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Zariski dense orbits for regular self-maps of
tori in positive characteristic

Dragos Ghioca and Sina Saleh

Abstract. We formulate a variant in characteristic p of the Zariski dense
orbit conjecture previously posed by Zhang, Medvedev-Scanlon and Amerik-
Campana for rational self-maps of varieties de�ned over �elds of character-
istic 0. So, in our setting, let K be an algebraically closed �eld, which has
transcendence degree d ≥ 1 over Fp. Let X be a variety de�ned over K, en-
dowed with a dominant rational self-map Φ. We expect that either there ex-
ists a variety Y de�ned over a �nite sub�eld Fq of Fp of dimension at least
d + 1 and a dominant rational map � ∶ X ⤏ Y such that �◦Φm = Fr◦� for
some positive integers m and r, where F is the Frobenius endomorphism of
Y corresponding to the �eld Fq , or either there exists � ∈ X(K) whose orbit
underΦ is well-de�ned and Zariski dense inX, or there exists a non-constant
f ∶ X ⤏ ℙ1 such that f◦Φ = f. We explain why the new condition in our
conjecture is necessary due to the presence of the Frobenius endomorphism
in case X is isotrivial. Then we prove our conjecture for all regular self-maps
on GN

m.
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1. Introduction
1.1. Notation. We let ℕ0 ∶= ℕ ∪ {0} denote the set of nonnegative integers.
For any self-map Φ on a variety X and for any integer n ≥ 0, we let Φn be the
n-th iterate of Φ (where Φ0 is the identity map id ∶= idX , by de�nition). For a
point x ∈ X with the property that each point Φn(x) avoids the indeterminacy
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locus of Φ, we denote by OΦ(x) the orbit of x under Φ, i.e., the set of all Φn(x)
for n ≥ 0.

1.2. The classical Zariski dense orbit conjecture. The following conjec-
ture was motivated by a similar question raised by Zhang [Zha06] and was
formulated by Medvedev and Scanlon [MS14] and by Amerik and Campana
[AC08].

Conjecture 1.1. Let X be a quasiprojective variety de�ned over an algebraically
closed �eld K of characteristic 0 and let Φ ∶ X ⤏ X be a dominant rational self-
map. Then either there exists � ∈ X(K) whose orbit under Φ is well-de�ned and
Zariski dense in X, or there exists a non-constant rational function f ∶ X ⤏ ℙ1
such that f◦Φ = f.

One sees immediately that if there exists a non-constant rational function
f ∶ X ⤏ ℙ1 such that f◦Φ = f, then no orbit OΦ(�) can be Zariski dense
in X. So, the entire di�culty in Conjecture 1.1 is proving that when there
is no non-constant rational function f invariant under Φ, then one may in-
deed �nd a point � with a Zariski dense orbit. Conjecture 1.1 was proven (see
[AC08, BGR17]) in the case K is uncountable. However, if K is countable, then
Conjecture 1.1 is very di�cult and only a few special cases are known (see
[BGRS17, GH18, GS17, GS21, GS19, GX18, MS14, Xie19]). The main di�culty
comes from the fact (as proven in [AC08, BGR17]) that, from a strictly geo-
metric point of view, there exist countably many proper subvarieties of X one
needs to avoid in order to �nd a point with a Zariski dense orbit; thus, when K
is countable, one needs to exploit the arithmetic dynamics of the setting from
Conjecture 1.1 in order to �nd a point whose orbit is Zariski dense.

1.3. A variant of the conjecture in positive characteristic. The picture in
characteristic p is very much di�erent due to the presence of the Frobenius
endomorphism for any varietyX de�ned over a �nite �eld (see [BGR17, Exam-
ple 6.2] and also the next Remark).

Remark 1.2. IfX is any variety de�ned overFp, then there exists nonon-constant
rational function f ∶ X ⤏ ℙ1 invariant under the Frobenius endomorphism
F ∶ X ⟶ X (corresponding to the �eld automorphism x ↦ xp). However,
unless trdegFpK ≥ dim(X), there is no point in X(K)with a Zariski dense orbit
in X (each orbit of a point � ∈ X(K) lives in a subvariety Y ⊆ X de�ned over
Fp of dimension dim(Y) = trdegFpL, where L is the minimal �eld extension of
Fp for which � ∈ X(L)). Note that the Frobenius endomorphism is very special
in the sense that for most maps one can expect a dense orbit for a point de�ned
over a �eld extension of Fp with a transcendence degree smaller than dim(X).

The discussion from Remark 1.2 motivates the following conjecture.

Conjecture 1.3. Let K be an algebraically closed �eld of positive transcendence
degree over Fp, let X be a quasiprojective variety de�ned over K, and let Φ ∶ X ⤏
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X be a dominant rational self-map de�ned overK as well. Then at least one of the
following three statements must hold:

(A) There exists � ∈ X(K) whose orbit OΦ(�) is Zariski dense in X.
(B) There exists a non-constant rational function f ∶ X ⤏ ℙ1 such that

f◦Φ = f.
(C) There exist positive integersm and r, there exists a variety Y de�ned over

a �nite sub�eld Fq of Fp such that dim(Y) ≥ trdegFpK + 1 and there
exists a dominant rational map � ∶ X ⤏ Y such that

�◦Φm = Fr◦�,
where F is the Frobenius endomorphism of Y corresponding to the �eld
Fq.

Remark 1.4. Note that if X is any variety de�ned over Fp, endowed with some
endomorphism Φ, then each point � ∈ X(Fp) would be preperiodic under the
action of Φ and so, the trichotomy from Theorem 1.3 cannot hold. Hence, it is
necessary to assume that K is transcendental over Fp in Conjecture 1.3.

We note that in [BGR17, Theorem 1.2], it was proven that if there is no non-
constant rational function f invariant under Φ, then any point � ∈ X(K) out-
side a countable union of proper subvarieties of X would have a Zariski dense
orbit. So, in particular, [BGR17, Theorem 1.2] proves Conjecture 1.3 whenever
K is uncountable, which leaves once again the case when K is countable as the
outstanding open case in Conjecture 1.3.

1.4. Our results. We prove our Conjecture 1.3 in the case of regular self-maps
Φ of GN

m.

Theorem 1.5. Let N ∈ ℕ and let K be an algebraically closed �eld of charac-
teristic p such that trdegFpK ≥ 1. Let Φ ∶ GN

m ⟶ GN
m be a dominant regular

self-map de�ned over K. Then at least one of the following statements must hold.
(A) There exists � ∈ GN

m(K) whose orbit under Φ is Zariski dense in GN
m.

(B) There exists a non-constant rational function f ∶ GN
m ⤏ ℙ1 such that

f◦Φ = f.
(C) There exist positive integers m and r, a connected algebraic subgroup

Y of GN
m (de�ned over a �nite �eld Fq) of dimension at least equal to

trdegFpK + 1 and a dominant regular map � ∶ GN
m ⟶Y such that

�◦Φm = Fr◦�, (1)

where F is the usual Frobenius endomorphism of Y induced by the �eld
automorphism x ↦ xq.

