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The Dyer-Lashof algebra and
the hit problems

Hadi Zare

Abstract. We use work of Curtis and Wellington on A-annihilated classes
in H∗QS0 together with Priddy’s computations on the action of the Dyer-
Lashof algebra on H∗(ℤ × BO) to provide new examples of A-annihilated
classes in H∗BO as well H∗BO(2r − 1).We then consider the Becker-Gottlieb
transfer associated to O(1)×n → O(n) and speculate on the possible applica-
tions of our computations to obtain new examples of A-annihilated classes
in H∗BO(1)n. Our results, all at the prime p = 2, provide new numerical
conditions which seem to show up for the �rst time in this context.
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1. Introduction and statement of results
The hit problem of Peterson is about �nding a basis for the vector space

ℤ∕2 ⊗A H∗X when X = ℝP×k; ℤ∕2 is an A-module concentrated in degree
0 [40, Section 7] (see also [36],[37] for a very recent account on the problem).
We work at the prime 2 writing ℤ∕2 for the �eld of two elements, A and ℛ for
the mod 2 Steenrod and Dyer-Lashof algebras respectively, H∗ (resp. H∗) for
H∗(−;ℤ∕2) (resp. H∗(−;ℤ∕2)). We write ℝP for the in�nite dimensional real
projective space ℝP∞. For a pointed space X, X×k and X∧k denote the k-fold
Cartesian and smash products of X with itself, respectively.
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An equivalent problem, in a homological setting, is to study the submodule
of A-annihilated elements of H∗X where x ∈ H∗X is called A-annihilated if
Sqi∗x = 0 for all i > 0. Here, duality of vector spaces over ℤ∕2, provided by
the Universal Coe�cient Theorem over ℤ∕2, allows to consider Sqi∗ ∶ H∗X →
H∗−iX as the dual operation to Sqi ∶ H∗X → H∗+iX. Our aim in this paper is
to study this problem bymeans of looking at the dual problem forH∗BOwhich
is the stable case of the symmetric hit problem of Janfada and Wood [16], [17].

Conventions andnotations. Formost of the paperweworkwith sequences
of nonnegative/positive integers. For this purpose, we �x some notations to
be used through the paper. We write � = ( ) for the empty sequence. Given
I = (i1, … , ir) and J = (j1, … , js), we abbreviate (I, J) = (i1, … , ir, j1, … , js) al-
lowing I or J or both to be the empty sequence. If I = (i) we write (i, J) for
((i), J); we use similar notation if J = (j). For I = (i1, … , ir) a sequence of non-
negative integers, we de�ne and denote excess of I by ex(I) = i1−(i2+⋯+ir),
dimension of I by |I| = i1 + ⋯ + ir, and length of I by l(I) = r; if neces-
sary for the empty sequence � = () we use the conventions that ex(�) = +∞,
|�| = l(�) = 0. We shall say I is admissible if either l(I) > 1 and ij ⩽ 2ij+1 for
all 1 ⩽ j ⩽ r−1 or l(I) = 1 or I = �. For a nonempty sequence I = (i1, … , ir)we
write I = I0 and Ij = (ij+1, … , ir) for j < r, and de�ne exj(I) = ex(Ij); note that
if I is admissible so is Ij for all j < r. We allow ourselves to use the abbreviation
exj instead of exj(I) if there is no confusion about the sequence I.

The following observation is a consequence of de�nitions and conventions
above which we wish to highlight due to its usefulness. We defer its proof to
the following sections.

Lemma 1.1. (i) I = (i1, … , ir) is admissible if and only if exj ⩽ exj+1 for j =
0,… , r − 1.
(ii) Suppose I = (i1, … , ir) is an admissible sequence such that all of its entries are
odd. Then the sequence (ex0, ex1, … , exr−1) is strictly increasing.
(iii) If I = (i1, … , ir) is admissible with ex(I) > 0 then ij > ij+1 for all j =
1,… , r − 1.

Next, we describeH∗(ℤ×BO)which is required to state our �rst result. Write
� ∶ ℝP → {1} × BO → ℤ × BO for the inclusion and ai ∈ HiℝP for a gener-
ator with i > 0, and let ei = �∗ai for i > 0. There is a certain in�nite loop
map � ∶ QS0 → ℤ × BO (see Section 3 for more details) and certain elements
[1], [−1] ∈ H0QS0 with [1]−1 = [−1] (see comments after Remark 2.1 for the
de�nition of these classes). Let e0 = �∗[1] and e−10 = �∗[−1]. The spaceℤ×BO
is an in�nite loop space by Bott periodicity which furnishes H∗(ℤ × BO) with
a ring structure. It is known that [29] H∗(ℤ × BO) ≃ ℤ∕2[e0, e−10 , ei ∶ i >
0, deg ei = i]. Sometimes, in order to stress the role of multiplication by some
speci�c element �, we choose to write ∗ for the product operation in homology
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and ∗ � means multiplying by �. We also assume that while writing an arbi-
trary monomial ek1i1 ⋯ekrir the variables are ordered so that i1 < i2 < ⋯ < ir.
Although, sometimes it makes it easy to allow cases with i1 ⩽ ⋯ ⩽ ir which
will be speci�ed whenever it happens. Our �rst result reads as follows.
Theorem 1.2. (i) Suppose I = (i1, … , ir) is a sequence of positive integers satis-
fying

(1) 0 < ex(I) < 2�(i1), (2) 0 ⩽ 2ij+1 − ij < 2�(ij+1)

if r > 1, and (1) if r = 1. Then there exists an A-annihilated class, say �ℤ×BOI ∈
H|I|(ℤ × BO) so that

�ℤ×BOI = e0eex0e
2
ex1 ⋯e2r−1exr−1 + other terms ≠ 0

with
0 < ex0 < ex1 < ⋯ < exr−1.

(ii) If l(I) = r then the class �BOI ∶= e−2r0 �ℤ×BOI pulls back toH∗BO(2r − 1).
(iii) The classes �ℤ×BOI where I ranges over all admissible sequences are linearly
independent. A similar statement holds for the classes �BOI inH∗BO(2r − 1)
Here, for n ∈ ℕ with binary expansion n =

∑+∞
i=0 ni2

i with ni ∈ {0, 1} we de�ne
�(n) = min{i ∶ ni = 0}.

We prove the above Theorem in Section 3.
Note 1.3. An important question is about the existence of the sequences men-
tioned in Theorem 1.2 of a given dimension and length. The tables provided
by [39] give a list of such sequences up to dimension 200 where it seems that
in these dimensions, omitting sequences with ex(I) = 0, there is only at most
one sequence in each dimension satisfying conditions of Theorem 1.2. How-
ever, this does not appear to be true in all dimensions as in a work in progress
[11] and with computer assisted computations, we have determined all such
sequences, with ex(I) > 0, up to dimension 1.1 × 107 (the highest dimension
which we did manage to get with our laptop running for 30 hours). It is ob-
served that in this range there exist less than 8×106 number of such sequences.
As an outcome of our computations, we have obtained sequences of the same
dimension, some of the same length and some with di�erent lengths. For in-
stance, the sequences

(1091, 547, 287, 159, 95), (1091, 547, 275, 139, 127)
are both of dimension 2179 and length 5 and satisfy our conditions. As another
example, in a lowdimension such as 4353 there exist only three such sequences,
namely

(2177, 1089, 545, 287, 255),
(2177, 1089, 545, 273, 143, 79, 47), (2177, 1089, 545, 273, 137, 69, 63).

The methodological outcome is that our computations in this paper could pro-
duce more precise bounds on the dimension of modules related to the symmet-
ric and nonsymmetric hit problems.
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As another application of Priddy’s formula, we obtain yet another family
of A-annihilated classes. For a nonempty sequence of nonnegative integers
K = (k1, … , kn) we write eK to denote ek11 ⋯eknn in H∗(ℤ × BO). We use the
convention that e0i = 1; for instance if K = (1, 0, 2) then eK = e11e

0
2e
2
3 = e1e23.

We de�ne and denote the dimension of eK by |eK| =
∑n

j=1 jkj. We also de�ne
length of eK by l(eK) =

∑n
i=1 ki which corresponds to the length �ltration func-

tion onH∗(ℤ×BO) (see comments after Remark 2.3 for more discussions). We
refer to a positive integer n as a spike if n = 2t−1 for some t > 0. Given a natu-
ral number, wemay consider its partition into spikes as n =

∑d
i=1(2

�i −1)where
d > 0 and �1 ⩾ �2 ⩾ ⋯ ⩾ �d > 0 where unlike [17, Section 2] we consider
only positive �i in order to avoid trivial cases. Note that any such partition cor-
responds to a decreasing sequence (�1, … , �d); we de�ne d to be length of our
partition. We de�ne the spike partition number of n, denoted sp(n), to be the
number of distinct partitions of n into spikes where two partitions are assumed
to be distinct if either they are of di�erent lengths or they have the same length
but di�er at least in one term. More precisely, de�ne

Spiked(n) = {(�1, … , �d) ∈ ℤ×d
+ ∶

d∑

i=1
(2�i − 1) = n}

and note that the symmetric group on d elements Σd acts on this set. It follows
that

sp(n) =
+∞∑

d=1
|Spiked(n)∕Σd|.

Weshall use this function in the statement of our next result. Weurge the reader
to note that our use of spikes in studying the dual hit problem is di�erent from
its applications in the hit problem (compare to [17]). For nonempty sequences
K = (k1, … , kn) andM = (m1, … ,mn), we shall write K = 2M if kj = 2mj for
all j. For positive integers k,m if k dividesm then we write k|m. For i > 0, we
shall write ei = e−10 ei noting that H∗BO ≃ ℤ∕2[ei ∶ i > 0] (see Section 2.4 for
more details). Our next result reads as follows.

Theorem 1.4. (i) For n > 0 let Kn be the set of all sequences of nonnegative
integers K = (k1, … , kn) such that

( l(eK)
k1, … , kn

)
∶= l(eK)!

k1!⋯kn!
≡ 1 mod 2,

n∑

i=1
iki = n.

For t > 0, there exists a nonzero A-annihilated class �ℤ×BOt ∈ H2t−1(ℤ × BO)
such that

�ℤ×BOt =
∑

K∈K2t−1

e−l(e
K)−2

0 eK .
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In particular, the sum involves the terms e−(2
t−1)−2

0 e2t−11 and e−30 e2t−1. Conse-
quently, we have a nonzeroA-annihilated class �BOt ∈ H2t−1BO given by

�BOt = e20�
ℤ×BO
t .

In particular, the sum involves terms such as e1
2t−1

and e2t−1. Moreover, this class
is in the image of H∗BO(2t − 1) → H∗BO and it does not pull back to H∗BO(s)
with s < 2t − 1.
(ii) Supposen > 0 is given. Then, for each partition ofn into spikesn =

∑d
i=1(2

�i−
1) with �1 ⩾ ⋯ ⩾ �d > 0 there exists a nonzeroA-annihilated class

�ℤ×BO�1,…,�d
=

d∏

i=1
�ℤ×BO�i

.

In particular, up to multiplication by a power of e0, �ℤ×BO�1,…,�d
involves terms of the

form en1 and
∏d

i=1 e2�i−1. Moreover, there are sp(n) number of linearly indepen-
dent nonzero A-annihilated classes, living in Hn(ℤ × BO), that are obtained in
this way. Furthermore, by a translation map, we obtain sp(n) number of nonzero
A-annihilated classes of the form

�BO�1,…,�d =
d∏

i=1
�BO�i

so that each �BO�1,…,�d involves terms of the form e1
n
and

∏d
i=1 e2�i−1.

The above Theorem allows to identifyA-annihilated classes inH∗(ℤ × BO),
and consequently H∗BO, which are not products of classes of the form e2t−1.
For instance, consider the class �ℤ×BO4 ∈ H15BO. We can see that up to a factor
of e0 we have

�BO4 = e151 + e15 + e1e27 + e53 + (e35 + e3e26) + other terms

where the �rst four terms are products of classes of the form e2t−1. Now, the
nontrivial interesting class in this case is e35+e3e

2
6 where Sq

2
∗(e35) = Sq2∗(e3e26) =

e3e25 so Sq
2
∗(e35 + e3e

2
6) = 0. One can show that in fact e35 + e3e

2
6 isA-annihilated

which is a nontrivial example. In fact, whenever 2t − 1 is not prime, we have
nontrivial such terms in �ℤ×BOt .

