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Reconstruction of holomoprhic tangent
bundle of complex projective plane via
tropical Lagrangian multi-section

Yat-Hin Suen

ABSTRACT. In this paper, we study the reconstruction problem of the holo-
morphic tangent bundle of the complex projective plane. We introduce the
notion of tropical Lagrangian multi-section and cook up one tropicalizing
the Chern connection associated the Fubini-Study metric. Then we perform
the reconstruction of the tangent bundle from this tropical Lagrangian multi-
section. Walling-crossing phenomenon will occur in the reconstruction pro-
cess.
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1. Introduction

Mirror symmetry is a duality between symplectic geometry and complex ge-
ometry. The famous SYZ conjecture [33] allows mathematicians to construct
mirror pairs and explain homological mirror symmetry [28] geometrically via
a fiberwise Fourier-Mukai-type transform, which we call the SYZ transform.

The SYZ transform has been constructed and applied to understand mirror
symmetry in the semi-flat case [6, 31, 30, 17] and the toric case [1, 2, 18, 20,
21, 8, 10, 11, 9, 16, 13, 14, 19]. But in all of these works the primary focus
was on Lagrangian sections and the mirror holomorphic line bundles the SYZ
program produces. For higher rank sheaves, Abouzaid [3] applied the idea of
family Floer cohomology to construct sheaves on the rigid analytic mirror of
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a given compact Lagrangian torus fibration without singular fiber. Recently,
applications of the SYZ transform for unbranched Lagrangian multi-sections
have been study by Kwokwai Chan and the author in [15].

In this paper, we study the holomorphic tangent bundle T2 of P? in terms of
mirror symmetry. Via SYZ construction, the mirror of P? is given by a Landau-
Ginzburg model (Y, W) (see Section 2 for a brief review). It carries a natural
fibration p : Y — Ni = R2?, which is dual (up to a Legendre transform) to
the moment map fibration of P2. Since Tp: is naturally an object in the derived
category D?Coh(IP?), it is natural to ask what is its mirror Lagrangian in Y. Be-
ing a rank 2 bundle, the mirror Lagrangian of Tp: is expected to be a rank 2
Lagrangian multi-section of p : Y — Ny with certain asymptotic conditions.
As the base N of the fibration p is simply connected, every unbranched cov-
ering map is trivial. But T is certainly indecomposable. Hence, we are led to
consider branched Lagrangian multi-section and the SYZ transform defined in
[6, 15, 31] cannot be applied directly. To overcome this technicality, we intro-
duce the notion of tropical Lagrangian multi-section and reconstruct Tp: from
this tropical object.

Definition 1.1 (=Definition 3.1). Let B be an n-dimensional integral affine man-
ifold without boundary. A rank r tropical Lagrangian multi-section is a triple
L :=(L, 7w, ), where

a) L is a topological manifold.

b) © : L — B a covering map of degree r with branch locus S C B being a
union of locally closed submanifolds of codimension at least 2.

c) ¢ = {py}is a multi-valued function on L such that on any two affine
charts U,V C L\r~(S) (with respective to the induced affine structure
on L\7~1(S)via 7),

Py — v =(m,x) + b,
forsomem € 7" and b € R.

Let Z be the fan corresponds to P? and vy, v;, U, be its primitive generators.
The tropical Lagrangian multi-section is obtained by “tropicalizing” the Chern
connection associated to the Fubini-Study metric. We will do this in Section
3.1 by considering a family of Kihler metrics on P2, which gives rise to a family
of Chern connections, parameterized by a small real number % > 0. We com-
pute the limit # — 0 of the connections to obtain the “tropical connection”,
which can be regarded as a singular connection on the total space TNR. From
the tropical connection, we can cook up six linear functions go;f, k=0,1,2, for
which gol'f are defined on oy, the cone generated by the rays v;, v, i, j # k. Let
a;f be two copies of o, and we consider go;{“ (resp. ¢, ) as a function defined on
o';: (resp. o;). A piecewise linear function ¢ and an integral affine manifold L
can be obtained by gluing cpi : al'{—F — R together in a continuous manner. By
projecting o;f to oy, we obtainamap 7 : L - Ng. The triple L := (L, 7, p)
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forms a rank 2 tropical Lagrangian multi-section. See Section 3.1 for the de-
tailed construction.

