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Lehmer’s question, graph complexity
growth and links

Daniel S. Silver and Susan G. Williams

Abstract. Lehmer’s question, an open question about the Mahler measure
of monic integral polynomials, is shown to be equivalent to a question about
the complexity growth rate of signed 1-periodic graphs. If G is a d-periodic
graph (i.e. G has a co-�nite free ℤd-action by automorphisms), then a d-
variable polynomial ∆G can be de�ned with Mahler measure equal to the
logarithmic growth rate 
G of a complexity de�ned for the �nite quotients
of G.

A plane 1-periodic graph determines a link via projection and the medial
graph construction. The polynomial ∆G can be determined from the Alexan-
der polynomial of the link. The complexity growth rate 
G of any d-periodic
graph is at least log 2. An investigation of plane 1- and 2-periodic graphs
yields more connections with knot theory including work of A. Champan-
erkar and I. Kofman.
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1. Introduction
Lehmer’s question is aboutmonic integral polynomials that are not products

of cyclotomic polynomials. Given such a polynomial, it asks whether the ab-
solute value of the product of its roots outside the unit circle can be arbitrarily
close to 1. (The product is today called the “Mahler measure" of the polyno-
mial.) D.H. Lehmer posed the question in [19]. Despite e�orts for almost 90
years, Lehmer’s question remains unanswered.

Finding questions equivalent to Lehmer’s in unexpected places might a�ord
new insights. D. Lind found such an equivalence by observing that a nega-
tive answer is equivalent to the existence of an ergodic automorphism of the
in�nite-dimensional torus T∞ with �nite entropy [28, p. 161].

In his paper, Lehmer displayed a polynomial of degree 10 with a single root
outside the unit circle, a root approximately equal to 1.17628. No polynomial
with Mahler measure closer to 1 has since been found. Later it was observed
that by replacing the variable of Lehmer’s polynomial with its negative, a modi-
�cation that preserves Mahler measure, one obtains the Alexander polynomial
of a well-known knot, the so-called (-2, 3, 7)-pretzel knot, a hyperbolic knot
with notable properties [17].

In [35] the authors showed that for an investigation of Lehmer’s question
one can restrict attention to Alexander polynomials of knots in the 3-sphere
and, more generally, lens spaces. Previous work [31] showed that the Mahler
measure of an Alexander knot polynomial is the topological entropy of an alge-
braic dynamical system, a growth rate of the order of torsion in the �rst homol-
ogy groups of the the various cyclic branched covers of the knot as the cover
index increases. Hence Lehmer’s question became a question of knot theory.
(See [32, 33] for extensions of this work; see [14, 38] for other connections with
Lehmer’s question and more background information.)

The central purpose of the present paper is to present an equivalence be-
tween Lehmer’s question and a question about graphs, speci�cally graphs in
an annulus S × I that are signed, that is, with edges weighted by ±1. Such a
graph lifts to an in�nite cyclic covering graph in ℝ × I for which a polynomial
can be de�ned using a variant of the well-known Laplacian matrix. Lehmer’s
polynomial arises in a simple fashion. In fact the collection of all polynomials
obtained will be shown to su�ce for the study of Lehmer’s question. As in the
case of knots, the Mahler measure of each represents the topological entropy
of a dynamical system while also having an interpretation as a growth rate of
torsion in abelian groups associated to the intermediate �nite cyclic covering
graphs.

The graphs are generally not embedded. However, when they are, knots and
links again enter our story. The medial graph construction associates a link
diagram to an embedded graph, and the torsion groups associated to the graph
have a precise topological interpretation.
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2. Outline
We investigate interactions among graphs, knots and dynamical systems.

The reader who is interested primarily in Lehmer’s question might skip over
material about knots and links.

In order to guide the reader, we brie�y describe the main contents of each
section. Necessary de�nitions and background material can be found in them.

In Section 3 we introduce the Laplacian group of a �nite signed graph. It is
the �nitely generated abelian group presented by the Laplacianmatrix. The or-
der of its torsion subgroup is a measure of complexity of the graph, the torsion
complexity. For graphs that are unsigned (i.e., all edges have weight 1), the com-
plexity is the number of spanning trees of the graph, a measure of complexity
that is frequently used in graph theory.

The well-known medial graph construction is reviewed in Section 4. Signed
plane graphs determine link diagrams by the construction.

Laplacian matrices of plane graphs are closely related to the vector spaces of
Fox p-colorings (or, equivalently, Dehn p-colorings) of the associated link dia-
grams, for any prime p, as discussed in Section 5. We see that when �eldℤ∕p is
replaced by the compact “circle group" T = ℝ∕ℤ, a close relationship between
the Laplacian groups and the abelian groups of T-colorings of link diagrams
results.

In Section 6 we consider graphs in the annulus. Such a graph has a regular
covering that is 1-periodic, admitting an action by ℤ. The covering graph is a
special case of a more general d-periodic graph, which admits a ℤd-action. We
describe a Laplacian matrix with entries in the polynomial ring ℤ[ℤd], and we
use it to de�ne the Laplacian module. The determinant of the matrix will be
called the Laplacian (determinant) polynomial of the graph.

In Section 7 we expand our pallete of colors fromℤ∕p to the elements of the
circle group T. Homomorphisms from the Laplacian module to T are them-
selves elements of a compact abelian group. The ℤd action on the graph in-
duces an action on the group. The homomorphisms correspond to T-colorings
of the graph, with the colors of vertices dictated by the Laplacian matrix.

The Laplacian polynomial of a d-periodic graph can be computed directly
from its set of cycle-rooted spanning forests, a result of R. Forman [11]. We re-
view the idea in Section 8.

In Section 9 we consider the links determined by plane 1-periodic graphs.
We show that the Laplacian polynomial of the graph can be obtained from the
(multivariable) Alexander polynomial of the link by specializing some of its
variables.
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We bring algebraic dynamics into our story in Section 10. There we see that
for anyd-periodic graph, theMahlermeasure of the Laplacian polynomial is the
logarithmic growth rate of torsion complexity of the graph. (This generalizes a
previous result for unsigned graphs.) The quantity will be called the complexity
growth rate of the graph.

In Section 11 we prove that the Laplacian polynomials of 1-periodic signed
graphs su�ce for investigating Lehmer’s question. Lehmer’s polynomial arises
from a graph in the annulus with one vertex and four edges.

Section 12 focuses on unsigned graphs. We show that the d-dimensional
grid graph has the smallest complexity growth rate of all unsigned d-periodic
graphs. Consequently, the complexity growth rate of any d-periodic unsigned
graph is at least log 2, and that is the reason that wemust place signs our graphs
for an investigation of Lehmer’s question. Finally, a look at plane 1- and 2-
periodic graphs leads us back to knot theory and connections with work of
A. Champanerkar, I. Kofman, and J. Purcell.

3. Laplacian groups and complexity of graphs
Let G be a graph, not necessarily planar, with vertex set V(G) = {v1, … ,

vn} and edge set E(G) = {e1, … , em}. The graph is allowed to have loops and
multiple edges, but no isolated vertices. Each edge e ∈ E(G) is labeled with a
sign �e = ±1. All graphs that we consider are assumed to have signed edges.
The graph is unsigned if every �e = +1.

The signed adjacency matrix of G is the n × nmatrix A = (ai,j) such that ai,j
is the sum of the signs of all edges between vi and vj, with loops counted twice.
De�ne the signed degree matrix � = (�i,j) to be the n × n diagonal matrix with
�i,i equal to the sum of signs of edges incident on vi. Again, loops contribute
twice.

An integermatrix presents an abelian group inwhich columns correspond to
the generators, and rows to the relations, of the group. Equivalently, the group
is the cokernel of the matrix when regarded as a linear transformation of free
abelian groups.

De�nition 3.1. The Laplacian matrix of a �nite graph G is LG = � −A, where
� and A are the signed degree and adjacency matrices, respectively, de�ned
above. The abelian group presented by LG is the Laplacian group of G, denoted
by ℒG . The (torsion) complexity �G is the order of the torsion subgroup TℒG .

We note that in computing the integer matrix LG we may ignore loops, since
they contribute equally to A and �.

When we regard the entries of LG modulo a prime p, the rows represent the
relations needed to p-color the graph. A p-coloring of G is an assignment of
elements (“colors") of ℤ∕p to the vertices adjacent to v:

�� =
∑

�ei�i,
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where �, � are the signed degree and color, respectively, of v, and the summa-
tion is over all edges ei incident to v, and �i is the color of the other vertex of ei.
(A self-loop at v is counted as two edges from v to v. ) Here we are extending
the notion of p-coloring in [18] to signed graphs.

Clearly the space of p-colorings of G is isomorphic to the null space of LG .
Nontrivialp-colorings exist preciselywhen its dimension is greater than 1. Note
that the abelian group of p-colorings of G is isomorphic to ℒG ⊗ℤ∕p.

Returning to integer coe�cients, the nullity of the Laplacian matrix LG is
equal to 1 whenever G is connected and unsigned (see, for example, Lemma
13.1.1 of [12]). In this case the Laplacian group ℒG decomposes as the direct
sum of ℤ and the torsion subgroup TℒG . The Matrix Tree Theorem (c.f. [39])
implies that �G = |TℒG| is equal to the number of spanning trees of G.

More generally, we de�ne tree complexity �G of a connected graph G by

�G =
|||||||

∑

T

∏

e∈E(T)
�e

|||||||
,

where the summation is taken over all spanning trees of G. If G is not con-
nected, then we de�ne �G to be the product of the tree complexities of its con-
nected components. Again by [39], we have �G = �G if and only if �G is nonzero;
for connected G this common value is equal to the absolute value of any (n −
1) × (n − 1) principal minor of LG . However, the following example shows that
�G can vanish, whereas �G is positive by de�nition.

