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Oracle computability of conditional
expectations onto subfactors

Isaac Goldbring

Abstract. We initiate the effective study of conditional expectations onto
subfactors. Our main result is that if M is an existentially closed II1 fac-
tor with a w-spectral gap subfactor N, then the conditional expectation
function onto N can be computed from a (Turing) oracle that computes a
presentation ofM, the inclusion of N intoM, and a spectral gap function
for the pair (M,N).
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1. Introduction
Suppose thatM is a tracial von Neumann algebra and N is a subalgebra

of M. In this paper, we consider the following question: How “hard” is it
to compute the conditional expectation function EN ∶ M → N? In other
words, given x ∈ M, how “hard” is it to compute the distance from x to
N? The main result of this paper gives an upper bound for the difficulty of
computing EN in the case that M is a separable existentially closed II1 factor
and N is a property (T) subfactor:
Theorem. Suppose thatM is a separable existentially closed II1 factor with a prop-
erty (T) subfactor N. Suppose that we are given a presentation M# of M and a
Kazhdan presentation N† of N. Suppose that D is a (Turing) oracle such thatM#

is D-computable and the inclusion i ∶ N† → M# is D-computable. Then the con-
ditional expectation map EN ∶ M# → N† is D-computable.
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While the terms in the previous theoremwill be definedprecisely through-
out the paper, we now try to give some intuition as to what the theorem
actually says.

We first say a few words about the class of existentially closed (e.c.) II1
factors. The notion of existentially closed object comes from model the-
ory and is the model-theoretic generalization of the notion of algebraically
closed field. Roughly speaking, a II1 factorM is an e.c. factor if, whenever a
system of equations with coefficients fromM has a “solution” in a II1 factor
extending M, then there is an approximate solution in M itself. Here, one
can think of systems of equations as being described by moments in the
free probability sense. A purely “semantic” perspective on being existen-
tially closed can be described using embeddings into ultrapowers and this
will be the definition given in Section 4 below. It is important to note that
there is a large class of e.c. factors (whence the above result is not vacuous)
although whether or not a concrete example of one can be given depends
on the truth of the Connes Embedding Problem.

We now describe the remaining terms in the above theorem. The result
above is framed in the language of computability theory. In order to treat
operator algebras in this framework, we need to encode a separable tracial
von Neumann algebra using a countable amount of data. Towards this end,
we consider presentations of II1 factors, which are essentially dense countable
*-subalgebras of the given vonNeumann algebra thatwe imagine being able
to input into a theoretical computer.

In general, we do not expect that this theoretical computer should be able
to (approximately) compute the algebraic operations and the 2-norm of the
presentation. Instead, our results are relative in the sense that we allow com-
puters with “oracles” meaning that the computers are allowed to also make
queries to functions that are not in general computable. (More on this in
Section 2.) Thus, our main result says that if one has presentations of M
and N such that one can compute the algebraic operations and 2-norm of
the presentation ofM using some oracle D as well as how the presentation
of N “sits” inside of M, then this same oracle can, given an element x in
the presentation ofM and a rational tolerance �, compute an element of the
presentation of N that is within � of EN(x).

Note that, in general, given an oracle that can compute the presentation
of M and an the inclusion of the presentation of N in M, one can compute
upper bounds for the distance of an element of M to N by simply calcu-
lating the distances between the element of M and various elements of N
and recording every time one gets closer than previous calculations. The
nontrivial part is knowing when you cannot get any closer, namely, how do
you know when to stop this procedure? The import of our main theorem is
that in the case of a property (T) subfactor of an e.c. factor, one can in fact
determine when one has approximately achieved the minimum distance.
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The argument proving the previous theorem is inspired by an argument
of Macintyre [9] on e.c. groups. There, he proves that for each n ≥ 1, there
is a formula '(x1, … , xn, y) in the language of groups such that, for any e.c.
group G and any a1, … , an, b ∈ G, one has that b belongs to the subgroup
of G generated by a1, … , an if and only if '(a1, … , an, b) is true in G. In other
words, while testing for membership in a subgroup is usually not a first-
order concept, it actually is in e.c. groups and uniformly so over all e.c.
groups. Our original motivation was to try to adapt Macintyre’s argument
to the setting of e.c. factors (which seemed feasible as the main ingredients
were amalgamated free products andHNN extensions, both of whichmake
sense in the case of tracial von Neumann algebras) and the theorem above
is what we obtained after adapting his arguments.

