe) and k† ∈ Cc(A�e) (with k ∈ Cc(G, C0(Xe))) the action and inner
products are given by

fk†(x) = ∫
G
f(�et (x))k(t)(�

e
t (x))∆(t)

−1∕2 dt ∀ x ∈ Xe. (3.1)

⟨⟨f, g⟩⟩�e(t) = ∆(t)−1∕2f∗�et (g)�t ∀ t ∈ G. (3.2)

In case �e is free we have E�e is a C0(X∕�) − C0(Xe) ⋊�e G−equivalence
bimodule.

Our goal now is to show the closure of Cc(X) in E�e , henceforth denoted E�,
inherits a C0(X∕�) − C0(X) ⋊� G−bimodule structure from E�e .

Proposition 3.1. E� is the closure of E0� ∶= Cc(Xe) ∩ C0(X) in E�e .

Proof. It su�ces to show that every f ∈ Cc(Xe) ∩ C0(X) can be approximated
in E�e by elements of Cc(X). Fix f ∈ Cc(Xe) ∩ C0(X) and take an approximate
unit {gi}i∈I of C0(X) contained in Cc(X). Since the projection of supp(f) into
Xe∕�e is compact, there exists a compact set K ⊂ Xe such that f(x) = 0 if
[x] ∩ K = ∅. Then, for all i ∈ I,

‖f − gif‖2E�e = sup
x∈K

∫
G
|f − gif|2(�et−1(x)) dt.

The trick now is to restrict the integral over G to a compact subset of G. To
do this note that if x ∈ K and |f − gif|2(�et−1(x)) ≠ 0, then �et−1(x) ∈ supp(f).
Thus t ∈ L ∶= {s ∈ G∶ K ∩ �et (supp(f)) ≠ ∅} and L is compact because �e is
LCH and proper. If �(L) is the measure of L, then for all i ∈ I

‖f − gif‖2E�e ≤ �(L)‖f − gif‖2∞
The proof now follows directly by taking limit in i. �
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Continuing our discussion note that C0(X∕�)E0� ⊂ E0� because E0� is an ideal
of Cc(Xe). Thus E� has a natural C0(X∕�)−left Hilbert module structure inher-
ited fromE�e .Note also that whenwe showedE�e is left full we actually showed
E� is left full.

Given f ∈ E0�, k† ∈ Cc(A�) and x ∈ Xe ⧵ X we have, by (3.1), fk†(x) = 0.
This proves E0�Cc(A�) ⊂ E0�. Besides, for all f, g ∈ E0� and t ∈ G we have
f∗�et (g) ∈ C0(X) ∩ �et (C0(X)) = C0(Xt). This implies, by (3.2), that ⟨⟨f, g⟩⟩�e ∈
Cc(A�).Thenwe conclude thatE� has anaturalC0(X∕�)−C0(X)⋊�G−bimodule
structure (inherited from E�e ).

The natural choice for the �xed-point algebra of �, or A�, is C0(X∕G). To
ensure it is strongly Morita equivalent to C∗(A�) = C0(X) ⋊� G one needs to
show the image of theC0(X)⋊�G−valued inner product spans a dense subspace
of C0(X) ⋊� G. As for global actions this can be done by assuming the partial
action is free.

De�nition 3.2. A topological partial action � of H on Y is free if for all t ∈
G ⧵ {e}, {y ∈ Yt−1 ∶ �t(y) = y} = ∅.

In terms of topological freeness for partial actions, as de�ned in [9], a topo-
logical partial action is free if it is free considered as an action of a discrete group
on a discrete space.

Proposition 3.3. A topological partial action is free if and only if its enveloping
action is free.

Proof. Assume � is a free topological partial action of H on Y and let �e be its
enveloping action, with enveloping space Ye. Take y ∈ Ye and t ∈ H such that
�et (y) = y. There exists r ∈ H such that x ∶= �er(y) ∈ Y. Then �ertr−1(x) = x ∈
Y, this implies x ∈ Yrt−1r−1 and �rtr−1(x) = x, thus rtr−1 = e and we get t = e.
The converse is trivial because � is a restriction of �e. �

The Morita equivalence between the �xed-point algebra and cross-sectional
C*-algebra is now available, at least for the primal examples of weakly proper
Fell bundles coming from free partial actions.

Theorem 3.4. Let � be a LCH free and proper partial action ofG onX. Then the
bimoduleE� described early in this section is aC0(X∕�)−C0(X)⋊�G−equivalence
bimodule.

Proof. Allweneed to do is to show the ideal generated by theC0(X)⋊�G−valued
inner products is dense in C0(X) ⋊� G.We know, by Propositions 3.3 and 1.10,
that �e is free and proper. Thus E�e is a C0(X∕�) − C0(Xe) ⋊�e G−equivalence
bimodule (see for example [17]).

Using (3.1) it is straightforward to prove that Cc(Xe)Cc(A�) ⊂ E0�. Recalling
that C0(X) ⋊� G is a full hereditary C*-subalgebra of C0(Xe) ⋊�e G we get that

C0(X) ⋊� G = span C0(X) ⋊� G⟨⟨Cc(Xe), Cc(Xe)⟩⟩�eC0(X) ⋊� G

= span⟨⟨E0�, E0�⟩⟩�e ⊂ C0(X) ⋊� G.



962 DAMIÁN FERRARO

�

Notation 3.5. The C0(X) ⋊� G−valued inner product of E� will be denoted
⟨⟨ , ⟩⟩�. By construction ⟨⟨f, g⟩⟩� = ⟨⟨f, g⟩⟩�e for all f, g ∈ E�.

3.2. General weakly proper Fell bundles. Let us now take a Fell bundle
ℬ = {Bt}t∈G which is weakly proper with respect to the action A� × ℬ →
ℬ, (a, b) ↦ a ⋅ b, where � = ({Xt}t∈G , {�t}t∈G) is a proper LCH partial ac-
tion of G on X. As usual we set � ∶= �(�), �e is the enveloping action of �, Xe

the enveloping space and the enveloping action of �, �e, is the action on C0(Xe)
de�ned by �e.

To avoid repetition, whenever we write �, ℬ, � (and any other mathematical
symbol appearing in the paragraph above) we will be implicitly assuming the
situation is the one we described before. The same will happen for objects con-
structed out of �, ℬ, �, etc; like the space E0ℬ or the �xed-point algebras we will
construct some lines below.

Unfortunately, the construction of the �xed-point algebra for ℬ depends on
�, but this is no surprise because something similar happens for weakly proper
actions on C*-algebras [6].

Themap�∶ C0(X) → M(Be), �(f)b = f�e⋅b, is a nondegenerate *-homomor-
phism and, since C0(X) is a C*-ideal of C0(Xe), there exists a unique extension
�e of � to C0(Xe).Motivated by Proposition 3.1 we de�ne

E0ℬ ∶= {�e(f)b∶ f ∈ Cc(Xe), b ∈ Be}.
For future reference we set the following.

Lemma 3.6. E0ℬ is a subspace of Be and for all b ∈ E0ℬ there exists f ∈ E0� =
Cc(Xe) ∩ C0(X) and b′ ∈ Be such that b = f�e ⋅ b′.

Proof. Given b, c ∈ E0ℬ and � ∈ ℂ take b′, c′ ∈ Be and f, g ∈ Cc(Xe) such
that b = �e(f)b′ and c = �e(g)c′. Now take ℎ ∈ Cc(Xe) such that ℎf = f and
ℎg = g. Then b + �c = �e(ℎ)b + ��e(ℎ)c = �e(ℎ)(b + �c) ∈ E0ℬ.

By Cohen-Hewitt’s factorization Theorem there exists k ∈ C0(X) and b′′ ∈
Be such that b′ = k�e ⋅ b′. Then b = �e(ℎ)b′ = �e(ℎ)k�e ⋅ b′′ = (ℎk)�e ⋅ b′′, and
ℎk ∈ E0�. �

The goal of the Proposition below is the construction of the Cc(ℬ) valued
inner product of E0ℬ using the Cc(A�)−valued inner product of E0�.

