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On curves with high multiplicity on ℙ(a, b, c)
formin(a, b, c) ≤ 4

David McKinnon, Rindra Razafy, Matthew Satriano
and Yuxuan Sun

Abstract. On aweighted projective surfaceℙ(a, b, c)withmin(a, b, c) ≤ 4,
we compute lower bounds for the e�ective threshold of an ample divisor, in
other words, the highest multiplicity a section of the divisor can have at a
speci�ed point. We expect that these bounds are close to being sharp. This
translates into �nding divisor classes on the blowup ofℙ(a, b, c) that generate
a cone contained in, and probably close to, the e�ective cone.
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1. Introduction
Given a projective varietyX and a pointQ ∈ X, it is, in general, a notoriously

di�cult problem to calculate the pseudo-e�ective cone of the blow-up BlQ(X)
in terms of the pseudo-e�ective cone of X. Even addressing the a priori eas-
ier question of when BlQ(X) is a Mori Dream Space, where X = ℙ(a, b, c) is a
weighted projective surface andQ is the identity of its torus, is already challeng-
ing and has a rich history [Hun82, Cut91, Sri91, GNW94, CT15, GK16, He17,
GGK20]. To gain information about the pseudo-e�ective cone of BlQ(X), we
consider the following quantity, cf. [Fuj92].
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De�nition 1.1. Let X be a projective variety de�ned over a �eld k, D a k-
rational ℚ-divisor, and Q a k-rational point of X. Let � be the blowup of X
at Q and E the exceptional divisor of �. We say the e�ective threshold is


Q(D) ∶= sup{
 > 0 ∣ �∗(D) − 
E is pseudo-e�ective}.

The quantity 
Q(D) can be reinterpreted concretely as follows:if there is a
divisor in the class of D with multiplicitym at Q, then 
Q(D) ≥ m. Conversely,
if 
Q(D) = m, then for all � > 0, the class �∗D−(m−�)E is pseudo-e�ective, so
D contains divisors of multiplicity arbitrarily close tom, at least in a ℚ-divisor
sense. So, computing 
Q(D) essentially amounts to computing

sup
C,m

{
1

m
multQ(C)}

asm varies through positive integers andC varies through divisors in the divisor
classmD.

In this paper, we give characteristic-free lower bounds for 
Q(D) in the case
where X is the weighted projective surface ℙ(a, b, c) and min(a, b, c) ≤ 4. In
fact, we do more than this: we introduce a combinatorial quantity 
expected
which is a lower bound on 
, and compute 
expected exactly. It is worth remark-
ing here that although the motivation for studying 
Q is geometric, our lower
bounds on 
Q also have consequences for Diophantine approximation prob-
lems related to generalizations of Roth’s famous 1955 theorem [Ro55], see e.g.,
[MR16, Theorem 3.3] and [MS20, Section 8].

In [GGK20], the authorsmake a series of detailed calculations closely related
to what we compute in this paper. In particular, they search the spaces of global
sections of toric surfaces of Picard rank one for irreducible curves whose strict
transforms have negative self-intersection upon blowing up a point. If there is
such a curve, then the pseudo-e�ective cone of the blowup will be �nitely gen-
erated by the exceptional divisor of the blowup and another curve of negative
self-intersection.

In this paper, we compute not only curves, but also the corresponding value
of the e�ective threshold. We do not prove that the curves we �nd are always
generators of the pseudo-e�ective cone, but in most cases the value of 
 we
compute is expected to be equal or very close to the actual value. As the authors
of [GGK20] also point out, our quantity 
expected is expected to be very close to
the actual value of 
.

Since X = ℙ(a, b, c) is a toric surface, if the point Q does not lie in the main
torus orbit T, then computing 
Q is generally straightforward, so we may as-
sume that Q lies in T. Furthermore, we can choose a, b, and c to be pairwise
coprime, with a ≤ b ≤ c. These inequalities are always strict unless a = b = 1,
in which case 
 can be computed directly. Thus, wemay assume that a < b < c.
Finally, since X has Picard rank 1, it su�ces to compute 
Q(H), whereH is the
generator of the Cartier class group.

Our �rst result concerns the case a < 4 and serves as a warm-up to our main
result.
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Proposition 1.2. Leta < b < c be pairwise coprime, sowemaywrite c = pa+qb

with p, q ∈ ℤ and 0 ≤ q < a. Let Q be in the torus of ℙ(a, b, c) and H be the
generator of the Cartier class group. Then


Q(H) ≥ {
(q + 1)b, p ≥ 0

(a − 1)b, p < 0 and a ≤ 3.

We do not claim that this Proposition is new. Indeed, in [HKL18], Hausen,
Keicher, and Laface prove a number of results along these lines, and moreover
they obtain all the results of Proposition 1.2, as a consequence of their Theorems
1.1 and 1.2. Despite the lack of novelty in Proposition 1.2, we present a proof of
it to illustrate our techniques in a simpler setting.

Proposition 1.2 yields lower bounds on 
Q when a ≤ 3. Moving from a ≤ 3 to
a = 4 is signi�cantlymore involved. In order to state our results, we�rst discuss
ourmain technique of proof. Note that ifm ∈ ℚ+ andmH is aWeil divisor such
that ℎ0(mH) >

(
�+1

2

)
, then there is a global section g ofmH that vanishes at Q

to order �. Writing m =
m1

m2

with m1, m2 ∈ ℤ+, we see gm2 ∈ H0(X,m1H)

vanishes to order �m2. By de�nition, it follows that 
Q(H) ≥
�m2

m1

=
�

m
. This

motivates the following de�nition.

De�nition 1.3. For any Weil divisor D, let

�(D) ∶= max {d ∈ ℤ+ ∣ ℎ0(D) >
(d + 1

2

)
} .

IfH denotes the generator of the Cartier class group ofℙ(a, b, c)with a < b < c,
then let


expected(H) ∶= sup {
�(mH)

m
∣ m ∈

1

b
ℤ+ ∪

1

c
ℤ+} .

Remark 1.4. Note that the de�nition of 
expected considers only some of theWeil
divisors. In particular, since the Weil class group of ℙ(a, b, c) is generated by
1

abc
H, every Weil divisor that appears in the de�nition of 
expected is a multiple

of a in the Weil class group.

We can now state our main result. Recall that Proposition 1.2 already yields
lower bounds on 
Q when p ≥ 0 in general, so we turn to the case p < 0.

Theorem1.5. With notation and hypotheses as in Proposition 1.2, assume a = 4

and p < 0. Then


Q(H) ≥ 
expected(H) =
�(D0)

m0

,

where D0 ∼ m0H and �(D0) are computed exactly as follows. Given our con-
straints, we have 2 < b

−p
<

16

3
. Divide the interval [2, 16

3
] into a countably in�nite

sequence of intervals of the form

Ik ∶= [
16(k + 1)2

8(k + 1)2 − 4(k + 1) − 1
,

16k2

8k2 − 4k − 1
]
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with k ∈ ℤ+. Then the class of D0 is given as follows, depending on the value of
b

−p
∈ Ik:

(1) If b

−p
∈ I′

k,−
∶= [

16(k+1)2

8(k+1)2−4(k+1)−1
,
2k+1

k
], then D0 ∼

2k+3

c
H with �(D0) =

4(k + 1).

(2) If b

−p
∈ I′

k,+
∶= [

2k+1

k
,
4(2k+1)2

8k2+4k−1
], thenD0 ∼

2k+1

b
Hwith �(D0) = 4(k+1).