Remark 1.2 shows that indeed condition (C) is necessary due to the presence
of the Frobenius endomorphism of GN

m; we also illustrate the trichotomy from
the conclusion of our Theorem 1.5 in the next series of examples.
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Example 1.6. Let p be an odd prime number, let K be the algebraic closure of
Fp(t), let (�1, �2, �3) ∈ G3

m(K) and letΦ ∶ G3
m ⟶G3

m be a regular map de�ned
over K.

(1) If Φ is the translation map given by (x1, x2, x3) ↦ (�1x1, �2x2, �3x3),
then condition (B) in Theorem 1.5 holds if and only if �1, �2, �3 are
multiplicatively dependent, i.e., there exist integers c1, c2, c3, not all
equal to 0 such that

∏3
i=1 �

ci
i = 1. If the �j’s are multiplicatively inde-

pendent, then conclusion (A) from Theorem 1.5 holds; clearly, conclu-
sion (C) does not hold in this example.

(2) If Φ is given by (x1, x2, x3) ↦ (�1x
p
1 , �2x

p
2 , �3x

2
3), then condition (B)

from Theorem 1.5 does not hold; this can be seen either directly, or by
invoking our Theorem 2.2 since conjugatingΦ by a suitable translation
yields the group endomorphism (x1, x2, x3) ↦ (xp1 , x

p
2 , x

2
3). Therefore,

no non-constant �bration can be invariant under Φ. However, also
conclusion (A) from Theorem 1.5 does not hold for this example. In-
deed, for any point

� ∶= (�1, �2, �3) ∈ G3
m(K),

the orbit of � under Φ is contained in some proper subvariety of G3
m of

the form V × Gm, where V ⊂ G2
m is a curve. More precisely, V is the

translation by the point
(
�−1∕(p−1)1 , �−1∕(p−1)2

)
of a curve de�ned over

Fp containing the point
(
�1�

1∕(p−1)
1 , �2�

1∕(p−1)
2

)
.

(3) IfΦ is given by (x1, x2, x3) ↦
(
�1x

p
1 , �2x

p2
2 , �3x

p3
3

)
, then conclusion (A)

from Theorem 1.5 holds (neither conclusions (B) nor (C) hold for this
example) and so, there exists a point in G3

m(K) with a Zariski dense
orbit.

The strategy of our proof for Theorem 1.5 is as follows. Each regular self-
map Φ of GN

m is a composition of a group endomorphism ' ∶ GN
m ⟶GN

m with
a translation �y (by a point y ∈ GN

m(K)) (see [Iit76, Theorem 2]). Then for each
point � ∈ GN

m(K), the entire orbit OΦ(�) lies in a �nitely generated subgroup Γ
ofGN

m(K). AssumingOΦ(�) is not Zariski dense inGN
m, then it means its Zariski

closureZ ⊂ GN
m is a proper subvariety. SinceZ(K)∩Γ is Zariski dense inZ, then

the result of [Hru96, Theorem 1.1] yields that Z is a �nite union of translates of
subvarieties de�ned over Fp. This property yields some useful information re-
garding the endomorphism ' in connection with the translation �y. However,
in order to obtain even more precise information (which in turn delivers the
desired conclusion in Theorem 1.5) we employ the F-structure result of Moosa
and Scanlon [MS04, Theorem B] regarding the intersection of a �nitely gen-
erated subgroup with a subvariety of GN

m (see Theorem 2.1 and also [CGSZ21,
Section 2.2] for a concise description of the main result from [MS04]).

The same strategy employed in our proof of Theorem 1.5 should extend with
appropriate modi�cation to the general case when we replace GN

m by a split
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semiabelian variety G de�ned over a �nite �eld (for example, one would need
to employ the results of [Ghi08] to describe the intersection of a subvariety
of G with a �nitely generated subgroup, plus there exist additional complica-
tions due to the larger, possibly non-commutative ring of endomorphisms for
an abelian variety de�ned over a �nite �eld). However, the variant of Theo-
rem 1.5 in the context of isotrivial abelian varieties de�ned over a �eld K of
transcendence degree 1 over Fp is already quite di�cult since the proof of one
of the main technical ingredients in our proof of Theorem 1.5 (see Proposi-
tion 4.1) does not extend to the abelian case.Instead, the Diophantine question
that arises in the case of abelian varieties de�ned over a function �eld with a
positive transcendence degree is challenging. So, we expect the extension of
Theorem 1.5 to the case of isotrivial abelian varieties de�ned over a function
�eld of a positive transcendence degree to be quite di�cult. Furthermore, the
case of a non-isotrivial abelian variety de�ned over a function �eld of positive
characteristic will have additional complications since even the structure of the
intersection between a subvariety of such an abelian variety with a �nitely gen-
erated subgroup is signi�cantly more delicate. Finally, the general case in Con-
jecture 1.3 when X is an arbitrary variety is expected to be at least as di�cult as
the general case in Conjecture 1.1. As kindly pointed out by the referee, when
X is an algebraic group, one often �nds that if there is no Zariski dense orbit un-
der the action of Φ, then there exists some suitable algebraic group Y endowed
with a dominant map g ∶ X ⟶ Y with the property that g◦Φ = g; so, when
X is not an algebraic group, then Conjecture 1.3 is signi�cantly harder. The
increased di�culty for the characteristic p variant of our conjecture is not sur-
prising since quite a few arithmetic conjectures turned out to be very di�cult
in characteristic p, even more so than in characteristic 0; for example, we men-
tion the variant of the Dynamical Mordell-Lang Conjecture, which was shown
to be very di�cult in characteristic p even for the case of regular self-maps of
tori (see [CGSZ21] and themore general discussion from [BGT16, Chapter 13]).

We sketch brie�y the plan for our paper. In Section 2, we state a precise ver-
sion of our Theorem 1.5 (see Theorems 2.5 and 2.6 which re�ne Theorem 1.5).
In Section 3, we prove Theorem3.7which solves Theorem1.5 in the special case
Φ is a composition of a translation with a unipotent group endomorphism. In
Section 4, using Theorem 3.7 (along with a general reduction provided by our
Proposition 3.12 fromSection 3.3), we complete the proof of Theorem1.5 (along
with Theorems 2.5 and 2.6).

2. Additional results and some technical reductions
2.1. Generalities. As a matter of notation, we use id|X to denote the identity
map on the variety (or more general, the set) X. For N-by-N matrices we use
id ∶= idN to denote the corresponding identity matrix.