Proposition 3.7. There exists a unique function
⟨⟨ , ⟩⟩ℬ ∶ E0ℬ × E

0
ℬ → Cc(ℬ), (a, b) ↦ ⟨⟨a, b⟩⟩ℬ,

such that for all f, g ∈ E0�, a, b ∈ Be and t ∈ G,
⟨⟨f�e ⋅ a, g�e ⋅ b⟩⟩ℬ(t) = a∗(⟨⟨f, g⟩⟩�(t) ⋅ b). (3.3)

Moreover,
(1) ⟨⟨ , ⟩⟩ℬ is linear in the second variable.
(2) For all a, b ∈ E0ℬ, ⟨⟨a, b⟩⟩

∗
ℬ = ⟨⟨b, a⟩⟩ℬ.
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(3) Given f, g ∈ C0(Xe) and a net {(aj, bj)}j∈J ⊂ Be × Be that converges
to (a, b) ∈ Be × Be, then the net {⟨⟨�e(f)aj, �e(g)bj⟩⟩ℬ}j∈J converges to
⟨⟨�e(f)a, �e(f)b⟩⟩ℬ in the inductive limit topology of Cc(ℬ).

Proof. To show existence take f, g, ℎ, k ∈ E0� and a, b, c, d ∈ Be such that
f�e ⋅ a = ℎ�e ⋅ c and g�e ⋅ b = k�e ⋅ d. Fix t ∈ G and take an approximate unit
of C0(Xt), {ui}i∈I . Then,

a∗(⟨⟨f, g⟩⟩�(t) ⋅ b) = ∆(t)a∗(f∗�et (g)�t ⋅ b)
= lim

i
∆(t)a∗((uif)∗�et (�t−1(ui)g)�t ⋅ b)

= lim
i
∆(t)a∗((f�e)∗ ⋅ (ui�e)∗ ⋅ (ui�t) ⋅ (g�e) ⋅ b)

= lim
i
∆(t)(f�e ⋅ a)∗((u2i �t) ⋅ (g�e) ⋅ b)

= lim
i
∆(t)(ℎ�e ⋅ c)∗((u2i �t) ⋅ (k�e) ⋅ d)

= c∗(⟨⟨ℎ, k⟩⟩�(t) ⋅ d).

The identities above imply formula (3.3) can actually be used as a de�nition
and can also be used to show that ⟨⟨ , ⟩⟩ℬ is linear in the second variable.

The following identities prove claim (2):

⟨⟨f�e ⋅ a, g�e ⋅ b⟩⟩∗ℬ(t) = ∆(t)−1⟨⟨f�e ⋅ a, g�e ⋅ b⟩⟩ℬ(t−1)∗

= ∆(t)−1[a∗(⟨⟨f, g⟩⟩�(t−1) ⋅ b)]∗

= ∆(t)−1(⟨⟨f, g⟩⟩�(t−1) ⋅ b)∗a
= b∗(∆(t)−1⟨⟨f, g⟩⟩�(t−1)∗ ⋅ a)
= b∗(⟨⟨g, f⟩⟩�(t) ⋅ a) = ⟨⟨g�e ⋅ b, f�e ⋅ a⟩⟩ℬ(t).

Before proving claim (3), we will develop an alternative way of computing
⟨⟨x, y⟩⟩ℬ(t), for x, y ∈ E0ℬ and t ∈ G. Take an approximate unit ofC0(X), {ui}i∈I ,
and factorizations x = f ⋅ a and y = g ⋅ b with f, g ∈ E0� and a, b ∈ Be. Then

lim
i
⟨⟨ui ⋅ x, ui ⋅ y⟩⟩ℬ(t) = lim

i
⟨⟨uif ⋅ a, uig ⋅ b⟩⟩ℬ(t)

= lim
i
∆(t)−1a∗(⟨⟨uif, uig⟩⟩�(t−1) ⋅ b)

= lim
i
∆(t)−1a∗(f∗�et (g)ui�

e
t (ui)�t ⋅ b) = ⟨⟨x, y⟩⟩ℬ(t), (3.4)

where the last identity holds because {ui�et (ui)}i∈I is an approximate unit to
C0(Xt) and f∗�et (g) ∈ C0(Xt).

Now take a net {(aj, bj)}j∈J ⊂ Be×Be andf, g ∈ C0(Xe) as in claim (3). Using
(3.4) we deduce that, for all j ∈ J, supp⟨⟨f�e ⋅ aj, g�e ⋅ bj⟩⟩ℬ ⊂ supp⟨⟨f, g⟩⟩�e .
Thus it su�ces to prove {⟨⟨f�e ⋅aj, g�e ⋅bj⟩⟩ℬ}j∈J converges uniformly to ⟨⟨f�e ⋅
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aj, g�e ⋅ bj⟩⟩ℬ. Again by (3.4) we have, for all t ∈ G,

‖⟨⟨f�e ⋅ aj, g�e ⋅ bj⟩⟩ℬ(t) − ⟨⟨f�e ⋅ a, g�e ⋅ b⟩⟩ℬ(t)‖ ≤
≤ ‖⟨⟨f�e ⋅ (aj − a), g�e ⋅ bj⟩⟩ℬ(t)‖ + ‖⟨⟨f�e ⋅ a, g�e ⋅ (bj − b)⟩⟩ℬ(t)‖

≤ ‖aj − a‖‖bj‖‖⟨⟨f, g⟩⟩�e‖∞ + ‖a‖‖bj − b‖‖⟨⟨f, g⟩⟩�e‖∞.

It is then straightforward to show that

lim
j

‖⟨⟨f�e ⋅ aj, g�e ⋅ bj⟩⟩ℬ − ⟨⟨f�e ⋅ a, g�e ⋅ b⟩⟩ℬ‖∞ = 0

�

Our intention is to use ⟨⟨ , ⟩⟩ℬ as a C∗(ℬ)−valued inner product and con-
struct aHilbertmodule with it. To do sowewill need to show ⟨⟨ , ⟩⟩ℬ is positive.

Lemma 3.8. Consider Fell bundles over G, C = {Ct}t∈G and D = {Dt}t∈G , and
a nondegenerate action by adjointable maps C × D → D, (c, d) ↦ c ⋅ d. Then
for every nondegenerate *-representation T∶ D → B(V) there exists a unique *-
representation T̂ ∶ C → B(V) such that T̂cTd� = Tc⋅d�, for all (c, d, �) ∈ C×D×
V.Moreover, T̂ is nondegenerate.

Proof. Fix c ∈ C, d1, … , dn ∈ De and �1, … , �n ∈ V. Let w be a square root of
‖c‖2 − c∗c ∈ M(Ce). Using the arguments of the proof of Proposition 2.10 we
get

‖c‖2‖
n∑

i=1
Tdi�i‖ − ‖

n∑

i=1
Tc⋅di�i‖

2 =
n∑

i,j=1
‖c‖2⟨Tdi�i, Tdj�j⟩ − ⟨Tc⋅di�i, Tc⋅dj�j⟩

=
n∑

i,j=1
⟨�i, T‖c‖2d∗jdj−d

∗
j cc∗dj

�j⟩

=
n∑

i,j=1
⟨�i, Td∗jw∗wdj�j⟩ = ‖

n∑

i=1
Twdi�i‖ ≥ 0.

Since the restriction T|De is nondegenerate, the inequalities above imply there
exists a unique operator T̂c ∈ B(V) such that T̂cTd� = Tc⋅d�, for all d ∈ De and
� ∈ V. Given any d ∈ D, taking an approximate unit {dj}j∈J of De, it follows
that T̂cTd� = limj T̂cTdjTd� = limj Tc⋅dj ⋅d� = Tc⋅d�.

Having de�ned the operators T̂c (for all a ∈ C) we leave the rest of the proof
to the reader. �

Lemma 3.9. For all x ∈ E0ℬ, ⟨⟨x, x⟩⟩ℬ ≥ 0 in C∗(ℬ).Moreover, ⟨⟨x, x⟩⟩ℬ = 0 if
and only if x = 0.