(3) If b

−p
∈ I′′

k,−
∶= [

4(2k+1)2

8k2+4k−1
,

4k

2k−1
], then D0 ∼

k+1

c
H with �(D0) = 2k + 1.

(4) If b

−p
∈ I′′

k,+
∶= [

4k

2k−1
,

16k2

8k2−4k−1
], then D0 ∼

k

b
H with �(D0) = 2k + 1.

Remark 1.6. The quantity 
expected(H) is the lower bound for 
(H) obtained by
simple linear algebra: the vanishing to order n of a section ofH is equivalent to
the vanishing of

(
n+1

2

)
linear forms on the space of sections of H. We therefore

have 
(H) ≥ 
expected(H) trivially.
However, one also expects that the two quantities are not so di�erent. First of

all, the divisibility restriction in 
expected does not exclude any Cartier divisors,
and in the examples that we are aware of, does not change the value of 
 at all.
More signi�cantly, if 
(H) > 
expected(H) at some point Q in the main torus
orbit, then there is a section s of some multiple mH of H that has an order of
vanishing that is greater than �(mH) at Q. For any element � of the torus, the
section �(s) has unusually high order of vanishing at �(Q), so for every point
of the main orbit, there is a section of mH that has unusually high order of
vanishing there. This is unlikely – though not downright impossible – and so
one expects the two quantities to be close.

Nevertheless, there are examples where 
 and 
expected do not agree. For ex-
ample, if (a, b, c) = (5, 33, 49) or (8, 15, 43), Kurano and Matsuoka ([KM09])
showed that 
 and 
expected are not the same. Several other authors, includ-
ing Gonzalez Anaya, Gonzalez, and Karu, have obtained other very interest-
ing results along these lines, of which an excellent summary can be found in
[GAGK21].

The rest of the paper is organized as follows. Section 2 proves Proposition 1.2
and describes some preliminary reductions for Theorem 1.5. Section 3 com-
putes themain terms in the count of global sections of multiples ofH. Section 4
then begins the process of bounding the error terms, and Section 5 �nishes the
proof of Theorem 1.5.
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2. Proof of Proposition 1.2 and preliminary reductions
Throughout this paper, we let x, y, and z be the weighted projective coor-

dinates on ℙ(a, b, c) with weights a, b, and c, respectively. We let Dx, Dy, and
Dz denote the Weil divisors de�ned by the vanishing of x, y, and z, respec-
tively. We let H denote the generator of the Cartier class group, so we have
H ∼ bcDx ∼ acDy ∼ abDz. Given any Weil divisor D, we let PD ⊂ ℝ2 be the
associated polytope with the property that ℎ0(D) = |PD ∩ ℤ

2|. We sometimes
abusively denote |PD ∩ ℤ

2| by |PD|.
It will frequently be useful to write our divisors as integer multiples of Dx.

Note that if � ∈ {b, c} andm ∈
1

�
ℤ+, thenmH ∼ n�Dx where n =

bcm

�
∈ ℤ+.

After a preliminary lemma, we prove Proposition 2.2 which is a slightlymore
general version of Proposition 1.2.

Lemma 2.1. With notation and hypotheses as in Proposition 1.2, if p < 0, then
q ≠ 1. In particular, if p < 0 and a ≤ 3, then a = 3 and q = 2.

Proof. If q = 1, then c = pa + b < b which is a contradiction. If p < 0 and
a ≤ 3, then q = 0 or q ≥ 2. The former case cannot occur as it implies c = pa

and hence p > 0. The latter case implies 2 ≤ q ≤ a − 1 so q = 2 and a = 3. �

Proposition 2.2. With notation and hypotheses as in Proposition 1.2, we have


Q(H) ≥ {
(q + 1)b, p ≥ 0

(a − 1)b, p < 0, q = a − 1, and −pa

b
≤ 1.

Furthermore, if a ≤ 3 and p < 0, then q = a − 1 and −pa

b
≤ 1 automatically

hold.

Proof. Note that since a, b, and c are pairwise coprime, p ≠ 0. First suppose
p > 0. Then the polytope PaDz is the convex hull of 0, (q, −a), and (

−pa

b
, −a), so

it contains the triangle T with vertices 0, (q, −a), (0, −a). By Pick’s Theorem,
1 +

(
q+2

2

)
≤ |T ∩ ℤ2| ≤ |PaDz ∩ ℤ2|, which implies �(aDz) ≥ q + 1. Since

aDz ∼
1

b
H, we �nd 
Q(H) ≥ (q + 1)b.

Next, suppose p < 0, q = a − 1, and −pa

b
≤ 1. Notice that the polytope PaDz

is given by the vertices as above, and it contains the triangle T with vertices
0, (q, −a), and (1, −a) by p < 0 and −pa

b
≤ 1. From q = a − 1 and Pick’s

Theorem, we have 1 +
(
a

2

)
= |T ∩ ℤ2|, which, as in the previous paragraph,

implies 
Q(H) ≥ (a − 1)b.
Finally, we note that if a ≤ 3 and p < 0, then Lemma 2.1 tells us a = 3 and

q = 2 = a − 1. Then, b < c = pa + 2b implies −pa

b
< 1. �

The rest of the paper is concerned with the proof of Theorem 1.5. By Lemma
2.1, since p < 0 and a, b, c are pairwise coprime, we must have

q = 3 = a − 1.
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We begin by analyzing �(D0).

Proposition 2.3. With notation and hypotheses as in Theorem 1.5, if b

−p
∈ I′

k
∶=

I′
k,+

∪ I′
k,−

, resp. I′′
k
∶= I′′

k,+
∪ I′′

k,−
, and D0 is as in the conclusion of the theorem,

then �(D0) ≥ 4(k + 1), resp. 2k + 1.

Proof. Let n0 ∈ ℤ be such that D0 ∼
n0

b
H ∼ n0cDx or D0 ∼

n0

c
H ∼ n0bDx. In

the former (respectively latter) case, ℎ0(D0) is given by the number of integer
lattice points lying in the polytope

Pn0cDx = Conv ((0, 0), (−n0
c

b
, 0) , (−3n0, 4n0))

respectively

Pn0bDx = Conv ((0, 0), (−n0, 0), (−3n0
b

c
, 4n0

b

c
)) .

First consider the case b

−p
∈ I′

k
. As in Theorem 1.5, I′

k,+
∶= [

2k+1

k
,
4(2k+1)2

8k2+4k−1
]

and I′
k,−

∶= [
16(k+1)2

8(k+1)2−4(k+1)−1
,
2k+1

k
]. If b

−p
∈ I′

k,+
, then D0 ∼ n0cDx with n0 =

2k + 1 and if b

−p
∈ I′

k,−
, then D0 ∼ n0bDx with n0 = 2k + 3. Let

P′ = Conv((0, 0), (−(2k + 3), 0), (−3(2k + 1), 4(2k + 1))).

We then have P′ ⊂ P. Indeed, if b

−p
∈ I′

k,+
, then the inclusion follows from

−(2k + 1)
c

b
= −(2k + 1)(4

p

b
+ 3) ≤ −(2k + 1)(4

−k

2k+1
+ 3) = −(2k + 3). If

b

−p
∈ I′

k,−
, then the inclusion follows from −3(2k + 3)

b

c
≤ −3(2k + 1) and

4(2k + 3)
b

c
≥ 4(2k + 1). So, in either case, we have

|P′ ∩ ℤ2| ≤ ℎ0(D0).