Section 3.2 will be devoted to reconstructing T'p: from the tropical Lagrangian
multi-section L. Let U} be the affine chart corresponds to the cone o;.. For each
alf, we associate a trivial line bundle Li = Oy, and so, we have a trivial rank
2 bundle on U by taking direct sum. As the summands are indexed by the
maximal cones of L, the gluing of L tell us how to glue these trivial rank 2 bun-
dles together on U;; := U; N U;. Motivated by [15], we can write down three

. oy . S N S, . . .
naive transition functions rlg , 12{ , TOJ; by considering the slope differences of ¢’
on different maximal cones. However, this naive gluing is inconsistent due to

the affine. In order to obtain a consistent gluing, we modify the naive transi-
tion functions by three invertible factors ©y, ©,;, ©y,. Put T;. i= Tfjf 0;;. These
new transition functions satisfy the cocycle condition and hence define a rank
2 holomorphic vector bundle defined on P2, which we call it the instanton-
corrected mirror of L. Moreover, we have

Theorem 1.2 (=Theorem 3.8). The instanton-corrected mirror of the tropical
Lagrangian multi-section L is isomorphic to the holomorphic tangent bundle Tp>
of P2.

In the last section, Section 3.3, we will discuss the relationship between the
factors {©;;} and the family Floer theory of the (conjecturally exists) mirror La-
grangian of Tp2. The Fourier modes m;; € M of ©;;, determine three cotangent
directions of N the origin. As the Lagrangian L is tropical, we cannot expect
one can determine which fibers of p will bound holomorphic disk with the hon-
est Lagrangian. Nevertheless, m;; should be regarded as the normal directions

of walls' emitting from the branched point 0 € Ng.

In Appendix A, we will give a detailed review of Fukaya’s local model on
caustic points and his construction of mirror bundle via deformation theory
[22], Section 6.4. This gives a symplecto-geometric explanation for the walling-
crossing phenomenon in our reconstruction process.

Acknowledgment. The author is grateful to Byung-Hee An, Kwokwai Chan,
Ziming Nikolas Ma and Yong-Geun Oh for useful discussions. A special thanks
goes to Katherine Lo for her encouragement during this work.

2. SYZ mirror symmetry of P2

We begin with reviewing some elementary facts about the complex projective
plane P2.
Let N = 72 be a lattice of rank 2 and set

NR :=N®Z R, M :=H0mz(N,Z), MR :=M®Z R.

1A wall is a codimension 1 submanifold W c N r for which there is a non-trivial holomorphic
disk bounded by the Lagrangian and those fibers over W.
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Let X be the fan with primitive generators
UO = (1, 1) Ul = (—1, 0), 02 = (0, —1),

The associate toric variety X5 is the complex projective plane P2. The dense
torus of P? can be identified with TN /N. Let p : TNr /N — Ng be the natu-
ral projection. Denote the coordinates on N by £! and the fiber coordinates of
P by yi. Complex coordinates on TNy /N are given by

wi = e? 1= e+
There is an 1-1 correspondence? between supporting functions on |Z| = Ny
and (C*)2-equivariant line bundles on P2. Explicitly, the equivariant line bun-
dle O(ayDy+a;D;+a,D,) corresponds to the supporting functionp : Ny — R,

defined by setting ¢(v;) : = q;.
Let

g := Ry, 02) 01 1= Ry{vg, 02), T3 1= Ryo{vg, Uy).

and Uj, = C? be the affine chart corresponds to the cone oy, for k = 0,1,2. We
can trivialize Tp2 on Uy by

Ty, 2 (o < &1 Glo) e (wh,wl, vl v]) € C2x €

fori, j,k =0,1,2distinct and i < j. Here,

; ;0 i 0
w, 1= S andv =: v — + vi—j.
Se dw, dw,
The transition functions 7;; := 7:1-01']._1 are given by
— 0 1w w1
(wy)? w? w?)2 wl2  w?
Ti0 = w2 1 T2 =] ! ( f) »Toz = ( f) 2
—— = 0o - — 0
W w) (w?)? (w))?