Proof. Take a faithful and nondegenerate *-representation T∶ ℬ → B(V)with
faithful integrated form T̃ ∶ C∗(ℬ) → B(V). Let T̂ ∶ A� → B(V) be the
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*-representation given by Lemma 3.8 and take f ∈ E0� and b ∈ Be such that
x = f�e ⋅ b. Then, for all � ∈ V,

⟨T̃⟨⟨x,x⟩⟩ℬ�, �⟩ = ∫
G
⟨T⟨⟨x,x⟩⟩ℬ(t)�, �⟩ dt = ∫

G
⟨Tb∗(⟨⟨f,f⟩⟩�(t)⋅b)�, �⟩ dt

= ∫
G
⟨T̂⟨⟨f,f⟩⟩�(t)Tb�, Tb�⟩ dt = ⟨ ̃̂T⟨⟨f,f⟩⟩�Tb�, Tb�⟩ ≥ 0,

(3.5)

where ̃̂T is the integrated form of T̂ and the last inequality above holds because
⟨⟨f, f⟩⟩� ≥ 0 in C∗(A�).

In case ⟨⟨x, x⟩⟩ℬ = 0, x∗x = ⟨⟨x, x⟩⟩ℬ(e) = 0 and this implies x = 0. The
converse is immediate. �

Remark 3.10. Equation (3.5) holds for every nondegenerate *-representation
T of ℬ, not only for those with faithful integrated form. Besides, since both
T̃⟨⟨x,x⟩⟩ℬ and T∗b

̃̂T⟨⟨f,f⟩⟩�Tb are positive, (3.5) implies T̃⟨⟨x,x⟩⟩ℬ = T∗b
̃̂T⟨⟨f,f⟩⟩�Tb.

These facts will be used many times in the rest of the article.

Now we de�ne an action ⋄ of Cc(ℬ) on E0ℬ on the right.

Lemma 3.11. For each x ∈ E0ℬ and f ∈ Cc(ℬ) there exists a unique function
x ⊲ f ∈ Cc(G, Be) such that given any approximate unit {ui}i∈I of

C�0 (G, X) ∶= {f ∈ C0(G, C0(X))∶ f(t) ∈ C0(Xt), ∀ t ∈ G},

the net {r ↦ ui(r−1)�r−1 ⋅xf(r)}i∈I ⊂ Cc(G, Be) converges to x⊲f in the inductive
limit topology. Besides,

x ⋄ f ∶= ∫
G
∆(r)−1∕2x ⊲ f(r) dr ∈ E0ℬ. (3.6)

Proof. The set of continuous sections ofℬ vanishing at∞, C0(ℬ), is a Banach
space with the norm ‖ ‖∞. The function C�0 (G, X) × C0(ℬ) → C0(ℬ), (f, g) ↦
f ⋆ g, with f ⋆ g(r) = f(r)�e ⋅ g(r), is a linear action such that ‖f ⋆ g‖∞ ≤
‖f‖∞‖g‖∞. We claim that ⋆ in nondegenerate in the sense that C�0 (G, X) ⋆
C0(ℬ) = C0(ℬ). Indeed, let S ∶= span{f ⋆ g∶ f ∈ C�c (G, X), g ∈ Cc(ℬ)}. It is
clear that {vf∶ v ∈ Cc(G), v ∈ S} ⊂ S and, for all t ∈ G,

{f(t)∶ f ∈ S} = span{u ⋅ v∶ u ∈ C0(Xr)�e, v ∈ Br}.

The non degeneracy condition of the action of A� on ℬ implies

Br = BrB∗rBeBr = C0(Xr)�e ⋅ BeBr ⊂ C0(Xr)�e ⋅ Br ⊂ Br.

Hence {f(t)∶ f ∈ S} is dense in Br. By [11, II 14.6] the conditions above imply
S is dense in Cc(ℬ) in the inductive limit topology.

For all f ∈ S and approximate unit {ui}i∈I of C�0 (G, X) we have limi ‖ui ⋆
f − f‖∞ = 0 and this implies the same holds for all f ∈ C0(ℬ). Now the
Cohen-Hewitt Theorem implies for all f ∈ C0(ℬ) there exists g ∈ C�0 (G, X)
and f′ ∈ C0(ℬ) such that f = g ⋆ f′.
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Fix x ∈ E0ℬ and f ∈ Cc(ℬ). The function xf ∈ Cc(ℬ), given by (xf)(r) =
xf(r), admits a factorization g⋆ℎ with g ∈ C�c (G, X) and ℎ ∈ Cc(ℬ). Consider
an approximate unit {ui}i∈I of C�0 (G, X) and de�ne, for each i ∈ I, the func-
tion [xf]i ∈ Cc(G, Be) by [xf]i(r) ∶= ui(r−1)�r−1 ⋅ xf(r). Clearly, supp[xf]i ⊂
suppf. Thus to show {[xf]i}i∈I converges in the inductive limit topology it suf-
�ces to prove it converges uniformly.

De�ne k∶ G → Be by k(r) ∶= �r−1(g(r))�r−1 ⋅ ℎ(r). Then k ∈ Cc(G, Be) and,
for all r ∈ G,

‖[xf]i(r) − k(r)‖ = ‖ui(r−1)�r−1 ⋅ xf(r) − �r−1(g(r))�r−1 ⋅ ℎ(r)‖
= ‖ui(r−1)�r−1 ⋅ g(r)�e ⋅ ℎ(r) − �r−1(g(r))�r−1 ⋅ ℎ(r)‖
≤ ‖ui(r−1)�r−1g(r)�e − �r−1(g(r))�r−1‖‖ℎ‖∞
≤ ‖�r(ui(r−1))g(r) − g(r)‖‖ℎ‖∞

The function �∶ C�0 (G, X) → C�0 (G, X) given by �(z)(r) = �r(z(r−1)) is an
isomorphism of C*-algebras. Then {�(ui)}i∈I is an approximate unit ofC�0 (G, X)
and the inequalities above imply ‖[xf]i−k‖ ≤ ‖�(ui)g−g‖‖ℎ‖∞.Thus {[xf]i}i∈I
converges to k in the inductive limit topology.

We set, by de�nition, k ∶= x ⊲ f. In order to prove (3.6) choose w ∈ Cc(Xe)
such thatw�e ⋅ x = x. Then (wg)⋆ℎ(r) = wg(r)�r ⋅ ℎ(r) = w�e ⋅ g(r)�r ⋅ ℎ(r) =
w�e ⋅xf(r) = xf(r).Performing the construction of x⊲f using the factorization
xf = (wg) ⋆ ℎ we obtain x ⊲ f(r) = �r−1(wg(r))�r−1 ⋅ ℎ(r).

For every t ∈ supp(ℎ) we have supp(�r−1(wg(r))) ⊂ �er−1(supp(w)). Since �
e

is proper there exist a compact subset of the enveloping space Xe containing⋃
{supp(�r−1(wg(r)))∶ t ∈ supp(ℎ)}. Thus we may �nd z ∈ Cc(Xe) such that

z�r−1(wg(r)) = �r−1(wg(r)), for all r ∈ G. This construction of z guarantees that
z�e ⋅ (x ⊲ f(r)) = x ⊲ f(r), for all r ∈ G. Then we have

x ⋄ f = ∫
G
∆(r)−1∕2z�e ⋅ (x ⊲ f(r)) dr = z�e ⋅ (x ⋄ f) ∈ E0ℬ.

�

We want to construct a right Cc(ℬ)−module with inner product out of E0ℬ.
For this we need to show the following.

Lemma 3.12. For all x, y ∈ E0ℬ and f, g ∈ Cc(ℬ), the identities

⟨⟨x, y ⋄ f⟩⟩ℬ = ⟨⟨x, y⟩⟩ℬ ∗ f (x ⋄ f) ⋄ g = x ⋄ (f ∗ g)

obtain, where ∗ is the convolution product in Cc(ℬ).