Note that the area of P′ is given by

A(P′) =
1

2
(4(2k + 1)(2k + 3)) = 2(2k + 1)(2k + 3)

and the number of lattice points on its boundary is given by

B(P′) = (2k + 3) + (2k + 1) + 4 = 4k + 8.

Since P′ is a lattice polygon, applying Pick’s Theorem, we have

|P′ ∩ ℤ2| = A(P′) +
1

2
B(P′) + 1 = 8k2 + 18k + 11 =

(4(k + 1) + 1

2

)
+ 1,

which shows �(D0) ≥ �(P′) = 4(k + 1).
For b

−p
∈ I′′

k
, the same proof works when using

P′′ = Conv((0, 0), (−(k + 1), 0), (−3k, 4k))

in place of P′. �
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Proposition 2.3 therefore gives the lower bound


expected(H) ≥
�(D0)

m0

, (2.4)

whereD0 = m0H is the divisor class described in Theorem 1.5. To obtain upper
bounds, we introduce the following quantities and make use of the subsequent
lemma. Let


expected,b(H) ∶= sup {
1

m
�(mH) ∣ m ∈

1

c
ℤ+}


expected,c(H) ∶= sup {
1

m
�(mH) ∣ m ∈

1

b
ℤ+} .

Then, we may bound 
expected(H) from above by bounding 
expected,b(H) and

expected,c(H) from above, given that


expected(H) = max
{

expected,b(H), 
expected,c(H)

}
. (2.5)

Lemma 2.6. Suppose ℙ(4, b0, c0), ℙ(4, bL, cL), and ℙ(4, bU , cU) satisfy the hy-
potheses of Theorem 1.5, except we need not assume p < 0. Suppose bL

−pL
<

b0

−p0
<

bU

−pU
and let H0, HL, and HU denote the generators of the respective Cartier class

groups. Then
1

c0

expected,b0(H0) ≤

1

cL

expected,bL(HL)

and
1

c0

expected,c0(H0) ≤

1

cU

expected,cU (HU).

Proof. Since c = pa+qb = 4p+3b, we see b

c
=

1

4
p

b
+3
. As a result, bU

cU
<

b0

c0
<

bL

cL
.

It follows that

P0 ∶= Conv ((0, 0), (−1, 0), (−3
b0

c0
, 4
b0

c0
))

⊂ Conv ((0, 0), (−1, 0), (−3
bL

cL
, 4
bL

cL
))

=∶ PL.

Since P0, resp. PL, is the polytope of bDx on ℙ(4, b0, c0), resp. ℙ(4, bL, cL), we
have �(nP0) ≤ �(nPL) for all n ≥ 1, and so

(1∕c0)
expected,b(H0) ≤ (1∕cL)
expected,bL(HL).

We obtain the inequality (1∕c0)
expected,c(H0) ≤ (1∕cU)
expected,cU (HU) in a
similar manner from the inclusion

Conv ((0, 0), (−
c0

b0
, 0) , (−3, 4)) ⊂ Conv ((0, 0), (−

cU

bU
, 0) , (−3, 4)) ,

the left-hand, resp. right-hand, side being the polytope of cDx on ℙ(4, b0, c0),
resp. ℙ(4, bU , cU). �
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Remark 2.7. Lemma 2.6 may be used to reduce the proof of Theorem 1.5 to
special classes of weighted projective spaces with desirable arithmetic proper-
ties. The key idea is to compare the values of 
expected,b(H) and 
expected,c(H) on
di�erent weighted projective spaces to generate upper bounds.

Fix a weighted projective space ℙ(4, b, c) satisfying the hypotheses of Theo-
rem 1.5 and letD0 ∼ m0H and �0 ∶= �(D0) be as predicted by theorem. Wewill
suppose thatm0 =

n0

c
with n0 ∈ ℤ+ (the case wherem0 ∈

1

b
ℤ+ is handled sim-

ilarly). We must prove 
expected(H) =
�0

m0

=
c�0

n0
. Let I = [

�1

�1
,
�2

�2
] be an interval

of the form I′
k,±

or I′′
k,±

as in Proposition 2.3, where b

−p
∈ I.

Assume b

−p
is in the interior of I. We must show 
expected(H) =

c�0

n0
. By (2.5),

this is equivalent to proving


expected,b(H) ≤
c�0

n0
and 
expected,c(H) ≤

c�0

n0
.

This may be done as follows: �x increasing sequences of positive integers {bi}i
and {−pi}i for which �1bi − �1(−pi) = 1 and ci ∶= 4pi + 3bi > bi is such
that 4, bi, ci are pairwise coprime. We may always �nd such sequences, since
�1, �1 > 0 are coprime in all cases listed in Theorem 1.5. Let Hi denote the
generator of the Cartier class group of ℙ(4, bi, ci). Then for i su�ciently large,
bi

−pi
∈ I is monotonically decreasing with bi

−pi
→

�1

�1
. Given b

−p
∈ I, there exists

an N large enough such that bN

−pN
<

b

−p
, so by Lemma 2.6,

1

c

expected,b(H) ≤

1

cN

expected,bN (HN) ≤

1

cN+1

expected,bN+1(HN+1) ≤ … (2.8)

Similarly, �x increasing sequences of positive integers {b′
i
}i and {−p′i }i for

which �2b′i − �2(−p
′
i
) = −1 and c′

i
∶= 4p′

i
+ 3b′

i
> b′

i
is such that 4, b′

i
, c′

i

are pairwise coprime. As above, such sequences always exist. Let H′
i
denote

the generator of the Cartier class group of ℙ(4, b′
i
, c′
i
). Then for i su�ciently

large,
b′
i

−p′
i

∈ I is monotonically increasing with
b′
i

−p′
i

→
�2

�2
. Choosing anN large

enough such that b

−p
<

b′n

−p′n
, we have by Lemma 2.6

1

c

expected,c(H) ≤

1

c′
N


expected,c′
N
(H′

N
) ≤

1

c′
N+1


expected,c′
N+1
(H′

N+1
) ≤ … (2.9)

We claim that to prove Theorem 1.5 for ℙ(4, b, c), it is enough to show

�0

n0
≥
1

n
� (

n

ci
Hi) (2.10)

and
c′
i
�0

n0
>
b′
i

n
� (

n

bi
H′
i
) (2.11)
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for all i su�ciently large and all n ∈ ℤ+. Indeed, (2.10) implies

ci
�0

n0
≥ ci sup {

1

n
� (

n

ci
Hi) ∣ n ∈ ℤ+}

= sup {
1

m
� (mHi) ∣ m ∈

1

ci
ℤ+}

= 
expected,bi (Hi)

for all i su�ciently large, which when combined with (2.8) shows


expected,b(H) ≤
c�0

n0
.

Similarly, (2.11) implies

c′
i

�0

n0
> 
expected,c′

i
(H′

i
),

which when combined with (2.9) shows


expected,c(H) <
c�0

n0
.

which is exactly our goal. Further, the strict inequality in this latter case will
allow us to conclude that no D of the form n

c
H (other than the case where n is

divisible by n0) gives the required upper bound for 
expected(H). Together with
the lower bound (2.4), this computes 
expected(H).

Note that the above computes 
expected(H) assuming b

−p
is in the interior of I.

If b

−p
is an endpoint of I, then it is straightforward to check that b = 2k +1 and

−p = k, in which case c = 2k + 3. In that case, one may verify Theorem 1.5
directly using that the Erhart quasi-polynomial computed in Section 3 is an
actual polynomial.

3. Ehrhart quasi-polynomials for bDx and cDx

Our �rst goal in this section is to give an expression for the number of lattice
points in the polytopes PnbDx and PncDx .