Remark 2.1. We can relate the coordinates w' on TNk /N and the inhomoge-
neous coordinates w, by setting w' = w|cxy-

It is well-known that [P? carries a Kihler-Einstein metric, called Fubini-Study
metric. It is the Hermitian metric associated to the (1, 1)-form

wpg 1= 2\ —1334(8),
where
$&) 1= %log(l + %' 28,

2We use the convention that if a piecewise linear function f is given by f(v;) = a;, then the

corresponding line bundle is given by O (Z a;D; )

i=0
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Let Vgg be the Chern connection associated to the the Fubini-Study metric.
With respective to the holomorphic frame {56_1’ aa—z}, it can be written as
w w

1 2|w!|? wlu')z) |w?|? 0
\Y% =d——[< dz' +( - dz?|,
FSIUO 1+ |LU|2 0 |w1|2 w1w2 2|w2|2
where |w|? : = |w!|?>+|w?|?. For the purpose of this paper, we need the formula

of Vgg|y, in terms of the frame {i, i}. We have
dzl" 9z2
0

.0 . o) . o)
Vs (a_> = Vs (wm) =dz'® 777 + W Vrs (aw)

Hence, Vgg|y, is equal to d minus

1 |w1|2_|w2|2_1 |w2|2) |w2|2 0
_— dzl+< >d22 )
1+ |wl|? [( 0 lw!|? [w'? [w?)? = Jw!* -1

2.1. SYZ mirror symmetry of P2. Now, we jump to SYZ mirror symmetry of
P2. The mirror of P? is given by the Landau-Ginzburg model (Y, W), where

Y :=T*Ng/M
q
w t= —
(21,25) =21tz + 7z,
and q > 0 is a positive constant. The complex coordinates z; are given by

z; 1= etV

where x; is the affine coordinates on P and y; are the fiber coordinates. One can
equip Y with the standard symplectic structure

Wy = dé‘l /\d}’1 + d§2 A dyz,
and the holomorphic volume form

QY = % A %
Z1 Z3

Let p : Y — Np be the natural projection, which is clearly dual to p :
TNr/N — Npg. The homological mirror symmetry conjecture predicts that
Lagrangian branes in Y should be mirror to coherent shaves in P2. In [8], Chan
consider Lagrangian sections of p : Y — Ny with certain decay conditions at
infinity and define its SYZ mirror line bundle on P2. Roughly speaking, given
such a Lagrangian section L, one can associate a line bundle I — P? together
with a connection Vy, so that with respective to a local unitary frame 1, one has

Vi i=d=V=1(fi())dy" + f>(§)dy?).
where (fy, f,) are local defining equations of L. In fact, every such connec-
tion is compatible with the metric e=?F', where F is a local potential function
of the Lagrangian section L. In terms of the local holomorphic frame e~F1, the
connection becomes

d— (fl(g)dzl + f2(§)dzz) .
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As an example, by using the potential function ¢ of wgg, for each k € Z, we
can define the Lagrangian section

Ly :={(§.k-d¢(§) €Y : § € Ng}.

The mirror bundle of L, is the line bundle O(k) together with the connection

k|w1|2 k|w2|2
Vie=d- dz! dz?|.
k (1+|w|2 Z+1+|w|2 z

Note that k-¢ is a smoothing of the supporting function corresponds to O(kD,) =
Op:(k) as

lim glogt(l + 1% +125%) = max{0, k&', k&2}.
t—>o0

Thus the differential of supporting functions should be regarded as singular
Lagrangian sectionsof p : Y — Np.