Next, we wish to investigate the possible applications of the above compu-
tations to study A-annihilated classes in H∗BO(1)×k. By the Künneth formula
over ℤ∕2 we have H∗X×k ≃ (H∗X)⊗k where the latter denotes the k-fold ten-
sor product of H∗X with itself. Recall that the Becker-Gottlieb transfer map
associated to the �bre bundle i ∶ BO(1)×n → BO(n), induced by the diago-
nal embedding O(1)×n → O(n), is a stable map t ∶ Σ∞BO(n)+ → Σ∞BO(1)×n+
where X+ is the union of X with a disjoint base-point [4] (see also [30] and
[1, Chapter 4]). In particular, it satis�es H∗Σ∞X+ ≃ H̃∗X+ ≃ H∗X. The rep-
resentation Σn → Gln(ℤ∕2), sending each permutation to its corresponding
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permutation matrix, allows to de�ne Σn =
∑

�∈Σn
sgn(�)� ∈ ℤ∕2[Gln(ℤ∕2)]

where sgn is the sign function. It is known that i∗t∗ = Σn [25, Lemma 6.2]. In
particular, this shows that t∗ ≠ 0 and consequently t∗ ≠ 0. For the transfer
t∗ we have identi�ed ker(t∗) and coker(t∗) as well as a submodule H∙

∗BO(k) of
H∗BO(k) on which the restriction of t∗ is a monomorphism (see Proposition
4.2 and Corollary 4.3). Assuming that QIe0 has some terms which belong to
this submodule, we automatically obtain some nonzero A-annihilated classes
in H∗ℝP×n. Let us write ai1 ⊗⋯ ⊗ aik for the elements of H∗X×k which we
denote by a⊗ki if i1 = ⋯ = ik = i. Using this notation, we have the following.

Theorem 1.5. (i) Suppose I = (i1, … , ir) is a sequence of positive integers satis-
fying

(1) 0 < ex(I) < 2�(i1), (2) 0 ⩽ 2ij+1 − ij < 2�(ij+1)

if r > 1, and (1) if r = 1. If the pullback of �BOI toH∗BO(2r − 1) projects nontriv-
ially into H♢

∗ BO(2r − 1) = coker(t∗) then there exists a nonzero A-annihilated
class �I ∈ H|I|ℝP×(2

r−1) so that for any permutation � ∈ Σ2r−1 we have ��I = �I .
(ii) Suppose k =

∑l
j=1(2

rj −1) so that for each j there exists a sequence Ij of pos-
itive integers with l(Ij) = rj and ex(Ij) > 0 satisfying the conditions in part (i).
Then, for � ∈ Σl there exists a nonzero A-annihilated class �� ∈ HdℝP×k with
d =

∑
|Ij| which is invariant under the action of Σ2r�(1)−1 ×⋯ × Σ2r�(l)−1. More-

over, depending on the partition chosen for k, subject to the existence of sequences
Ij , this would lead to at least l! distinctA-annihilated classes inH∗ℝP×k.

TheA-annihilated classes that we have obtained in the above theorems seem
to provide new families ofA-annihilated classes in the homology of the relevant
spaces of which we don’t know of any published account. Note that earlier ver-
sions of this paper included a claim that the classes �I are linearly independent
when dimension and length of the sequences is �xed, which we believe to be
true. However, the provided proof was based on the wrong assumption that
the transfer t∗ ∶ H∗BO(n) → H∗BO(1)×n is a monomorphism. Besides this, the
numerical assumptions of Theorem 1.2 allowed us to do machine based com-
putations [11] which suggest that sequences I leading to these classes are often
very rare; so far we have found 4 sequences living in the same dimension with
our search going up to dimension 1.1× 107. Hence, computationally this claim
seems rather trivial and we hope to come back to it in another work.

Previous similar works. Pengelley and Williams have considered using
the in�nite loop space structure on BO as well as BU to study the problem
[26] (see also [28] as well as [27]), however, it seems that they have not used
Wellington’s computations [39], [38] in their work, neither have they consid-
ered work of Priddy [29]. So, our methodology and the results we have ob-
tained, in terms of the numerical conditions, is di�erent from theirs. Singer
[33] considers an extension of the Steenrod algebra, denoted by ℋ, together
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with its action on H∗BO(k); the algebra ℋ is a bigraded algebra with genera-
tors Sqi for i > −1, subject to the Adem relations formally the same asA, with
Sq0 treated in the same level as Sqi (not necessarily as the identity operator).
The bigrading comes from degree and length so that Sqi lives in bidegree (i, 1)
ofℋ. According to Singer (see comments after [33, Theorem 1.4]) there is an
action ofℋ on⊕H∗BO(s) which in terms of grading shifts is given by

Sqi ∶ HnBO(s) → H2n+s−iBO(s + i).

Clearly, this action, if likely to give an action of ℋ on H∗BO or H∗(ℤ × BO),
will increase the homological degree if i < s + n. More precisely, the homo-
logical dimension of Sqi(x) is always greater than n for any x ∈ HnBO(s) if
i < s + n. However, in our setting given by the left-action of Aop or the right-
action of A on H∗BO(s) which is expressed in terms of the Sqi∗ operations, for
x ∈ HnBO(s) the class Sqi∗x is of dimension n − i and for the action to be non-
trivial we always need i < n which is de�nitely included in the cases i < n + s.
Therefore, we argue that in Singer’s work [33], the action ofℋmost of the time
increases the homological degree whereas in our case we have a decrease in
the homological degree. Another related work is by Ault and Singer [3]. From
our point of view, their approach ismainly algebraicwhere the authors consider
the collection {H∗ℝP×k}k⩾0 as well as {H∗ℝP∧k}k⩾0 as a graded algebra with the
multiplicative structure coming from natural pairingℝP×k×ℝP×l → ℝP×(k+l).
They then consider the actions of Sq2i∗ operations between various gradings of
this graded algebra and prove a kind of freeness result for it, generalising a re-
sult of Anick. The geometry hidden in this work comes from the James split-
ting of ΩΣX which is stably weak homotopy equivalent to

⋁+∞
k=1 X

∧k. Hence,
this work is di�erent from ours in the sense that in our approach we mainly
consider the homology that is arising from geometry of the spaces. We note
that there also exists extensive literature on the hit problem for the Dickson
algebra such as [10],[14],[13] where the objects under study are rings such as
(H∗ℝP×k)Glk(ℤ∕2) ≃ D∗

k and the interest is in their A-module structure, hence
relating Dickson algebras Dk to the dual of the Dyer-Lashof algebra by work
of Madsen [21, Corollary 3.3]. The di�erence of such works with ours is that
we work prior to the quotient maps under theGlk(ℤ∕2)-action and we work in
the dual setting and our starting point is the action of the Dyer-Lashof algebra
rather than the algebra itself. Finally, we have to recall the very much related
work of Repka and Selick [32] which is in the same line as our work trying to
identifyA-annihilated subalgebras ofH∗ℝP×k; our results di�er from theirs in
numerical conditions as well as the methods we have employed to prove our
result.

Final comments. We note that a general approach to the hit problems,
other thanproviding aℤ∕2-basis for the vector spacesQ(k) ∶= ℤ∕2⊗AH∗Bℤ∕2×k
andℤ∕2⊗AH∗BO(k), is to �nd upper/lower bounds on the dimension of these
spaces. Most notably, we have conjectures of Peterson and Kameko on bounds
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on dimℤ∕2 Q(k) [41] (see [35, Theorem 1.2] for a negative answer to Kameko’s
conjecture for k > 3). It is possible that our work allows one to improve the
known lower bounds. However, in this work, we have not studied this side of
the problem.

Acknowledgements. The author is grateful toGrantWalker andRegWood,
whom he has learnt from about the problem, for various comments and cor-
respondences on the hit problem, as well as their interest in the result of this
project. He is also grateful to Takuji Kashiwabara for valuable and helpful com-
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2. Preliminaries
2.1. Theactionof theSteenrodalgebra. For an arbitrary spaceX, the Steen-
rod square Sqi ∶ HnX → Hn+iX is a linear map ofℤ∕2-vector spaces. Since we
work over the �eld ℤ∕2, then by duality we have Sqi∗ ∶ HnX → Hn−iX. The
left action of the Steenrod algebra A on H∗X, through the operations Sqi∗, fur-
nishes the homologyH∗X with a rightA-action, or equivalently a left action of
the opposite algebra Aop on H∗X. We abuse the language to say that A acts on
H∗X referring to the action given by the Sqi∗ operations. Below, we list some of
the properties of these operations, or the formulae that these operations satisfy,
which will be used throughout the paper implicity or explicitly.

Unstable Aop-modules. The instability condition for the action of A on
H∗X, Sqi� = 0 for i > dim�, in the homological setting reads as Sqt∗x = 0 if
2t > n with x ∈ HnX. This can be simply veri�ed using Kronecker pairing
with ⟨x, Sqi�⟩ = ⟨Sqi∗x, �⟩ (see also [39]). This could be used to de�ne unstable
Aop-modules in purely algebraic terms where an Aop-moduleM is unstable if
Sqt∗x = 0 for any x ∈ M with 2t > dimx. In particular, H∗X is an unstable
Aop-module.

Cartan formulae. For space X and Y, the external Cartan formula is give
by

Sqt∗(x ⊗ y) =
∑

t1+t2=t
(Sqt1∗ x) ⊗ (Sqt2∗ y). (1)

If we are equipped with a pairing m ∶ X × Y → Z then the naturality of the
Steenrod operations together with the above formula implies that

Sqt∗(xy) =
∑

t1+t2=t
(Sqt1∗ x)(Sq

t2
∗ y)

where xy ∶= m∗(x ⊗ y). In particular, for X = Y = Z being an H-space with
m the multiplication of theH-space, the above formula proves to be useful (see
also [39, Chapter 5]). We may refer to this latter relation as the internal Cartan



1142 HADI ZARE

formula in order to distinguish it from the former.

2.2. The Dyer-Lashof algebra. We give a brief account on the Kudo-Araki
operations over ℤ∕2 and the Dyer-Lashof algebra generated by these opera-
tions. The Kudo-Araki operations, �rst noted by Kudo and Araki [19] (see
also [20]), are additive operations which act on ℤ∕2-homology of iterated loop
spaces amongst which we are interested in in�nite loop spaces such asℤ×BO,
BO, and QS0 = colim ΩiSi [23]; the in�nite loop space structure on ℤ × BO
as well as BO arise from the Whitney sum of vector bundles. These operations
�t into an algebra over ℤ∕2, known as the Dyer-Lashof algebra denoted by ℛ;
ℛ can be constructed from the associative algebra generated by the operations
Qi (see [39] for a detailed description and construction of this algebra, see also
[9, Section 3.2]). The action of the Kudo-Araki operations on homology of an
in�nite loop space X induces an action of ℛ on H∗X which turns H∗X into a
left ℛ-module. This action has many useful properties of which we list some
below (see [6, Part I, Theorem 1.1] for a full list of these properties).
Suppose X is an in�nite loop space. A Kudo-Araki operation Qn ∶ H∗X →
H∗+nX is an additive homomorphism such that
(i) Qn is natural with maps of in�nite loop spaces;
(ii) if n < dimx then Qnx = 0;
(ii) if n = dimx then Qnx = x2 where the squaring is with respect to the Pon-
trjagin product onH∗X induced by the addition of loops.
(iv) For x, y ∈ H∗X, Qn(xy) is computed by the Cartan formula given by

Qn(xy) =
∑

i+j=n
(Qix)(Qjy).

We note that there are various other properties which we do not use in this
paper and refer the reader to [6] for more details.

Remark 2.1. (i) For x1, … , xr ∈ H∗X the Cartan formula implies that

Qn(x1⋯xr) =
∑

i1+⋯+ir=n
(Qi1x1)⋯ (Qirxr).

(ii) As we work over ℤ∕2, for an arbitrary class � ∈ H∗X we have

Q2n+1�2 = 0, Q2n�2 = (Qn�)2.
(iii) By the above properties if I is a sequence so that ex(I) < dimx thenQIx = 0
inH∗X.

Note that �iQS0 ≃ �si and in particular �0QS0 ≃ ℤ. Write (QS0)n for the
path component of QS0 corresponding to n ∈ �0QS0. If n ∶ S0 → QS0 cor-
responds to n ∈ �0QS0 ≃ ℤ, as QS0 is an in�nite loop space, then we may
extend n to an in�nite loop map n ∶ QS0 → QS0 (in fact a homotopy equiva-
lence whose inverse is−n) so that if � ∈ (QS0)m then � ∗ n ∈ (QS0)m+n. Here,
in this subsection, by abuse of notation ∗ denotes the loop sum in QS0 and
the Pontrjagin product induced by it in H∗QS0. We write for the translation
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map ∗ [n] ∶ H∗QS0 → H∗QS0 induced by n ∶ QS0 → QS0 which when re-
stricted to the component (QS0)m looks like ∗ [n] ∶ H∗(QS0)m → H∗(QS0)m+n.
Let’s note that we may consider a generator [n] ∈ H0((QS0)n; ℤ∕2) ≃ ℤ∕2 and
think of ∗ [n] as multiplication by [n]. The classes [n] (or the homomorphisms
∗ [n]) have the property that [n] ∗ [m] = [n + m] in H∗QS0 with [0] play-
ing the role of neutral element [21]. According to Dyer and Lashof [8, Section
5, Corollary 2] (see also [34, Page 33]) H∗QS0 is a polynomial algebra (under
the Pontrjagin product coming from the loop sum) generated by elements of
the form QI[1] ∈ H|I|QS0 where I is any nonempty admissible sequence and
[1], [−1] ∈ H0QS0 subject to [1]−1 = [−1] (see also [6, Part I] for more details).
Together with the Cartan formula and the Adem relations for the Kudo-Araki
operations, this also describesH∗QS0 as a module over ℛ.
In this paper, for the purpose of applications inH∗(ℤ×BO), we are interested in
the submodule ofA-annihilated classes inH∗QS0 whose complete description
is unknown. But, there are some su�cient conditions that allow one to identify
some of these classes. The following is due to Curtis [7, Lemma 6.2, Theorem
6.3] (see also Wellington [38, Theorem 5.6] as well as [39]).