Example 3.2. Consider the connected graph G in Figure 1. Unlabeled edges
here and throughout will be assumed to have sign+1. The Laplacianmatrix LG
is square of size 8. A routine calculation shows that any principal 7 × 7minor
of LG vanishes, and hence �G = 0. However, the absolute value of the greatest
common divisors of the 6 × 6minors of LG is 9, and so �G = 9.

Figure 1. Graph G with �G = 0 and �G = 9

We can go further by computing the Smith Normal Form of LG . We then see
that ℒG ≅ ℤ2 ⊕ℤ∕3 ⊕ ℤ∕3. The vector space of p-colorings has dimension 2



986 DANIEL S. SILVER AND SUSAN G. WILLIAMS

for all primes p ≠ 3, while the space of 3-colorings of G has dimension 4. An
example of a 3-coloring is shown.

4. Link diagrams and Tait graphs
A link l in ℝ3 (or equivalently S3) is a set of smoothly embedded, pairwise

disjoint simple closed curves. Any link can be described by a diagram D, a 4-
valent plane graph with a hidden-line device in a neighborhood of each vertex
indicating how one strand of the link passes over another.

We will make use of a few other related terms. An arc of D is a maximal
connected subset. Following [15], we refer to the underlying graph of D as a
universe of l, denoted here by |D|. Finally, a region of D is a connected compo-
nent of ℝ2 ⧵ |D|.

As usual, isotopic links are regarded as the same. It is well known that two
links are isotopic if and only if a diagram of one can be transformed into a dia-
gramof the other by a �nite sequence of local “Reidemeistermoves" as in Figure
2 (see [5] or [20] for details). Consequently, any quantity that is determined by
a diagram and is unchanged by Reidemeister moves is a link invariant.

Figure 2. Reidemeister moves

We can obtain a plane graph G from a link diagram D by the following fa-
miliar procedure. First we checkerboard shade D, shading some of the regions
so that every edge meets a single shaded region. There are two checkerboard
shadings of D, but for the sake of de�niteness we will choose the one in which
the unbounded region is unshaded. We construct a graph G with a vertex in
each shaded region of D and an edge through each crossing, joining the ver-
tices of the regions on both sides. The sign of the edge is determined by the
type of crossing, as in Figure 3. Such a graph is often called a “Tait graph," in
honor of Peter Guthrie Tait, a 19th century pioneer of knot theory.
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Figure 3. Constructing a graph from a link diagram

For some link diagrams it can happen that the Tait graph has isolated ver-
tices. We avoid this by always assuming that |D| is connected, a condition that
we can assumewithout loss of generality by applying Reidemeister moves toD.

For a plane graph G we can reverse the above procedure to obtain a link
digram D. For this we use themedial construction, replacing each edge of G by
a pair of arc segments that run parallel to the edge except at the middle, where
they cross, as in Figure 4. We join the segments near vertices in the obvious
way without creating any additional crossings.

Figure 7 shows the diagram of a 3-component link l obtained from the graph
of Example 3.2. According to [8] the link was introduced by J. Milnor. Origi-
nal interest in the link came from the fact that it was the �rst non-alternating
boundary link discovered with zero Alexander polynomial, a fact that we will
not use here. We will return to the link in the next section.

Figure 4. Constructing a link diagram from a plane graph

5. Coloring link diagrams
Assume that D is a diagram of a link l. Let p be a prime. A (Fox) p-coloring

of D is an assignment of elements of ℤ∕p, called colors, to the arcs of D such
that twice the color of any overcrossing arc is equal to the sum of the colors of
its undercrossing arcs, as in Figure 5. Ap-coloring is trivial if all assigned colors
are the same.
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Figure 5. Fox coloring relation

We denote the vector space of p-colorings of D by Colp(D) and refer to it as
the p-coloring space of the diagram. It is a vector space overℤ∕p, with addition
and scalar multiplication performed arc-wise. A routine exercise shows that
diagrams di�ering by a Reidemeister move have isomorphic p-coloring spaces.
Hence Colp(D) is an invariant of the link l, and so we write Colp(l) and speak
of the vector space as the p-coloring space of the link. (For more information
about this popular construction of knot theory, there are many excellent expo-
sitions such as [22].)

Fox envisioned p-colorings as homomorphisms from the link group �l =
�1(ℝ3 ⧵ l) onto the dihedral group

D2p = ⟨�, � ∣ �2 = 1, �p = 1, �� = ��−1⟩.

He described the correspondence using the Wirtinger presentation of �l, in
which generators (resp. relations) are identi�ed with arcs (resp. crossings) of
a diagram D. Given a p-colorings of D we obtain a homomorphism from �l
to D2p by sending a Wirtinger generator of an arc colored by k ∈ ℤ∕p to the
element ��k of D2p.

If instead of theWirtinger presentation, we use the Dehn presentation of �l,
a presentation inwhich generators (resp. relations) are identi�edwith bounded
regions (resp. crossings), then a p-coloring becomes an assignment of colors to
the bounded regions ofD. We assign 0 to the unbounded region. The condition
at each crossing that corresponds to the Fox p-coloring condition appears in
Figure 6. Details can be found in [36]. We will call such an assignment of
colors to the regions a Dehn p-coloring of the diagram. The collection of all
Dehn p-colorings of a diagram is vector space under region-wise addition and
scalar multiplication, isomorphic to the space of Fox p-colorings.

Figure 6. Dehn p-coloring condition
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Assume that D is a link diagram arising from a plane graph G by the me-
dial construction. Any p-coloring of G determines Dehn and Fox p-colorings
of D. To see this, �rst assign the colors of the vertices of G to the associated
shaded regions of the link diagram. Then use the Dehn coloring relations to
determine uniquely the colors of the unshaded regions. This is possible since
the unbounded region is already labeled (with 0). Uniqueness follows from the
observation that if we determine the color of some unshaded region and then
follow a simple closed path around a vertex, determining the colors of succes-
sive unshaded regions along the way, then when we return to the initial un-
shaded region, the Laplace relation forces us to arrive at the same color with
which we began. (More details can be found in [36].) Finally, assign to each
arc of D the sum of the colors of the regions on both sides. It is easy to verify
that we obtain in this way is well de�ned Fox p-coloring of the diagram.

Conversely, any Fox p-coloring of a link diagram determines a p-coloring of
the associated Tait graph. The Dehn color of any region is the sum of the colors
of the arcs that we cross traveling along any path to the unbounded region. The
graph coloring is simply a restriction to the shaded regions.

The two processes above are inverses of each other. Hence the vector spaces
of p-colorings of G and D are isomorphic. As a result, we have:

Proposition 5.1. LetG be a plane graphandD anassociated link diagram. Then
ℒG ⊗ℤ∕p is isomorphic to Colp(D), for any prime p.

As an example, consider the diagram of Milnor’s boundary link shown in
Figure 7. The Fox 3-coloring displayed corresponds to the 3-coloring of the
graph G in Figure 1.

Figure 7. 3-colored diagram of Milnor’s boundary link

Every �nite cyclic group is contained in the compact abelian “circle group"
T = ℝ∕ℤ as a subgroup. If we replace ℤ∕p by T, then the coloring vector
spaces for graphs and link diagrams become compact abelian groups. (This
extension of Fox p-coloring was introduced in [31].) The Laplace group ℒG
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tensored with T consists of |TℒG| tori each of dimension equal to the nullity of
LG . A similar description of the circle-coloring group ColT(l) applies. In the
following sections we will explore this idea for in�nite graphs and links with
symmetries. The result is a rich structure that brings algebraic dynamics into
our story.

6. Periodic graphs and Laplacian modules

A (signed) graph G is d-periodic if it admits a co�nite freeℤd-action by auto-
morphisms that preserves the signs of edges. By co�nite we mean the quotient
graph G is �nite, while an action is free if the stabilizer of any edge or vertex is
trivial. Such a graph G is locally �nite, and �nite if and only if d = 0.

We regard ℤd, d ≥ 1, as the multiplicative abelian group freely generated by
x1, … , xd. We denote the Laurent polynomial ring ℤ[ℤd] = ℤ[x±11 , … , x±1d ] by
ℛd. As an abelian group ℛd is generated freely by monomials xn = xn11 …xndd ,
where n = (n1,⋯ , nd) ∈ ℤd. We represent (0, … , 0) by 0. For notational con-
venience, when d = 1, we replace x1 by x.

The vertex set V(G) and the edge set E(G) consist of �nitely many vertex
orbits {v1,n ∣ n ∈ ℤd}, … , {vn,n ∣ n ∈ ℤd} and signed edge orbits {e1,n ∣ n ∈
ℤd}, … , {em,n ∣ n ∈ ℤd}, respectively. The ℤd-action is determined by

xn′ ⋅ vi,n = vi,n+n′ , xn′ ⋅ ej,n = ej,n+n′ , (6.1)

where 1 ≤ i ≤ n, 1 ≤ j ≤ m and n, n′ ∈ ℤd. (When G is embedded in
some Euclidean space withℤd acting by translation, it is usually called a lattice
graph. Such graphs arise frequently in physics, for example in studying crystal
structures.)

When d > 1 we can think of G as covering a �nite graph G in the d-torus
Td = ℝd∕ℤd. When d = 1, G covers a �nite graphG in the annulusA = I×S1.
In either case the cardinality |V(G)| is equal to the number n of vertex orbits of
G, while |E(G)| is the numberm of edge orbits. The projection map is given by
vi,n ↦ vi and ej,n ↦ ej.

The Laplacianmatrix of a d-periodic graphG is de�ned to be the n×nmatrix
LG = � − A, where now A = (ai,j) is the adjacency ℛd-matrix with each entry
ai,j equal to the sum of monomials �exn for each edge e ∈ E(G) between vi,0
and vj,n, n ∈ ℤd. As in Section 3, the signed degree matrix � = (�i,j) is a
diagonal matrix constants, with �i,i equal to the sum of signs of edges incident
on vi,0. Loops are counted twice in bothmatrices, so loops inGmay be ignored,
but note that loops in G may lift to non-loop edges in G.

