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Reconstruction of holomoprhic tangent
bundle of complex projective plane via

tropical Lagrangian multi-section

Yat-Hin Suen

Abstract. In this paper, we study the reconstruction problem of the holo-
morphic tangent bundle of the complex projective plane. We introduce the
notion of tropical Lagrangian multi-section and cook up one tropicalizing
the Chern connection associated the Fubini-Study metric. Then we perform
the reconstruction of the tangent bundle from this tropical Lagrangianmulti-
section. Walling-crossing phenomenon will occur in the reconstruction pro-
cess.
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1. Introduction
Mirror symmetry is a duality between symplectic geometry and complex ge-

ometry. The famous SYZ conjecture [33] allows mathematicians to construct
mirror pairs and explain homological mirror symmetry [28] geometrically via
a �berwise Fourier–Mukai-type transform, which we call the SYZ transform.

The SYZ transform has been constructed and applied to understand mirror
symmetry in the semi-�at case [6, 31, 30, 17] and the toric case [1, 2, 18, 20,
21, 8, 10, 11, 9, 16, 13, 14, 19]. But in all of these works the primary focus
was on Lagrangian sections and the mirror holomorphic line bundles the SYZ
program produces. For higher rank sheaves, Abouzaid [3] applied the idea of
family Floer cohomology to construct sheaves on the rigid analytic mirror of
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a given compact Lagrangian torus �bration without singular �ber. Recently,
applications of the SYZ transform for unbranched Lagrangian multi-sections
have been study by Kwokwai Chan and the author in [15].

In this paper, we study the holomorphic tangent bundle Tℙ2 ofℙ2 in terms of
mirror symmetry. Via SYZ construction, the mirror of ℙ2 is given by a Landau-
Ginzburg model (Y,W) (see Section 2 for a brief review). It carries a natural
�bration p ∶ Y → Nℝ ≅ ℝ2, which is dual (up to a Legendre transform) to
the moment map �bration of ℙ2. Since Tℙ2 is naturally an object in the derived
category DbCoh(ℙ2), it is natural to ask what is its mirror Lagrangian in Y. Be-
ing a rank 2 bundle, the mirror Lagrangian of Tℙ2 is expected to be a rank 2
Lagrangian multi-section of p ∶ Y → Nℝ with certain asymptotic conditions.
As the base Nℝ of the �bration p is simply connected, every unbranched cov-
ering map is trivial. But Tℙ2 is certainly indecomposable. Hence, we are led to
consider branched Lagrangian multi-section and the SYZ transform de�ned in
[6, 15, 31] cannot be applied directly. To overcome this technicality, we intro-
duce the notion of tropical Lagrangian multi-section and reconstruct Tℙ2 from
this tropical object.

De�nition1.1 (=De�nition 3.1). LetB be ann-dimensional integral a�neman-
ifold without boundary. A rank r tropical Lagrangian multi-section is a triple
L ∶= (L, �, '), where

a) L is a topological manifold.
b) � ∶ L → B a covering map of degree r with branch locus S ⊂ B being a

union of locally closed submanifolds of codimension at least 2.
c) ' = {'U} is a multi-valued function on L such that on any two a�ne

charts U,V ⊂ L∖�−1(S) (with respective to the induced a�ne structure
on L∖�−1(S)via �),

'U − 'V = ⟨m, x⟩ + b,

for somem ∈ ℤn and b ∈ ℝ.

Let Σ be the fan corresponds to ℙ2 and v0, v1, v2 be its primitive generators.
The tropical Lagrangian multi-section is obtained by “tropicalizing" the Chern
connection associated to the Fubini-Study metric. We will do this in Section
3.1 by considering a family of Kähler metrics onℙ2, which gives rise to a family
of Chern connections, parameterized by a small real number ℏ > 0. We com-
pute the limit ℏ → 0 of the connections to obtain the “tropical connection",
which can be regarded as a singular connection on the total space TNℝ. From
the tropical connection, we can cook up six linear functions '±k , k = 0, 1, 2, for
which '±k are de�ned on �k, the cone generated by the rays vi, vj, i, j ≠ k. Let
�±k be two copies of �k and we consider '+k (resp. '−k ) as a function de�ned on
�+k (resp. �−k ). A piecewise linear function ' and an integral a�ne manifold L
can be obtained by gluing '±k ∶ �±k → ℝ together in a continuous manner. By
projecting �±k to �k, we obtain a map � ∶ L → Nℝ. The triple L ∶= (L, �, ')
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forms a rank 2 tropical Lagrangian multi-section. See Section 3.1 for the de-
tailed construction.