Proof. Without loss of generality we can replace x and ywith g�e ⋅x and ℎ�e ⋅y,
with f, g ∈ E0�. Fix t ∈ G and let {ui}i∈I and {vj}j∈J be approximate units of
C0(X) and C�0 (G, X), respectively. The construction of ⟨⟨ , ⟩⟩ℬ described in the
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proof of Proposition 3.7 together with Lemma 3.11 imply

⟨⟨g�e ⋅ x, (ℎ�e ⋅ y) ⋄ f⟩⟩ℬ(t)

= lim
i
∆(t)−1∕2(g�e ⋅ x)∗(ui�et (ui)�t ⋅ [(ℎ�e ⋅ y) ⋄ f])

= lim
i
∫
G
lim
j
∆(ts)−1∕2(g�e ⋅ x)∗(ui�et (ui)�t ⋅ vj(s

−1)�s−1 ⋅ (ℎ�e ⋅ y)f(s)) ds

= lim
i
∫
G
lim
j
∆(ts)−1∕2x∗(g∗ui�et (uivj(s

−1)�es−1(ℎ))�ts−1 ⋅ yf(s)) ds

= lim
i
∫
G
∆(ts)−1∕2x∗(g∗ui�et (ui�

e
s−1(ℎ))�ts−1 ⋅ yf(s)) ds

= lim
i
∫
G
∆(ts−1)−1∕2∆(s−1)x∗(g∗ui�et (ui�

e
s (ℎ))�ts ⋅ yf(s−1)) ds

= lim
i
∫
G
∆(s)−1∕2x∗(g∗ui�et (ui�

e
t−1s(ℎ))�s ⋅ yf(s

−1t)) ds

= lim
i
∫
G
∆(s)−1∕2x∗(ui�et (ui)�e ⋅ g

∗�es (ℎ)�s ⋅ yf(s−1t)) ds. (3.7)

Note that g∗�es (ℎ)�s ⋅ yf(s−1t) ∈ Bt for all s ∈ G. Let Fi, F ∈ Cc(G, Bt) be
de�ned as

Fi(s) ∶ = ui�et (ui)�e ⋅ g
∗�es (ℎ)�s ⋅ yf(s−1t)

F(s) ∶ = g∗�es (ℎ)�s ⋅ yf(s−1t)

The supports of both Fi and F are contained in tsupp(f)−1, thus the net
{Fi}i∈I converges to F in the inductive limit topology if and only if it converges
uniformly. To show uniform convergence it su�ces to prove that given a net
{si}i∈I ⊂ G converging to s ∈ G, it follows that limi ‖Fi(si) − F(s)‖ = 0. Since
F(s) ∈ Bt = BtB∗t BeBt = C0(Xt)�e ⋅ Bt, there existm ∈ Cc(Xt) and z ∈ Bt such
that F(s) = m�e ⋅ z. Then

0 ≤ lim
i

‖Fi(si) − F(s)‖ ≤ lim
i

‖Fi(si) − Fi(s)‖ + ‖Fi(s) − F(s)‖

≤ lim
i

‖ui�et (ui)‖‖F(si) − F(s)‖ + ‖Fi(s) − F(s)‖

≤ lim
i

‖Fi(s) − F(s)‖

= lim
i

‖ui�et (ui)�e ⋅ F(s) − F(s)‖

= lim
i

‖ui�et (ui)m −m‖‖z‖ = 0,

where the last identity holds because {ui�et (ui)}i∈I is an approximate unit of
C0(Xt).
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Now we can continue the computations (3.7) to get

⟨⟨g�e ⋅ x, (ℎ�e ⋅ y) ⋄ f⟩⟩ℬ(t) = lim
i
∫
G
Fi(s) ds = ∫

G
F(s) ds

= ∫
G
∆(s)−1∕2x∗(g∗�es (ℎ)�s ⋅ y)f(s−1t) ds

= ∫
G
⟨⟨g�e ⋅ x, ℎ�e ⋅ y⟩⟩(s)f(s−1t) ds

= ⟨⟨g�e ⋅ x, ℎ�e ⋅ y⟩⟩ ∗ f(t).

This proves ⟨⟨g�e ⋅ x, (ℎ�e ⋅ y) ⋄ f⟩⟩ℬ = ⟨⟨g�e ⋅ x, ℎ�e ⋅ y⟩⟩ ∗ f.
To show that (x ⋄ f) ⋄ g = x ⋄ (f ∗ g) (for x ∈ E0ℬ and f, g ∈ Cc(ℬ)) it

su�ces to show, by Lemma 3.9, that for y ∶= (x ⋄ f) ⋄ g − x ⋄ (f ∗ g) one has
⟨⟨y, y⟩⟩ℬ = 0. But this is so because

⟨⟨y, y⟩⟩ℬ = (⟨⟨y, x⟩⟩ℬ ∗ f) ∗ g − ⟨⟨y, x⟩⟩ℬ ∗ (f ∗ g) = 0.
�

De�nition 3.13. Let � be a crossed product norm of Cc(ℬ).We de�ne E�ℬ as
the completion of E0ℬ with respect to the norm ‖ ‖� ∶ E0ℬ → [0,+∞), x ↦
�(⟨⟨x, x⟩⟩ℬ)1∕2, and regardE

�
ℬ as a rightC�(ℬ)−Hilbertmodulewith the unique

inner product and action extending the operations
E0ℬ × E

0
ℬ → Cc(ℬ) (x, y) ↦ ⟨⟨x, y⟩⟩ℬ

E0ℬ × Cc(ℬ) → E0ℬ (x, f) ↦ x ⋄ f.

The �−�xed-point algebra for ℬ is F�ℬ ∶= K(E�ℬ) (see Notation 2.2).

For future use we give a bound on ‖ ‖�.

Remark 3.14. For every f ∈ E0� and b ∈ Be, ‖f�e ⋅ b‖� ≤ ‖f‖�‖b‖, where ‖ ‖�
is the norm of E�. Indeed, we may assume � is the universal norm (because
this change can only increase ‖ ‖�). Notice x ∶= f�e ⋅ b ∈ E0� and that we
can reuse the computations in (3.5) (with T̃ faithful and nondegenerate). By
Remark 3.10,

‖f�e ⋅ b‖2u = ‖T̃⟨⟨f�e⋅b,f�e⋅b⟩⟩ℬ‖ = ‖T∗b
̃̂T⟨⟨f,f⟩⟩�Tb‖ ≤ ‖Tb∗b‖‖⟨⟨f, f⟩⟩�‖

≤ ‖b‖2‖f‖2�;
which gives the desired inequality.

The �xed-point algebras F�ℬ have a natural C0(X∕�)−algebra structure, as
we show below.

Proposition 3.15. Let Cb(X) = M(C0(X)) act on Be by extending the action of
C0(X) = C0(X)�e on Be. Consider C0(X∕�) as a C*-subalgebra of Cb(X) and let
C0(X∕�) act on Be through the action of Cb(X). Then C0(X∕�)E0ℬ ⊂ E0ℬ and this
gives an action

C0(X∕�) × E0ℬ → E0ℬ, (f, x) ↦ fx.
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Moreover, for every crossed product norm � of Cc(ℬ), there exists a unique
*-homomorphism �� ∶ C0(X∕�) → B(E�ℬ) = M(F�ℬ) such that ��(f)x = fx,
for all f ∈ C0(X∕�) and x ∈ E0�. Besides, �� is nondegenerate.

Proof. Takef ∈ C0(X∕�) and x ∈ E0ℬ.Consider a factorization x = g�e ⋅ywith
g ∈ E0� and y ∈ Be. Then, by construction, fx = f(g�e ⋅ y) = (fg)�e ⋅ y ∈ E0ℬ.

Now let � be a crossed product norm of Cc(ℬ). Take a nondegenerate *-
representation T∶ ℬ → B(V) such that the integrated form T̃ ∶ C∗(ℬ) → B(V)
factors through a faithful representation of C∗�(ℬ). Let T̂ ∶ A� → B(V) be the
*-representation described in Lemma 3.8. Given f ∈ C0(X∕�) and x ∈ E0�
take a factorization x = g�e ⋅ y as explained in the last paragraph. We know
(see Section 3.1) that ⟨⟨fg, fg⟩⟩� ≤ ‖f‖2⟨⟨g, g⟩⟩� in C∗(A�).As indicated in Re-
mark 3.10, equation (3.5) can be used in the present situation to deduce that for
all � ∈ V,

⟨T̃‖f‖2⟨⟨x,x⟩⟩ℬ−⟨⟨fx,fx⟩⟩ℬ�, �⟩ = ⟨T̃‖f‖2⟨⟨g�e⋅y,g�e⋅y⟩⟩ℬ−⟨⟨fg�e⋅y,fg�e⋅y⟩⟩ℬ�, �⟩
= ⟨T̃‖f‖2⟨⟨g�e⋅y,g�e⋅y⟩⟩ℬ�, �⟩ − ⟨T̃⟨⟨fg�e⋅y,fg�e⋅y⟩⟩ℬ�, �⟩