Proposition 3.1. Keep the notation and hypotheses of Theorem 1.5, let � ∈ {b, c},
and set s = b

c
. Then

|Pn�Dx ∩ ℤ
2| = c2(�Dx, n)n

2 + c1(�Dx, n)n + c0(�Dx, n),

where the ci ’s are given as follows.
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(1) For � = b, we have c2(bDx, n) = 2s, c1(bDx, n) =
1

2
(1 + s +

4

c
), and

c0(bDx, n) = 1 −
1

8s

(
{4sn}

2
− {4sn}

)
−
5

2
{sn} +

4
{
⌊4sn⌋

4

}

∑

j=0

{
3

4
j}

+
b − 1

2
{
4n

c
} −

b
{
⌊4sn⌋

b

}

∑

j=0

{
−p

b
j} .

(2) For � = c, we have c2(cDx, n) =
2

s
, c1(cDx, n) =

1

2
(1 +

1

s
+

4

b
), and

c0(cDx, n) = 1 − {
4n

b
} −

b − 1

2
{
4n

b
} +

b{
4n

b
}

∑

j=0

{
−p

b
j} .

Proof. First consider � = b.

|PnbDx ∩ ℤ
2| ∶= |||Conv(A, B, C)

||| ∶=
|||||||
Conv ((0, 0), (−n, 0), (−3n

b

c
, 4n

b

c
))

|||||||

where BC is given by y =
b

p
x +

b

p
n and AC is given by y = −

4

3
x. We will

compute |PnbDx ∩ ℤ
2| by counting the number of lattice points lying on each

line segment AjBj, where Aj = (−
3

4
j, j) lies on AC and Bj = (

p

b
j − n, j) lies

on BC, for j = 0, 1, … , ⌊4sn⌋. Here, our approach is similar to that of [L11,
Theorem 3.1]. DenoteM = ⌊4sn⌋ = 4sn − {4sn}. Then,

|PnbDx ∩ ℤ
2|

=

M∑

j=0

(

⌊

−
3

4
j

⌋

−

⌈p

b
j − n

⌉

+ 1)

= (n + 1)(M + 1) +

M∑

j=0

(−

⌈
3

4
j

⌉

+

⌊−p

b
j

⌋

)

= (n + 1)(M + 1) +

M∑

j=0

(− (
3

4
j + 1 − {

3

4
j}) +

−p

b
j − {

−p

b
j}) +

⌊
M

4

⌋

+ 1

= n(M + 1) +
M

4
− {

M

4
} + 1 +

M∑

j=0

(
−p

b
−
3

4
) j +

M∑

j=0

{
3

4
j} −

M∑

j=0

{
−p

b
j} .
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Rewrite the sums involving fractional parts as sums of a linear term in n and a
c−periodic term in n:

M∑

j=0

{
3

4
j} =

⌊
M

4

⌋ 3∑

j=0

{
3

4
j} +

4
{
M

4

}

∑

j=0

{
3

4
j} =

3

2
(sn − {sn}) +

4
{
⌊4sn⌋

4

}

∑

j=0

{
3

4
j} ,

M∑

j=0

{
−p

b
j} =

⌊
M

b

⌋ b−1∑

j=0

{
−p

b
j} +

b
{
M

b

}

∑

j=0

{
−p

b
j} =

b − 1

2
(
4n

c
− {

4n

c
}) +

b
{
⌊4sn⌋

b

}

∑

j=0

{
−p

b
j} ,

where we have used the identity

b−1∑

j=0

{
−p

b
j} =

b − 1

2

given that b and p are coprime. Moreover, by a direct computation,

M∑

j=0

(
−p

b
−
3

4
) j = −

(M + 1

2

) c

4b
= −2sn2+({4sn} −

1

2
) n−

1

8s

(
{4sn}

2
− {4sn}

)
.

Thus, we can write |PnbDx ∩ ℤ2| = c2(bDx, n)n
2 + c1(bDx, n)n + c0(bDx, n),

where

c2(bDx, n) = 2s,

c1(bDx, n) =
1

2
(1 + s +

4

c
) ,

c0(bDx, n) = 1 −
1

8s

(
{4sn}

2
− {4sn}

)
−
5

2
{sn}

+

4
{
⌊4sn⌋

4

}

∑

j=0

{
3

4
j} +

b − 1

2
{
4n

c
} −

b
{
⌊4sn⌋

b

}

∑

j=0

{
−p

b
j} .

Likewise, we may �nd the Ehrhart quasi-polynomial for |PncDx ∩ ℤ2|. To
simplify our calculations, we may consider naDz = 4nDz ∼ ncDx. By linear
equivalence, |PnaDz ∩ ℤ

2| = |PncDx ∩ ℤ
2|. The polytope of naDz is given by

PnaDz = Conv(A′, B′, C′) ∶= Conv ((0, 0), (−
4p

b
n,−4n) , (3n, −4n)) ,
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withA′C′ contained in the line y = −
4

3
x andA′B′ contained in the line y = b

p
x.

Similarly as before:

|PnaDz ∩ ℤ
2| =

4n∑

j=0

(

⌊
3

4
j

⌋

−

⌈−p

b
j

⌉

+ 1)

=

4n∑

j=0

(
3

4
j − {

3

4
j}) −

4n∑

j=0

(
−p

b
j + 1 − {

−p

b
j}) +

⌊
4n

b

⌋

+ 1 + 4n + 1

=
c

4b

(4n + 1

2

)
−
3

2
n +

2(b − 1)

b
n −

b − 1

2
{
4n

b
}

+

b{
4n

b
}

∑

j=0

{
−p

b
j} +

4n

b
+ 1 − {

4n

b
} ,

using expressions that we obtained previously. Thus, we can write
|PncDx ∩ ℤ

2| = |PnaDz ∩ ℤ
2| = c2(cDx, n)n

2 + c1(cDx, n)n + c0(cDx, n),

where

c2(cDx, n) =
2

s
,

c1(cDx, n) =
1

2
(1 +

1

s
+
4

b
) n,

c0(cDx, n) = 1 − {
4n

b
} −

b − 1

2
{
4n

b
} +

b{
4n

b
}

∑

j=0

{
−p

b
j} . �

Our next goal is to give upper bounds on the constant terms of the Ehrhart
quasi-polynomials of |Pn�Dx ∩ ℤ

2|, � = b, c. In Proposition 3.1, notice that the
expressions of the last two terms of c0(bDx, n) and c0(cDx, n) are of the same
form, which we will analyze in depth in Section 4. In the following, we give a
uniform upper bound on c0(bDx, n)minus its last two terms.

Lemma 3.2. In the expression of c0(bDx, n), we have

−
5

2
{sn} +

4
{
⌊4sn⌋

4

}

∑

j=0

{
3

4
j} ≤

1

8

for all n ≥ 0, where s = b

c
. Furthermore:

(1) The above expression is positive if and only if 1
4
< {sn} <

3

10
.

(2) The above expression is greater than −1

32s
only if {sn} < 1

2
+

1

80s
.

Proof. Let bn = mc+rwith 0 ≤ r ≤ c−1, so that {sn} = r

c
. Let l = 0, 1, 2, 3 be

the integer such that lc
4
≤ r <

(l+1)c

4
. Then ⌊4sn⌋ = 4m+l and so 4

{
⌊4sn⌋

4

}
= l.
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Now,wewill bound the given expression from the above for eachl = 0, 1, 2, 3.
If l = 0, then the given expression in the lemma is − 5r

2c
≤ 0. If l = 1, we have

−
5r

2c
+

3

4
≤ −

5

2
⋅
1

4
+

3

4
=

1

8
. If l = 2, we have − 5r

2c
+

3

4
+

2

4
≤ −

5

2
⋅
1

2
+

5

4
= 0.