Section 3.2will be devoted to reconstructingTℙ2 from the tropical Lagrangian
multi-section L. LetUk be the a�ne chart corresponds to the cone �k. For each
�±k , we associate a trivial line bundle ℒ

±
k = OUk and so, we have a trivial rank

2 bundle on Uk by taking direct sum. As the summands are indexed by the
maximal cones of L, the gluing of L tell us how to glue these trivial rank 2 bun-
dles together on Uij ∶= Ui ∩ Uj. Motivated by [15], we can write down three
naive transition functions �sf10 , �

sf
21 , �

sf
02 by considering the slope di�erences of '

′

on di�erent maximal cones. However, this naive gluing is inconsistent due to
the a�ne. In order to obtain a consistent gluing, we modify the naive transi-
tion functions by three invertible factorsΘ10, Θ21, Θ02. Put �′j ∶= �sfij Θij. These
new transition functions satisfy the cocycle condition and hence de�ne a rank
2 holomorphic vector bundle de�ned on ℙ2, which we call it the instanton-
corrected mirror of L. Moreover, we have

Theorem 1.2 (=Theorem 3.8). The instanton-corrected mirror of the tropical
Lagrangian multi-section L is isomorphic to the holomorphic tangent bundle Tℙ2
of ℙ2.

In the last section, Section 3.3, we will discuss the relationship between the
factors {Θij} and the family Floer theory of the (conjecturally exists) mirror La-
grangian of Tℙ2 . The Fourier modesmij ∈ M ofΘij, determine three cotangent
directions of Nℝ the origin. As the Lagrangian L is tropical, we cannot expect
one can determinewhich �bers ofpwill bound holomorphic diskwith the hon-
est Lagrangian. Nevertheless,mij should be regarded as the normal directions
of walls1 emitting from the branched point 0 ∈ Nℝ.

In Appendix A, we will give a detailed review of Fukaya’s local model on
caustic points and his construction of mirror bundle via deformation theory
[22], Section 6.4. This gives a symplecto-geometric explanation for the walling-
crossing phenomenon in our reconstruction process.

Acknowledgment. The author is grateful to Byung-Hee An, Kwokwai Chan,
Ziming NikolasMa and Yong-GeunOh for useful discussions. A special thanks
goes to Katherine Lo for her encouragement during this work.

2. SYZ mirror symmetry of ℙ2

Webeginwith reviewing some elementary facts about the complex projective
plane ℙ2.

Let N ≅ ℤ2 be a lattice of rank 2 and set

Nℝ ∶= N ⊗ℤ ℝ, M ∶= Homℤ(N,ℤ), Mℝ ∶= M ⊗ℤ ℝ.

1Awall is a codimension 1 submanifoldW ⊂ Nℝ for which there is a non-trivial holomorphic
disk bounded by the Lagrangian and those �bers overW.
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Let Σ be the fan with primitive generators

v0 ∶= (1, 1) v1 ∶= (−1, 0), v2 ∶= (0, −1),

The associate toric variety XΣ is the complex projective plane ℙ2. The dense
torus of ℙ2 can be identi�ed with TNℝ∕N. Let p̌ ∶ TNℝ∕N → Nℝ be the natu-
ral projection. Denote the coordinates onNℝ by �i and the �ber coordinates of
p̌ by y̌i. Complex coordinates on TNℝ∕N are given by

wi ∶= ezi ∶= e�i+
√
−1y̌i .

There is an 1-1 correspondence2 between supporting functions on |Σ| = Nℝ
and (ℂ×)2-equivariant line bundles on ℙ2. Explicitly, the equivariant line bun-
dleO(a0D0+a1D1+a2D2) corresponds to the supporting function' ∶ Nℝ → ℝ,
de�ned by setting '(vi) ∶= ai.

Let

�0 ∶= ℝ≥0⟨v1, v2⟩ �1 ∶= ℝ≥0⟨v0, v2⟩, �2 ∶= ℝ≥0⟨v0, v1⟩.

and Uk ≅ ℂ2 be the a�ne chart corresponds to the cone �k, for k = 0, 1, 2. We
can trivialize Tℙ2 on Uk by

�k ∶ Tℙ2|Uk ∋ ([�0 ∶ �1 ∶ �2], v) ↦ (wi
k, w

j
k, v

i
k, v

j
k) ∈ ℂ2 × ℂ2,

for i, j, k = 0, 1, 2 distinct and i < j. Here,

wi
k ∶=

�i
�k

and v =∶ vik
)
)wi

k
+ vjk

)
)wj

k

.

The transition functions �ij ∶= �i◦�−1j are given by

�10 =
⎛
⎜
⎜
⎝

− 1
(w1

0)2
0

− w2
0

(w1
0)2

1
w1
0

⎞
⎟
⎟
⎠

, �21 =
⎛
⎜
⎜
⎝

1
w2
1

− w0
1

(w2
1)2

0 − 1
(w2

1)2

⎞
⎟
⎟
⎠

, �02 =
⎛
⎜
⎜
⎝

− w1
2

(w0
2)2

1
w0
2

− 1
(w0

2)2
0

⎞
⎟
⎟
⎠

.

Remark 2.1. We can relate the coordinates wi on TNℝ∕N and the inhomoge-
neous coordinates wi

0 by setting w
i = wi

0|(ℂ×)2 .