= ⟨ ̃̂T‖f‖2⟨⟨g,g⟩⟩�Ty�, Ty�⟩ − ⟨ ̃̂T⟨⟨fg,fg⟩⟩�Ty�, Ty�⟩

= ⟨ ̃̂T‖f‖2⟨⟨g,g⟩⟩�−⟨⟨fg,fg⟩⟩�Ty�, Ty�⟩ ≥ 0. (3.8)

The way we chose T implies that we may regard C∗�(ℬ) as the closed linear
span of {T̃f ∶ f ∈ Cc(ℬ)} ⊂ B(V).When doing so, each f ∈ Cc(ℬ) gets iden-
ti�ed with T̃f. So (3.8) shows the bound ‖f‖2⟨⟨x, x⟩⟩ℬ ≥ ⟨⟨fx, fx⟩⟩ℬ holds in
C∗�(ℬ). This implies that for all f ∈ C0(X∕�) there exists a unique bounded
operator ��(f)∶ E

�
ℬ → E�ℬ such that ��(f)x = fx, for all x ∈ E�ℬ. Moreover,

‖��(f)x‖� ≤ ‖f‖‖x‖�.
The operator ��(f) is adjointable with adjoint ��(f∗) because, for all x, y ∈

Be, g, ℎ ∈ E0� and t ∈ G,

⟨⟨��(f)(g�e ⋅ x), ℎ�e ⋅ y⟩⟩ℬ(t) = x∗(⟨⟨fg, ℎ⟩⟩�(t) ⋅ y) = x∗(⟨⟨g, f∗ℎ⟩⟩�(t) ⋅ y)
= ⟨⟨g�e ⋅ x, ��(f∗)(ℎ�e ⋅ y)⟩⟩ℬ(t).

Now that we know themap �� ∶ C0(X∕�) → M(F�ℬ) is de�ned and preserves
the involution, we leave to the reader the veri�cation of the fact that �� is linear
and multiplicative.

In order to show that �� is nondegenerate it su�ces to show that given an
approximate unit {fi}i∈I of C0(X∕�), g ∈ E0� and x ∈ Be, we have that

lim
i

‖��(fi)g�e ⋅ x − g�e ⋅ x‖� = 0.

By Remark 3.14 we have

‖��(fi)g�e ⋅ x − g�e ⋅ x‖� ≤ ‖fig − g‖�‖x‖.

The construction of E� in Section 3.1 implies limi ‖fig − g‖� = 0. Thus �� is
nondegenerate. �



970 DAMIÁN FERRARO

The next result implies there are as many �xed-point algebras as crossed
product norms.

In the proof below we consider Hilbert modules as ternary C*-rings (C*-
trings) [20]. More precisely, given a right A−Hilbert module Y we consider
on Y the ternary operation (x, y, z)Y ∶= x⟨y, z⟩A. An homomorphism of C*-
trings is a linear map �∶ E → F such that �(x, y, z) = (�(x), �(y), �(z)), for all
x, y, z ∈ E.We consider the modules E�ℬ as right C∗�(ℬ)−Hilbert modules

Proposition 3.16. Given two crossed product norms of Cc(ℬ), � and � with � ≤
�, consider Hilbert modules E�ℬ and E�ℬ of De�nition 3.13 as C*-trings. Then there
exists a unique homomorphism of C*-trings ��� ∶ ∶ E�ℬ → E�ℬ extending the natu-
ral identity map of E0ℬ.Moreover, ��� is surjective. In case {⟨⟨x, y⟩⟩ℬ ∶ x, y ∈ E0ℬ}
spans a dense subset of C∗� (ℬ), the following are equivalent:

(1) ��� is injective (and hence an isomorphism).
(2) ��� is isometric (and hence an isomorphism).
(3) � = �.

Proof. For all x ∈ E0ℬ we have

‖x‖� = �(⟨⟨x, x⟩⟩ℬ)1∕2 ≤ �(⟨⟨x, x⟩⟩ℬ)1∕2 = ‖x‖�.

Thus the identity map of E0ℬ admits a unique linear and continuous extension
��� . This extension is a homomorphism because the identity

��� (x, y, z) = ��� (x ⋄ ⟨⟨y, z⟩⟩ℬ) = x ⋄ ⟨⟨y, z⟩⟩ℬ = (��� (x), �
�
� (y), �

�
� (z))

holds for all x, y, z ∈ E0ℬ and hence, by continuity, for all x, y, z ∈ E�ℬ.
The range of ��� is closed by [4, Corollary 4.8]. Clearly (3) implies (1) and (2)

and these last two conditions are equivalent by [4, Proposition 3.11].
Assume (2) holds. Since the inner products span a dense subset of C�(ℬ),

they also span a dense subset of C�(ℬ). Regarding E�ℬ (respectively, E�ℬ) as full
right C∗� (ℬ)−Hilbert module (respectively, C∗� (ℬ)−Hilbert module) we obtain,
for all f ∈ Cc(ℬ),

�(f) = sup{‖x ⋄ f‖� ∶ x ∈ E0ℬ, ‖x‖� ≤ 1} = �(f).

This completes the proof. �

As explained in [20] one can recover the �−�xed-point algebra out of the
C*-tring structure of E�ℬ. In fact the maps ��� ∶ E�ℬ → E�ℬ induce surjective mor-
phism of C*-algebras ���

r
∶ F�ℬ → F�ℬ [2, Proposition 4.1] and the equivalence

in our last Proposition also holds for these maps.
The main result of this section is the following one, in which we prove a

Morita equivalence between crossed products and �xed-point algebras.

Theorem 3.17. If � is free then

Iℬ ∶= span{⟨⟨x, y⟩⟩ℬ ∶ x, y ∈ E0ℬ}
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is dense in Cc(ℬ) in the inductive limit topology. In particular, for every crossed
product norm� ofCc(ℬ) the bimoduleE�ℬ is aF�ℬ−C

∗
�(ℬ)−equivalence bimodule.

Proof. It su�ces to work with the universal C*-norm ‖ ‖u of Cc(ℬ). The proof
of Green’s Symmetric Imprimitivity Theorem presented in [17], used here for
the enveloping action �e, implies that

I�e ∶= span{⟨⟨f, g⟩⟩�e ∶ f, g ∈ E0�e } ⊂ Cc(A�e)

is dense in the inductive limit topology in Cc(A�e).Moreover, as shown in [17],
for every k ∈ Cc(A�e) there exists a compact set L ⊂ G and a net {ki}i∈I ∈
I�e such that supp(ki) ⊂ L for all i ∈ I and ‖ki − k‖∞ → 0. Since Cc(A�) is
hereditary in Cc(A�e), by using the approximate units constructed in [12, VIII
16.4] we get that for all k ∈ Cc(A�) there exists a compact set L ⊂ G and a net

{ki}i∈I ⊂ span{u ∗ ⟨⟨f, g⟩⟩�e ∗ v∶ f, g ∈ Cc(Xe), u, v ∈ Cc(A�)}

such that supp(ki) ⊂ L, for all i ∈ I, and ‖ki−k‖∞ → 0.But sinceCc(Xe)Cc(A�) ⊂
E0�, the last approximate unit {ki}i∈I is included in

I� ∶= span{⟨⟨f, g⟩⟩� ∶ f, g ∈ E0�} ⊂ Cc(A�).

Now de�ne

Iℬ ∶= span{⟨⟨x, y⟩⟩∶ x, y ∈ E0ℬ} ⊂ Cc(ℬ)

and let Iℬ be the closure of Iℬ in the inductive limit topology of Cc(ℬ). For Iℬ
to be equal to Cc(ℬ) we just need to show, by [11, II 14.6],
(i) Cc(G)Iℬ ⊂ Iℬ.
(ii) For all t ∈ G, Iℬ(t) ∶= {z(t)∶ z ∈ Iℬ} is dense in Bt.
Given f ∈ Cc(G) and k ∈ Iℬ take a net {ki}i∈I ⊂ Iℬ converging to k in

the inductive limit topology (and hence uniformly over compact sets). Thus
{fki}i∈I converges to fk in the inductive limit topology and to show fk ∈ Iℬ
it su�ces to show that fki ∈ Iℬ, for all i ∈ I. In other words, we can assume
from the beginning that k ∈ Iℬ. Moreover, by linearity we may assume k =
⟨⟨g�e ⋅ x, ℎ�e ⋅ y⟩⟩ℬ with g, ℎ ∈ E0� and x, y ∈ Be. For all t ∈ G we have

(fk)(t) = x∗(f(t)⟨⟨g, ℎ⟩⟩�(t) ⋅ y).