The matrix LG presents a �nitely generated ℛd-module, the Laplacian mod-
ule of G, denoted by ℒG . The Laplacian (determinant) polynomial ∆G is the
determinant of LG . When d = 0, ℛd = ℤ and these de�nitions reduce to the
ones in Section 3. Examples appear below; additional examples can be found
in [18, 36]. The reader should be aware that in graph theory literature the term
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“Laplacian polynomial" is often used for the characteristic polynomial of the
integral Laplacian matrix.

7. Coloring periodic graphs
Let G be a d-periodic graph. The collection of all T-colorings of G is the Pon-

tryagin dual group ℒ̂G = Hom(ℒG , T). Elements are functions f ∶ V(G) → T
that assign to each vertex vi,n ∈ V(G) a color f(vi,n) ∈ T such that the Lapla-
cian condition (corresponding to the ith row of LG) is satis�ed:

�i,if(vi,n) =
∑

e
�ef(vj,n′), (7.1)

where �i,i is the signed degree of vi,n, and the summation is taken over all edges
e that connect vi,n with some vj,n′ ∈ V(G), loops contributing twice.

We regard ℒG with the discrete topology. Endowed with the compact-open
topology, ℒ̂G is a compact space (see, for example, Section 2 of [21]). It admits a
ℤd-action by automorphisms. Such an action is a homomorphism s ∶ n ↦ sn
from ℤd to the automorphism group of ℒ̂G .

We denote ℒ̂G with itsℤd-action byColT,ℤd(G). It is an example of a dynami-
cal system known as aℤd-shift. By the Pontryagin Duality Theoremwe recover
the Laplace module by taking the dual of ColT,ℤd(G). We will say more about
the dynamical properties of ℒ̂G in Section 10.

In the case of a �nite plane graph and its associated link diagram (d = 0),
their isomorphic groups of T-colorings are dual respectively to the Laplacian
group of the graph and the abelian core group of the link. The latter group is
generated by the arcs of the diagram with relations given by the Fox coloring
condition of Figure 5; it is well known to be isomorphic to the direct sum of
the �rst homology group of the 2-fold branched cover of the link and an in�-
nite cyclic group. (For more about such dynamical systems see [28, 21] or [31].
Information about the core group can be found in [34].)

8. Computing the Laplacian polynomial

A cycle-rooted spanning forest (CRSF) of G is a subgraph of G containing all
ofV such that each connected component has exactly asmany vertices as edges
and therefore has a unique cycle. The connection � of an oriented cycle is its
homology class inH1(Td; ℤ) ≅ ℤd. See [16] for details.

The following is a consequence of the main theorem of [11]. It is made ex-
plicit in Theorem 5.2 of [16].
Theorem 8.1. [16] Let G be a d-periodic graph. Its Laplacian polynomial has
the form

∆G =
∑

F

∏

e∈E(F)

�e
∏

Cycles of F

(2 − � − �−1), (8.1)

where the sum is over all cycle-rooted spanning forests F of G, and �, �−1 are the
connections of the two orientations of the cycle.
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A d-periodic graph need not be connected. In fact, it can have countably
many connected components. Nevertheless, the number of ℤd-orbits of com-
ponents, henceforth called component orbits, is necessarily �nite.

Proposition 8.2. IfG is ad-periodic graphwith component orbitsG1, … , Gt, then
∆G = ∆G1⋯∆Gt .

Proof. After suitable relabeling, the Laplacian matrix for G is a block diagonal
matrix with diagonal blocks equal to the Laplacian matrices for G1, … , Gt. The
result follows immediately. Alternatively, it can be deduced from Theorem 8.1.

�

Proposition 8.3. Let G be a d-periodic graph. If G contains a �nite component,
then its Laplacian polynomial ∆G is identically zero. The converse statement is
true if G is unsigned.

Proof. If G contains a �nite component, then some component orbit Gi con-
sists of �nite components. We have ∆Gi = 0 by Theorem 8.1, since all cycles of
Gi represent trivial homology classes and hence have vanishing connection. By
Proposition 8.2, ∆G is identically zero.

Conversely, assume G is unsigned and every component is in�nite. Each
component of G must contain a nontrivial cycle. We can extend this collection
of cycles to a cycle rooted spanning forest F with no additional cycles. The cor-
responding summand in Theorem 8.1 has positive constant coe�cient. Since
every summandhas nonnegative constant coe�cient,∆G is not identically zero.

�

9. Plane 1-periodic graphs and links in solid tori
When a plane graph G is 1- or 2-periodic, the medial construction in Section

5 produces a diagram D of an in�nite link l. It has a �nite quotient diagram D
modulo the ℤ- or ℤ2-action induced by the action on G.

For d = 1 we regard D in an annulus A. It describes a link l = l1 ∪⋯ ∪ l�
in a solid unknotted torus V. The complement (int V) ⧵ l is homeomorphic to
S3 ⧵ l̂, where l̂ = l∪C is the link formed by the union of lwith a meridian C
ofV. Themeridian acquires an orientation induced by the in�nite cyclic action
on D. It is easy to see that every link with an unknotted component that has
even linking number with the rest of the link arises in this way.

The following result relates the Laplacian polynomial ∆G to the Alexander
polynomial ∆l̂.

Theorem 9.1. Let G be a plane 1-periodic graph and l̂ the encircled link l ∪ C.
Then

∆G(x)
⋅
= (x − 1) ∆l̂(−1, … ,−1, x),

where
⋅
= indicates equality up to multiplication by units in ℤ[x±1].
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Proof. The argument at the end of section 7 shows that the Laplacian group
of a �nite plane graph is isomorphic to the abelian core group of the associated
link. The same argument can be applied to any 1-periodic graphG and its asso-
ciated link l. (Either of the two unbounded regions of the link diagram can be
used as the base region as we pass from from vertex colorings to Fox colorings
via Dehn colorings.)

Let D be the diagram of l obtained from G by the medial construction. We
regardD as lying in a strip I×ℝ ⊂ ℝ2, with R = I×[0, 1] a fundamental domain
for theℤ-action. ThenDmeetsR in a tangle diagramD0. We label the arcs ofD0
meeting the “top," R × {1}, by a1, … , an and those meeting the “bottom," R × {0},
by a′1, … , a

′
n, with the ℤ-action taking a′i to ai. (It can happen that some ai and

a′j are identical.) Let b, c, … be labels for the remaining arcs of D0.
De�ne B to be the quotient of the free abelian group on a1, … , an, a′1, … , a

′
n,

b, c … by the Fox relations (Figure 5) of the crossings in D0. Let U be the free
abelian on u1, … , un, and f ∶ U → B (resp. g ∶ U → B) the homomorphisms
mapping each ui to ai (resp. ui to a′i ). The Laplacian module has the form

⋯⊕U B ⊕U B ⊕U ⋯ (9.1)

with identical amalgamationsB
g
←U

f
→B.Themodule action of xmerely shifts

each summand B one place to the right. Thus the Laplacian module ℒG is the
cokernel of the square matrix A with columns corresponding to the arcs of D0
and rows recording the Fox relations as well as the relations xa′1 = a1, … , xa′n =
an.

Figure 8. Detail of l̄ ∪ C

We claim that the matrix A is an Alexander matrix of the link l̄ ∪ C with
x corresponding to a meridian m of C while the meridianal variables of l are
set equal to −1 (cf. [5]). To see this, consider Figure 8. The Alexander matrix
has columns corresponding to a1, … , an, a′1, … , a

′
n, b, c … and the meridian m.

There are n rows corresponding to the crossing relations in D0, and additional
rows for relations m + xa′i = ai − m, where i = 1, … , n. (The relations, which
can be determined by Fox calculus or by considering the appropriate in�nite
cyclic cover, are una�ected by the directions of the arcs of D0. The n − 1 arcs
in the back of C correspond to generators de�ned by the relations that arise
from n − 1 of the n crossings in the back; the last relation is redundant and can
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be ignored. Hence the extra generators and relations can be disregarded.) We
delete the column corresponding tom in order to obtain an Alexander matrix.
The rows that we have added now correspond to the relations xa′i = ai. The
result is the matrix A. The Alexander polynomial of l̄ ∪ C is the determinant
of A divided by x − 1. �

Proposition 9.2. Let G be a plane 1-periodic graph, D its associated link dia-
gram, and l the associated link. The Laplacian polynomial ∆G is nonzero if and
only if the Laplacian module ℒG is a torsion module.

Proof. The proposition follows from basic facts of commutative algebra. Since
ℒG has a square matrix presentation, ∆G generates annihilator ideal ofℒG . �

Proposition 9.3. Let G be a plane 1-periodic graph, D its associated link dia-
gram, and l the associated link. The following are equivalent.

(1) The link l has closed components.
(2) The group of 2-colorings of D is in�nite.
(3) The Laplacian polynomial ∆G reduced modulo 2 is identically zero.

Proof. Any 2-coloring of D assigns a single color to every arc corresponding to
a component ofl. If the link has no closed components, then it has only �nitely
many components, and conversely. The equivalence of the �rst two statements
follows.

Regard ℒG as an abelian group. The vector space of 2-colorings of D is iso-
morphic to ℒG ⊗ ℤ∕2. Its dimension is the degree of the mod 2 reduction of
∆G , provided the reduced polynomial is nonzero; otherwise the dimension is
in�nite. However, the dimension is also equal to the number of components of
l. Hence the �rst and third statements are equivalent. �

The next proposition characterizes the leading coe�cient of the Laplacian
polynomial of a plane 1-periodic graph in terms of T-colorings of its associated
link. We will use the notation in the proof of Theorem 9.1. Note that ∆G(x) =
∆G(x−1), by Theorem 8.1.