It iswell-known thatℙ2 carries aKähler-Einsteinmetric, calledFubini-Study
metric. It is the Hermitian metric associated to the (1, 1)-form

!FS ∶= 2
√
−1))̄�(�),

where

�(�) ∶= 1
2 log(1 + e2�1 + e2�2).

2We use the convention that if a piecewise linear function f is given by f(vi) = ai , then the
corresponding line bundle is given by O

(∑2
i=0 aiDi

)
.
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Let ∇FS be the Chern connection associated to the the Fubini-Study metric.
With respective to the holomorphic frame { )

)w1
, )
)w2

}, it can be written as

∇FS|U0 = d − 1
1 + |w|2 [(2|w

1|2 w1w̄2

0 |w1|2) dz
1 + (|w

2|2 0
w̄1w2 2|w2|2) dz

2] ,

where |w|2 ∶= |w1|2+|w2|2. For the purpose of this paper, we need the formula
of ∇FS|U0 in terms of the frame { )

)z1
, )
)z2
}. We have

∇FS (
)
)zi

) = ∇FS (wi )
)wi ) = dzi ⊗ )

)zi + wi∇FS (
)
)wi ) .

Hence, ∇FS|U0 is equal to d minus

1
1 + |w|2 [(|w

1|2 − |w2|2 − 1 |w2|2
0 |w1|2) dz

1 + (|w
2|2 0

|w1|2 |w2|2 − |w1|2 − 1) dz
2] .

2.1. SYZmirror symmetry ofℙ2. Now, we jump to SYZmirror symmetry of
ℙ2. The mirror of ℙ2 is given by the Landau-Ginzburg model (Y,W), where

Y ∶=T∗Nℝ∕M

W(z1, z2) ∶=z1 + z2 +
q

z1z2
,

and q > 0 is a positive constant. The complex coordinates zj are given by

zi ∶= exi+
√
−1yi ,

where xi is the a�ne coordinates on P̊ and yi are the �ber coordinates. One can
equip Y with the standard symplectic structure

!Y ∶= d�1 ∧ dy1 + d�2 ∧ dy2,
and the holomorphic volume form

ΩY ∶=
dz1
z1

∧ dz2
z2

.

Let p ∶ Y → Nℝ be the natural projection, which is clearly dual to p̌ ∶
TNℝ∕N → Nℝ. The homological mirror symmetry conjecture predicts that
Lagrangian branes inY should bemirror to coherent shaves inℙ2. In [8], Chan
consider Lagrangian sections of p ∶ Y → Nℝ with certain decay conditions at
in�nity and de�ne its SYZ mirror line bundle on ℙ2. Roughly speaking, given
such a Lagrangian section L, one can associate a line bundle Ľ → ℙ2 together
with a connection∇Ľ, so that with respective to a local unitary frame 1̌, one has

∇Ľ ∶= d −
√
−1

(
f1(�)dy̌1 + f2(�)dy̌2

)
.

where (f1, f2) are local de�ning equations of L. In fact, every such connec-
tion is compatible with the metric e−2F , where F is a local potential function
of the Lagrangian section L. In terms of the local holomorphic frame e−F 1̌, the
connection becomes

d −
(
f1(�)dz1 + f2(�)dz2

)
.
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As an example, by using the potential function � of !FS, for each k ∈ ℤ, we
can de�ne the Lagrangian section

Lk ∶= {(�, k ⋅ d�(�)) ∈ Y ∶ � ∈ Nℝ}.

The mirror bundle of Lk is the line bundle O(k) together with the connection

∇k = d − ( k|w1|2
1 + |w|2dz

1 + k|w2|2
1 + |w|2dz

2) .

Note thatk⋅� is a smoothing of the supporting function corresponds toO(kD0) ≅
Oℙ2(k) as

lim
t→∞

k
2 logt(1 + t2�1 + t2�2) = max{0, k�1, k�2}.

Thus the di�erential of supporting functions should be regarded as singular
Lagrangian sections of p ∶ Y → Nℝ.

3. A tropical Lagrangian multi-section associated to Tℙ2 and
reconstruction
In this section, we introduce the notion of tropical Lagrangian multi-section

and construct one by tropicalizing theChern connection associated to theFubini-
Study metric. We then perform the reconstruction of Tℙ2 from the tropical La-
grangian multi-section. The wall-crossing phenomenon will be discussed in
the last subsection.

We now introduce the following

De�nition3.1. LetB be ann-dimensional integral a�nemanifoldwithout bound-
ary. A rank r tropical Lagrangian multi-section is a triple L ∶= (L, �, '), where

a) L is a topological manifold.
b) � ∶ L → B a covering map of degree r with branch locus S ⊂ B and

rami�cation locus S′ ⊂ L being a union of locally closed submanifolds of
codimension at least 2.

c) ' = {'U} is a collection of local continuous functions on L such that on
any two a�ne charts U,V ⊂ L∖S′ (with respective to the induced a�ne
structure on L∖S′ via �),

'U − 'V = ⟨m, x⟩ + b,

for somem ∈ ℤn and b ∈ ℝ.