3. A tropical Lagrangian multi-section associated to T. and
reconstruction

In this section, we introduce the notion of tropical Lagrangian multi-section
and construct one by tropicalizing the Chern connection associated to the Fubini-
Study metric. We then perform the reconstruction of Tp: from the tropical La-
grangian multi-section. The wall-crossing phenomenon will be discussed in
the last subsection.

We now introduce the following

Definition 3.1. Let B be an n-dimensional integral affine manifold without bound-
ary. A rank r tropical Lagrangian multi-section is a triple L := (L, 7, ¢), where

a) L is a topological manifold.

b) 7 : L — B a covering map of degree r with branch locus S C B and
ramification locus S’ C L being a union of locally closed submanifolds of
codimension at least 2.

c) ¢ = {py}is a collection of local continuous functions on L such that on
any two affine charts U,V C L\S’ (with respective to the induced affine
structure on L\S' via 7),

pu — ey ={m,x) + b,
forsomem € Z" and b € R.

Definition 3.1 is a straightforward generalization of the notion of polariza-
tion in the famous Gross-Siebert program [23, 25, 26]. We also remark that the
domain L can be disconnected in general. But in this paper, L is connected and
the multi-valued function ¢ is a single-valued continuous function.
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3.1. Construction of the tropical Lagrangian multi-section. In order to
obtain a tropical Lagrangian for T2, we need to “tropicalize” the Chern con-
nection associated to the Fubini-Study metric.

To do this, we construct a family {(X},, w5 )},s of Kdhler manifolds. Let

P = {(xl,xZ) e MR . xl,xZ Z 0,x1 +x2 S 1}
be a moment polytope of P2 and P be its interior. Let
g i=gp+h Y.
where
1
gp(x) =3 (xq log(xy) + x5 log(x,) + (1 — x; — x) log(1l — x; — x3)),
»(x) :=xf + x% + X1Xy — X1 — X5

The Legendre dual coordinates are denoted by

i ._ 98n

. Zon

gh ) axi

They are related to the original coordinates via

& =8+ h‘lg—i.
Put
w = T e . )
A straightforward calculation shows that

Hess(gp + h™ 1) >0,
1
ap(X)x1 (1 = X1 — x;)’

det(Hess(gp + h™1)) =

for some smooth function a; : P — R so that if we choose # > 0 small enough,
ay(x) > 0, for all x € P. These are precisely the compatibility conditions stated
in [4, 5], which guarantee the complex coordinates w; can be extended to U, C
P2. Thus, we get a family of complex manifolds {X}}-o. Each member of this
family can be identified with P2 via

1. 2]

Iy, - (w%’wﬁ)'—) [1:w, :

We define
Wp 1= WRs
and the associated connection by V", which is given by

Vheg__ L w1 = [wyl? =1 wy]? 4z
0 jwl 2| 22

lwy|? 0 )
+ h dz?|,
(Iw;l.,l2 lwp > = [wp|>=1)""h
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under the frame {aii} and the coordinates {z;l}. We want to compute
zZ
n

lim V" ——_1 rk e
hl—r»r(l)vazl az' hl—I}(l)Zl (h)

First of all, it is clear that

o}
azh

3| V134

ayi | 7 T2 ey

Z Hess(h™'9 + gp)”i —-V-1
oxJ

j=1
agp 9%
at every pointas 7 — 0. Put g; : -and ¢; 1= o Note that
Xi
I)bl =2x1 +x2—1,
‘(,b2 = x1 + ZXZ -1
and ¥, —¥, = x; —X,. To compute %in(l)Fi.‘j(h), we decompose P into three pieces
Py :=Pn{p; <0,9, <0},