Lastly, if l = 3, we have − 5r

2c
+

3

4
+

2

4
+

1

4
≤ −

5

2
⋅
3

4
+

3

2
= −

3

8
.

For the �nal statements of the lemma, we see the expression is non-positive if
l ≠ 1, and sowemust have 1

4
< {sn}. When l = 1, we computed the expression

is equal to − 5r

2c
+

3

4
, which is positive if and only if {sn} = r

c
<

3

10
.

Similarly, the expression could be greater than −1

32s
in cases l = 0, 1, 2. (Note

that s < 1 because b < c.) Working case by case with the expressions obtained,
we obtain that {sn} = r

c
<

1

2
+

1

80s
in order for the expression to be greater than

−1

32s
. �

Note that− 1

8s
({4sn}2−{4sn}) ≤

1

32s
since the function x−x2 is maximized at

x =
1

2
. Combining this observation with Lemma 3.2, we obtain the following

corollary.

Corollary 3.3. We have

c0(bDx, n) ≤
9

8
+

1

32s
+
b − 1

2
{
4n

c
} −

b
{
⌊4sn⌋

b

}

∑

j=0

{
−p

b
j} .

Moreover, if {sn} ≥ 1

2
+

1

80s
, we may improve the above bound as follows:

c0(bDx, n) ≤ 1 +
b − 1

2
{
4n

c
} −

b
{
⌊4sn⌋

b

}

∑

j=0

{
−p

b
j} .

4. Bounding c0(bDx, n) and c0(cDx, n)

In this section, we prove the key results needed to bound c0(bDx, n) and
c0(cDx, n). This amounts to obtaining bounds for the expression b−1

2

{
4n

c

}
−

∑r

j=0
{
−p

b
j}, where r = b{

⌊4sn⌋

b
}. We begin by recording the following lemma.

Lemma 4.1. Let n, b, c ∈ ℤ+ with 4 < b < c and gcd(4, b, c) = 1. Let p < 0 be
an integer satisfying 4p + 3b = c and s = b

c
. If r = b

{
⌊4sn⌋

b

}
, then

b − 1

2
{
4n

c
} −

r∑

j=0

{
−p

b
j} ≤

(b − 1)(r + 1)

2b
−

r∑

j=0

{
−p

b
j} .
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Proof. Since r is the reminder when b is divided into ⌊4sn⌋, we have 4sn =

⌊4sn⌋ + {4sn} = b⌊
⌊4sn⌋

b
⌋ + r + {4sn}. So,

{
4n

c
} = {

4sn

b
} = {

⎢

⎣

⌊4sn⌋

b

⎥

⎦
+
r

b
+
{4sn}

b
} =

r + {4sn}

b
,

where the last equality uses 0 ≤ r

b
≤

b−1

b
and 0 ≤ {4sn}

b
<

1

b
. �

By the above lemma, it su�ces to bound the expression on the righthand
side. In §4.1, we give a general algorithm to obtain bounds on expressions of
the form (�−1)(u+1)

2�
−

∑u

j=0
{
�

�
j} when � and � satisfy particular Diophantine

equations, see Corollary 4.3.

4.1. An algorithm to bound expressions of the form (�−1)(u+1)

2�
−
∑u

j=0
{
�

�
j}.

Our goal in this subsection is to prove:

Proposition 4.2. Suppose that �0 > �1, �0 > �1, and

�1�0 − �1�0 = � = ±1

where �i, �i ∈ ℤ+. Let u0 = �1t1 + u1, where u0, u1, t1 ∈ ℤ≥0 and 0 ≤ ui < �i
for all i. Then

(u0 + 1)(�0 − 1)

2�0
−

u0∑

j=0

{
�0

�0
j} =

(u1 + 1)(�1 − 1)

2�1
−

u1∑

j=0

{
�1j

�1
}+�(�, t1, u1, �0, �1),

where

�(�, t, u, �′, �) =
(u + 1)(�u + �′ − �)

2�′�
+
�t(�(t − �) + 2u + 1 − �′)

2�′

+ ∆(�, t, u, �′, �)

and ∆(�, t, u, �′, �) = 1 if �′ − � ≤ �t + u and � = −1, and ∆(�, u, �′, �) = 0

otherwise.

When applied iteratively, we arrive at the following algorithm.

Corollary 4.3. Suppose we have sequences of positive integers �0 > �1 > ⋯ >

�N and �0 > �1 > ⋯ > �N such that for all i,

�i�i−1 − �i�i−1 = �i = ±1.

Let u0, … , uN and t1, … , tN be non-negative integers satisfying ui−1 = �iti+ui and
0 ≤ ui < �i for all i. Then

(u0 + 1)(�0 − 1)

2�0
−

u0∑

j=0

{
�0

�0
j} =

(uN + 1)(�N − 1)

2�N

−

uN∑

j=0

{
�Nj

�N
} +

N∑

i=1

�(�i, ti, ui, �i−1, �i),

where � is as in Proposition 4.2.
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We begin with the following preliminary lemmas.

Lemma 4.4. Let �, � ∈ ℤ+ be relatively prime. Then

�−1∑

k=0

⎢
⎢

⎣

�

�
k
⎥
⎥

⎦

=
1

2
(� − 1)(� − 1) and

�−1∑

k=0

⎡
⎢
⎢

�

�
k
⎤
⎥
⎥

=
1

2
(� + 1)(� − 1).

Proof. Notice that
∑�

k=0
⌊
�

�
k⌋ + � + 1 is the number of lattice points in the

triangle with vertices 0, (�, 0), and (�, �). So, by Pick’s Theorem,

�∑

k=0

⎢
⎢

⎣

�

�
k
⎥
⎥

⎦

+ � + 1 =
1

2
(�� + � + � + 1) + 1.

Since
∑�

k=0
⌊
�

�
k⌋ =

∑�−1

k=0
⌊
�

�
k⌋ + �, the �rst result follows. The second result

follows from the �rst and the fact that
∑�−1

k=0
⌈
�

�
k⌉ = (� − 1) +

∑�−1

k=0
⌊
�

�
k⌋. �

Lemma 4.5. Suppose that �0 > �1, �0 > �1, and

�1�0 − �1�0 = � = ±1

where �i, �i ∈ ℤ+. Then

(1) {�0j
�0
} = {

�1j

�1
} − �

j

�1�0
for all 0 ≤ j < �1, and

(2) for any integer u satisfying 0 ≤ u < �1,
u∑

j=0

{
�0j

�0
} =

u∑

j=0

{
�1j

�1
} −

�

�0�1

(u + 1

2

)

(3)
�1∑

j=0

{
�0j

�0
} =

1 − � + (�1 + �)(�0 − �)

2�0
.

Proof. We begin with the proof of (1). The case j = 0 is clear, so we assume
1 ≤ j ≤ �1−1. Since

�0j

�0
=

�1j

�1
−�

j

�1�0
, it su�ces to show 0 ≤ {

�1j

�1
}−�

j

�1�0
< 1.

Since �1 and �1 are relatively prime, we see 1

�1
≤ {

�1j

�1
} ≤ 1−

1

�1
. The result then

follows from the fact that |� j

�1�0
| <

1

�0
<

1

�1
.