The formula '(x1, … , xn, y) referred to in the previous paragraph is the
existential statement asserting the existence of an element u which com-
mutes with the xi’s yet does not commute with y. (Clearly if such u exists,
then y does not belong to the subgroup generated by x1, … , xn; the miracu-
lous part is that, in an e.c. group, the converse holds.) If one tries to write
down an analogous formula in the vonNeumann algebra setting, then since
the corresponding existence statement would be an approximate existence
statement (as the existential quantifier is replaced by the approximate ex-
istential quantifier inf), we would only know about an element u which
approximately commutes with the xi’s. In order to gain any traction, one
would need to know that such a u is near an element which actually com-
muteswith the xi’s. It is this spectral gapproperty of the property (T) subfac-
tor N that is needed to adapt Macintyre’s work. Thus, our main theorem is
actually applicable in the wider context of spectral gap subfactors, the only
issue being that the computability of a corresponding spectral gap function
also becomes an extra parameter in the statement of the theorem. This spec-
tral gap function is automatically computable in the case of a property (T)
subfactor using the existence of “Kazdhan” sets (a result due to Connes and
Jones [3]) and a presentation in which the Kazhdan set is computable.

In the next section, we briefly describe the basic facts from computability
theory needed to understand the rest of the paper. The two sections that
follow describe the basic facts needed about spectral gap subfactors and
existentially closed II1 factors in order to understand the proof of the main
theorem, which appears in the final section.

We would like to thank Timothy McNicholl, Alexander Melnikov, and
AndreNies for patiently explaining the finer points of computable structure
theory for metric structures. We would also like to thank Adrian Ioana for
useful discussions around spectral gap and property (T).
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2. Computable structure theory for II1 factors
2.1. Turing oracles. We begin this section with a brief discussion of the ba-
sic notions from computability theory; a good and accessible reference is
[4].

Computability theory studies the question ofwhat itmeans for a function
f ∶ ℕk → ℕ to be “computable.” Naïvely speaking, such a functionf should
be computable if there is an algorithm1 such that, upon input (a1, … , ak) ∈
ℕk, runs and eventually halts, outputting the result f(a1, … , ak). There are
many approaches to formalizing this heuristic (e.g. Turing-machine com-
putable functions and recursive functions) and all known formalizations
can be proven to yield the same class of functions. This latter fact gives cre-
dence to the Church-Turing thesis, which states that this aformentioned class
of functions is indeed the class of functions that are computable in the naïve
sense described above. In the rest of this paper, we will never argue about
this class of functions using any formal definition but will only argue infor-
mally in terms of some kind of algorithm or computer; this is often referred
to as arguing using the Church-Turing Thesis.

As discussed in the introduction, the functions that we are interested in
are almost certainly not computable in the sense of the previous paragraph.
Instead, we will consider a relative form of computability in the following
sense: given a function D ∶ ℕl → ℕ, a D-algorithm is an algorithm in the
usual sense that is also allowed to make “queries” to an “oracle” which has
access to the function D. Thus, for example, in the course of running the
algorithm, the computer is allowed to query the oracle and ask what is the
value ofD(15) and then use that information in the computation. A function
f as above is then said to be D-computable (or that D computes f) if it is
computable using a D-algorithm. Of course, if D were itself computable,
then f would be computable as well.

In the rest of this paper, we often write statements such as “Suppose that
D is an oracle that computes the functions f1 and f2.” In practice, onewould
often know that each fi isDi-computable for some oraclesD1 andD2. How-
ever, standard coding tricks allow us to find a single oracle D that can com-
pute functions that both D1 and D2 can compute (and there is a least such
D in a precise sense). Consequently, we find it cleaner to make statements
whose assumptions posit the existence of a single oracle that can compute
a handful of functions

2.2. Computable structure theory. In this subsection, we present the ba-
sic definitions from computable structure theory for metric structures [6]
(building upon the work in [1],[2], [10], [11], [12]) in the context of tracial
von Neumann algebras.

1This algorithm is allowed to refer to basic arithmetic operations such as addition and
multiplication.