Py :=Pn{Y; 20,9 > 5},
Py, :=Pn{yh, 20,9, > 9y}

For x € 150, we have
1

lim ———— =lim =
h—0 1+ |wyl|?2  h=01 4 281207 'Y1 4 28202079,
|w;l|2 1 62g162h71¢1
1Im ————-=1m =
n—-01+ Iwh|2 h—0 1 + 281207191 4 282020719, ’
212 -1
|wh| 62g2e2h 7’[’2

im ——— =lim =0
=014 |wyl|2  h—01 4 e281e287'Y1 4 028202072 ’

as 1y, 9, < 0. For x € PB;, we have

e—2h7 P

lim ———— = lim —— o,
h—01+ |wh|2 h—0 20711 4 0281 4 02820207 (Y2—71)

12

m bl lim s 1

1 _— =11 =
=014 |wy|2  h—0 =271 4 @281 4 2820207 (h2—%1) ’

212

|wh| eZgz

— = 11Im
=014 |wy|2 k-0 e=207'%s 4 e2810207 (h1=%2) 4 0282

Similarly, we have, for x € 152,
lim —— =
h=0 1+ |wp|?
112
lw, |

m-——--——
n—01+ |wh|2
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w2 |2
im—— =
h=0 1+ [wy]?
The potential function ¢ of the Fubini-Study metric defines an isomorphism
d¢ : Ng — P, which is known as the Legendre transform. Since d¢ maps &; to

B;, we have a singular connection V;r;p on the total space TN, define by
d—\/—1<_01 8)@1—\/—1(8 _01>d)72 ifE e 6,
rop . _ ) o (1 O\ (0 O\ ..o .

Vipg =1 d—=v 1(0 1)dy Y 1(1 1 dy if ¢ € 54,
d—\/—1<_01 é)dj)l—\/—l((l) (1)>d)72 ifE s,

with respective to the frame {y/ —1 %}. we can diagonalize the two non-diagonal
yl

1 0\/0 0)\/1 0y (0 O
-1 1)\1 -1)\1 1/ \0 -1)°
1 -1\/-1 1)\1 1} (-1 O
0 1 0 o/\o 1/ \o0o 0/
These amount to a gauge transform of Vzgp . Hence with respective to the new
frame,

matrices by

(
d—\/—1<_01 g)dyl—\/—1<8 _Ol)djzz ifE €8,
trop _ | V. 1 0 1 0 O "2 . o

Vg =1 d—=V 1(0 1)dy V 1(0 1 dy iftes, Q)
d—\/—1<_01 8>dj11—\/—1((1) (1)>djz2 it e s,

\

Remark 3.2. It is straightforward to show that the above gauge change is the
h — 0 limit of the (non-holomorphic) change of frame

] 3 lwpl> 8
9z} 9z} 1+|wp|2 822’

. n h h

Hh . 9 L 3 |w;|2 3
0z 9z2  1+|wyl?dz;

One can easily check that dHy, - Hgl — 0ash — 0and obtain (1).

. . . . t
Now we construct a tropical Lagrangian multi-section from V ¢”. For each
cone oy, we let o be two copies of o.. Define six linear functions ¢ : o} = R

k
by
@y (L E) - =8,
oy 1 (ELE) - E,
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gy (L€ 8

gy 1 (§L,6) > -8,

pp (L8 E -8

qD;_ : (gl’ 52) = 52 - 51
We obtain a topological space L by gluing o with o7 and o5 along v; and v,,
respectively, and glue oz—r with o;“ along v,. The topological space L is homeo-
morphic to N and by choosing a branch cut, say along vy, it is easy to see that
the projection map 7 : L — |Z| & Ng given by mapping c;]'c—F — 0y can be iden-
tified with the square map z — z? on C. Moreover, {golf} glue to a continuous
piecewise linear function ¢ on L. See Figure 1. If we take the “trace” of ¢, we

obtain a piecewise linear function that defines the line bundle O(3), which is
of course isomorphic to det(Tp2) as a holomorphic line bundle.

— &
g a5 £ — &
oy oF -
—
oz o7
&o ay &1 — &2
— &2
L

FIGURE 1. The tropical Lagrangian L.

In summary, we obtain

Proposition 3.3. Thedata L := (L, 7, p) defines a tropical Lagrangian multi-
section.