Theorem 2.2. De�ne � ∶ ℕ ⟶ ℕ ∪ {0} by �(n) = min{i ∶ ni = 0} for n =∑∞
i=0 ni2

i with ni ∈ {0, 1}. For a generatorQI[1] ofH∗QS0, suppose I = (i1, … , is)
with s > 1 is a sequence so that ex(I) < 2�(i1) and 0 ⩽ 2ij+1 − ij < 2�(ij+1) for
1 ⩽ j ⩽ s−1. ThenQI[1] isA-annihilated. If I = (i)with i < 2�(i), i.e. i = 2t −1
for some t > 0, then Qi[1] isA-annihilated. Here, ex(QIx) = i1 − (i2 +⋯+ is).

The above theorem can be generalised to describeA-annihilated monomials
QIx in homology ofQX. We refer the reader to [42, Theorem 2] for more details
(see also [43]).

2.3. H∗(ℤ × BO). We follow [29] to complete our description of H∗(ℤ × BO).
Write � ∶ ℝP → {1} × BO → ℤ × BO for the inclusion and ai ∈ HiℝP for a
generator with i > 0, and let ei = �∗ai for i > 0. For S0 = {0, 1}, let � ∶ S0 →
ℤ × BO send 0 into {0} × BO and 1 into {1} × BO. By the in�nite loop space
structure of ℤ × BO, provided by Bott periodicity, there exists an in�nite loop
map � ∶ QS0 → ℤ × BO [23]. Setting e0 = �∗[1], �∗[−1] = e−10 , we have an
isomorphism of algebras

H∗(ℤ × BO) ≅ ℤ∕2[e0, e−10 , ei ∶ deg ei = i].

The product in this case is coming from the loop structure induced by theWhit-
ney sum. The elements en0 , n ∈ ℤ, provide translation maps between di�erent
path components given by ∗ en0 ∶ H∗({m} × BO) → H∗({m + n} × BO) which is
simply multiplying by en0 whose inverse is ∗ e

−n
0 ; this is analogous to the role of

[n] inH∗QS0. We may also write en0 ∗ for ∗ e
n
0 when it is more convenient with

∗ referring to the product onH∗(ℤ × BO) under the additive structure.
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2.4. H∗BO inside H∗(ℤ × BO). The aim of this section is to clear up some
subtlety which arises from geometric considerations. The subtlety of present-
ing H∗BO as a subalgebra of H∗(ℤ × BO) is that the space ℤ × BO is an E∞
ring space [24] with two di�erent products coming from the Whitney sum of
virtual vector bundles (the additive structure) and tensor product of virtual vec-
tor bundles (the multiplicative structure); the delooping ofℤ×BO provided by
the Bott periodicity corresponds to the additive structure. At the prime p = 2
these provide two di�erent loop structures on ℤ × BO, consequently two dif-
ferent ring structures on H∗(ℤ × BO) [22]. Now, the base point component
of ℤ × BO when equipped with the additive structure is {0} × BO (denoted by
BO⊕ in the literature) onwhich the product comes fromWhitney sumof virtual
vector bundles of dimension 0, whereas the basepoint component of ℤ × BO
under the multiplicative structure is {1} × BO (denoted by BO⊗ in the litera-
ture) on which the product is the tensor product of virtual vector bundles of
dimension 1. Moreover, the translation map ∗ e0 ∶ H∗BO⊕ → H∗BO⊗ is not
a ring map and H∗({0} × BO) and H∗({1} × BO) are not isomorphic as rings
(although they are additively isomorphic under ∗ e0). Hence, since we equip
H∗(ℤ×BO) ≃ ℤ∕2[e0, e−10 , ei ∶ i > 0]with the product induced by theWhitney
sum then H∗({1} × BO) is not an honest subalgebra of H∗(ℤ × BO) under the
additive structure. So, from now on we �x the additive structure on ℤ × BO.
Our favourite copy of BO in ℤ × BO is {0} × BO. Following [29, Section 2], for
i > 0, we set ei = e−10 ei which allows us to identify

H∗BO ≃ H∗({0} × BO) ≃ ℤ∕2[ei ∶ i > 0]
as a subalgebra ofH∗(ℤ × BO).

Remark 2.3. For the sake of presentation, it could be more natural to take
H∗({0} × BO) ≃ ℤ∕2[ei ∶ i > 0] with deg ei = i and then write H∗(ℤ × BO) ≃
H∗({0} × BO)[e0, e−10 ] as a Laurent polynomial algebra which is similar to [34,
Page 33]. However, we have followed the tradition in our presentation.

Note that additively H∗(ℤ × BO) ≃
⨁

n∈ℤH∗({n} × BO). Since we work
with the additive in�nite loop structure on ℤ×BO, the ring structure provides
various compatible pairings

H∗({n} × BO) ⊗ H∗({m} × BO) → H∗({n + m} × BO).

In particular, for ek1i1 …e
kr
ir

∈ H∗(ℤ × BO) with 0 ⩽ i1 < ⋯ < ir we have

ek1i1 ⋯ekrir ∈ H∗({k} × BO) where k =
∑
kj. Note that here only k1 is allowed to

be negative if i1 = 0 and kj > 0 for all j > 1. This induces a �ltration onH∗(ℤ×
BO), say the length �ltration, which assigns length k =

∑
kj to a monomial

ek1i1 ⋯ekrir whichwedenote by l(e
k1
i1
⋯ekrir ) = k. Wemay also introduce a reduced

length �ltration onH∗(ℤ × BO) which is de�ned as follows

l(ek1i1 ⋯ekrir ) = {
k if i1 > 0,∑

j>1 kj if i1 = 0.
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Let � =
∑

f inite �k be given where �k ∈ H∗(ℤ × BO) is nonzero for all k. We
write l(�) = l if and only if l(�k) = l for all k. We use a similar convention for
the reduced length �ltration. The following is about the relation between the
action of Aop onH∗(ℤ × BO) and these �ltrations.

Lemma 2.4. (i) The action ofAop onH∗(ℤ×BO) respects the length �ltration in
the sense that if Sqt∗� ≠ 0 and l(�) = k then l(Sqt∗�) = kwhere � is anymonomial
inH∗(ℤ × BO).
(ii) The action ofAop onH∗(ℤ×BO) preserves the reduced length �ltration in the
sense that if Sqt∗� ≠ 0 and l(�) = r then l(Sqt∗�) = r where � is any monomial in
H∗(ℤ × BO).
Proof. (i) This is evident from the Cartan formula.
(ii) By de�nition, for � = ek1i1 ⋯ekrir we have

l(�) = {
l(�) if i1 > 0,
l(ek2i2 ⋯ekrir ) if i1 = 0.

So we only have to verify the claim in the case i1 = 0. Note that Sqt∗e
k1
i1
= 0 for

all t > 0. Hence, by the Cartan formula, Sqt∗� = ek1i1 Sq
t
∗(e

k2
i2
⋯ekrir ). Our claim,

now follows from part (i) noting that by instability conditions it is impossible
to have ekjij with ij > 0 such that Sqt∗e

kj
ij
= e�j0 for some nonnegative integer

�j. �

Remark 2.5. Since H∗(ℤ × BO) is a polynomial algebra then any � ∈ H∗(ℤ ×
BO) can be written as a sum of �nite number of monomials of the form eKI ∶=
ek1i1 ⋯ekrir with r > 0 where I = (i1, … , ir) and K = (k1, … , kr). So, for any
� ∈ H∗(ℤ × BO) we may write

� =
∑

�KI (�)e
K
I

where the sum runs over all sequences I = (i1, … , ir) with 0 ⩽ i1 < ⋯ < ir
as well as all sequences of integers K = (k1, … , kr) so that k1 is allowed to be
negative if i1 = 0 and kj ⩾ 0 for all j > 1. Here, eKI = ek1i1 ⋯ekrir and �

K
I (�) ∈ ℤ∕2

so that except for �nitely many I and K we have �KI (�) = 0. We may rearrange
terms and use the length �ltration to write

� =
∑

k∈ℤ

∑

k1+⋯+kr=k
�KI (�)e

K
I .

We write �(k) =
∑

k1+⋯+kr=k
�KI (�)e

K
I to be the sum of all terms of � of length

k so � =
∑
�(k). Moreover, among terms of the same length k, we may impose

the reduced length �ltration, and set

�(k, l) =
∑

�KI (�)e
K
I

where the sum runs over all terms of � with length equal to k and reduced
length equal to l. In these terms, we have �(k) =

∑
l∈ℤ �(k, l).
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The splitting of terms in the above remark has an immediate consequence
which we record as follows.

Lemma 2.6. (i) Suppose � =
∑
�(k) as in Remark 2.5. Then � isA-annihilated

if and only if �(k) is for all k.
(ii) Suppose �(k) =

∑
l∈ℤ �(k, l) as in Remark 2.5. Then, �(k) isA-annihilated if

and only if �(k, l) is for all l.

Proof. (i) By the Cartan formula, the action of Sqt∗ operations respects length.
Therefore if � isA-annihilated so is �r. The converse follows from the additivity
of Sqt∗ operations.
(ii) The action of the Steenrod algebra on H∗X respects reduced length. This
implies our claim in one direction now follows. The converse follows from the
additivity of Sqt∗ operations. �

Remark 2.7. Note thatH∗(ℤ×BO) is equipped with three �ltrations provided
by dimension, length and reduced length. This is compatible with the �ltration
of [33] and the new ingredient here is the reduced length �ltration. The reduced
length of a monomial eKI tells us its “length” when translated back intoH∗BO⊕
and written in terms of ei classes. In fact, if l(eKI ) = m then eI

K = e−m0 eKI ∈
H∗BO⊕. Moreover, if l(eKI ) = n then eI

K
is in the image of H∗BO(n) → H∗BO

(see Section 2.5 below for more discussion on this).

Finally, we wish to record the following logarithmic property of length and
reduced length functions.

Lemma 2.8. Given two monomials �, � ∈ H∗(ℤ × BO) we have

l(��) = l(�) + l(�), l(��) = l(�) + l(�).

The proof is immediate from de�nitions.

2.5. PresentingH∗BO(k) insideH∗BO. In order to avoid any confusionwith
the existing literature, we need to �x our notations and choose our presenta-
tions of homologies very carefully. As mentioned at the introduction, while
writing monomials ek1i1 ⋯ekrir in H∗(ℤ × BO), we �x the order 0 ⩽ i1 < ⋯ < ir
on variables where the role of e0 is to change the path component. Since we
have chosen {0} × BO as our favourite copy of BO in ℤ × BO, we need to de-
scribeH∗BO(k) in accordance with this choice.

Recall that ei ∶= e−10 ei for i > 0. We write e0 ∈ H0BO(k) ≃ ℤ∕2 for a gener-
ator. Note that we may de�ne e0 = e−10 e0 = 1where 1 is the unit element of the
ringH∗(ℤ × BO), and by abuse of notation write e0 ∈ H0BO(k) for a generator
whichmaps to 1 ∈ H0(ℤ×BO)under the inclusionBO(k) → {0}×BO → ℤ×BO.
This latter would be equivalent to de�ning e0 = �∗[0] which would imply
Qie0 = 0 for all i > 0. Any of these de�nitions for e0 would be �ne.
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For any k > 0 the inclusion �k ∶ BO(k) → BO induces a monomorphism
ofAop-modules in homology. In this case,H∗BO(k) is identi�ed with theAop-
submodule of H∗BO generated by all monomials ei1

k1 ⋯eir
kr with 0 ⩽ i1 <

⋯ < ir and length
∑r

i=1 ki ⩽ k (compare to [2, Page 154] noting that their ei
coincides with our ei).

The point of choosing e0 is that since it is the unit element in H∗(ℤ × BO)
then e0

i0 = e0. Hence, given an element ei1
k1 ⋯eir

kr which we know falls into
the image of (�n)∗ ∶ H∗BO(n) → H∗BO for any n with k ∶=

∑
kj ⩽ n, we

may regard this monomial as of full length, i.e. of length n, just by adding the
required number of e0 in front of it as

e0
n−kei1

k1 ⋯eir
kr = ei1

k1 ⋯eir
kr

inH∗(ℤ × BO) as well asH∗BO. We use this convention which allows to think
of elements ofH∗BO(n) to always have length n.