Now take a compact set L and a net {mj}j∈J ⊂ I�∩CL(A�) converging uniformly
to the function t ↦ f(t)⟨⟨g, ℎ⟩⟩�(t). Then the net {t ↦ x∗(mj(t) ⋅ y)}j∈J is
contained in Iℬ and converges to fk in the inductive limit topology. Thus fk ∈
Iℬ.

To prove (ii) take t ∈ G and b ∈ Bt. By the Cohen-Hewitt factorization
Theorem and the non degeneracy of the action of A� on ℬ there exists c, d ∈
Be and g ∈ C0(Xt) such that b = c∗(g�t ⋅ d). Since there exists an element
of Cc(A�) taking the value g�t at t, there exists a net {mj}j∈J ⊂ I� such that
‖mj(t) − g�t‖ → 0. Then the net {s ↦ c∗(m(s) ⋅ d)}j∈J lies in Iℬ and, after
evaluation at t, converges to b. Thus b ∈ Iℬ(t).
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The rest of the proof is straightforward because the inductive limit topology
is stronger than any topology coming from a crossed product norm. �

3.3. The module E0ℬ as a tensor product. For this section we need exactly
the same setting we used in the �rst paragraph of Section 3.2.

In Section 3.1 we constructed the C∗(A�)−module E�, notice there is only
one crossed product norm to consider because A� is amenable. The action of
A� onℬ passes to an action of C∗(A�) on C∗�(ℬ), for any crossed product norm
�.

Proposition 3.18. For every crossed product norm� ofCc(ℬ) there exists a unique
*-representation S� ∶ A� →M(C∗�(ℬ)) such that:

∙ For all a ∈ A�, S
�
aCc(ℬ) ⊂ Cc(ℬ).

∙ For all s, t ∈ G, a ∈ C0(Xt)�t and f ∈ Cc(ℬ), S
�
af(s) = a ⋅ f(t−1s).

Moreover, S� is nondegenerate and S̃� ∶ C∗(A�) → M(C∗�(ℬ)) is the unique
*-homomorphism satisfying the following

∙ For all f ∈ Cc(A�), S̃�fCc(ℬ) ⊂ Cc(ℬ).
∙ For all f ∈ Cc(A�), g ∈ Cc(ℬ) and t ∈ G, S̃�fg(t) = ∫G f(s) ⋅ g(s

−1t) dt.

Proof. Uniqueness claims are immediate, wewill only prove the existence. For
convenience we write At instead of C0(Xt)�t.

Let T∶ ℬ → B(V) be a nondegenerate *-representation on a Hilbert space
whose integrated form T̃ ∶ C∗(ℬ) → B(V) factors through a faithful representa-
tion of C∗�(ℬ). Thus we can actually think of T̃ as a nondegenerate and faithful
*-representation of C∗�(ℬ).We will denote D the image of T̃. The canonical ex-
tension of T̃ toM(C∗�(ℬ)) will be denoted T. This extension is injective and its
image is

MD ∶= {R ∈ B(V)∶ RD ∪ DR ⊂ D}.

Given a ∈ At and f ∈ Cc(ℬ) we de�ne the function a ⋅ f ∈ Cc(ℬ) by
a ⋅ f(s) ∶= a ⋅ f(t−1s).

Let T̂ ∶ A� → B(V) be the *-representation given by Lemma 3.8. Then for
all a ∈ At, f ∈ Cc(ℬ) and � ∈ V ∶

T̂aT̃f� = ∫
G
Ta⋅f(t)� dt = ∫

G
Ta⋅f(s−1t)� dt = T̃a⋅f�.

This implies T̂aT̃(Cc(ℬ)) ⊂ D and by continuity we get T̂aD ⊂ D. Now de�ne
g ∈ Cc(ℬ) by g(t) ∶= (a∗ ⋅f(t)∗)∗ and take a factorization � = Tb�,with b ∈ Be
and � ∈ V. Then

T̃fT̂a� = ∫
G
Tf(t)(a⋅b)� dt = ∫

G
T(a∗⋅f(t)∗)∗b� dt = ∫

G
T(a∗⋅f(t)∗)∗� dt = T̃g�.

This implies DT̂a ⊂ D and we conclude that T̂a ∈ MD.
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By thinking of T as in isomorphism between M(C∗�(ℬ)) and MD one just

needs to set S� ∶= T
−1
◦T̂. The computations above show S� satis�es the de-

sired properties.
Under the isomorphismM(C∗�(ℬ)) ≈ MD, S� is identi�ed with T̂ (that is the

whole point of the proof). Then we can think of the integrated form of T̂ as the
integrated form of S�.

We now construct an action Cc(A�) × Cc(ℬ) → Cc(ℬ), (f, g) ↦ f ⋅ g, such
that f⋅g(t) = ∫G f(s)⋅g(s

−1t) ds. IfA� whereℬ andA�×ℬ → ℬ, (a, b) ↦ a⋅b,
were the multiplication of ℬ, the action we want to construct would be the
convolution product of Cc(ℬ). So the best one can do is to consult [12, pp 803],
where such product is constructed. After this, one realizes the arguments found
there can be easily adapted (almost copied) to solve our problem. We leave this
to the reader, who may �nd useful to use claim (4) of Proposition 2.8.

For all f ∈ Cc(A�), g ∈ Cc(ℬ) and � ∈ V we have

˜̂TfT̃g� = ∫
G

˜̂TfTg(t)� dt = ∫
G
∫
G
T̂f(s)Tg(t)� dsdt = ∫

G
∫
G
Tf(s)⋅g(t)� dsdt

= ∫
G
∫
G
Tf(s)⋅g(s−1t)� dtds = T̃f⋅g�.

Then we must have S�fg = f ⋅ g, and this identity completes the proof. �

Theorem 3.19. For every crossed product norm� ofCc(ℬ), E
�
ℬ is unitarily equiv-

alent to E� ⊗S̃� C
∗
�(ℬ), where S̃� ∶ C∗(A�) → M(C∗�(ℬ)) is the integrated form

given by Proposition 3.18.

Proof. Let E� ⊗ Cc(ℬ) be the subspace of E� ⊗S̃� C
∗
�(ℬ) spanned by the ele-

mentary tensor product f ⊗ g with f ∈ E0� and g ∈ Cc(ℬ).
Take f1, … , fn ∈ E0� and g1, … , gn ∈ Cc(ℬ). By considering the action of Be

on C0(ℬ) by multiplication we can get factorizations gi = biℎi with bi ∈ Be and
ℎi ∈ Cc(ℬ), for i = 1, … , n.We claim that

‖
n∑

i=1
(fi ⋅ bi) ⋄ ℎi‖ = ‖

n∑

i=1
fi ⊗ biℎi‖. (3.9)

To show this it su�ces to prove that

⟨⟨(fi ⋅bi)⋄ℎi, (fj ⋅bj)⋄ℎj⟩⟩ℬ = (biℎi)∗(S̃�⟨⟨fi ,fj⟩⟩�(bjℎj)), ∀ i, j = 1, … , n. (3.10)
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For any i, j = 1, … , n and t ∈ G we have

⟨⟨(fi ⋅ bi) ⋄ ℎi, (fj ⋅ bj) ⋄ ℎj⟩⟩ℬ(t) = ℎ∗i ∗ ⟨⟨fi ⋅ bi, fj ⋅ bj⟩⟩ℬ ∗ ℎj(t)

= ∫
G
∫
G
ℎ∗i (r)⟨⟨fi ⋅ bi, fj ⋅ bj⟩⟩ℬ(s)ℎj](s

−1r−1t) dsdr

= ∫
G
∫
G
ℎ∗i (r)b

∗
i [⟨⟨fi, fj⟩⟩�(s) ⋅ bj]ℎj(s

−1r−1t) dsdr

= ∫
G
∫
G
(biℎi)∗(r)[⟨⟨fi, fj⟩⟩�(s) ⋅ (bjℎj(s−1r−1t))] dsdr

= ∫
G
(biℎi)∗(r)[S̃�⟨⟨fi ,fj⟩⟩�(bjℎj)(r

−1t)] dr

= (biℎi)∗(S̃�⟨⟨fi ,fj⟩⟩�(bjℎj))(t). (3.11)

Now that we know (3.9) holds we can construct a unique bounded linear
operator U∶ E� ⊗S̃� C

∗
�(ℬ) → E�ℬ such that U(f ⊗ bℎ) = (f ⋅ b) ⋄ ℎ, for all

f ∈ E0�, b ∈ Be and ℎ ∈ Cc(ℬ).Moreover, U is an isometry with dense range,
thus it is an isometric isomorphism of Banach spaces. But now (3.10) says U
preserves the inner products, thus it is a unitary operator. �

After the Theorem above Proposition 3.15 should be completely natural. We
leave to the reader the veri�cation of the fact that the unitary constructed in
our last proof intertwines the action constructed in Proposition 3.15 with the
natural action of C0(X∕�) on E� ⊗S̃� C

∗
�(ℬ).