Remark 3.4. In [32], instead of Hermitian structure, Payne used equivariant
structure of T2 to construct the same tropical Lagrangian multi-section.

Remark 3.5. One should think of the topological space L and the differential of
the function @ as the tropical limit of certain rank 2 Lagrangian multi-section of
p : Y — Np that is mirror to Tp:. If we formally apply the SYZ transform to
the Lagrangian multi-section dp : L — Y, we obtain (1). See [15] for precise
definition of SYZ transform of unbranched Lagrangian multi-sections.

3.2. Reconstructing Tp:. Asin Remark 3.5, the function ¢ should be thought
of as the potential function of a Lagrangian multi-section and thus “d¢" is the
Lagrangian itself. For each c,'f, let lli be the trivial line bundle Oy, . Put

& 1= Ly ® L,
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& =L@ L],
& =L, L.

Let el'f be a global frame of Lf. They give a natural ordered frame for &;. Ac-
cording to the gluing of (L, ), we should glue these ordered frame as follows
(ey.eq) < (e e]),
(ef,e7) < (€5, e]),

(e5.€5) < (ef,e7).

The composition of these maps is the monodromy eb—* > ea_' of the unbranced
covering map 7|\ 1oy : L\771(0) » Ng\{0}. In view of the SYZ transform
defined in [15], we need to weight each gluing by the exponential of the differ-
ence of local potential functions, which is an affine function. Motivated by this,
we should look at the monomial associated to the minus of the slope difference
in our case. This gives the following set of naive transition functions

) bl bz
T RO T . w)
0" o by 221 T 0 a Pt T @ )

w] @) w))?

for some constants a;, b; € C*. Since tr(p) is a piecewise linear function defin-
ing O(3), we should impose the condition

This condition can be regarded as a rank 1 system on L\7~!(0) with mon-
odromy —1 as follows. For each maximal cone al.i C L, choose a neighborhood

Vi < L\77'(0) of ;"\ ~'(0) such that V* n VJ“.—L is non-empty if and only if
o n cr;.—“ # 771(0). Hence, by our convention, only V" n V' are non-empty, for

i, j distinct. Define a rank 1 local system £ on L\7~!(0) by setting its transition
functions to be

aoonVaan,
aonVnvy,
aonV; NV,
byonVynVy,
byonV; nVy,
b,onVynv;.

The condition HI.ZZO a;b; = —1 simply says that £ has monodromy —1. So the
constants in the naive transition functions are coupled with the local system

data. However, it is clear that {‘L’isjf } doesn’t satisfy the cocycle condition. This
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is due to the non-trivial affine monodromy of the branched covering map « :
L— NR'

Remark 3.6. Although {‘L'l.s]f } does not form a vector vector bundle on P?, they do

form a rank 2 bundle &/ on the singular space Dy U D; U D, because each divisor
Dy is covered by the two charts U; N Dy, U; N Dy for i, j, k = 0,1, 2 begin distinct
and there are no triple intersections, so the cocycle condition is vacuous. Since the
torus (CX)? C P? corresponds to the point 0 € Ng, which is exactly the branched
pointof : L — N, from the SYZ transform perspective, %/ should be regarded
as the mirror bundle of L, := (L\71(0), | p\z-1(0)s Pl L\x-1(0)) and thus deserve
the name semi-flat mirror bundle of L.