3. The stable symmetric hit problem
3.1. Preparatory observations. We prove Theorem 1.2 in a few steps. We
begin by proving Lemma 1.1.

Proof of Lemma 1.1. (i) By de�nition of exj it follows that exj − exj−1 =
2ij+1−ij. The immediately implies the I is admissible if and only if exj ⩽ exj+1
for all j = 0,… , r − 1.
(ii) Since all entries of I are odd then ij = 2ij+1 cannot happen and the ad-
missibility condition ij ⩽ 2ij+1 implies that 2ij+1 − ij ⩾ 1. Noting that exj =
exj−1 + (2ij+1 − ij) we deduce that exj > exj−1. This completes the proof.
(iii) By part (i) exj−1 ⩾ ex(I) > 0 for all j = 1,… , r − 1. It follows that
ij > (ij+1 + ⋯ + ir) > ij+1 as we work with sequence only having positive
entries. �

Next, we record some formulae on the action of Kudo-Araki operations. The
following is a corollary of Theorem 2.2 and the above description ofH∗(ℤ×BO).

Lemma 3.1. Suppose I is a sequence satisfying the conditions of Theorem 2.2.
Then, QIe0, QIe−10 areA-annihilated classes inH∗(ℤ × BO).

Proof. Since � is an in�nite loop map, then �∗QI[1] = QIe0 and �∗QI[−1] =
QIe−10 . The mapping �∗ is anAop-module homomorphism by naturality of the
Steenrod operations. The classes QI[1] and QI[−1] satisfying the conditions
of Theorem 2.2 are A-annihilated in H∗QS0. Therefore, QIe0 = �∗QI[1] and
QIe−10 = �∗QI[−1] are A-annihilated inH∗(ℤ × BO). �

The proof of Theorem 1.2(i) follows from evaluating QIe0 inH∗(ℤ × BO) for
I admissible for which we appeal to Priddy’s computations (see Theorem 3.2)
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together with an application of Lemma 2.6. The proof of Theorem 1.2(ii) is im-
mediate upon applying the length �ltration mentioned in Note 2.5 and having
part (i). The proof of Theorem 1.2(iii) regarding the linear independence needs
a bit of work which will follow later on.

The evaluation of the Qi operations on the generators of H∗(ℤ × BO) has
been carried out by Priddy [29, Theorem 1.1 and Corollary 2.3] (see also work
of Kochman [18] and compare to [34, Chapter 1, Proposition 5.11]).

Theorem 3.2. (i) For n > k ⩾ 0 we have

Qnek =
k∑

u=0

(n − k + u − 1
u

)
en+uek−u.

(ii) For n > 0 we have

Qne−10 =
∑( k

k1, … , kn

)
ek11 ⋯eknn e−k−20

where the sum is over all sequences k1, … , kn of nonnegative integers with
∑
iki =

n, k =
∑
ki and ( k

k1, … , kn

)
= k!
k1!⋯kn!

.

By properties recalled in Section 2.2 it follows immediately that

Qkek = e2k, Q
0e−10 = e−20

which are the obvious cases that are not considered by part (i) and part (ii) of
the above theorem, respectively.

Remark 3.3. By Theorem 3.2(i), by choosing the term with u = 0 in Priddy’s
formula, for any n > k ⩾ 0

Qnek = eken
modulo terms ek−uen+u, hence modulo terms of the form eiej with j > n and
i < k corresponding to the cases with u > 0. Consequently, none of the other
terms cancels out with eken showing that Qnek ≠ 0.

Next, we show that for I admissible QIe0 ≠ 0. We freely use the observation
and notations of Lemma 1.1 throughout the statement of the lemma and its
proof.

Lemma 3.4. Suppose I = (i1, … , ir) is an admissible sequence with ex(I) > 0.
Then, inH∗(ℤ × BO) we have

QIe0 = e0eex0e
2
ex1 ⋯e2r−1exr−1 + OI ≠ 0.

For r = 1, OI = 0. For r > 1,
OI =

∑
�LeL

where �L ∈ ℤ∕2 and the sum runs over all nondecreasing sequences of nonnega-
tive integers L = (l1, … , l2r) so that l2r > exr−1 = ir and eL = el1 ⋯el2r .
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Proof. For r = 1, I = (ir) and by Theorem 3.2(i) we have Qire0 = e0eir ≠ 0. In
particular, there are no other terms as u ∈ {0, k}with k = 0 in Priddy’s formula.
So, the statement holds for r = 1.
We now prove the case for r > 1. We proceed by induction, and in order to
make an illustration, we do the cases r = 2, 3. For r = 2 with I = (ir−1, ir),
using the Cartan formula and the computation for the case r = 1, we compute
that

Qir−1Qire0 = Qir−1(e0eir)
=

∑ir−1
�r−1=0

(Qir−1−�r−1e0)(Q�r−1eir).

We compute each term (Qir−1−�r−1e0)(Q�r−1eir) of the above sum as follows. By
Priddy’s formula, Theorem3.2(i),Qir−1−�r−1e0 = e0eir−1−�r−1 . For the termQ�r−1eir
we proceed as follows. By Lemma 1.1(iii), as I is admissible of positive excess,
ir−1 > ir. In the above sum, for �r−1 running from 0 to ir−1, if �r−1 < ir then
Q�r−1eir = 0 by basic properties of Kudo-Araki operation recalled in Section 2.2.
Hence, in order to get nontrivial terms in the above sum, we have to restrict to
�r−1 ⩾ ir. Again by the properties recalled in Section 2.2, for �r−1 = ir we have
Q�r−1eir = e2ir . Consequently, after separating the term with �r−1 = exr−1 = ir,
hence ir−1 − �r−1 = ir−1 − ir = exr−2, we obtain

Qir−1Qire0 = e0eexr−2e
2
ir
+

ir−1∑

�r−1=ir+1
e0eir−1−�r−1(Q

�r−1eir) (2)

where by Remark 3.3 we see that Q�r−1eir = eire�r−1 modulo terms elr−1elr with
lr > �r−1 and lr−1 < ir. Note that by our choice of �r−1 these inequalities
combine and yield

lr > �r−1 ⩾ ir + 1 > ir.
Our claim now follows.

For r = 3 with I = (ir−2, ir−1, ir), using our computations for the case of
r = 2, we have

Qir−2Qir−1Qire0 = Qir−2(e0eex1(I)e
2
ex2(I)

+
∑
�LeL)

= Qir−2(e0eex1(I)e
2
ex2(I)

) + Qir−2(
∑
�LeL)

(3)

where L = (l1, l2, l3, l4), �L ∈ ℤ∕2, and l4 > ir = ex2(I). Applying the Cartan
formula (see Remark 2.1), we see that the �rst term of (3) can be written as

Qir−2(e0eex1(I)e
2
ex2(I)

) =
∑

j1+j2+j3=ir−2
(Qj1e0)(Qj2eex1(I))(Q

j3e2ex2(I)). (4)

First we extract the leading term of our expression. Choose

j3 = dim(e2ex2(I)) = 2ex2(I) = 2ir,
j2 = dim(eex1(I)) = ir−1 − ir.

Note that by our conventions, for I = (ir−2, ir−1, ir) we have I1 = (ir−1, ir) and
I2 = (ir) which yield ex1(I) = ex(I1) = ir−1 − ir and ex2(I) = ir. Moreover, by
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the hypothesis and Lemma 1.1(i) we have 0 < ex(I) ⩽ ex1(I) ⩽ ex2(I). These
choices together with

∑
jk = ir−2 give j1 = ir−2 − (ir−1 + ir) = exr−3(I). As

recalled in Remark 2.1 we have Q2t+1�2 = 0 and Q2t�2 = (Qt�)2. This implies
that for the above choices of j1, j2, j3 we have

(Qj1e0)(Qj2eex1(I))(Q
j3e2ex2(I)) = e0eex0(I)e

2
ex1(I)

e22ex2(I)
which is our leading term. For the other terms of (4), note that in order to have
a nontrivial term we need j3 > dim e2ex2(I) = 2ir. By the Cartan formulae, we
see that

Qj3(e2ex2(I)) = { (Qj′3eex2(I))
2 if j3 = 2j′3,

0 otherwise

where j3 > 2ir implies that j′3 > ir. Hence, all of the terms in the other terms
of (4) are of the claimed forms. Note that by Priddy’s formula, applying one
single operation Qn doubles the length, that is Qnek is a sum of terms of length
2. Hence, taking care of the powers of variables, all terms in the equation (4)
are of length (22)2. In order to complete our veri�cation, consider the second
term of (3). By the Cartan formula, for any single L, we have

Qir−2eL =
∑

∑
jk=ir−2

(Qj1el1)⋯ (Qj4el4).

It is immediate that this leads to an expressionwith terms of length (22)2. More-
over, if a term in the above expression is nontrivial then j4 ⩾ l4 > ir. Conse-
quently, all terms in this expression have the claimed form.

For the general case, suppose I′ = (i′, i1, … , ir) is an admissible sequence
with ex(I′) > 0. This means I = (i1, … , ir) is also admissible with ex(I) > 0 and
by the induction hypothesis we have

QIe0 = e0eex(I0)e
2
ex(I1)

⋯e2r−1ex(Ir−1)
+

∑
�LeL

with l(L) = 2r and l2r > ir which allows us to write

QI′e0 = Qi′QIe0
= Qi′(e0eex0(I)e

2
ex1(I)

⋯e2r−1exr−1(I)
+

∑
�LeL)

= Qi′(e0eex0(I)e
2
ex1(I)

⋯e2r−1exr−1(I)
) +

∑
�LQi

′eL.

By the Cartan formula for the �rst term we have

Qi′(e0eex0(I)e
2
ex1(I)

⋯e2r−1exr−1(I)
) =

∑

t0+⋯+tr−1=i′
(Qt0e0)⋯ (Qtr−1e2r−1exr−1(I)

).

We may write i′ as

2r−1ir + 2r−2(ir−1 − ir) +⋯+ (i1 − i2 −⋯− ir) + (i′ − i1 − i2 −⋯− ir)
= 2r−1exr−1(I) +⋯+ ex0(I) + ex(I′)
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which allows us to separate one term of the sum and the other terms and write

Qi′(e0eex0(I)e
2
ex1(I)

⋯e2r−1exr−1(I)
) = e0eex(I′)e2ex0(I)⋯e2rexr−1(I)

+
∑
(Qt0e0)⋯ (Qtr−1e2r−1exr−1)

(5)

where the sum is running over all sequences (t0, … , tr−1) of nonnegative inte-
gers with

∑
tj = i′ so that

(t0, t1, … , tr−1) ≠ (ex(I′), ex0(I), 2ex1(I), … , 2r−1exr−1(I)).

The term e0eex(I′)e2ex0 ⋯e2rexr−1 is the ‘leading term’ as claimed. For the second
sum, for any single term to be nontrivial we need Qtr−1e2r−1exr−1 ≠ 0 which having
excluded the cases with tr−1 = 2r−1exr−1(I) = 2r−1ir leaves us with the cases
tr−1 > 2r−1ir. An iterated application of the Cartan formula Q2t+1�2 = 0 shows
that if there exists j ∈ {0, … , r−1} such that 2j does not divide tj thenQtje2

j

exj(I)
=

0 and consequently
(Qt0e0)⋯ (Qtr−1e2r−1exr−1) = 0.

Therefore, the only nontrivial terms in the above sum correspond to r-tuples
(t0, … , tr−1) such that 2j divides tj for all 0 ⩽ j ⩽ r − 1. Moreover, the Cartan
formula Q2t�2 = (Qt�)2 shows that if tj = 2jpj for some positive integer pj
then Qtje2jexj(I) = (Qpjeexj(I))

2j . Notice that tr−1 > 2r−1ir which implies that
pr−1 > ir. Hence, the only possible nontrivial terms in the above sum must
include a product factor as

Qpr−1eir = eirepr−1 modulo terms e�e� with � > pr−1 > ir.

Consequently, any term in Qi′eL would include a factor elj with lj > ir. Hence,
so far, Q(i′,I)e0 satis�es the claimed expression. Next, we deal with the terms in∑
�LQi

′eL where by the inductive assumption there exists j so that lj > ir; for
each Lwe denote such a choice of j by j0. By the Cartan formula, for each term
Qi′eL we have

Qi′eL =
∑

t1+⋯+t2r=i′
(Qt1el1)⋯ (Qt2r el2r ).

If a term in the above sum is to be nontrivial we need tj0 > lj0 . As above, the
factor Qtj0 elj0 gives the desired factors e�e� with � > ir. The last claim that
l2r > exr−1(I) = ir can be shown by induction on r and a similar analysis as we
did above which we leave to the reader. This completes the proof. �

Note 3.5. By iterated application of Cartan formula together with Theorem
3.2(i), also recorded in Lemma 3.4, all terms of QIe0 are of the same length
�ltration, namely �ltration 2r. But, di�erent terms may have di�erent reduced
length �ltration. For example consider I = (5, 3). By iterated application of
Priddy’s formula, we compute that

Q5Q3e0 = e0e2e23 + e0e1e3e4 + e0e1e2e5 + e0e21e6 + e20e3e5.
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The last term has reduced length equal to 2 whereas all of other terms are of
reduced length 3.