Proposition 9.4. Let G be a plane 1-periodic graph, D its associated link dia-
gram, and D0 ⊂ R a tangle diagram representing a fundamental region of D.
Suppose ∆G is nonzero. If we assign 0 ∈ T to the arcs at the top of D0, then the
number of extensions toT-colorings ofD0 is equal to the absolute value of the lead-
ing coe�cient of ∆G .

Proof. The T-colorings of D that assign 0 to arcs labeled a1, … , an are the ele-
ments of the dual group of the quotient B∕f(U). The group B∕f(U) is the cok-
ernel of the specializedAlexandermatrixA constructed in the proof of Theorem
9.1 with variable x set equal to 0. The determinant of A is the order of B∕f(U)
as well as the absolute values of both the trailing and leading coe�cients of
∆G . �

Proposition 9.5. Let G be a plane 1-periodic graph, D its associated link dia-
gram, and D0 ⊂ R a tangle diagram representing a fundamental region of D.
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Suppose that the coe�cients of∆G are coprime. Then any two distinctT-colorings
of D0 with the same color assignments of the top arcs have di�erent color assign-
ments of the bottom arcs.

Proof. We prove the proposition by contradiction. Assume that there exist two
T-colorings of D0 with the same color assignments to the top arcs and also the
same assignments to the bottom. We subtract to get a nontrivialT-coloringwith
all arcs on both top and bottom colored trivially. By duality, the group quotient
B = B∕(f(U) + g(U)) must be nonzero. Consider the quotient module ℒG of
ℒG described by (9.1) with all elements of xif(U) and xig(U) set equal to 0;
it is a direct sum of countably many copies of B with the module action of x
given by translation. An integral matrix presenting B as an abelian group also
presents ℒG as module over ℛ1 = ℤ[x, x−1]. The group must be torsion since
ℒG is, and its 0th-characteristic polynomial ∆G must divide ∆G . Since ∆G is a
nonzero constant and the coe�cients of ∆G are coprime, ∆G = ±1. Hence B is
a trivial group, a contradiction. �

The following corollary follows form Propositions 9.4 and 9.5.

Corollary 9.6. Assume that G is a plane 1-periodic graph, D its associated link
diagram, and D0 ⊂ R a tangle diagram representing a fundamental region of D.
Assume that∆G is monic. Given any color assignment to the top arcs ofD0 that ex-
tends to a T-coloring ofD0, the colors of the bottom arcs are uniquely determined.

Example 9.7. Consider the 1-periodic graph G and its associated tangle dia-
gram D0 in Figure 9. It is easy to see that ∆G(x) = −3x + 6 − 3x−1, which
has leading coe�cient −3. The group B of the associated tangle has generators
a0, a1, b0, b1, c and relations 2b0 = a0 + c, 2c = b0 + a1, 2a1 = c + b1.

Figure 9. 1-peridodic graph G and associated tangle diagram D0

Since the subgroup f(U) is generated by a0, a1, the quotient B∕f(U) is gen-
erated by b0, b1, c, with relations 2b0 = c, 2c = b0, 0 = c + b1. If we choose a
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color 
 ∈ T for the arc ofD0 labeled c, then the bottom arcs, labeled b0, b1, must
receive colors 2
, −
, respectively. Moreover, the assignment is a T-coloring of
D0 provided that 3
 = 0. Hence 
 = 0, 1∕3, 2∕3 (mod 1), and there are exactly
threeT-colorings ofD0with the top arcs colored 0, as expected fromProposition
9.4. The three T-colorings appear in Figure 10.

Figure 10. T-colorings with top arcs colored trivially

Example 9.8. The closure l of any 2n-braid arises from graph G embedded in
the annulus A, since we can checkerboard shade a diagram of l in A so that
the border regions are unshaded.

The graph G lifts to a 1-periodic graph G in the plane. Consider its Lapla-
cian polynomial ∆G . We recall that the Burau representation associates to each
generator �i of the 2n-braid group a block diagonal matrix

Ii−1 ⊕ (1 − t t
1 0) ⊕ I2n−i−1,

where Ik denotes the k×k identitymatrix. Setting t = −1 produces presentation
matrix for the groupB in the proof of Theorem9.1. TheLaplacian polynomial of
G is the characteristic polynomial of the Buraumatrix of the braid with t = −1.

10. Complexity growth of periodic graphs

When G is a d-periodic graph with quotient G, we can consider the interme-
diate covering graphs GΛ in ℝd∕Λ, where Λ ⊂ ℤd is a subgroup of Λ having
�nite index. In this section we see that the growth of the torsion complexity
�GΛ as the index of Λ goes to in�nity is determined by the Mahler measure of
the Laplacian polynomial ∆G .

We begin by reviewing the Mahler measure of polynomials.

De�nition 10.1. TheMahler measure of a nonzero polynomial f(x1, … , xd) in
ℛd is

M(f) = exp ∫
1

0
…∫

1

0
log |f(e2�i�1 , … , e2�i�d)|d�1⋯d�d.
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Remark 10.2. (1) The integral in De�nition 10.1 can be singular, but never-
theless it converges. (See [10] for two di�erent proofs.) If u1, … , ud is another
basis for ℤd, then f(u1, … , ud) has the same logarithmic Mahler measure as
f(x1, … , xd).

(2)If f, g ∈ ℛd, thenM(fg) = M(f)M(g). Moreover,M(f) = 1 if and only if
f is a unit or a unit times a product of 1-variable cyclotomic polynomials, each
evaluated at a monomial of ℛd (see [28]).

(3)When d = 1, Jensen’s formula shows that M(f) can be described in a
simple way. If f(x) = csxs +⋯c1x + c0, c0cs ≠ 0, c is the leading coe�cient of
f, then

M(f) = |cs|
s∏

i=1
max{|�i|, 1},

where �1, … , �s are the roots of f.

Theorem 10.3. If G is a signed d-periodic graph with nonzero Laplacian poly-
nomial ∆G , then

lim sup
⟨Λ⟩→∞

1
|ℤd∕Λ|

log �GΛ = logM(∆G), (10.1)

where Λ ranges over all �nite-index subgroups of ℤd, and ⟨Λ⟩ denotes the min-
imum length of a nonzero vector in Λ. When d = 1, the limit superior can be
replaced by an ordinary limit.

We call this limit the complexity growth rate of G, and denote it by 
G . Its
relationship to the thermodynamic limit or bulk limit de�ned for a wide class of
unsigned lattice graphs is discussed in [18], and also below in Section 12.

Remark 10.4. (1) The condition ⟨Λ⟩ → ∞ ensures that fundamental region of
Λ grows in all directions.

(2) If G is unsigned, �GΛ = �GΛ for every Λ. In this case, Theorem 10.3 is
proven in [23] with the limit superior replaced by ordinary limit.

(3) When d = 1, the �nite-index subgroups Λ are simplyℤ∕rℤ, for r > 0. In
this case, we write Gr instead of GΛ.

(4) When d > 1, a recent result of V. Dimitrov [9] asserts that the limit supe-
rior in Theorem10.3 is equal to the ordinary limit along sequences of sublattices
Λ of the form N ⋅ ℤd, where N is a positive integer.

Before proving Theorem 10.3we give an example that demonstrates the need
for de�ning graph complexity as we do.

Example 10.5. Consider the 1-periodic graph G in Figure 11. Generators for
the Laplacian module are indicated. The Laplacian matrix is

LG =
⎛
⎜
⎜
⎝

0 1 − x−1 1 −x−1
1 − x 0 1 −1
1 1 −2 0
−x −1 0 2

⎞
⎟
⎟
⎠

,
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Figure 11. 1-Periodic graph G with �Gr = 0 for all r ≥ 1

and ∆G(x) = 9(x − 2 + x−1).
The quotient G2 is the �nite graph in Example 3.2. The Laplacian matrix of

any Gr can be described as a block matrix obtained from LG by replacing x by
the companion (permutation) matrix for xr − 1, and any scalar c by cIr (see
[31]). It is conjugate to the diagonal block matrix Diag[LG|x=1, … , LG|x=�r−1],
where � is a primitive rth root of unity. Thematrix LG|x=1 is the 4×4 Laplacian
matrix of G,

LG =
⎛
⎜
⎜
⎝

0 0 1 −1
0 0 1 −1
1 1 −2 0
−1 −1 0 2

⎞
⎟
⎟
⎠

,

which has nullity 2. Hence the tree complexity �Gr vanishes for every r. Nev-
ertheless, by Theorem 10.3 the (torsion) complexity �Gr is nontrivial and has
exponential growth rate equal to 9. One can verify directly that the Laplacian
subgroup ℒGr is isomorphic to ℤ2 × (ℤ∕3r−1ℤ)2.

We proceed with the proof of Theorem 10.3.

Proof. The proof that we present is a direct application of a theorem of D. Lind,
K. Schmidt and T. Ward (see [21] or Theorem 21.1 of [28]). We review the ideas
for the reader’s convenience.

Recall that the Laplacian module ℒG is the �nitely generated module over
the ringℛd with presentationmatrix equal to the n×n Laplacianmatrix LG , and
its Pontryagin dual group ℒ̂G is Hom(ℒG , T). The module actions of x1, … , xd
determine commuting homeomorphisms s1, … , sd of ℒ̂G . Explicitly, (sj�)(a) =
�(xja) for every a ∈ ℒG . Consequently, Γ̂G has aℤd-action s ∶ ℤd → Aut(ℒ̂G).
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The pair (ℒ̂G , �) is an algebraic dynamical system, well de�ned up to topo-
logical conjugacy (that is, up to a homeomorphism of ℒ̂G respecting the ℤd

action). In particular its periodic point structure is well de�ned.
Topological entropy ℎ(s) is a well-de�ned quantity associated to (ℒ̂G , s), a

measure of complexity of theℤd-action s. We refer the reader to [21] or [28] for
the de�nition.