In order to obtain a consistent gluing, we have to modify each rlsjf by an in-
vertible factor. We choose the correction factors to be

0 0

O :=I+ —aoblazw 0 € Aut (80|U10)’

&
(=Nl (=N

0
w

0 —aoalbz—;
w

0, =1+ 2 [ € Aut (&ly,,),
0 0
0 0
.o 1
®02 .—I+ _boalaz% 0 eAut (82|U02)’

2

For each j = 0,1, 2, the factor ©, i is written in terms of the frame on U i and is

= ‘L'ls]f ©;;. A straightforward calculation shows

only defined on U;;. Define T

that
Proposition 3.7. With the condition [, a;b; = —1, we have
!/ !/ !
T2 %10 = - @)

Thus we obtain a rank 2 holomorphic vector bundle € on P2, which we called
the instanton-corrected mirror of the tropical Lagrangian multi-section L. Fur-
thermore, we have

Theorem 3.8. The instanton-corrected mirror of the tropical Lagrangian multi-
section L is isomorphic to the holomorphic tangent bundle Tp> of P2

Proof. We define f : Tp. — & by

. (1 0
fon ‘_fO _<0 a0b1a2>’
—a 0
flUl :=f1 :=< 00 _a—lb—1>’

f|U23=f23=< 0 p-1
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Using Hl. a;b; = —1, one can check that

T(,)zfz = foTozs T;1f1 = f272, Tiofo = f1T10-
Hence, f defines an isomorphism. O

Remark 3.9. As pointed out by Fukaya [22], Section 6.4, the local system £
(which he called an orientation twist) is related to the orientation of certain mod-
uli space of holomorphic disks.

3.3. The wall-crossing factors. In Section 3.2, we have introduced three in-
vertible factors

0 0
@10 :=I+ —aoblazw—§ 0 EAut (golUm),
Wo
0
0 —aya;b,—L
IO € Aut (&]y,,),
0 0

0 0

@02 =1+ —boalazw—(zl) 0 € Aut (€2|U02) .
W,

to modify the naive transition functions Tfjf . In this section, we give a heuris-

tic explanation about how ©;; are related to holomorphic disks bounded by
the (conjecturally exists) mirror Lagrangian of Tp2. In terms of the coordinates

w! = wg, each factor 9, j determines a Fourier mode® m;; € M, where

mlo = (1, —1), m21 = (0, 1), moz = (—1,0).

Letn;; € N be the primitive integral tangent vector so that if we identify Np, M
with R? and the natural pairing (—, —) with the standard inner product on R2,
{n;j, m;;} forms an orientable orthonormal basis with respective to the standard
volume form dx A dy on R?. Then we have

ny :=(=1,-1) ny :=(1,0), ng =(0,1),

See Figure 2.

3By our convention, the Fourier mode of 2 is —m € M
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T2

may
T

- ng) =

Mz &——
Ty
mn

myp

Ng P

FIGURE 2

Hence, the cocycle condition (2) can be understood as the wall-crossing dia-
gram as shown in Figure 2. Furthermore, in view of [27], the walls of the mir-
ror Lagrangian should concentrate on a small neighborhood of [ J; 2 Rxo(n;;)
ash — 0.

The closed string wall-crossing phenomenon has been studied in [29, 24, 12].
The wall-crossing factors are elements of the so called tropical vertex group.
They are responsible for correcting the semi-flat complex structure by Maslov
index 0 disks bounded by those SYZ fibers over a wall. In our case, which is an
open theory, the factors {©;;} are responsible for correcting the “semi-flat bun-

dle” {Tl.sjf } by non-trivial holomorphic disks bounded by SYZ fibers over walls

and the mirror Lagrangian of Tp..
We end this section by stating the following

Conjecture 3.10. There exists a connected rank 2 Lagrangian multi-section L of
the Lagrangian torus fibration p : T*Nr /N — Npg so that for any € > 0, there
exists § > 0 such that if h € (0, d), the e-tubular neighborhood U, of

U Rxo(ny;)

i#]j
contains the walls of . Furthermore, as an object in the Fukaya-Seidel category
of T*Ngr /N, L is quasi-isomorphic to a cone between the zero section Ly and the
direct sum Lim.

As the SYZ transform of L, and L, is given by the structural sheaf O and
the line bundle O(1), respectively, this conjecture is nothing but a symplecto-
geometric analog of the Euler sequence for P2.