The implicit property which seems to be useful in some of our computations
is that the reduced length of each term inQ5Q3e0 is bounded below. Wewish to
have this property in full generality. We don’t have a proof in the general case,
however, and we provide a proof when l(I) is small.

Lemma 3.6. Suppose I = (i1, … , ir) is an admissible sequence of positive dimen-
sion, having only odd entries, ex(I) > 0 and r ∈ {1, 2}. IfQIe0 =

∑
�KeK whereK

runs over all increasing sequences with l(K) = 2r and �K ∈ ℤ∕2 then l(eK) ⩾ 2r−1
whenever �K = 1.

We remark that a partial proof we had for l(I) = 3 depends on too much
detailed analysis, hence does not seem too hopeful to be generalised in an in-
ductive manner.

Proof. By Lemma 3.4 we have QIe0 ≠ 0. Hence, there exists a K such that
�K = 1.
Case of l(I) = 1. For any I = (i)with i > 0, we have Qie0 = e0ei which satis�es
l(e0ei) = 1 = 20 = 2l(I)−1. Hence, the above inequality holds in this case.
Case of l(I) = 2. Suppose I = (i1, i2) is an admissible as required by the lemma.
Then, by Priddy’s formula and the Cartan formula we have

Qi1Qi2e0 = Qi1(e0ei2)
=

∑i1
j1=i2

(Qi1−j1e0)(Qj1 i2)
=

∑i1
j1=i2

∑i2
u=0

(j1−i2+u−1
u

)
e0ei1−j1ei2−uej1+u.

First, suppose j1 < i1. In this case i1 − j1 > 0. Moreover, for any u we have
j1 +u ⩾ i2 > 0. Hence, any term with j1 ≠ i1 in the above sum has at least two
e�’s with � > 0. Hence, l(e0ei1−j1ei2−uej1+u) ⩾ 2 = 2l(I)−1. Next, suppose j1 = i1
where the corresponding terms are

(i1−i2+u−1
u

)
e20ei2−uej1+u with 0 ⩽ u ⩽ i2.

Obviously, for u < i2 any term, if with nonzero coe�cient, has reduced length
equal to 2. For u = i2 the term is

(i1−1
i2

)
e30ei1+i2 = 0 and the binomial coe�cient

is trivial since i1 and i2 are both odd by hypothesis. Hence, any term in the
expression for Qi1Qi2e0 is either of reduced length 3 or 2. In particular, this
proves our claim on the lower bound for the reduced length. �

3.2. Proof of Theorem 1.2. This section is devoted to the proof of Theorem
1.2.

Proof of Theorem 1.2. (i) Let �ℤ×BOI ∶= QIe0 ∈ H|I|Q(ℤ × BO) where I is
chosen as in Theorem 1.2. By Lemma 3.1 this class isA-annihilated. By Lemma
3.4

�ℤ×BOI = e0eex0e
2
ex1 ⋯e2r−1exr−1 + OI ≠ 0
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where OI = 0 if r = 1 and for r > 1,

OI =
∑

�LeL
where �L ∈ ℤ∕2 and the sum runs over all sequences of nonnegative integers
L = (l1, … , l2r) satisfying conditions of Lemma 3.4. Since I satis�es conditions
of Theorem 1.2 then by Lemma A.2 all entries of I are odd. It follows from
Lemma 1.1(ii) that exj−1 < exj for 0 < j < r.
(ii) We note that eexj = e0eexj for 0 ⩽ j < r. Note that by hypothesis ex0 =
ex(I) > 0. Hence,

�ℤ×BOI = e0e2
r−1
0 eex0 eex1

2⋯eexr−1
2r−1 + OI .

Let �BOI = e−2r0 �ℤ×BOI which is given by

�BOI = eex0 eex1
2⋯eexr−1

2r−1 + e−2r0 OI .

The class e0 is alsoA-annihilated, so is e−2
r

0 . Hence, by the Cartan formula �BOI
is alsoA-annihilated, which obviously lives inH∗({0} ×BO). Now, it is obvious
that being a sum of monomials of length 2r − 1 the class �BOI is in the image of
H∗BO(2r −1) → H∗BO, induced by the inclusion BO(2r −1) → BO, which is a
monomorphism of A-modules, i.e. �BOI pulls back to an A-annihilated class in
H∗BO(2r − 1).
(iii) We wish to show that the set {�ℤ×BOI ∶ I admissible} is a linearly inde-
pendent set. By �ltration considerations as well as dimensional reasons, it is
enough to show that

ℬr,d = {�ℤ×BOI ∶ I admissible where l(I) = r, |I| = d}
is a linearly independent set where r and d are arbitrary positive integers. This
is equivalent to showing that every �nite subset of ℬr,d is a linearly indepen-
dent set. As we work over ℤ∕2, it is enough to show that given a �nite set
{�ℤ×BOIk

}nk=1 ⊆ ℬr,d no nontrivial linear combination of its elements adds up
to 0. More precisely, given a �nite set {�ℤ×BOIk

}nk=1 ⊆ ℬr,d we have to show if
{ck ∶ ck ∈ ℤ∕2}nk=1 is given so that at least one ck is nonzero then

n∑

k=1
ck�ℤ×BOIk

≠ 0.

Obviously, we can drop the terms with ck = 0. Since we choose ck ∈ ℤ∕2 then
this boils down to showing that for every �nite subset {�ℤ×BOIk

}nk=1 ⊆ ℬr,d we
have

n∑

k=1
�ℤ×BOIk

≠ 0.

By de�nition of the classes �ℤ×BOI as well as by Lemma 3.4 we have

�ℤ×BOIk
= QIke0 = e0eex0(Ik)e

2
ex1(Ik)

⋯e2r−1exr−1(Ik)
+

∑
�LeL
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so that l2r > exr−1(Ik). Here, l(I) = r and |I| = d is �xed. We have two cases.
Case 1. Suppose sequences I1, … , In are given with l(Ik) = r for all 1 ⩽ k ⩽ n so
that there is a unique sequence say Ikm among themwith exr−1(Ikm) < exr−1(Ik)
for allk ≠ km. Then the leading termofQIkm e0, namely e0eex0(Ikm )e

2
ex1(Ikm )

⋯e2r−1exr−1(Ikm )
,

is not cancelled out by the leading termofQIke0, namely e0eex0(Ik)e
2
ex1(Ik)

⋯e2r−1exr−1(Ik)
,

as exr−1(Ikm) < exr−1(Ik). Moreover, other terms inQIke0 are of the form eLwith
l2r > exr−1(Ik) > exr−1(Ikm). Hence, none of these terms also cancels out with
the leading term of QIkm e0. This completes the proof in this case.
Case 2. Suppose sequences I1, ..., In are given so that sequences Ikm1 , ..., Ikms ex-
ist with s > 1, exr−1(Ikm1 ) = ⋯ = exr−1(Ikms ) and exr−1(Ikm� ) < exr−1(Ik) for all
k ∉ {km1 , … , kms }. It is enough to show that the sum of leading terms ofQIkm� e0
is nonzero. However, this is obvious since if I ≠ J and l(I) = l(J) = r then
(ex0(I), … , exr−1(I)) ≠ (ex0(J), … , exr−1(J)). This implies that in the leading
terms there will always be di�erent indices, hence the sum of them is nonzero.
This completes the proof in this case.

Finally, to see that the classes �BOI are linearly independent, notice that ∗ e−2r0
is an isomorphism of ℤ∕2-modules whose inverse is ∗ e2r0 . Consequently, it
sends linearly independent sets to linearly independent sets, and in particular
sends {�ℤ×BOI } to {�BOI }, and the linear independence of the former implies the
linear independence of the latter. Finally, note that the inclusion �k ∶ BO(k) →
BO induces a monomorphism of Aop-modules. Hence, the pull back of the
classes �BOI toH∗BO(2r−1) are linearly independent. This completes the proof
of part (iii). �

The proof has an interesting side result which we wish to record. A careful
analysis of the above proof provides the following.

Corollary 3.7. For any I chosen as in Theorem 1.2 with l(I) = r, the class �BOI
is a sum of monomials eK each of which is not divisible by e0 neither by e0. More
precisely

QIe0 =
∑

�KeK
where �K ∈ ℤ∕2, eK = ek1 ⋯ek2r , whereK runs over all admissible nondecreasing
sequences of length 2r with k1 > 0.

The proof is easy and we leave it to the reader. After Lemma 3.4 one may
ask about the cases when QIe0 = 0 in H∗(ℤ × BO) or in general QIek = 0.
By Lemma 3.4 if QIe0 = 0 then I is not admissible. It seems to the author
that we can answer this question in the same line as [31, Lemma 3.5]. These
computations require more topological tools to be recalled or introduced. So,
we leave further investigation on this to a future work.

3.3. Proof of Theorem 1.4. The proof we present is an application of Theo-
rem 3.2(ii).



THE DYER-LASHOF ALGEBRA AND THE HIT PROBLEMS 1155

Proof of Theorem 1.4. (i) An application of Lemma 3.1 together with Theo-
rem A.1(i) shows that the class Qne−10 isA-annihilated if and only if n = 2t − 1
for some t > 0. Let �ℤ×BOt = Q2t−1e−10 . The equation

�ℤ×BOt =
∑

K∈K2t−1

e−l(e
K)−2

0 eK

is merely a restatement of Theorem 3.2(ii). For i|2t − 1 let K be a sequence of
length l(eK) = 2t−1 so that kj = 0 for all j ≠ i and ki be de�ned by 2t−1 = iki.
Obviously the coe�cient

( l(eK)
k1,…,kn

)
=

(ki
ki

)
= 1. The corresponding term would

be e−ki−20 ekii . In particular, our sum would involve the terms e−(2
t−1)−2

0 e2t−11 and
e−30 e2t−1. Hence, �ℤ×BOt involves some nontrivial terms. Also, note that �ℤ×BOt
is a sum of monomials eK when K varies in K2t−1, hence a sum of di�erent
monomials. Therefore, �ℤ×BOt ≠ 0. Since ei = e0ei we see that

�ℤ×BOt =
∑

K∈K2t−1

e−l(e
K)−2

0 el(e
K)

0 eK =
∑

K∈K2t−1

e−20 eK

where eK = e1
k1 ⋯e2t−1

k2t−1 . Consequently, ∗ e20 being an isomorphism ofℤ∕2-
vector spaces,

�BOt = e20�
ℤ×BO
t

is a nontrivial A-annihilated class. The terms e−(2
t−1)−2

0 e2t−11 and e−30 e2t−1 of
�ℤ×BO2t−1 translate to e1

2t−1
and e2t−1 in H∗BO as claimed. By �ltration consid-

erations, this class is in the image of H∗BO(2t − 1) → H∗BO. Moreover, the
presence of e1

2t−1
does not allow this class to pull back toH∗BO(s) for s < 2t−1.

(ii) It immediately follows from theCartan formula that given the classes �ℤ×BO�i
∈

H2�i−1(ℤ × BO) which are A-annihilated then the class

�ℤ×BO�1,…,�d
=

d∏

i=1
�ℤ×BO�i

isA-annihilated. We only note that for two di�erent partitions of n into spikes
such as

(�1, … , �d), (�1, … , �s)

then the fact that the classes �ℤ×BO�1,…,�d
and �ℤ×BO�1,…,�s involve the leading terms

∏d
i=1 e2�i−1

and
∏s

j=1 e2�j−1, respectively, shows that �
ℤ×BO
�1,…,�d

≠ �ℤ×BO�1,…,�s . We therefore ob-
tain sp(n) di�erent A-annihilated classes in Hn(ℤ × BO). The case of H∗BO is
similar and we leave it to the reader. �

Remark 3.8. (i) The class � ∶= e20Q
2t−1e−10 lives inH∗BO and being expressed

in terms of monomials eK with l(K) = 2t −1 pulls back toH∗BO(2t −1). How-
ever, by Proposition 4.2, all of its terms, apart from e2t−1, maps trivially under
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the transfer t∗ ∶ H∗BO(2t − 1) → H∗ℝP×(2
t−1). This implies that

t∗� =
∑

�∈Σ2t−1
�(a2t−1 ⊗ 1⊗(2t−2)).

(ii) In theory, wemay apply Theorem1.4 to producemoreA-annihilated classes
in H∗BO. Suppose d is given and assume d =

∑n
j=1(2

tj − 1). Then, we may
look for sequences Kj with |eKj | = 2tj − 1. Then the product of these ele-
ments is nontrivial. Moreover, a partition of d into spikes, i.e. writing d as
d =

∑n
j=1(2

tj − 1), is not unique and we may look for various ways that can
give us newA-annihilated classes. This seems to be related to the � function of
Wood [41] but we have not exploited the idea in this paper.