For any �eld K and any �nitely generated subgroup Γ ⊂ Gm(K), we say that
x ∈ Gm(K) is multiplicatively independent from Γ if there is no nonzero inte-
ger m such that xm ∈ Γ. Similarly, given 
1, … , 
r ∈ Gm(K), we say that x is
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multiplicatively independent from 
1, … , 
r if x is multiplicatively independent
with respect to the subgroup of Gm(K) spanned by the 
i’s. More generally,
we say that x1, … , xs ∈ Gm(K) are multiplicatively independent from 
1, … , 
r
if the subgroup of Gm(K) generated by the xi’s has trivial intersection with the
subgroup generated by the 
j’s.

For any point y ∈ GN
m, we let �y ∶ GN

m ⟶ GN
m be the translation-by-y

automorphism, i.e., �y(x) ∶= y ⋅ x for each x ∈ GN
m. Furthermore, in our paper

we �nd useful to use vector notation for the points ofGN
m, i.e., from now on, the

point x ∈ GN
m will be denoted as x⃗ ∶= (x1, … , xN).

Since End(GN
m)

∼
→ MN,N(ℤ), we have that each dominant endomorphism '

of GN
m is identi�ed by an invertible N-by-N matrix A with integer entries such

that
'(x⃗) = x⃗A, (2)

i.e., '(x1, … , xN) =
(∏N

i=1 x
a1,i
i , … ,∏N

i=1 x
aN,i
i

)
. Wewill often identify the group

endomorphism ' ofGN
m with its correspondingN-by-NmatrixA as in (2). Fur-

thermore, we recall that any regular self-map ofGN
m is a composition of a trans-

lation �y⃗ with a group endomorphism '.
For a point �⃗ ∶= (�1, … , �N) ∈ GN

m(K) and some vector v⃗ ∶= (v1, … , vN) ∈
ℤN , we let

�⃗v⃗ ∶=
N∏

i=1
�vii . (3)

In particular, given a group endomorphism ' corresponding to a matrixA as in
(2), given a point �⃗ ∈ GN

m(K) and also given a vector v⃗ with integer entries, we
have

'
(
�⃗
)v⃗ =

(
�⃗
)At v⃗ , (4)

where At represents the transpose of the matrix A. Also, for any �⃗ ∈ GN
m(K)

and any k ∈ ℤ, we let �⃗k be the k-th power of the point �⃗ in GN
m(K).

For a regular self-map Φ ∶ GN
m ⟶ GN

m given by x⃗ ↦ �⃗ ⋅ x⃗A, a simple
computation yields the formula for the n-th iterate:

Φn(x⃗) =
(
�⃗
)∑n−1

j=0 A
j

⋅
(
x⃗
)An . (5)

Finally, we state a special case of theMoosa-Scanlon structure theorem [MS04,
Theorem B] which will be used repeatedly in our proofs.

Theorem 2.1. Let K be an algebraically closed �eld of positive characteristic p,
let N be a positive integer, let V ⊂ GN

m be a subvariety de�ned over K and let
Γ ⊂ GN

m(K) be a �nitely generated subgroup. Then, V(K) ∩ Γ is a �nite union of
sets of the form

U ∶= 
⃗ ⋅ S(�⃗1, … , �⃗r; �1, … , �r) ⋅ H, (6)
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where there exists some positive integerm such that


⃗m, �⃗m1 , … , �⃗
m
r ∈ Γ,

the �j ’s are positive integers,H is a subgroup of Γ and

S(�⃗1, … , �⃗r; �1, … , �r) ∶=
⎧

⎨
⎩

r∏

j=1

(
�⃗j

)p�jnj ∶ nj ∈ ℕ0 for j = 1,… , r
⎫

⎬
⎭

.

2.2. A more precise statement for Theorem 1.5. Our strategy for proving
Theorem 1.5 is as follows. We will �rst prove Theorem 1.5 for group endomor-
phisms and then use our result to infer the general case in Theorem 1.5.

The next result is used in deriving a more precise statement for Theorem 1.5
in the case where Φ is a group endomorphism.

Theorem 2.2. Let N ∈ ℕ, let K be an algebraically closed �eld of characteristic
p and let Φ be a dominant group endomorphism of GN

m de�ned over K. Then the
following statements are equivalent:

(i) For some l ∈ ℕ, the kernel of Φl − id is positive dimensional.
(ii) There exists a non-constant rational function f ∶ GN

m ⤏ ℙ1 such that
f◦Φ = f.

If the equivalent conditions (i)-(ii) donot hold, andalso assuming that trdegFpK ≥
N, then for any point �⃗ ∈ GN

m(K) with the property that its coordinates �1, … , �N
are algebraically independent over Fp, we have that any in�nite subset of OΦ(�⃗)
is Zariski dense in GN

m.

Remark 2.3. Condition (i) from Theorem 2.2 tells us that for a dominant group
endomorphismΦ ofGN

m (de�ned over an arbitrary algebraically closed �eldK),
we have that Φ preserves a non-constant �bration (as in condition (ii) from
Theorem 2.2) if and only if the matrix A ∈ MN,N(ℤ) corresponding to Φ (as in
(2)) has an eigenvalue which is a root of unity.

Remark 2.4. Given a group endomorphism Φ ∶ GN
m ⟶ GN

m corresponding to
some (invertible) matrixA ∈ MN,N(ℤ) (see (2)), we see that condition (C) from
the conclusion of Theorem 1.5 is equivalent with asking that there are k ∶=
trdegFpK + 1 Jordan blocks in the Jordan canonical form for A corresponding
to eigenvalues �1, … , �k with the property that for some positive integersm and
r, we have that

�m1 = ⋯ = �mk = pr. (7)
Note that the eigenvalues �1, … , �k may be equal; we are only asking that they
correspond to distinct Jordanblocks forA. This observationwill be used through-
out our proof of Theorem 1.5.

Using Remarks 2.3 and 2.4, we see that in the case of group endomorphisms,
Theorem 1.5 is equivalent with the following result which is a stronger version
of Theorem 2.2.
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Theorem 2.5. LetK be an algebraically closed �eld of positive transcendence de-
gree over Fp, let N ∈ ℕ and let Φ be a dominant group endomorphism of GN

m
corresponding to some matrix A ∈ MN,N(ℤ). Assume the following two condi-
tions are met:

(1) there is no eigenvalue � of A which is a root of unity.
(2) there does not existk ∶= trdegFpK+1 Jordan blocks in the Jordan canon-

ical form ofA corresponding to eigenvalues �1,. . . , �k satisfying the equa-
tion

�m1 = ⋯ = �mk = pr, (8)

for some positive integersm and r.

Then there exists �⃗ ∈ GN
m(K) whose orbit under Φ is Zariski dense in GN

m. Fur-
thermore, given any �nitely generated subgroup Γ ⊂ Gm(K), one can choose
�⃗ ∈ GN

m(K) such that

(i) the subgroup spanned by �1, … , �N (the coordinates of �⃗) has trivial in-
tersection with Γ; and

(ii) any in�nite subset of OΦ(�⃗) is Zariski dense in GN
m.