De�nition 3.1 is a straightforward generalization of the notion of polariza-
tion in the famous Gross-Siebert program [23, 25, 26]. We also remark that the
domain L can be disconnected in general. But in this paper, L is connected and
the multi-valued function ' is a single-valued continuous function.
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3.1. Construction of the tropical Lagrangian multi-section. In order to
obtain a tropical Lagrangian for Tℙ2 , we need to “tropicalize" the Chern con-
nection associated to the Fubini-Study metric.

To do this, we construct a family {(Xℏ, !ℏ)}ℏ>0 of Kähler manifolds. Let

P ∶= {(x1, x2) ∈ Mℝ ∶ x1, x2 ≥ 0, x1 + x2 ≤ 1}
be a moment polytope of ℙ2 and P̊ be its interior. Let

gℏ ∶= gP + ℏ−1 .
where

gP(x) ∶=
1
2 (x1 log(x1) + x2 log(x2) + (1 − x1 − x2) log(1 − x1 − x2)) ,

 (x) ∶=x21 + x22 + x1x2 − x1 − x2.
The Legendre dual coordinates are denoted by

�iℏ ∶=
)gℏ
)xi

.

They are related to the original coordinates via

�iℏ = �i + ℏ−1 ) )xi
.

Put
wi
ℏ ∶= eziℏ ∶= e�iℏ+

√
−1y̌i , i = 1, 2.

A straightforward calculation shows that

Hess(gP + ℏ−1 ) >0,

det(Hess(gP + ℏ−1 )) = 1
�ℏ(x)x1x2(1 − x1 − x2)

,

for some smooth function �ℏ ∶ P → ℝ so that if we choose ℏ > 0 small enough,
�ℏ(x) > 0, for all x ∈ P̊. These are precisely the compatibility conditions stated
in [4, 5], which guarantee the complex coordinateswi

ℏ can be extended toU0 ⊂
ℙ2. Thus, we get a family of complex manifolds {Xℏ}ℏ>0. Each member of this
family can be identi�ed with ℙ2 via

�ℏ ∶ (w1
ℏ, w

2
ℏ) ↦ [1 ∶ w1

ℏ ∶ w
2
ℏ].

We de�ne
!ℏ ∶= �∗ℏ!FS

and the associated connection by ∇ℏ, which is given by

∇ℏ = d − 1
1 + |wℏ|2

[(|w
1
ℏ|
2 − |w2

ℏ|
2 − 1 |w2

ℏ|
2

0 |w1
ℏ|
2) dz1ℏ

+ (|w
2
ℏ|
2 0

|w1
ℏ|
2 |w2

ℏ|
2 − |w1

ℏ|
2 − 1)dz

2
ℏ] ,
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under the frame { )
)ziℏ
} and the coordinates {ziℏ}. We want to compute

lim
ℏ→0

∇ℏ
)
)ziℏ

)
)zjℏ

= lim
ℏ→0

2∑

k=1
Γkij(ℏ)

)
)zkℏ

.

First of all, it is clear that

)
)ziℏ

= 1
2
⎛
⎜
⎝

2∑

j=1
Hess(ℏ−1 + gP)ij

)
)xj

−
√
−1 )

)y̌j
⎞
⎟
⎠
→ −

√
−1
2

)
)y̌i .

at every point as ℏ → 0. Put gi ∶=
)gP
)xi

and  i ∶=
) 
)xi

. Note that

 1 =2x1 + x2 − 1,
 2 =x1 + 2x2 − 1

and  1− 2 = x1−x2. To compute lim
ℏ→0

Γkij(ℏ), we decompose P into three pieces

P0 ∶=P ∩ { 1 ≤ 0,  2 ≤ 0},
P1 ∶=P ∩ { 1 ≥ 0,  1 ≥  2},
P2 ∶=P ∩ { 2 ≥ 0,  2 ≥  1}.

For x ∈ P̊0, we have

lim
ℏ→0

1
1 + |wℏ|2

= lim
ℏ→0

1
1 + e2g1e2ℏ−1 1 + e2g2e2ℏ−1 2

= 1

lim
ℏ→0

|w1
ℏ|
2

1 + |wℏ|2
= lim
ℏ→0

e2g1e2ℏ−1 1
1 + e2g1e2ℏ−1 1 + e2g2e2ℏ−1 2

= 0,

lim
ℏ→0

|w2
ℏ|
2

1 + |wℏ|2
= lim
ℏ→0

e2g2e2ℏ−1 2
1 + e2g1e2ℏ−1 1 + e2g2e2ℏ−1 2

= 0,

as  1,  2 < 0. For x ∈ P̊1, we have

lim
ℏ→0

1
1 + |wℏ|2

= lim
ℏ→0

e−2ℏ−1 1
e−2ℏ−1 1 + e2g1 + e2g2e2ℏ−1( 2− 1)

= 0,

lim
ℏ→0

|w1
ℏ|
2

1 + |wℏ|2
= lim
ℏ→0

e2g1
e−2ℏ−1 1 + e2g1 + e2g2e2ℏ−1( 2− 1)

= 1,

lim
ℏ→0

|w2
ℏ|
2

1 + |wℏ|2
= lim
ℏ→0

e2g2
e−2ℏ−1 2 + e2g1e2ℏ−1( 1− 2) + e2g2

= 0.