For any subgroup Λ of ℤd, a Λ-periodic point is a member of ℒ̂G that is
�xed by every element of Λ. The set of Λ-periodic points is a �nitely generated
abelian group that is isomorphic to the Pontryagin dual groupHom(ℒG∕ΛℒG), T).

The group ℒG∕ΛℒG is the Laplacian module of the quotient graph GΛ. As a
�nitely generated abelian group, it decomposes as ℤ�Λ ⊕ T(ℒG∕ΛℒG), where
�Λ is the rank ofℒG∕ΛℒG and T(⋯) denotes the (�nite) torsion subgroup. The
Pontryagin dual group consists of PΛ = |T(ℒG∕ΛℒG)| tori each of dimension
�Λ. By Theorem 21.1 of [28], the topological entropy ℎ(s) is:

ℎ(s) = lim sup
⟨Λ⟩→∞

1
|ℤd∕Λ|

log PΛ = lim sup
⟨Λ⟩→∞

1
|ℤd∕Λ|

log �Λ.

Since the matrix LG that presents ℒG is square, ℎ(s) can be computed also as
the logarithm of the Mahler measureM(det LG) (see Example 18.7(1) of [28]).
The determinant of LG is, by de�nition, the Laplacian polynomial ∆G . Hence
the proof is complete. �

11. Lehmer’s question
In [19] D.H. Lehmer asked the following question.

Question 11.1. Do there exist integral polynomials with Mahler measures ar-
bitrarily close but not equal to 1?

Lehmer discovered the polynomial x10+x9−x7−x6−x5−x4−x3+x+1,
which has Mahler measure equal to 1.17628.... Despite great e�ort including
extensive computer-aided searches [3, 4, 24, 25, 27], no smaller value greater
than 1 has been found, and Lehmer’s question remains unanswered.

Topological and geometric perspectives of Lehmer’s questionhave been found
[13]. In [35] we showed that Lehmer’s question is equivalent to a question
about Alexander polynomials of �bered hyperbolic knots in the lens spaces
L(n, 1), n > 0. (Lens spaces arose from the need to consider polynomials f(x)
with f(1) = n ≠ 1.) Here we present another, more elementary equivalence,
in terms of graph complexity.

An integer polynomial f(x) is reciprocal if xdegff(x−1) = f(x). We will
say that a Laurent polynomial f(x) ∈ ℛ1 is palindromic if f(x−1) = f(x).
Any reciprocal polynomial becomes palindromic after it is multiplied by xj or
xj(x + 1), for suitable j. In [37] C. Smyth proved that any irreducible integral
non-reciprocal polynomial other than x or x − 1 has Mahler measure at least
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as large as the real root of x3−x−1 (approximately 1.324). Since Mahler mea-
sure is multiplicative, it su�ces to restrict our attention to palindromic Laurent
polynomials when investigating Lehmer’s question.

Proposition 11.2. Apolynomial∆(x) is the Laplacianpolynomial of a 1-periodic
graph if and only if it has the form (x−2+x−1)f(x), where f(x) is a palindromic
polynomial.

Proof. The Laplacian polynomial ∆(x) of any 1-periodic graph is palindromic.
This follows from the fact that the transpose of LG is LG with x replaced by x−1.
Since the row-sums of LG become zero when we set x = 1, x − 1 divides ∆(x).
(Both observations follow also fromTheorem 8.1.) Palindromicity requires that
the multiplicity of x − 1 be even. Hence ∆(x) has the form (x − 2 + x−1)f(x),
where f(x) is palindromic.

In order to see the converse assertion, consider any polynomial of the form
p(x) = (x − 2 + x−1)f(x), where f(x) is palindromic. Then p(x) is also
palindromic. Clearly, we can write p(x) as a constant plus a sum of terms
±(xs − 2 + x−s); but the constant must be 0 since p(1) = 0. Then p(x) is
the Laplacian polynomial of a 1-periodic graph, constructed as in the following
example. �

Example 11.3. Multiplying Lehmer’s polynomial

f(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1

by the unit x−5 and then by x − 2 + x−1 yields

x6 − x5 − x4 + x2 + x−2 − x−4 − x−5 + x−6,

which in turn can be written as

(x2 − 2 + x−2) − (x4 − 2 + x−4) − (x5 − 2 + x−5) + (x6 − 2 + x−6).

This is the Laplacian polynomial of a 1-periodic graphG. The quotient graphG
is easily described. It has a single vertex, two edges with sign +1 and two with
−1. The (+1)-signed edges wind twice and six times, respectively, around the
annulus in the direction corresponding to x. The (−1)-signed edges wind four
and �ve times, respectively, in the opposite direction.

Theorem 11.4. Lehmer’s question is equivalent to the following. Given � > 0,
does there exist a 1-periodic graph G such that

1 < lim
r→∞

(�Gr)
1∕r < 1 + �?

Proof. When investigating Lehmer’s question it su�ces to consider polynomi-
als of the form (x−2+x−1)f(x), where f(x) is palindromic and irreducible. By
Proposition 11.2 any such polynomial is realized as the Laplacian polynomial
of a 1-periodic graphG with a single vertex orbit. As in Example 10.5 the Lapla-
cianmatrix LGr of any �nite quotientGr can be obtained from (x−2+x−1)f(x)
by substituting for x the companion matrix for xr − 1. Hence the nullity of LGr
is 1 provided that f(x) is not a cyclotomic polynomial (multiplied by a unit),
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a condition that we can assume without loss of generality. Hence �Gr = �Gr
for each r (see discussion following De�nition 3.) Theorem 10.3 completes the
proof.

�

Remark 11.5. (1) The closure of the 16-braid
(�1�2)2(�1�2�3�4)4(�1�2⋯�15)5

is a link l associated with a plane graph G in the annulus (see Example 9.8).
The Laplacian polynomial ∆G is

x−7(x − 1)(x2 + 1)(x10 − x9 − x6 + x5 − x4 − x + 1).

Its Mahler measure is 1.35098…. This is the smallest Mahler measure greater
than 1 that we have yet found for any plane graph.

(2) The conclusion of Theorem 11.4 does not hold if we restrict ourselves to
unsigned graphs. By Theorem 12.7 below, theMahlermeasure of the Laplacian
polynomial of any 1-periodic graph with all edge signs equal to 1 is at least 2.

(3) If a 1-periodic graph G as in Example 11.3 can be found withM(DG) less
than Lehmer’s value 1.17628..., then by results of [26] some edge of G must
wind around the annulus at least 29 times.

The cyclic 5-fold cover of the graph in Example 11.3 contains the complete
graph on 5 vertices, and hence it is nonplanar. If the answer to the following
question is yes, then Lehmer’s question is equivalent to a question about deter-
minant density of links (see Remark 12.3(3)).

Question 11.6. Is Theorem 11.4 still true if we require that the graphs G be
planar?

We conclude this section with a result that will be used in the next section,
but holds for signed as well as unsigned graphs. It concerns complexity growth
of a d-periodic graph that is a union of disjoint d′-periodic graphs for some
d′ < d.

Suppose H is a subgraph of a d-periodic graph G consisting of one or more
connected components of G, such that the orbit of H under ℤd is all of G. Let
Γ < ℤd be the stabilizer of H. Then Γ ≅ ℤd′ for some d′ < d, and its action on
H can be regarded as a co�nite free action of ℤd′ . Consider the limit


H = lim
⟨Λ⟩→∞

1
|Γ∕Λ|

log �HΛ

where Λ ranges over �nite-index subgroups of Γ.

Lemma 11.7. Under the above conditions we have 
G = 
H .

Proof. Let Λ be any �nite-index subgroup of ℤd. Then H is invariant under
Λ ∩ Γ. The image ofH in the quotient graph GΛ is isomorphic toHΛ∩Γ.

Note that the quotient H of H by the action of Γ is isomorphic to G, since
the ℤd orbit of H is all of G. Since GΛ is a |ℤd∕Λ|-fold cover of G and HΛ∩Γ is
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Figure 12. Graphs (G2)R and associated links, Λ = ⟨x21 , x
2
2⟩

and ⟨x31 , x
3
2⟩

a |Γ∕(Λ ∩ Γ)|-fold cover ofH, GΛ comprises k = |ℤd∕Λ|∕|Γ∕(Λ ∩ Γ)|mutually
disjoint translates of a graph that is isomorphic to HΛ∩Γ. Hence �GΛ = �kHΛ∩Γ
and

1
|ℤd∕Λ|

log �GΛ =
1

|Γ∕(Λ ∩ Γ)|
log �HΛ∩Γ

.

Since ⟨Λ ∩ Γ⟩ → ∞ as ⟨Λ⟩ → ∞, we have 
G = 
H . �

12. Complexity growth of unsigned periodic graphs
It is natural to ask whether the Mahler measure of Laplacian polynomials of

signed graphs di�ers in appreciable ways from unsigned graphs. Proposition
12.7 answers emphatically yes.

Throughout the section G denotes an unsigned d-periodic graph. For this
case, the complexity growth rate 
G is also the growth rate of the number of
spanning trees of �nite quotientsGΛ. Thus contracting or deleting an edge orbit
of G will not increase 
G .

Denote byR = R(Λ) a fundamental domain ofΛ. LetG|R be the full unsigned
subgraph of G on vertices vi,n, n ∈ R. We denote by lR the corresponding
medial link.

If G|R is connected for each R, then {�GΛ} and {�G|R } have the same expo-
nential growth rates. (See Theorem 7.10 of [18] for a short, elementary proof.
A more general result is Corollary 3.8 of [23].) The bulk limit is de�ned by

G∕|V(G)|.

Example 12.1. The d-dimensional grid graph Gd is the unsigned graph with
vertex setℤd and single edges connecting each pair of vertices of distance 1. Its
Laplacian polynomial is

∆(Gd) = 2d − x1 − x−11 −⋯− xd − x−1d .