The next result provides a more precise form in the conclusion of Theo-
rem 1.5 for a dominant regular self-map of GN

m.

Theorem 2.6. Let N ∈ ℕ, let K be an algebraically closed �eld of positive tran-
scendence degree overFp, let �⃗ ∈ GN

m(K), let' ∶ GN
m ⟶GN

m be adominant group
endomorphism corresponding to some matrixA ∈ MN,N(ℤ), and letΦ ∶= ��⃗◦'.
Assume there does not exist k ∶= trdegFpK + 1 Jordan blocks in the Jordan
canonical form of A corresponding to eigenvalues �1,. . . , �k satisfying the equa-
tion �m1 = ⋯ = �mk = pr for some positive integersm and r.

Then the following statements are equivalent:

(i) There is a non-constant rational functionf ∶ GN
m ⤏ ℙ1 such thatf◦Φ =

f.
(ii) There is no �⃗ ∈ GN

m(K) whose orbit OΦ(�⃗) is Zariski dense in GN
m.

(iii) There exists a positive integer l and there exists a nonzero vector v⃗ ∈ ℤN

such that

(Al)t ⋅ v⃗ = v⃗ and �⃗
(∑l−1

j=0 A
j
)t
⋅v⃗ = 1. (9)

Remark 2.7. We explain here the relevance of condition (iii) from Theorem 2.6.
The existence of a nonzero vector v⃗ ∈ ℤN satisfying (9) means that for each
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n ∈ ℕ and for each �⃗ ∈ GN
m(K), we have that (see (5))

Φnl(�⃗)v⃗ = �⃗
(∑nl−1

j=0 Aj
)t
⋅v⃗ ⋅ �⃗(Anl)

t
⋅v⃗

= �⃗
(∑l−1

j=0 A
j
)t
⋅
(∑n−1

i=0 A
il
)t
v⃗ ⋅ �⃗v⃗ (by condition (iii))

= �⃗
(∑l−1

j=0 A
j
)t
⋅(nv⃗) ⋅ �⃗v⃗ (by condition (iii))

= �⃗v⃗ (by condition (iii)).

Therefore,OΦl(�⃗) is contained in a coset of the proper algebraic subgroupH ⊂
GN
m given by the (nontrivial) equation x⃗v⃗ = 1 (actually, H is invariant under

Φl according to the above computation). Thus, OΦ(�) must be contained in a
proper subvariety of GN

m (which is a �nite union of cosets of H) and so, it can
never be Zariski dense in GN

m. Furthermore, one can �nd the non-constant ra-
tional function f ∶ GN

m ⤏ ℙ1 which is invariant under Φ arguing identically as
in the proof of [GS21, Theorem 1.2] where a similar condition (iii) was given in
the general case of split semiabelian varieties de�ned over a �eld of character-
istic 0.

So, the implications (i)⇒(ii) and (iii)⇒(i) from Theorem 2.6 hold with iden-
tical proof for regular self-maps of tori regardless of the characteristic of the
�eld. The interesting features of Theorem 2.6 is that one can prove the implica-
tion (ii)⇒(iii) in positive characteristic as well. In characteristic 0, the proof of
(ii)⇒(iii) from [GS21, Theorem 1.2] employed the classical Mordell-Lang the-
orems for semiabelian varieties (as established by [Lau84, Fal94, Voj96]) and
it was incomparably much easier than the proof of our Theorem 2.6. Indeed,
in characteristic p, since the classical Mordell-Lang theorems do not hold (see
[Hru96]), one needs to employ a signi�cantly more complicated approach in
order to establish the same equivalence as the one stated in our Theorem 2.6.

3. Reductions for the general case and the proof of a special case
3.1. General strategy for our proofs. We�rst describe the general approach
to proving our results. So, we write Φ ∶ GN

m ⟶ GN
m as ��⃗◦' for some point

�⃗ ∈ GN
m and some group endomorphism ' of GN

m, which corresponds to some
(invertible) N-by-N matrix A with integer entries.

Using [BGRS17, Lemma 2.1], in order to prove our results, we can always
replace Φ by a suitable iterate, i.e., for any given l ∈ ℕ,

∙ there exists a Zariski dense orbit under the action of Φ if and only if
there exists a Zariski dense orbit under the action of Φl; and

∙ Φ leaves invariant a non-constant rational function if and only if Φl
leaves invariant a non-constant rational function.

When we replace Φ by Φl, the group endomorphism ' is replaced by 'l (and
thus, the matrix A is replaced by Al), while the point �⃗ is replaced by �⃗

∑l−1
j=0 A

j
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(see (5)). The advantage in our approach is that nowwe can assume the follow-
ing: for each eigenvalue � of A, we have that either � = 1, or � is not a root of
unity.

We prove our results separately in the two cases outlined above, i.e., we deal
separately with the case when A is a unipotent matrix, and with the case when
A has no eigenvalue root of unity. In the latter case, the advantage is that no
matter what is the translation ��⃗ appearing in Φ, then we can conjugate Φ by
another suitable translation �
⃗ so that

Ψ ∶= �−1
⃗ ◦Φ◦�
⃗ (10)

is actually a group endomorphism of GN
m. Indeed, we choose 
⃗ such that


⃗id−A = �⃗
(note that id − A is an ivertible N-by-N matrix since we assume in this case
thatA does not have eigenvalues which are roots of unity) and then we see that
Ψ de�ned as in (10) is indeed a group endomorphism. Since our results are
invariant if we replace the self-map Φ by a conjugate of itself with an automor-
phism of GN

m (see [GS19, Lemma 3.1]), the case when A has no eigenvalue root
of unity reduces to proving our result for group endomorphisms (i.e., we are
left to proving Theorem 2.5).

The case when Φ ∶ GN
m ⟶GN

m is given by a composition of a translation ��⃗
with a group endomorphism ' corresponding to a unipotent N-by-N matrix A
is treated in the next section.

3.2. The case of unipotentmaps. We start by de�ning themain property we
are investigating in this paper.

De�nition 3.1. Let Φ ∶ GN
m ⟶ GN

m be a dominant regular self-map de�ned
over an algebraically closed �eld K. We say that Φ has property PK if either there
exists a non-constant rational function f ∶ GN

m ⤏ ℙ1 such that f◦Φ = f, or
there exists a point �⃗ ∈ GN

m(K) with a Zariski dense orbit under Φ, or there exist
positive integersm and r, a connected algebraic subgroupY ofGN

m of dimension at
least equal to trdegFpK + 1 de�ned over a �nite sub�eld Fq ⊂ K and a dominant
regular map � ∶ G ⟶ Y such that

�◦Φm = Fr◦�, (11)

where F is the usual Frobenius endomorphism of GN
m induced by the �eld auto-

morphism x ↦ xq.

Next, we establish a useful reduction in all of our proofs.