Similarly, we have, for x ∈ P̊2,

lim
ℏ→0

1
1 + |wℏ|2

=0

lim
ℏ→0

|w1
ℏ|
2

1 + |wℏ|2
=0,
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lim
ℏ→0

|w2
ℏ|
2

1 + |wℏ|2
=1.

The potential function � of the Fubini-Study metric de�nes an isomorphism
d� ∶ Nℝ → P̊, which is known as the Legendre transform. Since d�maps �̊i to
P̊i, we have a singular connection ∇

trop
FS on the total space TNℝ, de�ne by

∇trop
FS ∶=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

d −
√
−1 (−1 0

0 0) dy̌
1 −

√
−1(0 0

0 −1) dy̌
2 if � ∈ �̊0,

d −
√
−1 (1 0

0 1) dy̌
1 −

√
−1(0 0

1 −1) dy̌
2 if � ∈ �̊1,

d −
√
−1 (−1 1

0 0) dy̌
1 −

√
−1(1 0

0 1) dy̌
2 if � ∈ �̊2,

with respective to the frame {
√
−1 )

)y̌i
}. we candiagonalize the twonon-diagonal

matrices by

( 1 0
−1 1) (0 0

1 −1) (1 0
1 1) = (0 0

0 −1) ,

(1 −1
0 1 ) (−1 1

0 0) (1 1
0 1) = (−1 0

0 0) .

These amount to a gauge transform of∇trop
FS . Hence with respective to the new

frame,

∇trop
FS =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

d −
√
−1 (−1 0

0 0) dy̌
1 −

√
−1(0 0

0 −1) dy̌
2 if � ∈ �̊0,

d −
√
−1 (1 0

0 1) dy̌
1 −

√
−1(0 0

0 −1) dy̌
2 if � ∈ �̊1,

d −
√
−1 (−1 0

0 0) dy̌
1 −

√
−1(1 0

0 1) dy̌
2 if � ∈ �̊2,

(1)

Remark 3.2. It is straightforward to show that the above gauge change is the
ℏ → 0 limit of the (non-holomorphic) change of frame

Hℏ ∶
⎧

⎨
⎩

)
)z1ℏ

↦ )
)z1ℏ

− |w1
ℏ|
2

1+|wℏ|2
)
)z2ℏ
,

)
)z2ℏ

↦ )
)z2ℏ

− |w2
ℏ|
2

1+|wℏ|2
)
)z1ℏ
.

One can easily check that dHℏ ⋅ H−1
ℏ → 0 as ℏ → 0 and obtain (1).

Now we construct a tropical Lagrangian multi-section from ∇trop
FS . For each

cone �k, we let �±k be two copies of �k. De�ne six linear functions '±k ∶ �
±
k → ℝ

by

'−0 ∶ (�
1, �2) ↦ −�1,

'+1 ∶ (�
1, �2) ↦ �1,
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'−2 ∶ (�
1, �2) ↦ �2.

'+0 ∶ (�
1, �2) ↦ −�2,

'−1 ∶ (�
1, �2) ↦ �1 − �2,

'+2 ∶ (�
1, �2) ↦ �2 − �1

We obtain a topological space L by gluing �±0 with �∓1 and �∓2 along v1 and v2,
respectively, and glue �±1 with �∓2 along v0. The topological space L is homeo-
morphic toNℝ and by choosing a branch cut, say along v0, it is easy to see that
the projection map � ∶ L → |Σ| ≅ Nℝ given by mapping �±k → �k can be iden-
ti�ed with the square map z ↦ z2 on ℂ. Moreover, {'±k } glue to a continuous
piecewise linear function ' on L. See Figure 1. If we take the “trace" of ', we
obtain a piecewise linear function that de�nes the line bundle O(3), which is
of course isomorphic to det(Tℙ2) as a holomorphic line bundle.

Figure 1. The tropical Lagrangian L.

In summary, we obtain

Proposition 3.3. The data L ∶= (L, �, ') de�nes a tropical Lagrangian multi-
section.

Remark 3.4. In [32], instead of Hermitian structure, Payne used equivariant
structure of Tℙ2 to construct the same tropical Lagrangian multi-section.

Remark 3.5. One should think of the topological space L and the di�erential of
the function ' as the tropical limit of certain rank 2 Lagrangian multi-section of
p ∶ Y → Nℝ that is mirror to Tℙ2 . If we formally apply the SYZ transform to
the Lagrangian multi-section d' ∶ L → Y, we obtain (1). See [15] for precise
de�nition of SYZ transform of unbranched Lagrangian multi-sections.