When d = 2, it is a plane graph. The graphs links lR are indicated in Figure 12
for Λ = ⟨x21 , x

2
2⟩ on left and Λ = ⟨x31 , x

3
2⟩ on right.
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The determinant of a link l, denoted here by det(l), is the absolute value
of its 1-variable Alexander polynomial evaluated at −1. It follows from the
Mayberry-Mott theorem [2] that if l is an alternating link that arises by theme-
dial construction from a �nite plane graph, edge signs ±1 allowed, then det(l)
is equal to the tree complexity of the graph (see Appendix A.4 in [5]). The fol-
lowing corollary is an immediate consequence of Theorem 10.3. It has been
proven independently by Champanerkar and Kofman [6].

Corollary 12.2. Let G be a connected d-periodic unsigned plane graph, d = 1 or
2. Then

lim
⟨Λ⟩→∞

1
|ℤd∕Λ|

log det(lR) = 
∆G .

Remark 12.3. (1) We regard the limit in that statement of Corollary 12.2 as
a determinant density of the collection of links {lR}. There are other ways to
de�ne it (e.g., dividing by the number of crossings of the diagram for lR).

(2) In [7] the authors consider aswellmore general sequences of links. When
G = G2, their results imply that:

lim
⟨Λ⟩→∞

2�
c(lR)

log det(lR) = voct,

where c(lR) is the number of crossings of lR and voct ≈ 3.66386 is the volume
of the regular ideal octohedron.

(3) If Question 11.6 has an a�rmative answer then Lehmer’s question be-
comes a question about link determinants.

Grid graphs are the simplest unsigned d-periodic graphs, as the following
theorem shows.

Theorem 12.4. If G is an unsigned connected d-periodic graph, then 
G ≥ 
Gd .

Asymptotic results about the Mahler measure of certain families of polyno-
mials have been obtained elsewhere. However, the graph theoretic methods
that we employ to prove Theorem 12.4 are di�erent from techniques used pre-
viously.

Proof. Consider the case in which G has a single vertex orbit. Then for some
u1, … , um ∈ ℤd, with m ≥ d, the edge set E(G) consists of edges from v to
ui ⋅ v for each v ∈ V and i = 1, … ,m. Since G is connected, we can assume
after relabeling that u1, … , ud generate a �nite-index subgroup ofℤd. Let G′ be
the ℤd-invariant subgraph of G with edges from v to ui ⋅ v for each v ∈ V and
i = 1, … , d. Then G′ is the orbit of a subgraph of G that is isomorphic to Gd,
and so by Lemma 11.7, 
(Gd) = 
(G′) ≤ 
(G).

We now consider a connected graph G having vertex families v1,n, … , vn,n,
where n > 1. Since G is connected, there exists an edge e joining v1,0 to some
vi,n. Contract the edge orbitℤd ⋅ e to obtain a new graph G′ having co�nite free
ℤd-symmetry and complexity growth rate no greater than that ofG. Repeat the



1004 DANIEL S. SILVER AND SUSAN G. WILLIAMS

procedure with the remaining vertex families so that only v1,n remains. The
proof in the previous case of a graph with a single vertex orbit now applies. �

Remark 12.5. The conclusion of Theorem 12.4 does not hold without the hy-
pothesis that G is connected. Consider the 2-periodic graph G obtained from
G2 by removing all vertical edges, so that G consists of countably many copies
of G1 . Then 
G = 
G1 = 0 while 
G2 > 0.

The following lemma, needed for the proof Proposition 12.7, is of indepen-
dent interest.

Lemma 12.6. The sequence of complexity growth rates 
∆Gd is nondecreasing.

Proof. Consider the grid graphGd. Deleting all edges in parallel to the dth co-
ordinate axis yields a subgraph G consisting of countably many mutually dis-
joint translates of Gd−1. By Lemma 11.7, 
Gd−1 = 
G ≤ 
Gd . �

Doubling each edge ofG1 results in a graphwith Laplacian polynomial 2(x−
2 + x−1), which has Mahler measure 2M(x − 2 + x−1) = 2. We show that this
graph realizes the minimum nonzero complexity growth rate.

Proposition 12.7. (ComplexityGrowthRateGap)LetG be anyunsignedd-periodic
graph. If 
G ≠ 0, then


G ≥ log 2.

Although ∆Gd is relatively simple, the task of computing its Mahler measure
is not. It is well known and not di�cult to see that 
Gd ≤ log 2d. We will use a
theorem of N. Alon [1] to show that 
Gd approaches log 2d asymptotically.

Theorem 12.8. We have
(1) 
Gd ≤ log 2d, for all d ≥ 1.
(2) limd→∞ 
Gd − log 2d = 0.

Proof of Proposition 12.7. By Lemma 11.7 it su�ces to consider a connected
d-periodic graph G with 
G nonzero. Note that 
G1 = 0 while 
G2 ≈ 1.165 is
greater than log 2. By Theorem 12.4 and Lemma 12.6we can assume that d = 1.

If G has an orbit of parallel edges, we see easily that 
G ≥ log 2. Otherwise,
we proceed as in the proof of Theorem 12.4, contracting edge orbits to reduce
the number of vertex orbits without increasing the complexity growth rate. If
at any step we obtain an orbit of parallel edges, we are done; otherwise we will
obtain a graph G′ with a single vertex orbit and no loops. If G′ is isomorphic to
G1 then G must be a tree; but then 
G = 0, contrary to our hypothesis. So G′
must have at least two edge orbits. Deleting excess edges, we may suppose G′
has exactly two edge orbits.

The Laplacian polynomial ∆G′ has the form 4−xr−x−r−xs−x−s, for some
positive integers r, s. Reordering the vertex set of G′, we can assume without
loss of generality that r = 1. The following calculation is based on an idea
suggested to us by Matilde Lalin.
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logM(∆G′) = ∫
1

0
log |4 − 2 cos(2��) − 2 cos(2�s�)| d�

= ∫
1

0
log |2(1 − cos(2��)) + 2(1 − cos(2�s�))| d�

= ∫
1

0
log

(
4 sin2(��) + 4 sin2(�s�)

)
d�.

Using the inequality (u2 + v2) ≥ 2uv, for any nonnegative u, v, we have:

logM(∆G′) ≥ ∫
1

0
log

(
8| sin(��)| | sin(�s�)|

)
d�

= log 8 + ∫
1

0
log | sin(��)| d� + ∫

1

0
log | sin(�s�)| d�

= log 8 + ∫
1

0
log

√
1 − cos(2��)

2 d� + ∫
1

0
log

√
1 − cos(2�s�)

2 d�

= log 8 + ∫
1

0

1
2
log

(2 − 2 cos(2��)
4

)
d� + ∫

1

0

1
2
log

(2 − 2 cos(2�s�)
4

)
d�

= log 8 + 1
2
m(2 − x − x−1) − 1

2
log 4 + 1

2
m(2 − xs − x−s) − 1

2
log 4

= 3 log 2 + 0 − log 2 + 0 − log 2 = log 2.
�

Our proof of Theorem 12.8 depends on the following result of Alon.

Theorem 12.9. [1] If G is a �nite connected �-regular unsigned graph, then

�G ≥ [�(1 − �(�))]|V(G)|,

where �(�) is a nonnegative function with �(�) → 0 as � → ∞.

Proof of Theorem 12.8. (1) The integral representing the logarithmof theMahler
measure of ∆Gd can be written

∫
1

0
⋯∫

1

0
log

|||||||
2d −

d∑

i=1
2 cos(2��i)

|||||||
d�1⋯d�d

= log 2d + ∫
1

0
⋯∫

1

0
log

|||||||
1 +

d∑

i=1

cos(2��i)
d

|||||||
d�1⋯d�d
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= log 2d + ∫
1

0
⋯∫

1

0
−

∞∑

k=1

(−1)k

k
(
∑d

i=1 cos(2��i)
d

)
k

d�1⋯d�d.

By symmetry, odd powers of k in the summation contribute zero to the integra-
tion. Hence

log(∆Gd) = log 2d − ∫
1

0
⋯∫

1

0

∞∑

k=1

1
2k

(
∑d

i=1 cos(2��i)
d

)
2k

d�1⋯d�d,

which cannot exceed log 2d.
(2) Let Λ be a �nite-index subgroup of ℤd. Consider the quotient graph

(Gd)Λ. The cardinality of its vertex set is |ℤd∕Λ|. The main result of [1], cited
above as Theorem 12.9, implies that

�(Gd)Λ = ((2d)(1 − �(d)))
|ℤd∕Λ|

,

where � is a nonnegative function such that limd→∞ �(d) = 0. Hence

lim
d→∞

( 1
|ℤd∕Λ|

log �(Gd)Λ − log 2d) = lim
d→∞

log(1 − �(d)) = 0.

Theorem 10.3 completes the proof. �

Remark 12.10. One can evaluate logM(∆(Gd)) numerically and obtain an in-
�nite series representing 
Gd − log 2d. However, showing rigorously that the
sum of the series approaches zero as d goes to in�nity appears to be di�cult.
(See [29], p. 3893 for a heuristic argument.)