Theorem 3.19 can also be used to give an alternative proof of Theorem 3.17.
Indeed, in case � is free then E� is full on the right, and since S̃� is nondegen-
erate we conclude that E�� = E� ⊗S̃� C

∗
�(ℬ) is full on the right and hence a

F�ℬ − C∗�(ℬ)−equivalence bimodule.
Our last Theorem also implies our �xed-point algebras (and even the mod-

ules used to construct them) are generalizations of those constructed in [6] for
weakly proper actions (see the discussion preceding De�nition 2.4 and Exam-
ple 2.7).

3.4. Bra-ket operators and the �xed-point algebra. In [14, 15] Meyer de-
�nes square integrable actions, which are a generalization of proper actions on
C*-algebras (or even of weakly proper actions). One can extend Meyer’s de�-
nition to partial action on C*-algebras, but we will not pursue this goal here.
We are more interested in the so called bra-ket operators in the context of Fell
bundles.

Assume � is an action of G on the C*-algebra A and assume there exists a
dense subset A0 of A such that for all a, b ∈ A0 the function ⟨⟨a, b⟩⟩∶ G →
A, t ↦ �t(a)∗b, has compact support. Then the element a ∈ A0 is said to be
square integrable if the bra-operator

⟨⟨a|∶ A0 → Cc(G, A), b ↦ ⟨⟨a, b⟩⟩,
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is the restriction of some adjointable operator from A to L2(G, A). If such an
extension exists, it is unique and it is denoted ⟨⟨a|. The ket-operator is |a⟩⟩ ∶=
⟨⟨a|∗ and it should satisfy

|a⟩⟩(f) = ∫
G
�t(a)f(t) dt, ∀ f ∈ Cc(G, A).

If a, b ∈ A0 are square integrable then ⟨⟨a|◦|b⟩⟩ ∈ B(L2(G, A)) and in case
� is weakly proper one gets that

⟨⟨a|◦|b⟩⟩ ∈ Cc(G, A) ⊂ A ⋊r� G ⊂ B(L2(G, A)).

In order to translate the previous construction to weakly proper Fell bun-
dles one must �rst note that L2(G, A) is not equal to L2e (ℬ�), but it is unitary
equivalent. This explains the absence of the modular function in the formula
⟨⟨a, b⟩⟩(t) = �t(a)∗b. The inclusion A ⋊r� G ⊂ B(L2(G, A)), as given in [14,
Section 3], takes this equivalence into account. All we will do here will be com-
patible with that identi�cation.

Take a Fell bundle ℬ = {Bt}t∈G which is weakly proper with respect to the
proper LCH partial action � of G on X. As usual we denote � the partial action
of G on C0(X) de�ned by �. The action of A� on ℬ will be denoted A� × ℬ →
ℬ, (a, b) ↦ a ⋅ b. The space E0ℬ ⊂ Be is that of Section 3.2.

Theorem 3.20. For every x ∈ E0ℬ there exists a unique adjointable operator
⟨⟨x|∶ Be → L2e (ℬ) such that ⟨⟨x|y = ⟨⟨x, y⟩⟩ℬ for all y ∈ E0ℬ.The adjoint |x⟩⟩ ∶=
⟨⟨x|∗ is the unique linear operator from L2e (ℬ) to Be such that |x⟩⟩f = x ⋄ f, for
all f ∈ Cc(ℬ).Moreover, if Λ∶ C∗(ℬ) → B(L2e (ℬ)) is the regular representation,
then for all x, y, z ∈ E0ℬ and f ∈ Cc(ℬ) we have

Λ⟨⟨x,y⟩⟩ℬ = ⟨⟨x|◦|y⟩⟩; |x⟩⟩⟨⟨y|z = x ⋄ ⟨⟨y, z⟩⟩ℬ; | x ⋄ f⟩⟩ = |x⟩⟩◦Λf.

Proof. Fix x ∈ E0ℬ and de�ne the functions

P∶ E0ℬ → Cc(ℬ) , y ↦ ⟨⟨x, y⟩⟩ℬ,

Q∶ Cc(ℬ) → E0ℬ , f ↦ x ⋄ f.

Note both P and Q are linear. If P and Q are to be extended to adjointable oper-
ators, then we must have, for all y ∈ E0ℬ and f ∈ Cc(ℬ),

⟨f, ⟨⟨x, y⟩⟩ ⟩L2e (ℬ) = ⟨f, Py⟩L2e (ℬ) = ⟨Qf, y⟩Be = (Qf)∗y = (x ⋄ f)∗y. (3.12)

To prove the identities above it su�ces to show the �rst term equals the last
one.

Take f ∈ Cc(ℬ) and y ∈ E0ℬ and consider factorizations x = g�e ⋅ u and
y = ℎ�e ⋅ v with g, ℎ ∈ E0� and u, v ∈ Be. Using an approximate unit {ui}i∈I of



976 DAMIÁN FERRARO

C�0 (G, X) as the one in Lemma 3.11 we deduce that

(x ⋄ f)∗y = ∫
G
lim
i
∆(t)−1∕2(ui(t−1)�t−1 ⋅ xf(t))∗y dt

= ∫
G
lim
i
∆(t)−1∕2(ui(t−1)�t−1 ⋅ g�e ⋅ uf(t))∗(ℎ ⋅ �ev) dt

= ∫
G
lim
i
∆(t)−1∕2(ℎ∗�eui(t−1)�t−1g�e ⋅ uf(t))∗v dt

= ∫
G
lim
i
∆(t)−1∕2(ui(t−1)ℎ∗�et−1(g)�t−1 ⋅ uf(t))

∗v dt

= ∫
G
∆(t)−1∕2(ℎ∗�et−1(g)�t−1 ⋅ uf(t))

∗v dt

= ∫
G
f(t)∗(u∗∆(t)−1∕2g∗�et (ℎ)�t ⋅ v) dt = ∫

G
f(t)∗⟨⟨x, y⟩⟩(t) dt

= ⟨f, ⟨⟨x, y⟩⟩ ⟩L2e (ℬ)
This completes the proof of (3.12).

By taking y = x ⋄ f in (3.12) and recalling that Λgℎ = g ∗ ℎ for all g, ℎ ∈
Cc(ℬ) we get

(Qf)∗(Qf) = (x ⋄ f)∗(x ⋄ f) = ⟨f, ⟨⟨x, x ⋄ f⟩⟩ℬ ⟩L2e (ℬ)
= ⟨f, ⟨⟨x, x⟩⟩ℬ ∗ f ⟩L2e (ℬ) ≤ ‖⟨⟨x, x⟩⟩ℬ‖C∗r (ℬ)⟨f, f ⟩L2e (ℬ)

(3.13)

Then Q is bounded and ‖Q‖2 ≤ ‖⟨⟨x, x⟩⟩ℬ‖C∗r (ℬ).
Using (3.12) and that Q is bounded we deduce that

‖Py‖ = sup{‖⟨f, Py⟩L2e (ℬ)‖∶ f ∈ Cc(ℬ), ‖f‖L2e (ℬ) ≤ 1}
= sup{‖⟨Qf, y⟩L2e (ℬ)‖∶ f ∈ Cc(ℬ), ‖f‖L2e (ℬ) ≤ 1}
≤ ‖Q‖‖y‖.