ORACLE COMPUTABILITY OF CONDITIONAL EXPECTATIONS 1089

Throughout this subsection,M denotes a separable tracial von Neumann
algebra whose unit ball is denoted by M1. Given x, y ∈ M1, a rounded
combination of x and y is an element of the form �x + �y, where �, � ∈ ℂ
satisfy |�| + |�| ≤ 1. The rounded combination will be called rational if �
and � belong to ℚ(i).

Definition 2.1.
(1) Given A ⊆ M1, we let ⟨A⟩ be the smallest subset ofM1 containing A and

closed under rational rounded combinations, multiplication, and adjoint.2
(2) We say that A generatesM if ⟨A⟩ is 2-norm dense inM1.
(3) A presentation of M is a pair M# ∶= (M, (an)n∈ℕ), where {an ∶ n ∈

ℕ} ⊆ M1 generatesM. Elements of the sequence (an)n∈ℕ are referred to as
special points of the presentation while elements of ⟨{an ∶ n ∈ ℕ}⟩ are
referred to as rational points of the presentation.

The following remark is crucial for what follows:

Remark 2.2. Given a presentationM# ofM, it is possible to computably enumerate
the rational points of M#.3 Consequently, it makes sense to consider algorithms
which take rational points ofM# as inputs and/or outputs.

Definition 2.3. If M# is a presentation of M and D is an oracle, then x ∈ M1
is a D-computable point of M# if there is a D-algorithm such that, upon input
k ∈ ℕ, returns a rational point p ∈ M# with d(x, p) < 2−k.

Definition 2.4. IfM# is a presentation ofM and D is an oracle, thenM# is a D-
computable presentation if there is aD-algorithm such that, upon input rational
point p ∈ M# and k ∈ ℕ, returns a rational number q such that |‖p‖2−q| < 2−k.

Definition 2.5. Suppose that M and N are tracial von Neumann algebras with
presentations M# and N† respectively. Further suppose that f ∶ Mm → N is a
Lipshitz map (say with respect to the maximummetric onMm)4 andD is an oracle.
Then f is a D-computable map fromM# into N† if there is a D-algorithm such
that, upon input a tuple of rational points p⃗ ∈ (M#)m and k ∈ ℕ, returns a rational
point p′ ∈ N† such that d(f(p⃗), p′) < 2−k. (Here, we use an efficient numbering
of ℕm to effectively enumerate the m-tuples of rational points ofM#.)

2.3. Conditional expectations. In this subsection, we make a few general
observations about computability of conditional expectations. First, we in-
troduce a convenient piece of terminology:

2In order to fit our discussion under the more general presentation found in [6], we need
our operations to be uniformly continuous, whence the need to restriction attention to op-
erator norm bounded balls.

3Technically, one is computably enumerating “codes” for rational points.
4The Lipshitz condition can be weakened to having a “computable modulus of uniform

continuity” but we will not need this more general notion in this paper.
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Definition 2.6. Suppose that N is a subfactor ofM and thatM# and N† are pre-
sentations of M and N respectively. For an oracle D, we say that (M#, N†) is a
D-computable pair ifM# is a D-computable presentation ofM and the inclusion
map i ∶ N† →M# is a D-computable map.

Remark 2.7. If (M#, N†) is a D-computable pair, then N† is a D-computable pre-
sentation of N.

Lemma 2.8. Suppose that (M#, N†) is aD-computable pair. ThenEN ∶ M# → N†

is D-computable if and only if there is a D-algorithm which, upon input rational
point p ∈ M# and k ∈ ℕ, produces a rational number q such that |d(p,N)−q| <
2−k.

Proof. First suppose that EN ∶ M# → N† is D-computable. Fix a rational
point p ∈ M# and k ∈ ℕ. Using D, we can find a rational point p′ ∈ N†

such that d(EN(p), p′) < 2−k−1. Since i ∶ N† → M# is D-computable, using
Dwe can find a rational point p′′ ∈ M# such that d(i(p′), p′′) < 2−k−1. Since

|d(p,N) − d(p, p′′)| = |d(p, EN(p)) − d(p, p′′)|
≤ d(EN(p), p′) + d(i(p′), p′′) < 2−k,

and one can compute d(p, p′′) using D, this D-algorithm computes d(p,N).
We now prove the converse. Suppose that p ∈ M# is a rational point