3.2. ReconstructingTℙ2 . As inRemark 3.5, the function' should be thought
of as the potential function of a Lagrangian multi-section and thus “d'" is the
Lagrangian itself. For each �±k , let ℒ

±
k be the trivial line bundle OUk . Put

ℰ0 ∶= ℒ−
0 ⊕ℒ+

0 ,
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ℰ1 ∶= ℒ+
1 ⊕ℒ−

1 ,
ℰ2 ∶= ℒ−

2 ⊕ℒ+
2 .

Let e±k be a global frame of ℒ±
k . They give a natural ordered frame for ℰk. Ac-

cording to the gluing of (L, '), we should glue these ordered frame as follows

(e−0 , e
+
0 ) ↔ (e+1 , e

−
1 ),

(e+1 , e
−
1 ) ↔ (e−2 , e

+
1 ),

(e−2 , e
+
2 ) ↔ (e+0 , e

−
0 ).

The composition of these maps is the monodromy e±0 ↦ e∓0 of the unbranced
covering map �|L∖�−1(0) ∶ L∖�−1(0) → Nℝ∖{0}. In view of the SYZ transform
de�ned in [15], we need to weight each gluing by the exponential of the di�er-
ence of local potential functions, which is an a�ne function. Motivated by this,
we should look at the monomial associated to the minus of the slope di�erence
in our case. This gives the following set of naive transition functions

�sf10 ∶=
⎛
⎜
⎝

a0
(w1

0)2
0

0 b0
w1
0

⎞
⎟
⎠
, �sf21 ∶=

⎛
⎜
⎝

b1
w2
1

0
0 a1

(w2
1)2

⎞
⎟
⎠
, �sf02 ∶=

⎛
⎜
⎝

0 b2
w0
2a2

(w0
2)2

0
⎞
⎟
⎠
,

for some constants ai, bi ∈ ℂ×. Since tr(') is a piecewise linear function de�n-
ing O(3), we should impose the condition

2∏

i=0
aibi = −1.

This condition can be regarded as a rank 1 system on L∖�−1(0) with mon-
odromy −1 as follows. For each maximal cone �±i ⊂ L, choose a neighborhood
V±
i ⊂ L∖�−1(0) of �±i ∖�

−1(0) such that V±
i ∩ V±

j is non-empty if and only if
�±i ∩�

±
j ≠ �−1(0). Hence, by our convention, only V+

i ∩V
−
j are non-empty, for

i, j distinct. De�ne a rank 1 local systemℒ on L∖�−1(0) by setting its transition
functions to be

a0 on V−
0 ∩ V

+
1 ,

a1 on V+
1 ∩ V

−
2 ,

a2 on V−
2 ∩ V

+
0 ,

b0 on V+
0 ∩ V

−
1 ,

b1 on V−
1 ∩ V

+
2 ,

b2 on V+
2 ∩ V

−
0 .

The condition
∏2

i=0 aibi = −1 simply says that ℒ has monodromy −1. So the
constants in the naive transition functions are coupled with the local system
data. However, it is clear that {�sfij } doesn’t satisfy the cocycle condition. This
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is due to the non-trivial a�ne monodromy of the branched covering map � ∶
L → Nℝ.

Remark 3.6. Although {�sfij } does not form a vector vector bundle on ℙ2, they do
form a rank 2 bundle ℰsf on the singular spaceD0 ∪D1 ∪D2 because each divisor
Dk is covered by the two chartsUi ∩ Dk, Uj ∩ Dk for i, j, k = 0, 1, 2 begin distinct
and there are no triple intersections, so the cocycle condition is vacuous. Since the
torus (ℂ×)2 ⊂ ℙ2 corresponds to the point 0 ∈ Nℝ, which is exactly the branched
point of� ∶ L → Nℝ, from the SYZ transform perspective, ℰsf should be regarded
as the mirror bundle of L0 ∶= (L∖�−1(0), �|L∖�−1(0), '|L∖�−1(0)) and thus deserve
the name semi-�at mirror bundle of L.

In order to obtain a consistent gluing, we have to modify each �sfij by an in-
vertible factor. We choose the correction factors to be

Θ10 ∶=I +
⎛
⎜
⎝

0 0
−a0b1a2

w2
0

w1
0

0
⎞
⎟
⎠
∈ Aut

(
ℰ0|U10

)
,

Θ21 ∶=I +
⎛
⎜
⎝

0 −a0a1b2
w0
1

w2
1

0 0

⎞
⎟
⎠
∈ Aut

(
ℰ1|U21

)
,

Θ02 ∶=I +
⎛
⎜
⎝

0 0
−b0a1a2

w1
2

w0
2

0
⎞
⎟
⎠
∈ Aut

(
ℰ2|U02

)
,

For each j = 0, 1, 2, the factor Θij is written in terms of the frame on Uj and is
only de�ned onUij. De�ne �′ij ∶= �sfij Θij. A straightforward calculation shows
that