Part (2) follows from (1) by noting
u∑

j=0

{
�0j

�0
} =

u∑

j=0

({
�1j

�1
} − �

j

�0�1
) =

u∑

j=0

{
�1j

�1
} −

�

�0�1

(u + 1

2

)
.

To prove (3), we use
∑�1

j=0
{
�0j

�0
} =

�+1

2
−

�

�0
+

∑�1−1

j=0
{
�0j

�0
} and part (2) to see
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�1∑

j=0

{
�0j

�0
} =

� + 1

2
−
�

�0
+

�1−1∑

j=0

(
�1j

�1
−

⎢
⎢

⎣

�1j

�1

⎥
⎥

⎦

) −
�

�0�1

(�1

2

)

=
� + 1

2
−
�

�0
+
�1

�1

(�1

2

)
−
1

2
(�1 − 1)(�1 − 1) − �

1

�0�1

(�1

2

)
,

where the second equality uses Lemma 4.4. The result follows by algebraic
manipulation. �

The following result is the �rst step in proving Proposition 4.2.

Corollary 4.6. With hypotheses as in Proposition 4.2, we have

(u1 + 1)(�0 − 1)

2�0
−

u1∑

j=0

{
�0j

�0
} =

(u1 + 1)(�1 − 1)

2�1
−

u1∑

j=0

{
�1j

�1
}+�′(�, t1, u1, �0, �1),

where

�′(�, t, u, �′, �) =
(u + 1)(�u + �′ − �)

2�′�
.

Proof. By Lemma 4.5 (2),

(u1 + 1)(�0 − 1)

2�0
−

u1∑

j=0

{
�0j

�0
} =

(u1 + 1)(�0 − 1)

2�0
−

u1∑

j=0

{
�1j

�1
} +

�

�0�1

(u1 + 1

2

)
.

Since
(u1 + 1)(�0 − 1)

2�0
+

�

�0�1

(u1 + 1

2

)
=
(u1 + 1)(�1 − 1)

2�1
+ �′(�, t1, u1, �0, �1),

the result follows. �

The next step in proving Proposition 4.2 is provided by:

Corollary 4.7. With hypotheses as in Proposition 4.2, we have

(u0 + 1)(�0 − 1)

2�0
−

u0∑

j=0

{
�0

�0
j} =

(u1 + 1)(�0 − 1)

2�0
−

u1∑

j=0

{
�0j

�0
}+�′′(�, t1, u1, �0, �1),

where

�′′(�, t, u, �′, �) =
�t(�(t − �) + 2u + 1 − �′)

2�′
+ ∆(�, t, u, �′, �)

and ∆ is as in Proposition 4.2.

Proof. We �rst claim that if j ∈ ℤ+ and 1 ≤ j < �0, then

{
�0(j + �1)

�0
} = {

�0j

�0
} −

�

�0
− ∆′(�, j), (4.8)

where ∆′(�, j) = 1 if j = �0−�1 and � = −1, and ∆′(�, j) = 0 otherwise. Since
�0�1 ≡ −�mod �0, to prove our claim, it is enough to show the righthand side
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of (4.8) lies in the interval [0, 1). Note that {�0j
�0
} −

�

�0
∈ [0, 1) unless either: (i)

� = 1 and {�0j
�0
} = 0, or (ii) � = −1 and {�0j

�0
} =

�0−1

�0
. Case (i) never occurs since

gcd(�0, �0) = 1 and 1 ≤ j < �0, so �0j is not divisible by �0. Case (ii) occurs
exactly when �0j ≡ −1 mod �0, i.e. when j = �0 − �1. This establishes our
claim.

Recalling that u0 = �1t1 +u1, we see from equation (4.8) and Lemma 4.5 (3)
that
u0∑

j=0

{
�0j

�0
} =

u0∑

j=�1t1+1

{
�0j

�0
} +

�1t1∑

j=1

{
�0j

�0
}

=

u1∑

j=1

{
�0j

�0
} − �

u1t1

�0
+ t1

�1∑

j=1

{
�0j

�0
} − �

�1

�0

(t1

2

)
− ∆(�, t1, u1, �0, �1)

=

u1∑

j=0

{
�0j

�0
} − �

u1t1

�0
+ t1

1 − � + (�1 + �)(�0 − �)

2�0

− �
�1

�0

(t1

2

)
− ∆(�, t1, u1, �0, �1)

=

u1∑

j=0

{
�0j

�0
} +

(u0 + 1)(�0 − 1)

2�0

−
(u1 + 1)(�0 − 1)

2�0
− �′′(�, t1, u1, �0, �1). �

We now turn to the main result of this subsection.

Proof of Proposition 4.2. Noting that �(�, t1, u1, �0, �1) = �′(�, t1, u1, �0, �1)+

�′′(�, t1, u1, �0, �1), we see

(u0 + 1)(�0 − 1)

2�0
−

u0∑

j=0

{
�0

�0
j} =

(u1 + 1)(�0 − 1)

2�0
−

u1∑

j=0

{
�0j

�0
} + �′′(�, t1, u1, �0, �1)

=
(u1 + 1)(�1 − 1)

2�1
−

u1∑

j=0

{
�1j

�1
} + �(�, t1, u1, �0, �1)

where the �rst equality is by Corollary 4.7 and the second equality is by Corol-
lary 4.6. �

We end the subsection by giving a bound on �.

Lemma 4.9. For t, u, �′, � ∈ ℤ such that 0 ≤ u < � < �′ and 0 ≤ t ≤ ⌊
�′−1−u

�
⌋,

we have
−(�′ + � − 1)2 + 4(�′ − �)

8�′�
≤ �(1, t, u, �′, �) ≤

�′ − 1

2�′
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and

�′ − �

2�′�
≤ �(−1, t, u, �′, �) ≤

⎧

⎨

⎩

1

8��′
(�′ − � + 3)(�′ − � − 1), if u + �t < �′ − �

1, otherwise.

Furthermore, letting v = u + �t,

�(−1, t, u, �′, �) = −
1

2�′�
(v + 1)(v + � − �′) + ∆

and
�(1, t, u, �′, �) =

1

2�′�
(v + 1)(v − �′ − �) +

1

�
(u + 1).

As functions of v, the former (resp. latter) is increasing (resp. decreasing) if and
only if v ≤ 1

2
(�� + �′ − 1), where u is viewed as a constant in the latter.

Proof. Throughout the proof, we treat � and �′ as �xed constants. Letting v =
u + �t, we �nd

� ∶= 2�′�� = �v2 + (�(1 − �′) − �)v + �′(1 + �)u + �′ − � + 2�′�∆

Then, the expressions �(±1, t, u, �′, �) are obtained by substituting � = ±1 into
�. It su�ces to bound � on the larger region 0 ≤ t ≤

�′−1−u

�
, where our con-

straints become 0 ≤ u ≤ � − 1 and u ≤ v ≤ �′ − 1.
We �rst consider the case � = −1 and bound � from the above. Recall that

∆ = 0 if v < �′−� and∆ = 1 otherwise. Then � = −(v+1)(v+�−�′)+2�′�∆

has a global maximum at vmax ∶=
�′−�+1

2
. Since 0 ≤ vmax ≤ �′ −�, we see that

if v < �′ − �, then �(u, v) ≤ �(0, vmax) =
1

4
(�′ − � + 3)(�′ − � − 1). If, on the

other hand, �′ −� ≤ v, then �(u, v) ≤ �(0, �′ −�) = 2�′�. The lower bound of
� is then obtained by calculating � when v = 0, �′ −1 and taking the minimum
of the two.