and k ∈ ℕ. Set l ∶= k − 2. By the hypothesis, using Dwe can find a rational
number q such that |d(p,N)−q| < 2−l. Now, usingD again, start computing
d(p, i(p′)) to within 2−l for rational points p′ ∈ N#. Suppose that p′ ∈ N†

is the first rational point for which there is a rational number r such that
d(p, i(p′)) is within 2−l of r and (q −2−l, q +2−l) ∩ (r −2−l, r + 2−l) ≠ ∅. Then
since
‖p − p′‖22 = ‖(p − EN(p)) + (EN(p) − p′)‖22 = ‖p − EN(p)‖22 + ‖EN(p) − p′‖22,
we have d(EN(p), p′)2 = d(p, p′)2 − d(p, EN(p))2 ≤ 6 ⋅ 2−l + (3 ⋅ 2−l)2 <
2−l+3 + 24−2l < 2−l+2 = 2−k. This algorithm thus computes EN . �

We end this section with a brief comment about the finite index case.

Proposition 2.9. Suppose that N has finite index in M, that (M#, N†) is a D-
computable pair, and that there is a Pimsner-Popa basism1, … ,mn+1 forM over N
(see [13]) such that each mi is a D-computable point ofM# and each EN(mj) is a
D-computable point of N†. Then EN is D-computable.

Proof. Given a rational point p ∈ M# and k ∈ ℕ, one first computes
∑mjpj

(as pj range over the presentation of N) and waits until it is within 2−k of
x. Then since EN is 2-norm contractive, EN(x) is with 2−k of

∑EN(mj)pj,
which we can also compute using d. �

Question 2.10. If (M#, N†) is aD-computable pair of finite index, must a Pimsner-
Popa basis as above always exist?
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3. w-spectral gap
Throughout this section, M is a II1 factor and N is a subfactor of M. We

remind the reader of the definition of w-spectral gap.

Definition 3.1. N has w-spectral gap in M if, for any � > 0, there is a finite
F ⊆ N and � > 0 such that, for all x ∈ M1, we have: if maxy∈F ‖[x, y]‖2 < �,
then there is x′ ∈ N′ ∩M such that d(x, x′) < �.

The reader is invited to consult [7] formore information aboutw-spectral
gap subfactors and their model-theoretic significance. In order to bring this
notion into our computability-theoretic setting, we need the following def-
inition:

Definition 3.2. Suppose that N is a w-spectral gap subfactor of M and that M#

and N† = (N; (an)n∈ℕ) are presentations of M and N respectively. We say that
f ∶ ℕ → ℕ is a spectral gap function for (M#, N†) if: for any n ∈ ℕ and rational
point p ∈ M#, ifmax1≤i≤f(n) ‖[p, ai]‖2 < 2−f(n), then d(p,N′ ∩M) < 2−n.

Remark 3.3. IfN has w-spectral gap inM, then for any presentationsM# andN†

ofM and N respectively, there is a spectral gap function f for (M#, N†).

In order to obtain our results about property (T) subfactors as a special
case of our main result on w-spectral gap subfactors, we need to remind the
reader of the following fact of Connes and Jones [3, Proposition 1]:

Fact 3.4. Suppose that N is a II1 factor with property (T). Then there is � > 0,
finite F ⊆ M, and K > 0 such that, for any � ≤ �, any N-N bimodule H, and any
unit vector � ∈ H, if ‖y� − �y‖ < � for all y ∈ F, then there is a central vector
� ∈ H such that ‖� − �‖ < K�.

We refer to the finite set F in the previous fact as aKazhdan set forN and
the pair (F, K) as aKazhdan pair forN (in analogy with the corresponding
terminology for groups). We call a presentation N† of a property (T) fac-
tor N a Kazhdan presentation if there is a Kazhdan set for N amongst the
rational points of N†.

Before stating the main computability-theoretic fact about Kazhdan pre-
sentations of property (T) factors, we state one easy lemma, whose proof
we leave to the reader.

Lemma 3.5. There is a computable function j ∶ ℕ2 → ℕ such that, for any tracial
von Neumann algebraN, any presentationN† ofN, and any tracial von Neumann
algebra M containing N, if p is the mth rational point of N† and x ∈ M1 is such
thatmax1≤i≤j(m,k) ‖[x, ai]‖2 < 2−j(m,k), then ‖[x, p]‖2 < 2−k.