References
[1] Alon, Noga. The number of spanning trees in regular graphs. Random Structures Algo-

rithms 1 (1990), no. 2, 175–181. MR1138423, Zbl 0820.05033, doi: 10.1002/rsa.3240010204.
1004, 1005, 1006

[2] Bott, Raoul; Mayberry, John P. Matrices and trees. Economic activity analysis, pp.
391–400. John Wiley and Sons, Inc., New York; Chapman and Hall, Ltd., London, 1954.
MR0067067, Zbl 0057.12402. 1003

[3] Boyd, DavidW. Reciprocal polynomials having small measure.Math. Comp. 35 (1980), no.
152, 1361–377. MR0583514, Zbl 0447.12002, doi: 10.1090/S0025-5718-1980-0583514-9. 999

[4] Boyd, David W. Speculations concerning the range of Mahler’s measure. Canad. Math.
Bull. 24 (1981), no. 4, 453–469. MR0644535, Zbl 0474.12005, doi: 10.4153/CMB-1981-069-5.
999

[5] Burde, Gerhard; Zieschang, Heiner. Knots. Second edition. De Gruyter Studies in
Mathematics, 5. Walter de Gruyter and Co., Berlin, 2003. xii+559 pp. ISBN: 3-11-017005-1.
MR1959408, Zbl 1009.57003, doi: 10.1515/9783110198034. 986, 993, 1003

[6] Champanerkar, Abhijit; Kofman, Ilya. Determinant density and biperiodic al-
ternating links. New York J. Math. 22 (2016), 891–906. MR3548129, Zbl 1365.57005,
arXiv:1604.03795. 1003

[7] Champanerkar, Abhijit; Kofman, Ilya; Purcell, Jessica S. Geometrically and dia-
grammaticallymaximal knots. J. Lond.Math. Soc. (2) 94 (2016), no. 3, 883–908.MR3614933,
Zbl 1358.57013, doi: 10.1112/jlms/jdw062. 1003

http://www.ams.org/mathscinet-getitem?mr=1138423
http://www.emis.de/cgi-bin/MATH-item?0820.05033
http://dx.doi.org/10.1002/rsa.3240010204
http://www.ams.org/mathscinet-getitem?mr=0067067
http://www.emis.de/cgi-bin/MATH-item?0057.12402
http://www.ams.org/mathscinet-getitem?mr=0583514
http://www.emis.de/cgi-bin/MATH-item?0447.12002
http://dx.doi.org/10.1090/S0025-5718-1980-0583514-9
http://www.ams.org/mathscinet-getitem?mr=0644535
http://www.emis.de/cgi-bin/MATH-item?0474.12005
http://dx.doi.org/10.4153/CMB-1981-069-5
http://www.ams.org/mathscinet-getitem?mr=1959408
http://www.emis.de/cgi-bin/MATH-item?1009.57003
http://dx.doi.org/10.1515/9783110198034
https://nyjm.albany.edu/j/2016/22-42v.pdf
https://nyjm.albany.edu/j/2016/22-42v.pdf
http://www.ams.org/mathscinet-getitem?mr=3548129
http://www.emis.de/cgi-bin/MATH-item?1365.57005
http://arXiv.org/abs/1604.03795
http://www.ams.org/mathscinet-getitem?mr=3614933
http://www.emis.de/cgi-bin/MATH-item?1358.57013
http://dx.doi.org/10.1112/jlms/jdw062


LEHMER’S QUESTION, GRAPH COMPLEXITY GROWTH AND LINKS 1007

[8] Cochran, David Samuel. Links with zero Alexander polynomial. Thesis (Ph.D.)–
Dartmouth College. 1970. 94 pp. MR2619555. 987

[9] Dimitrov, Vesselin. Convergence to theMahler measure and the distribution of periodic
points for algebraic Noetherian ℤd-actions. Preprint, 2016. arXiv:1611.04664v1. 997

[10] Everest, Graham; Ward, Thomas. Heights of polynomials and entropy in algebraic
dynamics. Springer-Verlag, London, Ltd., London, 1999. xii+211 pp. ISBN: 1-85233-125-9.
MR1700272, Zbl 0919.11064, doi: 10.1007/978-1-4471-3898-3. 997

[11] Forman, Robin. Determinants of Laplacians on graphs. Topology 32 (1993), no. 1, 35–46.
MR1204404, Zbl 0780.05041, doi: 10.1016/0040-9383(93)90035-T. 983, 991

[12] Godsil, Chris; Royle, Gordon. Algebraic graph theory. Graduate Texts in Mathemat-
ics, 207. Springer-Verlag, New York, 2001. xx+439 pp. ISBN: 0-387-95241-1; 0-387-95220-9.
MR1829620, Zbl 0968.05002, doi: 10.1007/978-1-4613-0163-9. 985

[13] Hironaka, Eriko. Lehmer’s problem, McKay’s correspondence, and 2, 3, 7. Topics in al-
gebraic and noncommutative geometry, (Luminy/Annapolis, MD, 2001), 123–138. Con-
temp. Math., 324, Amer. Math. Soc., Providence, RI, 2003. MR1986118, Zbl 1042.57004,
arXiv:math/0204040. 999

[14] Hironaka, Eriko. What is Lehmer’s number? Notices Amer. Math. Soc. 56 (2009), no. 3,
374–375. MR2494103, Zbl 1163.11069. 982

[15] Kauffman, Louis H. Knots and physics. Third edition. Series on Knots and Everything, 1.
World Scienti�c Publishing Co., Inc., River Edge, NJ, 2001. xvi+770 pp. ISBN: 981-02-4112-7.
MR1858113, Zbl 1057.57001, doi: 10.1142/4256. 986

[16] Kenyon, Richard. Spanning forests and the vector bundle Laplacian. Ann. Probab. 39
(2011), no. 5, 1983–2017. MR2884879, Zbl 1252.82029, arXiv:1001.4028, doi: 10.1214/10-
AOP596. 991

[17] Kirby, Robion, ed. Problems in low-dimensional topology. AMS/IP Stud. Adv. Math., 2.2.
Geometric topology (Athens, GA, 1993), 35–473. Amer. Math. Soc., Providence, RI, 1997.
MR1470751, Zbl 0888.57014. 982

[18] Lamey, KalynR.; Silver, Daniel S.; Williams, SusanG. Vertex-colored graphs, bicycle
spaces and Mahler measure. J. Knot Theory Rami�cations, 25 (2016), no. 6, 1650033, 22 pp.
MR3498136, Zbl 1336.05043, arXiv:1408.6570, doi: 10.1142/S0218216516500334. 985, 990,
997, 1002

[19] Lehmer, Derrick H. Factorization of certain cyclotomic functions. Ann. of Math. (2) 34
(1933), no. 3, 461–479. MR1503118, Zbl 0007.19904, doi: 10.2307/1968172. 982, 999

[20] Lickorish,W. B. Raymond. An introduction to knot theory. Graduate Texts inMathemat-
ics, 175. Springer-Verlag, New York, 1997. x+201 pp. ISBN: 0-387-98254-X. MR1472978, Zbl
0886.57001, doi: 10.1007/978-1-4612-0691-0. 986

[21] Lind, Douglas; Schmidt, Klaus; Ward, Tom. Mahler measure and entropy for com-
muting automorphisms of compact groups. Invent. Math. 101 (1990), no. 3, 593–629.
MR1062797, Zbl 0774.22002, doi: 10.1007/BF01231517. 991, 998, 999

[22] Livingston, Charles. Knot theory. Carus Mathematical Monographs, 24. Mathemat-
ical Association of America, Washington, DC, 1993. xviii+240 pp. ISBN: 0-88385-027-3.
MR1253070, Zbl 0887.57008, doi: 10.5948/UPO9781614440239. 988

[23] Lyons, Russell. Asymptotic enumeration of spanning trees. Combin. Probab. Com-
put. 14 (2005), no. 4, 491–522. MR2160416, Zbl 1076.05007, arXiv:math/0212165,
doi: 10.1017/S096354830500684X. 997, 1002

[24] McKee, James; Smyth, Chris. Integer symmetric matrices of small spectral radius and
small Mahler measure. Int. Math. Res. Not. IMRN 2012, no. 1, 102–136. MR2874929, Zbl
1243.15020, arXiv:0907.0371, doi: 10.1093/imrn/rnr011. 999

[25] Mossinghoff, Michael J. Polynomials with small Mahler measure. Math. Comp. 67
(1998), no. 224, 1697–1705, S11-S14.MR1604391, Zbl 0918.11056, doi: 10.1090/S0025-5718-
98-01006-0 . 999

http://www.ams.org/mathscinet-getitem?mr=2619555
http://arXiv.org/abs/1611.04664v1
http://www.ams.org/mathscinet-getitem?mr=1700272
http://www.emis.de/cgi-bin/MATH-item?0919.11064
http://dx.doi.org/10.1007/978-1-4471-3898-3
http://www.ams.org/mathscinet-getitem?mr=1204404
http://www.emis.de/cgi-bin/MATH-item?0780.05041
http://dx.doi.org/10.1016/0040-9383(93)90035-T
http://www.ams.org/mathscinet-getitem?mr=1829620
http://www.emis.de/cgi-bin/MATH-item?0968.05002
http://dx.doi.org/10.1007/978-1-4613-0163-9
http://www.ams.org/mathscinet-getitem?mr=1986118
http://www.emis.de/cgi-bin/MATH-item?1042.57004
http://arXiv.org/abs/math/0204040
http://www.ams.org/mathscinet-getitem?mr=2494103
http://www.emis.de/cgi-bin/MATH-item?1163.11069
http://www.ams.org/mathscinet-getitem?mr=1858113
http://www.emis.de/cgi-bin/MATH-item?1057.57001
http://dx.doi.org/10.1142/4256
http://www.ams.org/mathscinet-getitem?mr=2884879
http://www.emis.de/cgi-bin/MATH-item?1252.82029
http://arXiv.org/abs/1001.4028
http://dx.doi.org/10.1214/10-AOP596
http://dx.doi.org/10.1214/10-AOP596
http://www.ams.org/mathscinet-getitem?mr=1470751
http://www.emis.de/cgi-bin/MATH-item?0888.57014
http://www.ams.org/mathscinet-getitem?mr=3498136
http://www.emis.de/cgi-bin/MATH-item?1336.05043
http://arXiv.org/abs/1408.6570
http://dx.doi.org/10.1142/S0218216516500334
http://www.ams.org/mathscinet-getitem?mr=1503118
http://www.emis.de/cgi-bin/MATH-item?0007.19904
http://dx.doi.org/10.2307/1968172
http://www.ams.org/mathscinet-getitem?mr=1472978
http://www.emis.de/cgi-bin/MATH-item?0886.57001
http://www.emis.de/cgi-bin/MATH-item?0886.57001
http://dx.doi.org/10.1007/978-1-4612-0691-0
http://www.ams.org/mathscinet-getitem?mr=1062797
http://www.emis.de/cgi-bin/MATH-item?0774.22002
http://dx.doi.org/10.1007/BF01231517
http://www.ams.org/mathscinet-getitem?mr=1253070
http://www.emis.de/cgi-bin/MATH-item?0887.57008
http://dx.doi.org/10.5948/UPO9781614440239
http://www.ams.org/mathscinet-getitem?mr=2160416
http://www.emis.de/cgi-bin/MATH-item?1076.05007
http://arXiv.org/abs/math/0212165
http://dx.doi.org/10.1017/S096354830500684X
http://www.ams.org/mathscinet-getitem?mr=2874929
http://www.emis.de/cgi-bin/MATH-item?1243.15020
http://www.emis.de/cgi-bin/MATH-item?1243.15020
http://arXiv.org/abs/0907.0371
http://dx.doi.org/10.1093/imrn/rnr011
http://www.ams.org/mathscinet-getitem?mr=1604391
http://www.emis.de/cgi-bin/MATH-item?0918.11056
http://dx.doi.org/10.1090/S0025-5718-98-01006-0 
http://dx.doi.org/10.1090/S0025-5718-98-01006-0 