4. The (nonsymmetric) hit problem
This section demonstrates how one can use the action of the Dyer-Lashof

algebra to the study of the hit problem as promised at the beginning. The proof
of Theorem 1.5 is a standard argument based on transfer and the idea is to use
the transfer map BO(k)+ → ℝP×k+ and its e�ect in reduced homology. The
classes that we wish to obtain are the images of classes �BOI where we simply
de�ne �I = t∗�BOI . By stability of the Sqt∗ operations �I is A-annihilated. It
remains to show that these classes are nontrivial.

4.1. The transferBO(k)+ → BO(1)×k+. Consider the�bre bundle i ∶ BO(1)×k →
BO(k) and the Becker-Gottlieb transfer associated to it which is a stable map
t ∶ Σ∞BO(k)+ → Σ∞BO(1)×k+ [4] (see also [30] and [1, Chapter 4]). Here,
for a space X, X+ denotes X with an added disjoint base point which satis�es
H∗Σ∞X+ ≃ H̃∗X+ ≃ H∗X. We begin with the following which has to be well
known. For instance, it immediately follows from [5, Theorem 3.11].

Lemma4.1. Suppose 0 ⩽ i1 < ⋯ < ir. Themap t∗ ∶ H∗BO(k) → H∗BO(1)×k ≃
(H∗BO(1))⊗k induced by the transfer satis�es

t∗(ei1
k1 ⋯eir

kr) =
∑

�∈Σk
�(a⊗k1i1

⊗⋯⊗ a⊗krir
)

where k1+⋯+kn = k and Σk is the permutation group on k elements which acts
by permutation of the factors.

This allows the following description of ker t∗, as well as an implicit descrip-
tion of coker t∗.

Proposition 4.2. (i) Consider a monomial ei1
k1 ⋯eir

kr ∈ H∗BO(k) where k =∑r
j=1 kj and kj > 0 for all j. Suppose kj > 1 for some j. Then for the transfer

t∗ ∶ H∗BO(k) → H∗ℝP×k we have t∗(ei1
k1 ⋯eir

kr) = 0.
(ii) Let k > 0. Let H∙

∗BO be the submodule of H∗BO generated by all mono-
mials eI = ei1 ⋯eir with I being strictly increasing and l(I) = k; in the previ-
ous notation this corresponds to the cases with kj = 1 for all j and r = k. Let
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H∙
∗BO(k) = H∗BO(k)∩H∙

∗BO. Then the restriction of t∗ ∶ H∙
∗BO(k) → H∗ℝP×k

is a monomorphism.

Proof. (i) Suppose �(a⊗k1i1
⊗⋯⊗ a⊗krir

) is a term of the above expression for

t∗(ei1
k1 ⋯eir

kr)where � ∈ Σk. For j0 with kj0 > 1 and let � ∈ Σk1 ×⋯×Σkr be a
permutation which on the blocks coming from Σkj with j ≠ j0 acts as identity
and on the j0-th block a nonidentity permutation; in matrix representation it is
a block diagonal matrix � = diag(1k1×k1 , … , �kj0 , … , 1kr×kr) where �kj0 ∈ Σkj0 is
a nonidentity element. It is evident that

�(a⊗k1i1
⊗⋯⊗ a⊗krir

) = ��(a⊗k1i1
⊗⋯⊗ a⊗krir

).

Hence, the terms corresponding to � and �� cancel out in the expression for
t∗(ei1

k1 ⋯eir
kr). Moreover, we can do this for any � ∈ Σk. These together with

the fact that the above expression has even number of terms, proves our claim.
(ii) This is immediate from the formula. Since S is strictly increasing, then for
any �, � ∈ Σk we have �(ai1 ⊗ ⋯ ⊗ aik ) ≠ �(ai1 ⊗ ⋯ ⊗ aik ). In particular,
�(ai1 ⊗⋯⊗aik ) ≠ ai1 ⊗⋯⊗aik for any � ∈ Σk. This together with the above
formula completes the proof. �

Corollary 4.3. Consider the transfer homomorphism t∗ ∶ H∗BO(k) → H∗ℝP×k.
Then ker(t∗) is precisely the submodule ofH∗BO(k) that is generated by all mono-
mials ei1

k1 ⋯eir
kr ∈ H∗BO(k) where k =

∑r
j=1 kj and kj > 0 for all j such that

kj > 1 for some j. Let H♢
∗ BO(k) = coker(t∗) which is de�ned by the following

short exact sequence

0 → ker t∗ → H∗BO(k)
p
→ H♢

∗ BO(k) → 0.

Then t∗ extends to a nontrivial monomorphism t∗ ∶ H♢
∗ BO(k) → H∗ℝP×k.

Proof. This immediately follows from Proposition 4.2. �

It would be ideal to determine all admissible sequences I = (i1, … , ir) satis-
fying conditions of Theorem 1.5 so that �BOI satis�es p(�BOI ) ≠ 0 in H♢

∗ BO(k),
hence also mapping nontrivially under t∗ ∶ H∗BO(k) → H∗ℝP×k. Notice that
for l(I) = r the class �I = e−2r0 QIe0 is a sum of (formal) monomials in ei’s which
has a square-free term if and only if QIe0 has a square-free term up a multipli-
cation by e−2r0 . Therefore, it is enough to have some criteria for QIe0 having a
square-free term, up to multiplication by e−2r0 . Any class QIe0 can be expressed
as a sum of classes eK with K a non-decreasing sequence such that l(K) = 2r if
l(I) = r. The map ∗ e−2r0 then rewrites these classes inH∗({0}×BO) as a sum of
monomials in ei variables. It is easy to show that the length and reduced length
are related by l(e−2r0 eK) = l(eK). Note that ∗ e−2

r

0 is a ring map. The Cartan for-
mulaeQ2n+1�2 = 0 andQ2n�2 = (Qn�)2 imply that if the part ofK consisting of
nonzero entries is not strictly increasing, i.e. eK has a square, then depending
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on the parity of n, QneK is either 0 or has a square in it. This reduces our search
for square-free terms to the following cases.

Lemma 4.4. Suppose 0 < i1 < ⋯ < ik and n > i1 +⋯+ ik. If Qn(ei1 ⋯eik ) has
a square-free term then n > (i1 +⋯+ ik) + k − 1.

Proof. A proof by contradiction argument, applying the Cartan formula 2.1(i),
proves the Lemma. We leave the details to the reader. �

Note that, read in words, the above lemma says that for � = ei1 ⋯eik with
0 < i1 < ⋯ < ik if Qn� has a square-free term then

n ⩾ dim� + number of variables in � = dim� + l(�).

In fact, what k counts is the number of variables ei with i > 0. This immediately
proves the following.

Corollary 4.5. Suppose I is an increasing sequence of nonnegative integers. If
Qn(eI) has a square-free term then n > dim(eI) + l(eI) − 1. In particular, for
I = (i1, … , ir) if s ⩾ 1 is the largest integer such that is = 0 then (is+1, … , ir) is
strictly increasing.

Wewish to use this result to decide about the square-free terms ofQIe0, albeit
up to a power of e0. We note that the case of l(I) = 1 is a trivial case as Qie0 =
e0ei which after translation by e0 pulls back to ei in H∗BO(1). It is known that
the transfer in the case of n = 1 is the same as the identity. Hence, we focus on
the cases with l(I) ⩾ 2. We have the following.

Lemma 4.6. Suppose I = (i1, … , ir) is an admissible sequence with r ⩾ 2. For
I1 = (i2, … , ir), suppose QI1e0 =

∑
�KeK where �K ∈ ℤ∕2 and K runs over all

increasing sequences of non-negative integers of length 2r−1. IfQIe0 has a square-
free term, up to amultiplication by a power of e0, then there exists aK with �K = 1
and

ex(I) > l(eK) − 1.

Proof. For any eK in the expression for QI2e0 we have dim(eK) = dim(I1) =
i2+⋯+ir. Noting that ex(I) = i1−(i2+⋯+ir) the claimed inequality follows
the inequality of Corollary 4.5. This completes the proof. �

4.2. Proof of Theorem 1.5. The above observations on the transfer map t∗ ∶
H∗BO(k) → H∗ℝP×k allow us to prove Theorem 1.5(i). We have the following.

Lemma 4.7. Suppose I is a nonempty sequence, with l(I) > 1, as in Theorem
1.5(i). Then �I ≠ 0. Moreover, the class �I is invariant under the action of Σ2r−1.

Proof. The point that �I ≠ 0 is obvious from the de�nitions. The class �BOI =
e−2r0 �ℤ×BOI pulls back toH|I|BO(2r−1) and by de�nition �I = t∗�BOI . Obviously,
p(e−2r0 �ℤ×BOI ) ≠ 0 is the same as �I ≠ 0. We proceed to show that invariance
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under the action of Σ2r−1. We may always force the expression of Lemma 3.4 to
split and write

�ℤ×BOI = QIe0 = e0eex0e
2
ex1 ⋯e2r−1exr−1 +

∑

S
�SeS + O

where �S ∈ ℤ∕2 and S = (s1, … , s2r) is running over all strictly increasing se-
quences with l(S) = 2r such that s1 = 0, andO consists of the remaining terms.
Note that for r = 1 the middle sum and O are empty. For r > 1, the assump-
tion that p(�) ≠ 0 inH♢

∗ BO(2r − 1) guarantees � has some terms which belong
to H∙

∗BO(2r − 1) so that the middle sum is not empty, i.e. if r > 1 then at
least for one S we have �S = 1. For r > 1, O =

∑
�LeL where �L ∈ ℤ∕2 and

the sum runs over all increasing (but not strictly) sequences of nonnegative in-
tegers L = (l1, … , l2r) so that l2r > exr−1(I) = ir and eL = el1 ⋯el2r . Using
ei = e−10 ei, this implies that

�BOI = eex0 eex1
2⋯eexr−1

2r−1 +
∑

S
�SeS1 + e−2r0 O

where S1 = (s2, … , s2r) by the notation introduced at the beginning and eS1 =
es2 es3 ⋯es2r . It is now easy to see that

�BOI =
∑

S
�SeS1 + R

where R is a sum of terms of the form eL with L increasing but not strictly. By
Proposition 4.2 all terms that have an index with at least two repeated entries
map trivially under t∗, i.e. t∗R = 0, and we have

�I = t∗
∑

S
�SeS1 .

Moreover, the sum over S’s includes at least one nontrivial term. With all se-
quences being strictly increasing, it is evident that if S, S′ are two distinct strictly
increasing sequences then S ≠ �S′ for all � ∈ Σ2r−1 where the permutation
group acts by permuting the factors. Moreover, S ≠ �S for all nonidentity per-
mutations � ∈ Σ2r−1. This then proves that �I ≠ 0. Finally, note that by the
formula for t∗ as in Lemma 4.1 the element �I = t∗�BOI with �BOI being a sum
of monomials satis�es the relation ��I = �I , so �I is invariant under the action
of Σ2r−1. �

Next, we turn to using these classes to construct moreA-annihilated classes.
Let’s note that there exist obvious pairings ℝP×n × ℝP×m → ℝP×(n+m) which
induce H∗ℝP×n ⊗H∗ RP×m → H∗ℝPn+m. These also induce pairings ℝP∧n ∧
ℝP∧m → ℝP∧(n+m) inducing H̃∗ℝP∧n ⊗ H̃∗ℝP∧m → H̃∗ℝP∧(n+m). Both pair-
ings on the level of homology are given by juxtaposition of elements. The geom-
etry behind this is provided by James’ splitting that for a path connected spaceX
we have ΣΩΣX is weak homotopy equivalent to

⋁+∞
r=1 ΣX

∧r [15]. Moreover, we
haveH∗ΩΣX ≃ T(H̃∗X), the tensor algebra generated by H̃∗X, where the latter
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isomorphism holds inℤ-homology. Consequently, working with such pairings
is quite natural and corresponds to working in the homology ring of ΩΣX. We
have the following.

Theorem 4.8. Suppose k =
∑l

j=1(2
rj − 1) so that for each j there exists a se-

quence Ij of positive integers with l(Ij) = rj and ex(Ij) > 0 satisfying the con-
ditions of Theorem 1.5. Then, for any � ∈ Σl there exists an A-annihilated
class �� ∈ HdℝP×k with d =

∑
|Ij| which is invariant under the action of

Σ2r�(1)−1×⋯×Σ2r�(l)−1. Moreover, depending on the partition chosen for k, subject
to the existence of sequences Ij , this would lead to at least l! distinctA-annihilated
classes inH∗ℝP×k.

Proof. Since Ij satis�es the conditions of Theorem 1.5, and consequently sat-
is�es the conclusions of Lemma 4.7, then we have nontrivial A-annihilated
classes, namely �Ij ∈ H∗ℝP×(2

rj−1). By the external Cartan formula, the class
�I�(1) ⊗⋯⊗ �I�(i) is A-annihilated. We set �� = �I�(1) ⋯�I�(i) to be the image of
�I�(1) ⊗⋯⊗ �I�(i) under the pairing

H∗ℝP×(2
r�(1)−1) ⊗⋯⊗H∗ℝP×(2

r�(l)−1) → H∗ℝPk.