Proposition 3.2. Let N ∈ ℕ and let A, B ∈ MN,N(ℤ) be invertible matrices
with the property that there exists an invertible matrix Q ∈ MN,N(ℚ) such that
B = Q−1AQ. Let ' and  be group endomorphisms of GN

m corresponding to the
matrices A and B, respectively.
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Let K be an algebraically closed �eld of characteristic p. For each 
⃗ ∈ GN
m(K),

we let Φ
⃗ ∶= �
⃗◦' and Ψ
⃗ ∶= �
⃗◦ be the corresponding dominant regular self
maps on GN

m de�ned over K.
Let k ∈ ℕ such that both matrices kQ and kQ−1 have integer entries. We let

g ∶ GN
m ⟶ GN

m be the group endomorphism corresponding to the matrix kQ.
Then for each �⃗ ∈ GN

m(K), we have that if Φg(�⃗) has property PK , then Ψ�⃗ has
property PK .
Remark 3.3. We note that if the matrices Q and Q−1 have integer entries, then
the result of Proposition 3.2 follows immediately from [GS19, Lemma 3.1] since
we can consider the group automorphism g ∶ GN

m ⟶GN
m corresponding to the

matrix Q and then Ψ�⃗ = g−1◦Φg(�⃗)◦g, which means that Ψ�⃗ has property PK if
and only if Φg(�⃗) has property PK .

Proof of Proposition 3.2. Let �⃗ ∈ GN
m(K). Lemmas 3.4 , 3.5, and 3.6 deliver

the desired conclusion in Proposition 3.2. The next commutative diagram will
be used in our proofs for Lemmas 3.4 , 3.5, and 3.6.

GN
m GN

m GN
m

GN
m GN

m GN
m

 

Ψ�⃗

g

��⃗

g g

'

Φg(�⃗)

�g(�⃗)

(12)

Lemma 3.4. If there exists a non-constant rational function which is invariant
underΦg(�⃗), then there exists a non-constant rational function which is invariant
under Ψ�⃗ .

Proof of Lemma 3.4. Let f ∶ GN
m ⤏ ℙ1 be a non-constant rational function

such that
f◦Φg(�⃗) = f. (13)

Let f1 ∶= f◦g (which is still a non-constant rational function since g is a dom-
inant group endomorphism). By the commutative diagram (12) and the equa-
tion 13, we get

f1◦Ψ�⃗ = f◦g◦Ψ�⃗ = f◦Φg(�⃗)◦g = f◦g = f1,
thus proving the lemma. �

Lemma 3.5. If there exists aK-point with a Zariski dense orbit underΦg(�⃗), then
there exists a K-point with a Zariski dense orbit under Ψ�⃗ .

Proof of Lemma 3.5. Let �⃗ ∈ GN
m(K)whose orbit underΦg(�⃗) is Zariski dense

in GN
m. Since g is a dominant group endomorphism, there exists some 
⃗ ∈
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GN
m(K) such that g(
⃗) = �⃗. Then for each n ∈ ℕ, using the commutative dia-

gram (12), we have that

Φn
g(�⃗)

(�⃗) = Φn
g(�⃗)
◦(g(
⃗)) = g(Ψn

�⃗
(
⃗)).

Since g is �nite morphism, the orbit of 
⃗ underΨ�⃗ must be Zariski dense inGN
m,

as claimed in Lemma 3.5. �

Lemma 3.6. If there exists a connected algebraic subgroup Y of GN
m with a di-

mension larger than trdegFpK and a dominant regular map � ∶ GN
m ⟶Y such

that Φg(�) satis�es equation (11) for some positive integers m and r, then for the
dominant regular map �◦g ∶ GN

m ⟶Y we must have

�◦g◦Ψm� = Fr◦�◦g.

Proof. Using the diagram (12) we have

�◦g◦Ψm� = �◦Φmg(�)◦g
= Fr◦�◦g by (11),

which concludes our proof of Lemma 3.6. �

Combining Lemmas 3.4, 3.5 and 3.6 yields the desired conclusion for Propo-
sition 3.2. �

Theorem 3.7. Let N ∈ ℕ, let K be an algebraically closed �eld which is a tran-
scendental extension of Fp, let ' be a unipotent group endomorphism of GN

m, let
�⃗ ∈ GN

m(K) and let Φ ∶ GN
m ⟶ GN

m be the dominant regular self-map given by
Φ ∶= ��⃗◦'. Then Φ has property PK .

Before proving Theorem3.7, we �rst recall the de�nition of upper asymptotic
density of a subset of non-negative integers.

De�nition 3.8. Given a subset U of the set of non-negative integers, the upper
asymptotic density ofU is given by

lim sup
m→∞

# {0 ≤ n ≤ m∶ n ∈ U}
m .

Remark 3.9. Upper asymptotic densities will appear frequently in the rest of the
paper. So from now on, for the sake of simplifying our notation, we will refer
to the upper asymptotic density of some subset U ⊆ ℕ0 simply as density of U
and also, denote it by d(U).

Proof of Theorem 3.7. UsingProposition 3.2 (alongwith the fact that anyuni-
potentmetrix with integer entries can be conjugate through amatrix with ratio-
nal entries to its Jordan canonical form), wemay assume from now on, that the
matrix A corresponding to the group endomorphism ' is in Jordan canonical
form.
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The following result provides a precise criterion for the trichotomy in prop-
erty PK satis�ed by a self-map Φ ∶ GN

m ⟶ GN
m of the form Φ = ��⃗◦', where

' is a group endomorphism corresponding to a unipotent matrix A in Jordan
canonical form. Before stating our result, we recall the notation J�,m which
denotes a Jordan canonical block of dimension m ≥ 1 corresponding to the
eigenvalue �.

Proposition 3.10. LetK be an algebraically closed �eld, which is transcendental
over Fp and let Φ ∶ GN

m(K) → GN
m(K) be given by

(x1, … , xn)⟼
⎛
⎜
⎝
�1

N∏

i=1
xa1,ii , … , �il

N∏

i=1
xaN,ii

⎞
⎟
⎠
, (14)

whereai,j are the entries of amatrixA ∶= J1,i1
⨁J1,i2−i1

⨁⋯⨁J1,il−il−1 (where
1 ≤ i1 < i2 < ⋯ < il = N) and (�1, … , �N) ∈ GN

m(K). Then, the following
statements are equivalent:

(i) There is a non-constant rational functionf ∶ GN
m ⤏ ℙ1 such thatf◦Φ =

f.
(ii) There is no �⃗ ∈ GN

m(K) whose orbit is Zariski dense in GN
m(K).

(iii) �i1 , … , �il are multiplicatively dependent.

Proof. As noted already in [AC08, MS14, BGR17], we have that (i)⇒(ii). Now,
in order to prove that (ii)⇒(iii), it su�ces to show that if �i1 , �i2 , … , �il aremulti-
plicatively independent then we can �nd a point inGN

m(K)with a Zariski dense
orbit. Note there exists a vector 
⃗ such that

(

⃗
)A−idN =

(
�1, … , �i1−1, 1, �i1+1, … , �il−1, 1

)
.