Corollary 3.6. Suppose that N is a property (T) factor and N† is a Kazhdan pre-
sentation of N. Then for any II1 factor containing M and any presentation M# of
M, there is a computable spectral gap function for (M#, N†).
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Proof. Take a finite subset F ofM1 and p ∈ ℕ is such that (F, 2p) is a Kazh-
dair pair for N as witnessed by � ∶= 2−p as in the statement of Fact 3.4
and for which there is m ∈ ℕ such that F is contained amongst the first m
rational points of N†. Set

f(n) ∶= max
1≤i≤m

j(i, n + p).

Note that f is a computable function. We claim that f is a spectral gap
function for (M#, N†). Indeed, suppose that b is a rational point of M#

and max1≤i≤f(n) ‖[b, ai]‖2 < 2−f(n). Then by the definition of j, we have
maxp∈F ‖[b, p]‖2 < 2−n−p, whence by Fact 3.4 above, there is p′ ∈ N′ ∩ M
such that d(p, p′) < 2−n, as desired. �

Remark 3.7. In the previous corollary, one can remove the assumption that the
presentation is a Kazhdan presentation at the cost of concluding that the spectral
gap function is merelyD-computable, whereD is some oracle for which eachmember
of some Kazhdan set for N is a D-computable point.

4. Existentially closed II1 factors
In this brief section, we remind the reader of the definition of existentially

closed II1 factor and mention a few remarks about them.

Definition 4.1. A II1 factorM is existentially closed (or e.c. for short) if: when-
everP is a II1 factor such thatM ⊆ P, then there is an ultrafilterU and an embedding
i ∶ P ↪ MU such that the restriction i|M is the diagonal embedding ofM inMU.

The class of e.c. II1 factors is an incredibly rich family of factors (see
[5] for more details). Every II1 factor embeds into an e.c. factor (of the
same density character). The hyperfinite II1 factor R is an e.c. factor if and
only if the Connes Embedding Problem has a positive solution. w-spectral
gap subfactors of e.c. factors were studied in [7], where it was shown, in
particular, that if N is a w-spectral gap subfactor of the e.c. factor M, then
(N′ ∩M)′ ∩M = N.

We note that w-spectral gap subfactors of e.c. factors have infinite index,
whence do not fall into the discussion from Section 2 above. Indeed, since
w-spectral gap subfactors never have property Gamma5 while e.c. factors
always have property Gamma (they are in fact McDuff [8, page 3]), it fol-
lows that w-spectral gap subfactors of e.c. factors always have infinite index
by [13, Proposition 1.11].

5This is probably well-known, but here is a proof communicated to us by Adrian Ioana:
Suppose that N is a w-spectral gap subfactor of M. Fix � > 0 and take a finite set F = F(�)
witnessing w-spectral gap. Suppose that u ∈ U(N) �-commutes with F. Then there is x ∈
N′ ∩ M such that d(u, x) ≤ �. Since EN(x) ∈ Z(N) = ℂ ⋅ 1, it follows that d(u, ℂ) ≤ �. If � is
sufficiently small, this prevents tr(u) = 0.
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5. Proof of the Main Result
In this section, we prove the main result announced in the introduction.

First, given m ∈ ℕ, a II1 factorM, and u, a1, … , an, b ∈ M, we set

 Mr,m(u, a⃗, b) ∶= max (‖uu∗ − 1‖2, max1≤i≤m
‖[u, ai]‖2, 2r ∸ ‖[u, y]‖2) .

Here, ∸ denotes truncated subtraction, that is, r ∸ s ∶= max(r − s, 0). We
also set

'Mr,m(a⃗, b) ∶= inf
u∈M1

 Mr,m(u, a⃗, b).

In the next lemma (which follows almost immediately from the defini-
tions), we view ℂ as a tracial von Neumann algebra in the obvious way and
consider its “standard” presentation, that is, with presentation ℚ(i) (enu-
merated in some computable fashion).

Lemma 5.1. Suppose thatM# is D-computable. Then for each rational number r
and each m ∈ ℕ,  Mr,m ∶ (M#)m+2 → ℂ is D-computable.