As the pairing is induced by a mapping of spaces, hence by naturality of the
Steenrod operations the class �� is an A-annihilated class. The invariance un-
der the action ofΣ2r�(1)−1×⋯×Σ2r�(l)−1 is clear since each factor in �� is invariant
under the action of the relevant permutation group. Since H∗ℝP×k is a tensor
algebra, it is not commutative. So, while taking the product of various elements
the order matters. Because of the invariance under Σ2r�(1)−1 ×⋯ × Σ2r�(l)−1 the
only order changing permutations can arise from Σl. By suitable choices for
the sequences Ij, say choosing them to be from di�erent lengths and dimen-
sions, and having no entries in common, one can see that the number l! distinct
classes can be attained. We leave the details to the reader. �

Finally, we turn to some computations in low lengths. The results of the
appendix (see Theorem A.1) determine all sequences I of positive excess with
l(I) ⩽ 4 with QIe0 beingA-annihilated, hence all nontrivial classes �BOI classes
with l(I) ⩽ 4. We may ask if in these cases �I = t∗�BOI ≠ 0? We provide an
answer to this when l(I) ⩽ 3. First, note that it is a general fact that the transfer
associated to the identity is the identity. Hence, in the case of n = 1we have the
A-annihilated classes e2t−1 ∈ H2t−1BO which pull back to a2t−1 ∈ H2t−1BO(1)
with t∗a2t−1 = a2t−1. According to Theorem A.1 there is no sequence with
l(I) = 2 so that QIe0 is A-annihilated. Hence, we do not expect any �I class
with l(I) = 2. The following lemma eliminates existence of �I classes with
l(I) = 3.

Lemma 4.9. Suppose I is an admissible sequence of positive integers with l(I) =
3 such that QIe0 is A-annihilated, that is I satis�es conditions of Theorem 1.2
which are the same as conditions of Theorem 2.2. Then the pull back of e−230 QIe0
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to H∗BO(2l(I) − 1) maps trivially under the transfer t∗ ∶ H∗BO(2l(I) − 1) →
H∗ℝP×(2

l(I)−1).

Proof. The proof is by contradiction. Suppose there exists an admissible se-
quence I = (i1, i2, i3) so that the pull back of e−2

l(I)

0 QIe0 maps nontrivially under
the transfer t∗. By Proposition 4.2 and Corollary 4.3 and the explanations after-
wards any elements non-square-free monomial in H∗BO(k)maps trivially un-
der the transfer t∗ ∶ BO(k) → H∗ℝP×k. Hence, �I ≠ 0 implies that QI1e0 must
have at least one square-free term. We show that the existence of any square-
free term would contradict Lemma 4.6. By Lemma 4.6 if Qi2Qi3e0 is a sum of
monomials eK then there existsK with l(K) = 22 such that l(eK)−1 < ex(I), i.e.
l(eK) ⩽ ex(I). On the other hand, by Theorem A.1, there exist positive integers
m and n withm < n − 1 so that

I = (2n+1 + 2m − 1, 2n + 2m − 1, 2n − 1).
Consequently ex(I) = 1. However, since I satis�es conditions of Theorem 1.2
then by Lemma A.2 all of its entries are odd allowing us to use Lemma 3.6
to I1 = (i2, i3) with l(I1) = 2 which shows that l(eK) ⩾ 2l(I1)−1 = 2. This
contradicts the inequality l(eK) ⩽ ex(I) and completes the proof. �

Appendix A. Closed forms for low lengths

By Seyyed Mohammad Ali HasanZadeh
School of Mathematics
Sharif University of Technology
Tehran, Iran
m.ali.hasanzadeh1@gmail.com.

The contents of this appendix are identical to some parts of [12] which we
have put online only to share and publicise our result; in particular [12] is not
intended to be published. We refer the interested reader to [12] for more details
as well as tables which computes sequences satisfying conditions of Theorem
2.2 up to dimension 217.

It is possible to use the conditions of Theorem 2.2 to put more restrictions on
the sequences I. From computational point of view putting more restrictions
on the set of all such sequences is the same as making the space in which we
have to search for such sequences smaller. Our main result in this appendix
determines all sequences of small length.

Theorem A.1. Suppose I is an admissible sequence of positive excess satisfying
conditions of Theorem 2.2.
(i) If l(I) = 1 then I = (2t −1) for some t > 0. Moreover, any I = (2t −1) satis�es

mailto:m.ali.hasanzadeh1@gmail.com
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conditions of Theorem 2.2.
(ii) For l(I) = 2 there is no sequence which satis�es conditions of Theorem 2.2.
(iii) If l(I) = 3 then there exist positive integersm and n with m ⩽ n − 1 so that

I = (2n+1 + 2m − 1, 2n + 2m − 1, 2n − 1).
Moreover, any sequence I of the above form satis�es conditions of Theorem 2.2.
(iv) For l(I) = 4 if I satis�es conditions of Theorem 2.2 then I has one of the
following forms

I = (2n+3 + 2n−1 − 1, 2n+2 + 2n−1 − 1, 2n+1 + 2n−1 − 1, 2n + 2n−1 − 1)
with n > 2,

I = (2n+2 + 2m+1 + 2m′ − 1, 2n+1 + 2m + 2m′ − 1, 2n + 2m − 1, 2n − 1)
with n > m > m′ > 1.

Moreover, any sequence of the above forms satis�es conditions of Theorem 2.2.

Let’s note that part (i) and (ii) of the above Theorem are almost trivial and
were known to Wellington. We provide a proof for the case of l(I) = 3 as an
illustration. We leave the case of l(I) = 4 to the reader as it is lengthy and te-
dious. We only prove the assertions in the direction that takes us from knowing
that I satis�es conditions of Theorem 2.2 with l(I) = r to getting closed form
for I. The proof in the other direction is immediate as from given closed forms
one can readily verify that the satisfy conditions of Theorem 2.2; we leave the
details to the reader. Next, we give a list of elementary properties that these
sequence enjoy and will be use in the coming proofs.

Lemma A.2. (i) For r > 1, if I = (i1, … , ir) is an admissible sequence with
ex(I) > 0 then I is strictly decreasing, i.e. ij > ij+1 for all 1 ⩽ j < r.
(ii) Suppose I = (i1, … , is) is a sequence with ex(I) > 0 which satis�es conditions
of Theorem 2.2. Then, all entries of I are odd.

Proof. (i) This easily follows by induction from the admissibility and positivity
of excess.
(ii)It is straightforward to see that if s = 1 then I = (2t − 1) for some t > 0.
Suppose s > 0 and I = (i1, … , ir) is an admissible sequencewith ex(I) > 0which
satis�es condition of Theorem 2.2. First, note that if i1 is even then �(i1) = 0
which together with condition 0 < ex(I) < 2�(i1) shows that 0 < ex(I) < 1
which is a contradiction. Hence, i1 must be odd. For j > 1 suppose ij is even,
hence�(ij) = 0. The condition 0 ⩽ 2ij−ij−1 < 2�(ij) = 1 implies that ij−1 = 2ij.
By iterating this process we see that i1 must be even which is a contradiction.
Hence, I consists of only odd entries. �

The following is now evident.

Corollary A.3. If I satis�es conditions of Theorem 2.2 then l(I) and |I| have the
same parity.

Next, note that for a sequence I = (i1, … , ir) we have its dimension |I| =
i1 +⋯+ ir. We have the following.
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Lemma A.4. Suppose I = (i1, … , ir) is an admissible sequence of positive excess.
Then I satis�es conditions of Theorem 2.2 if and only if for (i0, I) ∶= (i0, i1, … , ir)
we have 0 < 2ij+1 − ij < 2�(ij+1) for all j ∈ {0, … , r − 1} where i0 = |I|.

Proof. The inequality 0 < ex(I) < 2�(i1) is the same as 0 < 2i1 − i0 < 2�(i1) if
we replace ex(I) by 2i1 − i0. The result now follows. �

The above observations are important as they replace two conditions of The-
orem 2.2 only with one condition, so that search for sequences satisfying con-
dition of Lemma A.4 would also provide us with all sequences which satisfy
conditions of Theorem 2.2 and the re�nement would be i0 = |I| = i1 +⋯+ ir.

The main ingredient of Theorem 2.2 is the function � which allows us to
express the result in a combinatorial manner. We are therefore interested in
studying properties of this function. To begin with, let’s recall the following
which is implicit in Curtis’s work and follows by looking at the binary expan-
sion of numbers.

Lemma A.5. Suppose I = (i1, … , ir) is an admissible sequence with ex(I) > 0
satisfying conditions of Theorem 2.2. Then,

�(i1) ⩽ ⋯ ⩽ �(ir).

We also de�ne  ∶ ℕ → ℕ by

 (n) = max{i ∶ ni = 1} + 1 = min{i ∶ ∀j ⩾ i, nj = 0}.

In fact, writing n ∈ ℕ in binary expansion⋯ni⋯n1n0, that is n =
∑+∞

i=0 ni2
i

with ni ∈ {0, 1}, the function  assigns to n the ‘length’ of its binary expansion.

We call n a spike if n = 2t − 1 for some t > 0. The following is immediate.

Lemma A.6. (i) For n ∈ ℕ, �(n) ⩽  (n). Moreover, �(n) =  (n) if and only if
n = 2t − 1 with t =  (n).
(ii) If n is a non-spike then �(n) <  (n) − 1.

Proof. Both parts immediately follow from de�nitions. We only note that, for
(ii), by de�nition  (n)− 1 is the last place in the binary expansion of n which a
1 appears whereas �(n) is the �rst place in the binary expansion a 0 shows up,
hence �(n) ≠  (n) − 1. �

We also have the following characterisation of non-spike integers.

Lemma A.7. (i) Let n be a non-spike positive integer, that is n ≠ 2t − 1 for all t.
Then, there exists a natural number Nn > 1 so that n = 2�(n)Nn + 2�(n) − 1. In
particular,Nn is an even number.
(ii) If n is a non-spike then there exists a nonnegative integer B(n) with either
B(n) = 0 or B(n) > 2�(n) such that

n = 2 (n)−1 + B(n) + 2�(n) − 1.
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Proof. (i) Note that for any positive integer k we have 2k − 1 =
∑k−1

j=0 2
j. This

together with de�nition of �(n) shows that for n =
∑+∞

i=0 ni2
i we have

Nn = (n − 2�(n) − 1)∕2�(n) =
+∞∑

i=�(n)
ni2i−�(n).

If Nn is an odd number then n�(n) = 1 which contradicts de�nition of �(n). In
particular, Nn cannot be 1.
(ii) by de�nition of  we have n (n)−1 = 1 and ni = 0 for all i ⩾  (n). For

n =
∑+∞

i=0 ni2
i written in binary form, B(n) =

∑ (n)−2
i=�(n)+1 ni2

i is the required
value. �

Sometimes we refer to B(n) as the (undetermined-) block of n.

The functions � and  provide some useful upper and lower bounds for non-
spike numbers. Before proceeding further, let’s recall that for all i > 0 we have

2i − 1 =
i−1∑

j=0
2j.

Most of what we say below are consequences of this equality. For instance, we
have the following.

Lemma A.8. (i) For n ∈ ℕ, n (n) = 0 and n (n)−1 = 1.
(ii) For any non-spike positive integer n ∈ ℕ we have

2 (n)−1 + 2�(n) − 1 ⩽ n ⩽ 2 (n) − 1 − 2�(n) < 2 (n) − 1.

(iii) For any non-spike positive integer n we have �(n) <  (n) − 1.

Proof. (i) This follows from the de�nition of  .
(ii) Using the equality 2i − 1 =

∑i−1
j=0 2

j the inequality is immediate.
(iii) This is also immediate from the de�nitions. �

The following provides an application of the inequalities of Lemma A.8.

Lemma A.9. Suppose I = (i1, … , ir) is an admissible sequence with ex(I) > 0
which satis�es conditions of Theorem 2.2. If ij = 2n−1 for some n > 0 then j = r.