Appendix A. Local model for caustics

In this appendix, we give a review on Fukaya’s local model on caustic points
[22], Section 6.4.
Let B := C and X := C2. Equip X with the standard symplectic structure

w = dx! Ady, + dx? Ady,
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and holomorphic volume form
Q= le A dZZ’

where z; = x! +1/—1y; are the standard complex coordinates on X. After a
hyperkihler rotation, we have complex coordinates

x=x'+V-1x?, y=y, —V-1y,.
Fukaya considered the Lagrangian
L:={(%%)|xeBcX

With respective to p : X — B, the projection onto the first coordinate, L is a
special Lagrangian multi-section of rank 2. Parameterizing L in terms of polar
coordinates:

— ¢}
L= {(Ve\/__l@,\/;e_\/__lﬂ eC?:r>00€eR}
Letu : [0,1] X [-1,1] — X be given by

u(s,t) 1= (Sre‘/__le, tx/ge_\/__lg ).

1 L1
f7(x) :=/ f u*w.
—-1J0

An elementary calculation shows that
4 3 36
fr(x) = 372 cos <7>

Proposition A.1. There are precisely three gradient flow lines of f starting from
the origin.

Define

Proof. In polar coordinates, we have

36\ 8 2n! . (306)\ 0
V=2 rcos<7> <7>

ar — \/7 Sin

36"
Then the gradient flow equation

(7,0) = Vfz(r,0)

2 36
sin|{—)=0C,
" ( 2 )
where C is a real constant. If the gradient flow lines start from the origin, then

we have C = 0. Hence, the gradient flow lines are precisely those straight lines
along the directions

has solution given by
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The three gradient flow lines emitting from the origin of B, namely,

1 . 2 4
(0, 5) St teV=18, with 6 = 0, Tn ?”

should correspond to three holomorphic disks bounded by L and those fibers
of p : X - B supported on these rays.
Let p : X — B be the dual fibration of p : X — B and define
B>0 ::B\{x S C . X]_ S 0},
B.o :=B\{x € C : x; >0},
X>0 Z=f)_1(B>0),

~

X0 :=p~'(By).

Equip L, : = L\{0} with alocal system £ with holonomy —1. The mirror bundle
&y of (L\{0}, £) has local holomorphic frame ¢, ¢, on X ,. More precisely,

L
éJ':e d lll‘, i=1,2,

The monodromy action around the fiber {(0, 0)} x T2 is given by
é —é,,
éz = — él'

Let d, be the Dolbeault operator of &,. We need to extend this complex struc-
ture to the whole space X. Let’s delete a small disk D around the origin of B.
Let § > 0 be small and bs be a 1-from on R, supported on [—6, §] and [ bs = 1.
Define three elements in A%Y(X., End(&)):

By 1= — Hev({x,vo)F(I13b5)é} @ &5,

By :=Hev((x,v;))F(IT;b5)¢; @ ¢,

B, :=Hev({x,v,))F (I;b5)¢; ® ¢,
where Hev : R — R is the Heaviside function:

1 ifx>0,

Hev(x) = { 0 ifx<o0

IT;

TRZSR- v}L, j =0,1,2, are the orthogonal projections:
I;(x) 1= x —(x,v)v;,

and ¥ is the Fourier transform sending dx! to dz'. By choosing § > 0 small
enough (such a choice of § depends on the radius of the disk D), we may assume
By, By, B, have disjoint support on p~1(B,,\D). Let

B :=By+ B, + B, € A% (p~1(B,o\D), End(&p)).
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Since the support of B;’s are all away from the ray {(x;, x,)|x; < 0}, B can be
extended to p~*(B\D). Clearly, 6,8 = 0 and [B, B] = 0 since B;’s have disjoint
support. Therefore, we have

_ 1. o
3oB + 5B, Bl =0,

which means J, + B defines a holomorphic structure on the rank 2 complex
vector bundle &|5-1(3,\p)-

Proposition A.2. The holomorphic structure 9, + B is monodromy free around
the fiber p~1(0). Hence, (&y, 9, + B) extends to a holomorphic bundle & on X.
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