1008 DANIEL S. SILVER AND SUSAN G. WILLIAMS

[26] Mossinghoff, Michael J.; Rhin, Georges; Wu, Qiang. Minimal Mahler mea-
sures. Experiment. Math. 17 (2008), no. 4, 451–458. MR2484429, Zbl 1194.11100,
doi: 10.1080/10586458.2008.10128872. 1001

[27] Ray, Gary A. A locally parameterized version of Lehmer’s problem. Mathematics of
Computation 1943–1993: a half-century of computational mathematics (Vancouver, BC,
1993), 573–576. Proc. Sympos. Appl. Math., 48, Amer. Math. Soc., Providence, RI, 1994.
MR1314893, Zbl 0835.11040. 999

[28] Schmidt, Klaus. Dynamical systems of algebraic origin. Progress in Mathematics,
128. Birkhäuser Verlag, Basel, 1995. xviii+310 pp. ISBN: 3-7643-5174-8. MR1345152, Zbl
0833.28001, doi: 10.1007/978-3-0348-0277-2. 982, 991, 997, 998, 999

[29] Shrock, Robert; Wu, F. Y. Spanning trees on graphs and lattices in d dimensions. J. Phys.
A 33 (2000), no. 21, 3881–3902. MR1769549, Zbl 0949.05041, arXiv:cond-mat/0004341,
doi: 10.1088/0305-4470/33/21/303. 1006

[30] Silver, Daniel S.; Traldi, Lorenzo; Williams, Susan G. Goeritz and Seifert matri-
ces from Dehn presentations. Osaka J. Math 57 (2020), no. 3, 663–677. MR4121782, Zbl
1448.57010.

[31] Silver, Daniel S.; Williams, SusanG. Coloring link diagramswith a continuous palette.
Topology 39 (2000), no. 6, 1225–1237. MR1783855, Zbl 0964.57008, doi: 10.1016/S0040-
9383(99)00025-7. 982, 989, 991, 998

[32] Silver, Daniel S.; Williams, Susan G. Torsion numbers of augmented groups with ap-
plications to knots and links,. Enseign Math. (2) 48 (2002), no. 3-4, 317–343. MR1955605,
Zbl 1037.57004, arXiv:math/0202197. 982

[33] Silver, Daniel S.; Williams, Susan G. Mahler measure of Alexander polynomi-
als. J. London Math. Soc. (2) 69 (2004), no. 3, 767–782. MR2050045, Zbl 1055.57017,
doi: 10.1112/S0024610704005289. 982

[34] Silver, Daniel S.; Williams, Susan G. Crowell’s derived group and twisted polynomi-
als. J. Knot Theory Rami�cations 15 (2006), no. 8, 1079–1094. MR2275098, Zbl 1115.57006,
arXiv:math/0506339, doi: 10.1142/S0218216506004956. 991

[35] Silver, Daniel S.; Williams, Susan G. Lehmer’s question, knots and surface dynamics.
Math. Proc. Cambridge Philos. Soc. 143 (2007), no. 3, 649–661. MR2373964, Zbl 1138.11046,
arXiv:math/0509068, doi: 10.1017/S0305004107000618. 982, 999

[36] Silver, Daniel S.; Williams, Susan G. Group presentations for links in thickened
surfaces. J. Knot Theory Rami�ations, 30 (2021), no. 3, 2150022, 19 pp. MR4259508, Zbl
07356494, doi: 10.1142/S021821652150022X. 988, 989, 990

[37] Smyth, Christopher J. On the product of the conjugates outside the unit circle of an
algebraic integer. Bull. London Math. Soc. 3 (1971), 169–175. MR0289451, Zbl 0235.12003,
doi: 10.1112/blms/3.2.169. 999

[38] Smyth, Christopher J. Seventy years of Salem numbers. Bull. Lond.Math. Soc. 47 (2015),
no. 3, 379–395. MR3354434, Zbl 1321.11111, arXiv:1408.0195, doi: 10.1112/blms/bdv027.
982

[39] Tutte, William T. Graph theory. Encyclopedia of Mathematics and its Applications,
21. Addison-Wesley Publishing Company, Advanced Book Program, Reading, Mass., 1984.
xxi+333 pp. ISBN: 0-201-13520-5. MR0746795, Zbl 0554.05001. 985

(Daniel S. Silver) Department of Mathematics and Statistics, University of South
Alabama, Mobile, AL 36688, USA
silver@southalabama.edu

(Susan G. Williams) Department ofMathematics and Statistics, University of South
Alabama, Mobile, AL 36688, USA
swilliam@southalabama.edu

This paper is available via http://nyjm.albany.edu/j/2021/27-39.html.

http://www.ams.org/mathscinet-getitem?mr=2484429
http://www.emis.de/cgi-bin/MATH-item?1194.11100
http://dx.doi.org/10.1080/10586458.2008.10128872
http://www.ams.org/mathscinet-getitem?mr=1314893
http://www.emis.de/cgi-bin/MATH-item?0835.11040
http://www.ams.org/mathscinet-getitem?mr=1345152
http://www.emis.de/cgi-bin/MATH-item?0833.28001
http://www.emis.de/cgi-bin/MATH-item?0833.28001
http://dx.doi.org/10.1007/978-3-0348-0277-2
http://www.ams.org/mathscinet-getitem?mr=1769549
http://www.emis.de/cgi-bin/MATH-item?0949.05041
http://arXiv.org/abs/cond-mat/0004341
http://dx.doi.org/10.1088/0305-4470/33/21/303
http://www.ams.org/mathscinet-getitem?mr=4121782
http://www.emis.de/cgi-bin/MATH-item?1448.57010
http://www.emis.de/cgi-bin/MATH-item?1448.57010
http://www.ams.org/mathscinet-getitem?mr=1783855
http://www.emis.de/cgi-bin/MATH-item?0964.57008
http://dx.doi.org/10.1016/S0040-9383(99)00025-7
http://dx.doi.org/10.1016/S0040-9383(99)00025-7
http://www.ams.org/mathscinet-getitem?mr=1955605
http://www.emis.de/cgi-bin/MATH-item?1037.57004
http://arXiv.org/abs/math/0202197
http://www.ams.org/mathscinet-getitem?mr=2050045
http://www.emis.de/cgi-bin/MATH-item?1055.57017
http://dx.doi.org/10.1112/S0024610704005289
http://www.ams.org/mathscinet-getitem?mr=2275098
http://www.emis.de/cgi-bin/MATH-item?1115.57006
http://arXiv.org/abs/math/0506339
http://dx.doi.org/10.1142/S0218216506004956
http://www.ams.org/mathscinet-getitem?mr=2373964
http://www.emis.de/cgi-bin/MATH-item?1138.11046
http://arXiv.org/abs/math/0509068
http://dx.doi.org/10.1017/S0305004107000618
http://www.ams.org/mathscinet-getitem?mr=4259508
http://www.emis.de/cgi-bin/MATH-item?07356494
http://www.emis.de/cgi-bin/MATH-item?07356494
http://dx.doi.org/10.1142/S021821652150022X
http://www.ams.org/mathscinet-getitem?mr=0289451
http://www.emis.de/cgi-bin/MATH-item?0235.12003
http://dx.doi.org/10.1112/blms/3.2.169
http://www.ams.org/mathscinet-getitem?mr=3354434
http://www.emis.de/cgi-bin/MATH-item?1321.11111
http://arXiv.org/abs/1408.0195
http://dx.doi.org/10.1112/blms/bdv027
http://www.ams.org/mathscinet-getitem?mr=0746795
http://www.emis.de/cgi-bin/MATH-item?0554.05001
mailto:silver@southalabama.edu
mailto:swilliam@southalabama.edu
http://nyjm.albany.edu/j/2021/27-39.html

	1. Introduction
	2. Outline
	3. Laplacian groups and complexity of graphs
	4. Link diagrams and Tait graphs
	5. Coloring link diagrams
	6. Periodic graphs and Laplacian modules
	7. Coloring periodic graphs
	8. Computing the Laplacian polynomial
	9. Plane 1-periodic graphs and links in solid tori
	10. Complexity growth of periodic graphs
	11. Lehmer's question
	12. Complexity growth of unsigned periodic graphs
	References