It is easy to check that the map �
⃗◦Φ◦�−1
⃗ is given by

x⃗ ↦ �⃗′x⃗A, where �⃗′ ∶= (1, … , 1, �i1 , 1, … , 1, �il) ∈ GN
m(K). (15)

Therefore, after conjugating Φ with �
⃗ (see also [GS19, Lemma 3.1]), we may
assume without loss of generality that

(�1, … , �N) = (1, … , 1, �i1 , 1, … , 1, �il), (16)

i.e., �k = 1 unless k = ij for some j = 1,… , l. We choose a point

�⃗ ∶= (�1, … , �i1−1, 1, �i1+1, … , �i2−1, 1, … , �il−1, 1) ∈ GN
m(K), (17)

such that �i1 , … , �i1−1, �i1 , �i1+1, … , �il−1, �il are multiplicatively independent
(note that since trdegFpK > 0, we can �nd arbitrarily many multiplicatively
independent elements of K). We let

�⃗ = (�1, … , �i1−1, �i1 , �i1+1, … , �il−1, �il).
Then the orbit of � under Φ consists of points of the following form:

OΦ(�) =
{
�⃗An−1+⋯+A+id�⃗An ∶ n ∈ ℕ0

}
.
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Weclaim that the orbit of �⃗ underΦ is Zariski dense. We argue by contradiction,
and therefore assume that its Zariski closure V is a proper subvariety of GN

m.
We letΓ ⊂ GN

m be the�nitely generated group consisting of all elements of the
form �⃗E where E is anyN-by-Nmatrix with integer entries; clearly,OΦ(�⃗) ⊆ Γ.
By Theorem 2.1, we know thatV∩Γ is a union of �nitely many sets of the form

U ∶= 
⃗ ⋅ S(�⃗1, … , �⃗r; �1, … , �r) ⋅ H, (18)

where there exists some positive integerm such that


⃗m, �⃗m1 , … , �⃗
m
r ∈ Γ, (19)

the �j’s are positive integers, andH is a subgroup of Γ.
BecauseOΦ(�⃗) is contained in �nitely many sets of the form (18), then there

must exist a given set U of the form (18) for which the following subset of ℕ0:

S =
{
n ∈ ℕ0∶ Φn(�⃗) ∈ U

}

has positive density d(S) (see Remark 3.9 regarding our notation for upper as-
ymptotic density of subsets of ℕ0).

The algebraic closure of H must be an algebraic group G contained in the
stabilizer of the varietyW, which is the Zariski closure ofU. SinceV is a proper
subvariety andW ⊆ V, then Gmust also be a proper algebraic subgroup ofGN

m.
So, there must exist a nonzero vector v⃗ ∈ ℤN such that

(
�⃗
)v⃗ = 1 for each �⃗ ∈ H. (20)

Let n ∈ S; so, Φn(�) ∈ U (see (18)). Equation (19) yields that


⃗m = �⃗C and �⃗mi = �⃗Bi for each i = 1, … , r,

where C, B1, … , Br ∈ MN,N(ℤ) and so,

Φn(�⃗)m =
(
�⃗
)C+∑r

j=1 p
�jnjBj ⋅ �⃗n (21)

for some nonnegative integers nj and some �⃗n ∈ H. So, combining (21) with
(20) yields

Φn(�⃗)mv⃗ = �⃗
(
C+∑r

j=1 p
�jnjBj

)t
⋅v⃗. (22)

On the other hand, we know thatΦn(�⃗) = �⃗
∑n−1

j=0 A
j
⋅ �⃗An (see (5)) and we also

compute:

An =

⎛
⎜
⎜
⎜
⎝

1
(n
1

)
⋯

( n
i1−1

)

0 1 ⋯
( n
i1−2

)

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎞
⎟
⎟
⎟
⎠

⨁
⋯

⨁
⎛
⎜
⎜
⎜
⎝

1
(n
1

)
⋯

( n
il−il−1−1

)

0 1 ⋯
( n
il−il−1−2

)

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎞
⎟
⎟
⎟
⎠

(23)
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and so,

An−1 +⋯+ id =

⎛
⎜
⎜
⎜
⎝

n
(n
2

)
⋯

(n
i1

)

0 n ⋯
( n
i1−1

)

⋮ ⋮ ⋱ ⋮
0 0 ⋯ n

⎞
⎟
⎟
⎟
⎠

⨁
⋯

⨁
⎛
⎜
⎜
⎜
⎝

n
(n
2

)
⋯

( n
il−il−1

)

0 n ⋯
( n
il−il−1−1

)

⋮ ⋮ ⋱ ⋮
0 0 ⋯ n

⎞
⎟
⎟
⎟
⎠

.

(24)

Therefore, using (22) along with formulas (23) and (24), we obtain that for each
n ∈ S, we have

�⃗m
(∑n−1

i=0 A
i
)t
⋅v⃗ ⋅ �⃗(mAn)

t⋅v⃗ =
(
�⃗
)Ct v⃗+∑r

j=1 p
nj�jBtj v⃗ . (25)

Now, both sides in (25) consist of products of powers of

�1, … , �i1−1, �i1 , �i1+1, … , �i2−1, �i2 , �i2+1, … , �il−1, �il (26)

and since theN elements ofGm(K) from (26) are multiplicatively independent,
then it means that the exponents of each �i and each �ij appearing in the left-
hand side of (25)mustmatch the corresponding exponent of the�i, respectively
of �ij appearing in the right-hand side of (25).

Now, since v⃗ ∶= (v1, … , vN) is nonzero, then there is some 1 ≤ k ≤ l such
that the tuple (vik−1+1, … , vik ) is nonzero (where we denoted i0 ∶= 0 for conve-
nience). We use equations (23) and (24) to compute the exponent of �ik appear-
ing in the left-hand side of (25) and then comparing it with the exponent of �ik
from the right-hand side of (25), we get

m(vik−1+1 ⋅
( n
ik − ik−1

)
+ vik−1+2 ⋅

( n
ik − ik−1 − 1

)
+⋯+ vik ⋅

(n
1
)
)

= b0 +
r∑

j=1
bjp�jnj , (27)

for some integers b0, … , br which are independent of n (and only depend on
the entries of the matrices C, B1, … , Br and the entries of the vector v⃗). Since
the tuple

(
vik−1+1, … , vik

)
is nonzero, then the polynomial

P(n) ∶= m ⋅
ik−ik−1∑

j=1
vik−1+j ⋅

( n
ik − ik−1 + 1 − j

)
(28)

must be non-constant. So, equations (28) and (27) yield that each elementn ∈ S
must satisfy an equation of the form:

P(n) = b0 +
r∑

j=1
bjp�jnj , (29)

for somenj ∈ ℕ0. BecauseP is non-constant (while the �j’s are positive integers
and the bj’s are given), [GOSS21b, Theorem 1.1] yields that d(S) = 0, therefore
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contradicting our assumption that S has positive density. Hence, indeedOΦ(�⃗)
must be Zariski dense in GN

m, as desired for showing the implication (ii)⇒(iii).
Finally, in order to prove that (iii)⇒(i), we know that there exists a nonzero

v⃗ ∈ ℤl such that
∏l

j=1 �
vj
ij
= 1 since the �ij ’s are multiplicatively dependent.