Proposition 3.7. With the condition
∏

i aibi = −1, we have
�′02�

′
21�

′
10 = I. (2)

Thuswe obtain a rank 2 holomorphic vector bundleℰ onℙ2, whichwe called
the instanton-corrected mirror of the tropical Lagrangian multi-section L. Fur-
thermore, we have

Theorem 3.8. The instanton-corrected mirror of the tropical Lagrangian multi-
section L is isomorphic to the holomorphic tangent bundle Tℙ2 of ℙ2.
Proof. We de�ne f ∶ Tℙ2 → ℰ by

f|U0 ∶= f0 ∶=(1 0
0 a0b1a2

) ,

f|U1 ∶= f1 ∶=(−a0 0
0 −a−11 b−12

) ,

f|U2 ∶= f2 ∶=(−a0b1 0
0 b−12

) .
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Using
∏

i aibi = −1, one can check that

�′02f2 = f0�02, �′21f1 = f2�21, �′10f0 = f1�10.

Hence, f de�nes an isomorphism. �

Remark 3.9. As pointed out by Fukaya [22], Section 6.4, the local system ℒ
(which he called an orientation twist) is related to the orientation of certain mod-
uli space of holomorphic disks.

3.3. The wall-crossing factors. In Section 3.2, we have introduced three in-
vertible factors

Θ10 ∶=I +
⎛
⎜
⎝

0 0
−a0b1a2

w2
0

w1
0

0
⎞
⎟
⎠
∈ Aut

(
ℰ0|U10

)
,

Θ21 ∶=I +
⎛
⎜
⎝

0 −a0a1b2
w0
1

w2
1

0 0

⎞
⎟
⎠
∈ Aut

(
ℰ1|U21

)
,

Θ02 ∶=I +
⎛
⎜
⎝

0 0
−b0a1a2

w1
2

w0
2

0
⎞
⎟
⎠
∈ Aut

(
ℰ2|U02

)
,

to modify the naive transition functions �sfij . In this section, we give a heuris-
tic explanation about how Θij are related to holomorphic disks bounded by
the (conjecturally exists) mirror Lagrangian of Tℙ2 . In terms of the coordinates
wi = wi

0, each factor Θij determines a Fourier mode3mij ∈ M, where

m10 ∶= (1, −1), m21 ∶= (0, 1), m02 ∶= (−1, 0).

Letnij ∈ N be the primitive integral tangent vector so that ifwe identifyNℝ,Mℝ
with ℝ2 and the natural pairing ⟨−,−⟩ with the standard inner product on ℝ2,
{nij, mij} forms an orientable orthonormal basis with respective to the standard
volume form dx ∧ dy on ℝ2. Then we have

n10 ∶= (−1,−1) n21 ∶= (1, 0), n02 = (0, 1), .

See Figure 2.

3By our convention, the Fourier mode of e(m,z) is −m ∈ M
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Figure 2

Hence, the cocycle condition (2) can be understood as the wall-crossing dia-
gram as shown in Figure 2. Furthermore, in view of [27], the walls of the mir-
ror Lagrangian should concentrate on a small neighborhood of

⋃
i≠j ℝ≥0⟨nij⟩

as ℏ → 0.
The closed stringwall-crossing phenomenon has been studied in [29, 24, 12].

The wall-crossing factors are elements of the so called tropical vertex group.
They are responsible for correcting the semi-�at complex structure by Maslov
index 0 disks bounded by those SYZ �bers over a wall. In our case, which is an
open theory, the factors {Θij} are responsible for correcting the “semi-�at bun-
dle" {�sfij } by non-trivial holomorphic disks bounded by SYZ �bers over walls
and the mirror Lagrangian of Tℙ2 .

We end this section by stating the following

Conjecture 3.10. There exists a connected rank 2 Lagrangian multi-section L of
the Lagrangian torus �bration p ∶ T∗Nℝ∕N → Nℝ so that for any � > 0, there
exists � > 0 such that if ℏ ∈ (0, �), the �-tubular neighborhoodU� of⋃

i≠j
ℝ≥0⟨nij⟩

contains the walls of L. Furthermore, as an object in the Fukaya-Seidel category
of T∗Nℝ∕N, L is quasi-isomorphic to a cone between the zero section L0 and the
direct sum L⊕31 .

As the SYZ transform of L0 and L1 is given by the structural sheaf O and
the line bundle O(1), respectively, this conjecture is nothing but a symplecto-
geometric analog of the Euler sequence for ℙ2.

Appendix A. Local model for caustics
In this appendix, we give a review on Fukaya’s local model on caustic points

[22], Section 6.4.
Let B ∶= ℂ and X ∶= ℂ2. Equip X with the standard symplectic structure

! = dx1 ∧ dy1 + dx2 ∧ dy2
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and holomorphic volume form

Ω = dz1 ∧ dz2,

where zi = xi +
√
−1yi are the standard complex coordinates on X. After a

hyperkähler rotation, we have complex coordinates

x = x1 +
√
−1x2, y = y1 −

√
−1y2.