We next consider the case � = 1 . For �xed u, the function �(u, v) has a
global minimum at vmin ∶=

�+�′−1

2
. Since u ≤ � − 1 < vmin ≤ �′ − 1 and

|vmin − (�′ − 1)| < |vmin − (� − 1)|, we see �(u, v) ≤ �(u, u). As �(u, u) is a
quadratic in u with global minimum at �−�′−1

2
< 0, we �nd �(u, u) ≤ �(� −

1, � − 1) = �(�′ − 1). This gives the upper bound on � when � = 1, and the
lower bound is obtained by substituting v = vmin =

�+�′−1

2
and u = 0 into the

expression �(1, t, u, �′, �).
The �nal statement concerning where �(�, t, u, �′, �) is increasing is clear

from the expression of �. �

5. Proof of Theorem 1.5
WeproveTheorem1.5 using the procedure outlined inRemark 2.7. Through-

out this section, we �x the following notation. Let I = (
�(1)

�(1)
,
�(2)

�(2)
) be one of the
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four types of intervals listed in Theorem 1.5 and let D0 ∼ m0H ∼ n0�Dx be as
listed in Theorem 1.5, with � ∈ {b, c}, n0 =

bcm0

�
∈ ℤ+, and �0 be the proposed

�(D0) from Theorem 1.5; for example, if �(1) = 16k2 and �(1) = 8k2 − 4k − 1,
then D0 ∼ (2k + 1)bDx and �0 = 4k. Throughout this section, for �′ ∈ {b, c},
we let |n�′Dx| ∶= |Pn�′Dx ∩ ℤ

2|. To prove Theorem 1.5, we must show

|n�′Dx| <
(⌈

�′

�

�0

n0
n⌉ + 1

2

)
+ 1 (5.1)

for each n whenever �′ ≠ �, and for each n not a multiple of n0 whenever
�′ = �. Moreover, for each n a multiple of n0 with �′ = �, we need to show

|n�Dx| <
(
�0

n0
n + 2

2

)
(5.2)

Note that inequality (5.2) implies that �(D0) ≤ �0 for each D0 as listed in The-
orem 1.5, by De�nition 1.3. Combining this with the result �(D0) ≥ �0 estab-
lished by Proposition 2.3, we may prove the claim �(D0) = �0 in Theorem 1.5.

By Remark 2.7, it su�ces to prove (5.1) and (5.2) for weighted projective
surfaces satisfying either �(1)b + �(1)p = 1 or �(2)b + �(2)p = −1 for b

−p
∈ I. It

also su�ces to consider b (thus −p and c) su�ciently large. We begin with the
proof of (5.1), the more challenging of the above two equations:

Theorem 5.3. Inequality (5.1) holds for each n whenever �′ ≠ �, and for each n
not a multiple of n0 whenever �′ = �.

Proof. First, suppose that �′ = �. Thus, we need to consider weighted pro-
jective surfaces satisfying �1b + �1p = ±1 with b

−p
∈ I′

k,∓
or b

−p
∈ I′′

k,∓
as

listed in Theorem 1.5. Notice that �1, �1 are the corresponding ones listed in
Entries 1 and 2 of Table 1. For the sake of brevity, we prove the result when
�′ = � = b, �1 ∶= �(1) = 16k2 and �1 ∶= �(1) = 8k2 − 4k − 1, over the interval
I′
k,−

= [
�1

�1
,
2k−1

k−1
] for k ≥ 2. The other cases are similar and in fact easier.1 By

Remark 2.7, it su�ces to prove the result for b su�ciently large, where

�1b − �1(−p) = 1.

Let �0 ∶= −p, �0 ∶= b, and

|n�′Dx| = c2n
2 + c1n + c0

where the ci are given as in Section 3.

1The reason the case considered in this proof is themost di�cult is because the upper bounds
on � are weakest when � = −1; the case considered here corresponds to Entry 1 of Table 1 which
has the most number of �i = −1. In addition, among the entries of the table, Entry 1 has the
most number of steps.
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We begin by giving an upper bound for c0. Letting r = b
{
⌊4sn⌋

b

}
, we see from

Corollary 3.3 and Lemma 4.1 that

c0 ≤
9

8
+

1

32s
+ �

where � is an upper bound on b−1

2
{
4n

c
} −

∑r

j=0
{
−p

b
j}. To obtain such a bound,

we apply Corollary 4.3 with (�i, �i, �i) given as in Entry 1 of Table 1 below (the
other entries listed in the table are used to address the remaining cases whose
proofwe omit). Note that for each i ≥ 1, we have�i�i−1−�i�i−1 = �i. Therefore,
if we let u0 ∶= r and u1, … , u5 and t1, … , t5 be as in Corollary 4.3, and

�i ∶= �(�i, ti, ui, �i−1, �i),

we have

c0 ≤
9

8
+

1

32s
+ �′ +

5∑

i=1

�i,

where

�′ ∶=
u5 + 1

4
−

u5∑

j=0

{
j

2
} ≤

1

4
.

Entry �i �i �i

1

�1 = 8k2 − 4k − 1 �1 = 16k2 �1 = 1

�2 = 4k2 − 4k + 1 �2 = 8k2 − 4k + 1 �2 = 1

�3 = 4k − 3 �3 = 8k − 2 �3 = −1

�4 = k − 1 �4 = 2k − 1 �4 = −1

�5 = 1 �5 = 2 �5 = 1

2

�1 = 8k2 + 4k − 1 �1 = 4(2k + 1)2 �1 = 1

�2 = 4k2 �2 = 8k2 + 4k + 1 �2 = 1

�3 = 4k − 1 �3 = 8k + 2 �3 = −1

�4 = k �4 = 2k + 1 �4 = 1

�5 = 1 �5 = 2 �5 = 1

3

�1 = 2k − 1 �1 = 4k �1 = 1

�2 = k �2 = 2k + 1 �2 = 1

�3 = 1 �5 = 2 �3 = 1

4
�1 = k �1 = 2k + 1 �1 = 1

�2 = 1 �2 = 2 �2 = 1

Table 1. �i and �i used to bound b−1

2
{
4n

c
} −

∑r

j=0
{
−p

b
j} via

Corollary 4.3, when considering D ∼ nbDx. We remark
that when considering D ∼ ncDx, i.e., bounding −

b−1

2
{
4n

b
} +

∑r

j=0
{
−p

b
j} in the constant term of |PncDx ∩ℤ

2|, �1 = 1 needs to
be replaced by �1 = −1.
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We begin by taking crude upper bounds on the �i. For small n, we will need
to replace these crude bounds with more re�ned ones. By Lemma 4.9, we have

�i ≤
�i−1 − 1

2�i−1
=∶ �+

i

for i ∈ {1, 2, 5} and
�4 ≤ 1 =∶ �+

4
.

Furthermore, one checks that for k ≥ 11,

�3 ≤
1

8�2�3
(�2 − �3 + 3)(�2 − �3 − 1) =∶ �+

3

as �+
3
≥ 1. It is enough to prove Theorem 5.3 for k ≥ 11, leaving the remaining

�nitely many cases 2 ≤ k ≤ 10 to be checked by hand.
Next, solving for p in terms of b, we have p =

1−�1b

�1
from which we �nd

c = 4p + 3b =
1+b(1+2k)2

4k2
. It follows that 1 = 1

4k2

1

c
+

(1+2k)2

4k2
s, and so

1

c
= 4k2 − (1 + 2k)2s.

Note also that from our expression for c in terms of b, we have

s =
4k2

(1 + 2k)2 +
1

b

.