Therefore, the non-constant rational function

f(x1, … , xN) ∶=
l∏

j=1
xvjij

is invariant underΦ (note that il = N with our notation fromProposition 3.10).
This concludes our proof for Proposition 3.10. �

Proposition 3.10 �nishes the proof of Theorem 3.7. �

Remark 3.11. Our proof of Proposition 3.10 shows that for a regular self-map
Φ as given in (14), if in addition the vector � has the form (16) with �i1 , … , �il
multiplicatively independent, then for any point �⃗ ∈ GN

m(K) as in (17) such that
�1, … , �i1−1, �i1 , �i1+1, … , �i2−1, �i2 , �i2+1, … , �il−1, �il

are multiplicatively independent, OΦ(�⃗) is Zariski dense. Furthermore, our
proof of Proposition 3.10 yields the stronger statement that for a point �⃗ ∈
GN
m(K) as in (17), for any subset S ⊆ ℕ0 of positive density, the set{

Φn(�⃗)∶ n ∈ S
}

is actually Zariski dense inGN
m. The strength of this re�ned result coming from

Theorem 3.7 allows us to prove an important reduction step in Theorem 2.6
(see Proposition 3.12).

3.3. The split case. The following result is instrumental in proving our The-
orem 2.6 by reducing it to our Theorem 3.7 combined with Theorem 2.5.

Proposition 3.12. Let K be an algebraically closed �eld of characteristic p > 0,
let N1, N2 ∈ ℕ, let N ∶= N1 + N2, let D be an invertible N2-by-N2 matrix with
integer entries, whose eigenvalues are not roots of unity, let B be a unipotent N1-
by-N1 matrix in Jordan canonical form, i.e.,

B ∶= J1,i1 ⊕ J1,i2−i1 ⊕⋯⊕ J1,is−is−1 ,

where is = N1, and let �⃗ ∶= (1, … , 1, �i1 , 1, … , 1, �is) ∈ GN1
m (K). Let


⃗ ∶= (
1, … , 
i1−1, 1, 
i1+1, … , 
i2−1, 1, 
i2+1, … , 
is−1, 1) ∈ GN1
m (K)

and let �⃗ ∶= (�1, … , �N2) ∈ GN2
m (K). Assume the following elements of Gm(K)

are multiplicatively independent:


1, … , 
i1−1, �1, 
i1+1, … , 
is−1, �is , (30)

and de�ne
�⃗ = (
1, … , 
i1−1, �1, 
i1+1, … , 
is−1, �is).
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Also, assume that the�i ’s aremultiplicatively independent from the elements from
(30), i.e., letting Γ be the subgroup of Gm(K) spanned by the elements from (30)
and letting Λ be the subgroup of Gm(K) spanned by the �i ’s, then Γ ∩ Λ = {1}.

Let Φ1 ∶ G
N1
m ⟶GN1

m be the regular map de�ned by

x⃗ ↦ �⃗ ⋅
(
x⃗
)B

for each x⃗ ∈ GN1
m .

Let Φ2 be the group endomorphism of GN2
m given by x⃗ ↦

(
x⃗
)D

for each x⃗ ∈ GN2
m ,

and let Φ be the regular self-map of GN
m ∶= GN1

m ⊕GN2
m given by Φ1 ⊕Φ2.

Assume that for any positive density subset S ⊆ ℕ0, the set
{
Φn2 (�⃗)∶ n ∈ S

}

is Zariski dense in GN2
m . Then OΦ(
⃗ ⊕ �⃗) is Zariski dense in GN

m.

Proof. Assume OΦ(
⃗ ⊕ �⃗) is not Zariski dense in GN
m and thus, let V ⊂ GN

m be
its Zariski closure.

Let ∆ ∶= ΓN1 × ΛN2 ⊂ GN
m(K); then OΦ(
⃗ ⊕ �⃗) ⊆ ∆. Then V ∩ ∆ is a �nite

union of sets of the form (18), i.e., sets of the form

U ∶= �⃗0 ⋅ S(�⃗1, … , �⃗r; �1, … , �r) ⋅ H, (31)

where there exists some positive integerm such that

�⃗m0 , �⃗
m
1 , … , �⃗

m
r ∈ ∆, (32)

while the �j’s are positive integers andH is a subgroup of ∆. Because the entire
orbit of 
⃗ ⊕ �⃗ underΦ is contained in the union of �nitely many sets as the one
from (31), there must exist some set U as in (31) containing Φn(
⃗ ⊕ �⃗) for all
integers n in some subset S ⊆ ℕ0 of positive density.

Now, assume there exists some nonzero vector v⃗1 ∈ ℤN1 and some vector
v⃗2 ∈ ℤN2 such that for the vector v⃗ ∶= v⃗1⊕ v⃗2 ∈ ℤN , we have that

(
�⃗
)v⃗ = 1 for

each �⃗ ∈ H. We argue as in the proof of Proposition 3.10 and get that for each
n ∈ S, we have

Φn(
⃗ ⊕ �⃗)mv⃗ =
(
�⃗ ⊕ �⃗

)(C+∑r
j=1 p

�jnjBj
)t
⋅v⃗ , (33)

for some suitableN-by-NmatricesC, B1, … , Br with integer entries. Now, using
that v⃗1 is a nonzero vector, along with our hypothesis that the �ij ’s and the 
j’s
are multiplicatively independent, while the �i’s are multiplicatively indepen-
dent from the �ij ’s and the 
j’s, then arguing exactly as in the proof of Proposi-
tion 3.10 (see equations (27), (28) and (29)) we get that there exists some non-
constant polynomial P and some integers bj such that for each n ∈ S, there are
non-negative integers nj such that

P(n) = b0 +
r∑

j=1
bjp�jnj . (34)
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Since S has positive density, this yields a contradiction to the conclusion of
[GOSS21b, Theorem 1.1]. Therefore, there is no nonzero vector v⃗1 ∈ ℤN1 such
that for some v⃗2 ∈ ℤN2 , we have that v⃗ = v⃗1 ⊕ v⃗2 kills each element of H. We
let G ⊆ GN

m be the Zariski closure of H; then G is an algebraic subgroup. Now,
the fact that any vector v⃗ ∈ ℤN which kills each element of G must have its
�rstN1 entries equal to 0 yields that G = GN1

m ×G2 for some algebraic subgroup
G2 ⊂ GN2

m .
So, lettingW be the Zariski closure of U in GN

m, then its stabilizer must con-
tain G and therefore, it containsGN1

m (seen as a subgroup ofGN
m under the natu-

ral embedding x⃗ ↦ x⃗ ⊕ 1⃗GN2m ); i.e., for each �⃗1 ∈ GN1
m and each �⃗ ∈ W, we have

that �⃗ ⋅ �⃗ ∈ W. Hence,W = GN1
m × Z for some subvariety Z ⊆ GN2

m . However,
Z must contain each Φn2 (�⃗) for n ∈ S and S ⊆ ℕ0 is a set of positive density;
then our hypothesis yields that Z = GN2

m . Therefore, W = GN
m and so, indeed

OΦ(
⃗ ⊕ �⃗)must be Zariski dense in GN
m. �

4. Proof of Theorem 1.5
We start this Section by proving a preliminary result used in the proof of

Theorem 2.5 and then we will proceed to proving Theorems 2.5 and 2.6.