Proof. By Lemma A.2(i) the sequence I is strictly decreasing. Suppose j < r
and ij = 2n−1 for some n > 0. Then ij+1 < 2n−1. We compare (ij+1) to n and
proceed to show that any possible choice for (ij+1) leads to a contradiction. We
consider the following cases.
Case of  (ij+1) ⩾ n + 1. In this case,  (ij+1) − 1 ⩾ n. If ij+1 is non-spike then
by Lemma A.8(ii) we have

ij+1 ⩾ 2 (ij+1)−1 + 2�(ij+1) − 1 > 2 (ij+1)−1 − 1 ⩾ 2n − 1 = ij
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which is a contradiction. If ij+1 is a spike then by Lemma A.6 �(ij+1) =  (ij+1)
and

ij+1 = 2 (ij+1) − 1 > 2n − 1 = ij
which is a contradiction.
Case of  (ij+1) ⩽ n − 1. Using the inequalities of Lemma A.8(ii) we see that

ij+1 ⩽ 2 (ij+1) − 1 ⩽ 2n−1 − 1
which together with ij = 2n − 1 and the admissibility condition implies that

2ij+1 ⩽ 2n − 2 = ij − 1 < ij ⩽ 2ij+1
which is an obvious contradiction.
Case of  (ij+1) = n. First, suppose �(ij+1) <  (ij+1), i.e. ij+1 is not a spike. By
Lemma A.8(ii) we have

ij+1 ⩾ 2 (ij+1)−1 + 2�(ij+1) − 1 = 2n−1 + 2�(ij+1) − 1.
Noting that ij = 2n − 1, and multiplying both sides of this inequality by 2, we
have

2ij+1 ⩾ 2n + 2�(ij+1)+1 − 2
which implies that 2ij+1 − ij ⩾ 2�(ij+1)+1 − 1. For I satisfying conditions of
Theorem2.2we have 2ij+1−ij ⩽ 2�(ij+1). Moreover, by LemmaA.2(ii) all entries
of I are odd and this latter inequality reads as 2ij+1 − ij < 2�(ij+1) which is the
same as 2ij+1 − ij ⩽ 2�(ij+1) − 1. It is impossible to have both inequalities

2ij+1 − ij ⩾ 2�(ij+1)+1 − 1, 2ij+1 − ij ⩽ 2�(ij+1) − 1
holding together. Hence, we have a contradiction.
The only possible remaining case is the case of �(ij+1) =  (ij+1) = n. In this
case, by Lemma A.6, ij+1 = 2n − 1 = ij. But this contradicts Lemma 1.1(iii),
unless j = r. This completes the proof. �

A very immediate corollary of the proof is the following.

Corollary A.10. If I = (i1, … , ir) is an admissible sequence of positive excess,
satisfying conditions of Theorem 2.2, with ir = 2�(ir) − 1 then �(ir−1) < �(ir).

Proof. By Lemma A.5 �(ir−1) ⩽ �(ir). We have to eliminate the possibility of
�(ir−1) = �(ir). By Lemma A.8(ii), ir−1 ⩾ 2 (ir−1)−1+2�(ir−1)−1. Also, using the
upper bound of LemmaA.8(ii) for ir, noting that by LemmaA.6(i) �(ir) =  (ir),
we see that

2ir − ir−1 ⩽ 2 (ir)+1 − 2 − (2 (ir−1)−1 + 2�(ir−1) − 1) = 2�(ir) − 2 (ir−1)−1 − 1.
By Lemma A.9 ir−1 is not a spike. Hence, by Lemma A.6(ii), �(ir−1) <  (ir−1)−
1. If �(ir) = �(ir−1) then the above inequality reads as

2ir − ir−1 ⩽ 2�(ir) − 2 (ir−1)−1 − 1 = 2�(ir−1) − 2 (ir−1)−1 − 1 < −1
which contradicts the admissibility of I. Hence, it is not possible to have �(ir) =
�(ir−1). This completes the proof. �
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We can prove a more practical criterion of the sequence of  ’s. We have the
following.

Theorem A.11. Suppose I = (i1, … , ir) is an admissible sequence of positive
excess, satisfying conditions of Lemma 2.2. Then for all j ∈ {2, … , r} we have
 (ij) =  (ij−1) − 1.

Proof. We eliminate the cases with  (ij) ⩽  (ij−1) − 2 and  (ij) ⩾  (ij−1) as
follows.
Case of  (ij) ⩽  (ij−1) − 2. We have

ij ⩽ 2 (ij) − 1 ⩽ 2 (ij−1)−2 − 1

which implies that 2ij ⩽ 2 (ij−1)−1−2. Now, for any j ∈ {2, … , r} by LemmaA.9
ij−1 is not a spike. Hence, ij−1 ⩾ 2 (ij−1)+2�(ij−1)−1. These together imply that

2ij − ij−1 < −2�(ij−1) < 0

which is a contradiction.
Case of  (ij) =  (ij−1). First, suppose ij is not a spike. Then,

ij ⩾ 2 (ij)−1 + 2�(ij) − 1 = 2 (ij−1)−1 + 2�(ij) − 1.

Moreover, since by Lemma A.9 ij−1 is not a spike, then ij−1 < 2 (ij−1)−1. These
together imply that 2ij − ij−1 > 2�(ij) which contradicts the hypothesis of I
satisfying conditions of Theorem 2.2. Hence, ij has to be a spike and j = r by
Lemma A.9, that is ir = 2�(ir) − 1. In this case, as ij−1 is not a spike, we have

ij−1 ≤ 2 (ij−1) − 1 − 2�(ij−1).

These together imply that

2ir − ir−1 ⩾ 2�(ir) + 2�(ir−1) − 1 > 2�(ir)

which contradicts conditions of Theorem2.2. Note that the possibility of 2�(ir−1)−
1 = 0, hence �(ir−1) = 0 or equivalently ir−1 being even, is eliminated by
Lemma A.2(ii) as I satisfying conditions of Theorem 2.2 consists only of odd
entries.
Finally, note that it is impossible to have  (ij) >  (ij−1) as this would imply
that ij > ij−1 which contradicts Lemma A.2(i). Consequently, we are left with
 (ij) =  (ij−1) − 1 as the only choice. This completes the proof. �

A.1. Case of l(I) = 1, 2.

Lemma A.12. Suppose I = (i1, … , is) is an admissible sequence.
(i) For l(I) = 1, I satis�es conditions of Theorem 2.2 if and only if I = (2t − 1) for
some t > 0.
(ii) If l(I) = 2 then I does not satisfy conditions of Theorem 2.2.
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Proof. (i) It is clear from binary expansion.
(ii) By Lemma A.7, for any non-spike positive integer i, we have i = 2�(i) − 1 +
Ni2�(i) for some positive integerNi ≠ 1 (if i is a spike then the expression still is
valid withNi = 0). If I = (i1, i2) is a sequence satisfying conditions of Theorem
2.2 then by Lemma A.5 �(i1) ⩽ �(i2). The conditions

0 ⩽ 2i2 − i1 < 2�(i2), i1 − i2 < 2�(i1)

imply that
i2 = 2�(i2) − 1 + Ni22

�(i2) < 2�(i2)+1 ⇒ Ni2 ⩽ 1.
If i2 is not a spike then this is a contradiction by Lemma A.7. The only re-
maining case is that i2 is a spike which corresponds to the case Ni2 = 0 and
i2 = 2�(i2) − 1. Note that i1 = 2�(i1) − 1 + Ni12

�(i1). Using the conditions of the
theorem simultaneously, yields

i1 − i2 < 2�(i1) ⇒ Ni1 < 2�(i2)−�(i1),
2i2 − i1 < 2�(i2) ⇒ Ni1 > 2�(i2)−�(i1) − 1.

This gives the desired contradiction. �

A.2. Case of l(I) = 3.

Lemma A.13. If I = (i1, i2, i3) is an admissible sequence which satis�es condi-
tions of Theorem 2.2 then i3 = 2n − 1 for some positive integer n.

Proof. Suppose I = (i1, i2, i3) is a sequence which satis�es conditions of The-
orem 2.2. Note that by Lemma A.2(ii) all entries of I are odd, consequently
�j > 0 for all j. Since all entries of I are odd, we may sharpen the inequalities
of Theorem 2.2 and write

(1) i1 − (i2 + i3) < 2�1 , (2) 2i2 − i1 < 2�2 , (3) 2i3 − i2 < 2�3

as the left side of either inequality is meant to be odd. Here, we write �j = �(ij)
for brevity. By adding the three inequalities above, we have

i3 < 2�1 + 2�2 + 2�3 .
By Lemma A.8(ii) we have

2 3−1 + 2�3 − 1 ⩽ i3.
These together imply that

2 3−1 + 2�3 − 1 ⩽ i3 < 2�1 + 2�2 + 2�3 ⇒ 2 3−1 − 1 < 2�1 + 2�2
⇒ 2 3−1 ⩽ 2�1 + 2�2 .

Suppose i3 is not a spike. By LemmaA.6(ii) �3 <  3−1 or equivalently �3+1 ⩽
 3 − 1. Consequently,

2�3+1 ⩽ 2�1 + 2�2 .
Note that by Lemma A.5 �1 ⩽ �2 ⩽ �3 which implies that 2�3+1 ⩾ 2�1 + 2�2 .
Consequently,

2�3+1 = 2�1 + 2�2
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which is possible if and only if �1 = �2 = �3. Since i1, i2, i3 are not spike then
applying Lemma A.7 we have

ex(I) = i1 − (i2 + i3) = (N1 −N2 −N3)2�1 − 2�1 + 1.

SinceN1, N2, N3 are all even then eitherN1−N2−N3 ⩽ 0 orN1−N2−N3 ⩾ 2.
If N1 −N2 −N3 ⩾ 2 then

ex(I) ⩾ 2�1+1 − 2�1 − 1 = 2�1 + 1 > 2�1

which contradicts (1), hence contradicting I satisfying conditions of Theorem
2.2. IfN1−N2−N3 ⩽ 0 then bearing in mind that �1 > 0we see that ex(I) < 0
which contradicts the hypothesis. We then conclude that i3 is a spike. �

Next, we compute i1 and i2.

Lemma A.14. Suppose I = (i1, i2, i3) is an admissible sequence satisfying condi-
tions of Theorem 2.2. Then, for somem ⩽ n − 1

I = (2n+1 + 2m − 1, 2n + 2m − 1, 2n − 1).

Proof. We shall write  j =  (ij) and �j = �(ij). By Lemma A.13 i3 = 2n − 1
for some n > 0. It follows that �3 =  3 = n. By Lemma A.11 it follows that
 2 = n+ 1 and  1 = n+ 2. Moreover, since i3 is a spike then by Lemmata A.10
and A.5 we have �1 ⩽ �2 < �3 = n. By LemmaA.9 both i1 and i2 are non-spike.
Applying Lemma A.6(ii) we see that

i1 = 2n+1 + B1 + 2�1 − 1, i2 = 2n + B2 + 2�2 − 1

where B1 =
∑n

k1=�1+1
�k12

k1 and B2 =
∑n−1

k2=�2+1
�k22

k2 . We claim that B1 =
B2 = 0. We proceed as follows.
First, suppose B2 > 0. The conditions 0 < 2i2 − i1 < 2�2 and 0 < ex(I) < 2�1
imply that

2n+1 + 2B2 + 2�2+1 − 2 − (2n+1 + B1 + 2�1 − 1) < 2�2 ⇒
2B2 − B1 + 2�2 − 1 < 2�1 ,
0 < 2n+1 + B1 + 2�1 − 1 − (2n + B2 + 2�2 − 1 + 2n − 1) < 2�1 ⇒
B1 − B2 − 1 < 2�2 .

By adding the resulting inequalities we have B2 − 2 < 2�1 ⩽ 2�2 , so from B2
being evenwe deduce thatB2 ⩽ 2�2 . But, this is a contradiction as ifB2 > 0 then
from its expression B2 > 2�2 . Hence, B2 = 0 and consequently i2 = 2n+2�2−1.
Therefore, for somem ⩽ n − 1 we have �2 = m and

I = (2n+1 + B1 + 2�1 − 1, 2n + 2m − 1, 2n − 1)

where �1 ⩽ m. Next, we turn to B1.
First, suppose B1 = 0. In this case if �1 < m then ex(I) < 0 which is a contra-
diction. Hence, in the case of B1 = 0 we have �1 = m and

I = (2n+1 + 2m − 1, 2n + 2m − 1, 2n − 1).
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We show that the assumption that B1 > 0 leads to a contradiction. The condi-
tion 0 < 2i2 − i1 < 2�2 = 2m implies that

2m ⩽ B1 + 2�1 < 2m+1.

Consider the binary expansion of B1 as B1 =
∑ 1−2

k1=�1+1
�k12

k1 bearing in mind
that  1 − 2 = n. The above inequalities show that

�k1 = 0 for all k1 ⩾ m + 1.

Hence, B1 =
∑m

k1=�1+1
�k12

k1 . If �1 < m then the condition B1+2�1 ⩾ 2m reads
as

∑m
k1=�1+1

�k12
k1 + 2�1 ⩾ 2m which is impossible if �m = 0. Hence, �m = 1.

Therefore,

i1 = 2n+1 + 2m +
m−1∑

k1=�1+1
�k12

k1 + 2�1 − 1.

The condition ex(I) < 2�1 reads as
m−1∑

k1=�1+1
�k12

k1 + 2�1 + 1 < 2�1

which is an obvious false inequality. Hence, B1 = 0. This completes the proof.
�

As an example where the boundary valuem = n − 1 could be attained, con-
sider I = (19, 11, 7) where 11 = 23 + 23−1 − 1. The process of eliminating B1
in the above proof is more of a intuitive nature and would be immediate if one
has the experience and passion for working with binary expansions.
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