The following lemma follows from a standard functional calculus argu-
ment:

Lemma 5.2. There is a nondecreasing computable function g ∶ ℕ → ℕ such that,
for all k ∈ ℕ, all tracial von Neumann algebrasM, and all u ∈ M1, if ‖uu∗−1‖2 <
2−g(k), then there is a unitary u′ ∈ M such that d(u, u′) < 2−k.

Lemma 5.3. Suppose that f ∶ ℕ → ℕ is a spectral gap function for (M,N#).
Set f′ ∶ ℕ → ℕ to be f′(n) ∶= f(g(n + 2) + 1). Then for any n and r > 0, if
'Mr,f′(n)(x1, … , xf′(n), b) < 2−f′(n), then d(b,N) ≥ r − 2−n.

Proof. Suppose u ∈ M1 is such that  Mr,f′(n)(u, x1, … , xf′(n), b) < 2−f′(n). Then
there is u1 ∈ N′ ∩M such that d(u, u1) < 2−g(n+2)−1. Note then that ‖u1u∗1 −
1‖2 < 2−g(n+2), whence there is u2 ∈ U(N′ ∩M) such that d(u1, u2) < 2−(n+2).
It follows that

2r ∸ ‖[b, u2‖ ≤ 2−f′(n) + 2−g(n+2)−1 + 2−(n+2) < 2−n.
If s = d(b,N), we have elements bn ∈ N such that d(b, bn) → s; since

d(u2bu∗2 , bn) = d(b, bn) (as u2bnu∗2 = bn),. we have d(b, u2bu∗2) ≤ 2s. It
follows that 2r − 2 ⋅ 2−n ≤ ‖[b, u2]‖2 ≤ 2s, so s ≥ r − 2−n. �

Remark 5.4. Since g is computable, f′ is D-computable if f is D-computable.

Lemma 5.5. Suppose thatM is e.c., thatN is a subfactor ofM, and that (N, (xn)n∈ℕ)
is a presentation of N. If b ∈ M is such that d(b,N) = r, then 'Mr,m(x⃗, b) = 0 for
all m ∈ ℕ.

Proof. Let P be the subalgebra ofM generated byN and b. SetM1 = M ∗N P
and let b′ denote the other copy of b in M1. Note that d(b, b′) = 2r. Let
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� ∶ P ↪ M1 be given by �|N = idN and �(b) = b′. Let M2 be the HNN
extension of M1 with respect to the embedding �. (See [14] for details on
HNN extensiosn of von Neumann algebras.). In particular, M2 is a II1 fac-
tor with a unitary element u so that ‖[u, ai]‖2 = 0 for i = 1, … ,m while
‖[u, b]‖2 = d(b, b′) = 2r, whence 'M2(x⃗, b) = 0. SinceM is e.c., 'M(x⃗, b) = 0,
as desired. �

Here is the main theorem of this paper:

Theorem 5.6. Suppose that N is a w-spectral gap subfactor of the e.c. factor M
and that M and N have presentations M# and N† respectively so that the pair
(M#, N†) is a D-computable pair for some oracle D. Further suppose that there
is a D-computable spectral gap function for (M#, N†). Then EN ∶ M# → N† is
D-computable.

Proof. Suppose we are given a rational point p ofM# and k ∈ ℕ. We use D
to compute d(p,N#) to within 2−k using two machines.

On the firstmachine, we start approximately computingd(i(p′), p), where
p′ ranges over rational points of N†. This is done by finding rational p′′ ∈
M# such that d(i(p′), p′′) is small, and then computing d(p′′, p) approxi-
mately. This machine thus enumerates upper bounds for d(p,N#).

We next use D to compute f′(k). On the second machine, we start com-
puting r,f′(k)(u, p⃗, b) for rational pointsu and rational numbers r; by Lemma
5.1, this can be done using D. If we see  Mr,f′(k)(u, p⃗, b) < 2−f′(k), then we
know that d(b,N) ≥ r − 2−k by Lemma 5.3.

We then wait until there is a rational number r > 0 so that the first ma-
chine tells us that d(b,N) < r and the secondmachine tells us that d(b,N) ≥
r − 2−k. By Lemma 5.5, this is guaranteed to happen. �

Corollary 5.7. Suppose thatM is e.c. andN is a property (T) subfactor ofM. Let
N† be a Kazhdan presentation of N. If (M#, N†) is a D-computable pair, then EN
is D-computable.
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