Fukaya considered the Lagrangian

L ∶= {(x2, x̄)|x ∈ B} ⊂ X
With respective to p ∶ X → B, the projection onto the �rst coordinate, L is a
special Lagrangian multi-section of rank 2. Parameterizing L in terms of polar
coordinates:

L = {(re
√
−1�,

√
re−

√
−1 �

2 ) ∈ ℂ2 ∶ r ≥ 0, � ∈ ℝ}.
Let u ∶ [0, 1] × [−1, 1] → X be given by

u(s, t) ∶= (sre
√
−1�, t

√
sre−

√
−1 �

2 ).
De�ne

fL(x) ∶= ∫
1

−1
∫

1

0
u∗!.

An elementary calculation shows that

fL(x) =
4
3r

3
2 cos (3�2 ) .

PropositionA.1. There are precisely three gradient �ow lines offL starting from
the origin.

Proof. In polar coordinates, we have

∇fL = 2
√
r cos (3�2 ) )

)r −
2ℏ−1
√
r
sin (3�2 ) )

)� .

Then the gradient �ow equation

(ṙ, �̇) = ∇fL(r, �)
has solution given by

r
2
3 sin (3�2 ) = C,

where C is a real constant. If the gradient �ow lines start from the origin, then
we have C = 0. Hence, the gradient �ow lines are precisely those straight lines
along the directions

� = 0, � = 2�
3 , � = 4�

3 .
�
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The three gradient �ow lines emitting from the origin of B, namely,

(0, 12) ∋ t ↦ te
√
−1�, with � = 0, 2�3 , 4�3 ,

should correspond to three holomorphic disks bounded by L and those �bers
of p ∶ X → B supported on these rays.

Let p̌ ∶ X̌ → B be the dual �bration of p ∶ X → B and de�ne

B>0 ∶=B∖{x ∈ ℂ ∶ x1 ≤ 0},
B>0 ∶=B∖{x ∈ ℂ ∶ x1 ≥ 0},
X̌>0 ∶=p̌−1(B>0),
X̌<0 ∶=p̌−1(B<0).

Equip L0 ∶= L∖{0}with a local systemℒwith holonomy−1. Themirror bundle
ℰ0 of (L∖{0}, ℒ) has local holomorphic frame ě1, ě2 on X̌>0. More precisely,

ěj = e−
2�
ℏ
fi 1̌i, i = 1, 2,

The monodromy action around the �ber {(0, 0)} × T2 is given by

ě1 ↦ě2,
ě2 ↦− ě1.

Let )̄0 be the Dolbeault operator of ℰ0. We need to extend this complex struc-
ture to the whole space X. Let’s delete a small disk D around the origin of B.
Let � > 0 be small and b� be a 1-from onℝ, supported on [−�, �] and ∫ℝ b� = 1.
De�ne three elements in A0,1(X̌>0, End(ℰ0)):

B̌0 ∶= − Hev(⟨x, v0⟩)ℱ(Π∗
0b�)ě

∗
1 ⊗ ě2,

B̌1 ∶=Hev(⟨x, v1⟩)ℱ(Π∗
1b�)ě

∗
2 ⊗ ě1,

B̌2 ∶=Hev(⟨x, v1⟩)ℱ(Π∗
2b�)ě

∗
2 ⊗ ě1,

whereHev ∶ ℝ → ℝ is the Heaviside function:

Hev(x) = { 1 if x ≥ 0,
0 if x < 0,

Πj ∶ ℝ2 → ℝ ⋅ v⟂j , j = 0, 1, 2, are the orthogonal projections:

Πj(x) ∶= x − ⟨x, vj⟩vj,

and ℱ is the Fourier transform sending dxi to dz̄i. By choosing � > 0 small
enough (such a choice of � depends on the radius of the diskD), wemay assume
B̌0, B̌1, B̌2 have disjoint support on p̌−1(B>0∖D). Let

B̌ ∶= B̌0 + B̌1 + B̌2 ∈ A0,1(p̌−1(B>0∖D),End(ℰ0)).
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Since the support of B̌i’s are all away from the ray {(x1, x2)|x1 ≤ 0}, B̌ can be
extended to p̌−1(B∖D). Clearly, )̄0B̌ = 0 and [B̌, B̌] = 0 since B̌j’s have disjoint
support. Therefore, we have

)̄0B̌ +
1
2[B̌, B̌] = 0,

which means )̄0 + B̌ de�nes a holomorphic structure on the rank 2 complex
vector bundle ℰ0|p̌−1(B>0∖D).

Proposition A.2. The holomorphic structure )̄0 + B̌ is monodromy free around
the �ber p̌−1(0). Hence, (ℰ0, )̄0 + B̌) extends to a holomorphic bundle ℰ on X̌.
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