Combining this with our results from Section 3, we see

c1 =
1

2
+

�1
8

b
+ 2(3�1 − 4�1)

+ 2(4k2 − (1 + 2k)2s).

Recall also that

c2 =
2�1

4

b
+ (3�1 − 4�1)

.

We have therefore expressed c2, c1, s, p, and c all in terms of k and b.
Let n = (2k + 1)t + u for t ≥ 0, 1 ≤ u ≤ 2k, where u ≠ 0 since n0 = 2k + 1

does not divide n. We can then express

⎡
⎢

�0

n0
n⎤
⎥
= ⎡

⎢

4k

2k + 1
n⎤
⎥
= 4kt + 2u + � ∶= {

4kt + 2u if 1 ≤ u ≤ k,

4kt + 2u − 1 if k + 1 ≤ u ≤ 2k.

We are now ready to show

f ∶= c2n
2 + c1n + c0 −

(
⌈
�0

n0
n

⌉

+ 1

2

)
< 1.

Replacing c0 by quantity
9

8
+

1

32s
+

1

4
+

∑5

i=1
�+
i
, we obtain a larger function

g =
g1

g2
where the gi are polynomials in t, u, b, k and g2 > 0. One checks that
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g2−g1 is decreasing in t and that it is a quadratic in bwith positive b2-coe�cient
for t > k

16
. Thus, for t > k

16
and b su�ciently large, we have shown f < 1.

We next turn to the case where t ≤ k

16
. Then n = (2k + 1)t + u ≤

k2

8
+

33k

16

and so
r ≤ 4sn <

�2 − �3 − 1

2
< �2.

As a result, r = u1 = u2 and t1 = t2 = 0. We may therefore plug in directly
to the de�nition of �1 and �2 to obtain better bounds than �+

1
and �+

2
; using the

�nal statement of Lemma 4.9 and the fact that �3−�2−1
2

< 0 ≤ r, we see

�i ≤
1

2�i−1�i
(4sn + 1)(4sn + �i−1 − �i) =∶ �

++

i

for i ∈ {1, 2}. Similarly, we �nd

�3 ≤ −
1

2�2�3
(4sn + 1)(4sn + �3 − �2) =∶ �

++
3
.

Using the same argument as in the previous paragraph, replacing the use of �+
i

with �++
i

for i ∈ {1, 2, 3}, we now �nd that g1 − g2 is a cubic in b with positive
b3-coe�cient whenever n ≥

√
k and n ≠ k + 1.

It therefore remains to handle the cases n = k + 1 and n <
√
k. We consider

n <
√
k �rst. Here, t1 = t2 = t3 = t4 = 0 and r = u1 = u2 = u3 = u4.

Furthermore, r ≤ 4sn <
�3−�4−1

2
, so we have

�4 ≤ −
1

2�3�4
(4sn + 1)(4sn + �4 − �3) =∶ �

++
4
.

Now, since �5 = 2, we know u5 = 0 or u5 = 1. Plugging back into the de�nition
of �′ and �5 and using that �5 is increasing on the range from r to 4sn, we �nd

�′ + �5 ≤ �++
5

∶=

⎧

⎨

⎩

1

4
+

1

2�4
((4sn)2 − (1 + �4)(4sn) + �4 − 2), r is even

1

2�4
((4sn)2 − (1 + �4)(4sn) + 3�4 − 2), r is odd.

Treating these cases separately and replacing our use of c0with
9

8
+

1

32s
+
∑5

i=1
�++
i

yields f < 1 for all n <
√
k.

Next, we turn to the case n = k + 1. Here r = 4k − 1, so r = u1 = u2 = u3,
u4 = u5 = 1, t1 = t2 = t3 = t5 = 0, and t4 = 2. Since {sn} = sn−(k−1) ≥

1

2
+

1

80s
,

Corollary 3.3 tells us c0 ≤ 1 + �′ +
∑5

i=1
�i. Directly using the de�nition of the

�i functions, we �nd g1 − g2 is a quadratic in b with positive b2-coe�cient.
This concludes our proof for �′ = � = b, �1 = �(1) = 16k2 and �1 = �(1) =

8k2 − 4k − 1.
Finally, if we suppose �′ ≠ � instead, then the weighted projective spaces

considered are the ones satisfying �1b + �1p = ±1with b

−p
∈ I′

k,±
or b

−p
∈ I′′

k,±
.
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Notice that �1 and �1 are the corresponding ones listed in Entries 3 and 4 of
Table 1, which have considerably fewer steps than the ones for �′ = �. The
proof is almost exactly the same as the above, with the only di�erence being
the technique used to rewrite ⌈

�′

�

�0

n0
n⌉ as a piecewise linear function in t, u such

that n0t + u = n, t ≥ 0, 0 ≤ u ≤ n0 − 1. We illustrate this with the case
�(2) = �1 = 2k−1, �(2) = �1 = k−1, �1 = −1 over the interval I′

k,−
= [

�(1)

�(1)
,
�(2)

�(2)
]

for k ≥ 2, �(1) and �(1) as in the previous paragraph. Here, � = b, �′ = c, and
D0 ∼ (2k + 1)bDx with �0 = 4k as before. Notice that

c

b
= 4

p

b
+ 3 =

4

�(2)
(−�(2) −

1

b
) + 3 =

2k + 1

2k − 1
−

4

(2k − 1)b
,

so that
⎡
⎢

c

b

4k

2k + 1
n⎤
⎥
= ⎡

⎢

4k

2k − 1
n⎤
⎥

for all 16k

(2k+1)(2k−1)b
n <

1

2k+1
⟺ n <

(2k−1)b

16k
. Thus, we may use our pre-

vious technique to rewrite the above ceiling function as a polynomial for all
n <

(2k−1)b

16k
. Replacing the function f with an upper bound obtained by the

same process as before, we may also conclude for n > (2k−1)b

16k
by examining the

asymptotic behaviour of f, similarly as in the previous case.
We remark that for all other cases where �′ ≠ �, the ceiling function may be

simpli�ed in such a manner for all n < Cb with C > 0 a constant. �

To �nish the proof of Theorem 1.5, we must now handle the case where n0
divides n with �′ = �. This is substantially easier than Theorem 5.3.

Proposition 5.4. Inequality (5.2) holds when n0 divides n and �′ = �.

Proof. As in the proof of Theorem 5.3, we handle the case where �1 ∶= �(1) =

16k2, �1 ∶= �(1) = 8k2 − 4k − 1, � = b, n0 = 2k + 1, and �0 = 4k. The other
cases are similar and easier. By Remark 2.7, it su�ces to prove the result for b
su�ciently large, where

�1b − �1(−p) = 1.

Let �0 ∶= −p, �0 ∶= b, and (�i, �i, �i) be as in Table 1. It is enough to show

f ∶= c2(n0t)
2 + c1n0t + c0 −

(�0t + 2

2

)
< 0

for all t ≥ 1. Indeed, if n = n0t and |nbDx| <
(
�0n+2

2

)
, then �(nbDx) < �0n + 1

which implies �(nD0) ≤ �0n, as required. Replacing c0 by the crude upper
bound

c0 ≤
9

8
+

1

32s
+
1

4
+

5∑

i=1

�+
i

as in the proof of Theorem5.3, we obtain a larger function g ≥ f. One computes
)g

)t
< 0, so it is enough show g|t=1 < 0. After clearing denominators, one is left
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with a quadratic in b whose b2-coe�cient is negative. Thus, for b su�ciently
large, f ≤ g < 0. �
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