Hence P is also bounded.
Let ⟨⟨x|∶ Be → L2e (ℬ) and |x⟩⟩∶ L2e (ℬ) → Be be the unique continuous

extensions of P and Q, respectively. By (3.12) ⟨⟨x| is adjointable with adjoint
|x⟩⟩.

Now (3.13) can be used to deduce that Λ⟨⟨x,x⟩⟩ℬ = ⟨⟨x|◦|x⟩⟩ for all x ∈ E0ℬ.
Then the polarization identity implies that Λ⟨⟨x,y⟩⟩ℬ = ⟨⟨x|◦|y⟩⟩ for all x, y ∈
E0ℬ. Finally, for all x, y, z ∈ E0ℬ and f, g ∈ Cc(ℬ) one has |x⟩⟩⟨⟨y|z = x ⋄
(⟨⟨y|z) = x ⋄ ⟨⟨y, z⟩⟩ℬ and

|x ⋄ f⟩⟩g = (x ⋄ f) ⋄ g = x ⋄ (f ∗ g) = x ⋄ (Λfg) =
(
|x⟩⟩◦Λf

)
g.

Then the last identity holds for all g ∈ L2e (ℬ) and the proof is complete. �

Consider the subspace

F0ℬ ∶= span{|x⟩⟩⟨⟨y|∶ x, y ∈ E0ℬ} ⊂ M(Be),
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which is in fact a *-subalgebra ofM(Be) because

|x⟩⟩⟨⟨y||z⟩⟩⟨⟨w| = |x⟩⟩Λ⟨⟨y,z⟩⟩ℬ⟨⟨w| = | x ⋄ ⟨⟨y, z⟩⟩ℬ⟩⟩⟨⟨w| ∈ F0ℬ.

Given a C*-seminorm � of Cc(ℬ), the generalized compact operator

|x⟩⟩◦⟨⟨y| ∈ F�ℬ = B(E�ℬ)

corresponding to the elements x, y ∈ E0ℬ is given by

|x⟩⟩◦⟨⟨y|(z) = x ⋄ ⟨⟨y, z⟩⟩ℬ
for all z ∈ E0ℬ. Thus one gets a unique morphism of *-algebras

�� ∶ F0ℬ → F�ℬ ⊂ B(E�ℬ), such that ��(T)x = Tx ∀ T ∈ F0ℬ, x ∈ E0ℬ.

In fact �� is injective and has dense range. Then the �xed-point algebra F�ℬ is
a C*-completion of F0ℬ ⊂ M(Be).

We need a Lemma to determine the �xed-point algebra corresponding to the
closure (completion) of F0ℬ inM(Be).

Lemma 3.21. For all x ∈ E0ℬ, x belongs to the norm closure of |x⟩⟩(L2e (ℬ)1),
L2e (ℬ)1 being the closed unit ball of L2e (ℬ). In particular ‖x‖Be ≤ ‖|x⟩⟩‖.

Proof. The thesis follows immediately if x = 0, otherwise we may assume
‖x‖Be = 1 without loss of generality.

Given " > 0 take b ∈ Be such that ‖x − xb‖Be < " and ‖b‖ < 1. Now
take f ∈ Cc(ℬ) such that f(e) = b and set g ∶= x ⊲ f ∈ Cc(G, Be) as in
Lemma 3.11. By construction g(e) = xf(e) = xb, thus there exists a compact
neighborhood V of e ∈ G such that: (a) its measure �(V) is less than 1; (b)
‖x − ∆(r)−1∕2g(r)‖2 < " and ‖f(r)‖ < 1, for all r ∈ V.

Take a ∈ Cc(G)+ with support contained in V and such that ∫G a(r)
2 dr = 1.

Then

‖af‖L2e (ℬ) = ‖ ∫
G
a(r)2f(r)∗f(r) dr‖ ≤ ∫

G
a(r)2‖f(r)‖2, dr ≤ 1

and x ⊲ (af) = a(x ⊲ f) = ag. Thus

‖x − |x⟩⟩(af)‖Be = ‖x − ∫
G
∆(r)−1∕2a(r)g(r) dr‖

≤ ∫
V
a(r)‖x − ∆(r)−1∕2g(r)‖ dr

≤ (∫
V
a(r)2 dr)

1∕2

(∫
V
‖x − ∆(r)−1∕2g(r)‖2 dr)

1∕2

≤ "�(V)1∕2 < ".

The proof is complete because we have been able to �nd, for every " > 0, a
function ℎ = ag ∈ L2e (ℬ) such that ‖ℎ‖L2e (ℬ) ≤ 1 and ‖x − |x⟩⟩ℎ‖Be < ". �
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Proposition 3.22. For every T ∈ F0ℬ and x ∈ E0ℬ one has Tx ∈ E0ℬ and
|Tx⟩⟩ = T|x⟩⟩. Besides, the completion of F0ℬ inM(Be) is the �xed-point algebra
corresponding to the reduced cross-sectional C*-algebra norm on Cc(ℬ).

Proof. If T =
∑n

i=1 |yi⟩⟩⟨⟨zi|, then Tx =
∑n

i=1 yi ⋄ ⟨⟨zi, x⟩⟩ℬ ∈ E0ℬ. Besides, for
all f ∈ Cc(ℬ)

|Tx⟩⟩f = (Tx) ⋄ f =
n∑

i=1
(yi ⋄ ⟨⟨zi, x⟩⟩ℬ) ⋄ f =

n∑

i=1
yi ⋄ ⟨⟨zi, x ⋄ f⟩⟩ℬ

=
n∑

i=1
|yi⟩⟩⟨⟨zi|(x ⋄ f⟩⟩ℬ) = (T|x⟩⟩)f.

Hence |Tx⟩⟩ = T|x⟩⟩.
The norm of T in the reduced �xed-point algebra Frℬ satis�es

‖T‖2Frℬ
= sup{‖⟨⟨Tx, Tx⟩⟩ℬ‖r∶ x ∈ E0ℬ, ‖⟨⟨x, x⟩⟩ℬ‖r ≤ 1}

= sup{‖|Tx⟩⟩‖2∶ x ∈ E0ℬ, ‖⟨⟨x, x⟩⟩ℬ‖r ≤ 1}

= sup{‖T|x⟩⟩‖2∶ x ∈ E0ℬ, ‖⟨⟨x, x⟩⟩ℬ‖r ≤ 1}

≤ sup{‖T‖2M(Be)
‖|x⟩⟩‖2∶ x ∈ E0ℬ, ‖⟨⟨x, x⟩⟩ℬ‖r ≤ 1}

≤ ‖T‖2M(Be)
.

Hence ‖T‖Frℬ ≤ ‖T‖M(Be).
LetD be the completion of F0ℬ inM(Be). Then the conclusion of the last para-

graph implies the existence of a unique surjective *-homomorphism �∶ D →
Frℬ extending the identity operator of F0ℬ. The proof will be completed if we can
show � is injective, because in that case it is isometric.

Suppose T ∈ D satis�es �(T) = 0 and take a sequence {Tn}n≥0 ∈ F0ℬ ⊂ D
approximating T. Then by Theorem 3.20 and Lemma 3.21, for all x ∈ E0ℬ we
have

‖Tx‖Be = lim
n

‖Tnx‖Be ≤ lim sup
n

‖|Tnx⟩⟩‖ = lim sup
n

‖⟨⟨Tnx, Tnx⟩⟩ℬ‖
1∕2
r

≤ lim sup
n

‖Tnx‖Erℬ = lim sup
n

‖�(Tn)x‖Erℬ = ‖�(T)x‖Erℬ = 0.

This shows T ∈ M(Be) vanishes in the dense set E0ℬ ⊂ Be, thus T = 0 and � is
injective. �

The results presented above for bra-ket operators are generalizations, to Fell
bundles, of those presented in [14, 15]. In a forthcoming article we will prove
an imprimitivity theorem for (exotic) cross-sectional C*-algebras of Fell bundles
using the (exotic) �xed-point algebras constructed here.
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