Proposition 4.1. Let K be an algebraically closed �eld of transcendence degree
d ≥ 1 over Fp. Let Φ ∶ GN

m(K) → GN
m(K) be given by x⃗ ↦

(
x⃗
)A
, where A is an

invertibleN-by-N matrix that has a conjugate of the form
s⨁

i=1

⎛
⎜
⎝

li⨁

j=1
Jpni ,m(j)

i −m(j−1)
i

⎞
⎟
⎠
, (35)

where ni ’s are distinct positive integers and m
(j)
i ’s are non-negative integers such

that for every 1 ≤ i ≤ s we have

0 = m(0)
i < m(1)

i < ⋯ < m(li)
i ,

while
s∑

j=1
m(lj)
j = N.

Then one of the following statements must hold:
(1) There exists 1 ≤ i ≤ s such that li > d.
(2) for any �nitely generated subgroup Λ ⊂ Gm(K) there exists �⃗ ∈ GN

m(K)
such that
(i) the subgroup of Gm(K) spanned by the �i ’s (the coordinates of �⃗)

has trivial intersection with Λ; and
(ii) any in�nite subset of OΦ(�⃗) is Zariski dense in GN

m.

Remark 4.2. Note that condition (1) in Proposition 4.1 says precisely that con-
dition (C) from Theorem 1.5 holds for the given map Φ.
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Proof of Proposition 4.1. Suppose that condition (1) does not hold. We will
prove the next lemma which reduces the problem to the case where A is equal
to a matrix of the form (35).

Lemma 4.3. It su�ces to prove that condition (2) holds in the case where A is
equal to a matrix of the form (35).

Proof of Lemma 4.3. SinceA has a conjugate of the form (35), there must ex-
ist a group endomorphism Ψ corresponding to a matrix of the form (35) and a
dominant group endomorphism g ∶ GN

m ⟶ GN
m such that the next diagram

commutes
GN
m GN

m

GN
m GN

m.

Φ

g g

Ψ

(36)

Suppose that �⃗ satis�es conditions (i) and (ii) with respect to the group endo-
morphismΨ. We choose �⃗ ∈ GN

m such that g(�⃗) = �⃗. Using Lemma 3.5, the or-
bit of �⃗ underΦmust be Zariski dense inGN

m. Now suppose for the sake of con-
tradiction that there exists some non-zero vector v⃗ ∈ ℤN such that �⃗v⃗ ∈ Λ⧵{0}.
Let g correspond to a matrix B ∈ MN,N(ℤ)which is invertible as g is dominant.
So, there must exist a non-zero integer m and a non-zero vector v⃗′ ∈ ℤN such
that Btv⃗′ = mv⃗. This implies that

�⃗v⃗′ = �⃗Bt v⃗′ = �⃗mv⃗ ∈ Λ ⧵ {0},
which contradicts the assumption that �⃗ satis�es condition (ii). This concludes
our proof of Lemma 4.3. �

Therefore, from now on we may assume without loss of generality that A
is equal to a matrix of the form (35). Choose t1, … , td ∈ Gm(K) that are alge-
braically independent over Fp andmoreover, the subgroup ofGm(K) generated
by t1, … , td has trivial intersection with Λ. We claim that any in�nite subset of
the orbit of

�⃗ ∶= �⃗1 ⊕⋯⊕ �⃗s ∈ GN
m(K),

where
�⃗i ∶= (t1, … , t1⏟⎴⏟⎴⏟

m(1)
i times

, t2, … , t2⏟⎴⏟⎴⏟
m(2)
i −m(1)

i times

, … , tli , … , tli )⏟⎴⏟⎴⏟
m(li )
i −m(li−1)

i times

under Φ is Zariski dense. Note that for every 1 ≤ i ≤ s, �⃗i is well-de�ned since
li < d. We also note that due to our choice for t1, … , td, the entries of �⃗ satisfy
conclusion (i) from Proposition 4.1.

Now, suppose that there exists an in�nite subset S ⊆ ℕ0 with the property
that the Zariski closure of the set

{
Φn(�⃗)∶ n ∈ S

}
is a proper subvariety V ⊂

GN
m; we will derive a contradiction, which will thus show that �⃗ also satis�es

conclusion (ii) from Proposition 4.1.
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Let Γ0 be the �nitely generated subgroup ofGm(K) generated by t1, … , td and
let Γ ∶= ΓN0 ⊂ GN

m(K). ThenOΦ(�⃗) ⊆ Γ and furthermore, by Theorem 2.1,V∩Γ
is a �nite union of sets of the form (18), i.e., sets of the form:

U ∶= 
⃗−1 ⋅ S(�⃗1, … , �⃗r; �1, … , �r) ⋅ H, (37)

where there exists some positive integerm such that


⃗m, �⃗m1 , … , �⃗
m
r ∈ Γ, (38)

the �j’s are positive integers, and H is a subgroup of Γ. We also recall that

S(�⃗1, … , �⃗r; �1, … , �r) consists of all points of the form
∏r

j=1
(
�⃗j

)p�jnj
for any

nonnegative integers n1, … , nr.
Since S is an in�nite subset of ℕ0 and each Φn(�⃗) belongs to a set as in (37),

then the pigeonhole principle guarantees that at the expense of replacing S by
an in�nite subset of it, we may assume that each Φn(�⃗) are contained in the
same set U as in (37).

Lemma 4.4. The Zariski closure of the set U from (37) is of the form 
−1 ⋅ W,
whereW ⊂ GN

m is a proper subvariety de�ned over Fp.

Proof of Lemma 4.4. The Zariski closure of the subgroup H from (37) is an
algebraic subgroup of GN

m and therefore, it is de�ned over Fp. Also, the Zariski
closure of the set S(�⃗1, … , �⃗r; �1, … , �r) is invariant under a suitable power of the
Frobenius endomorphism (more precisely, it is invariant under F�, where � is
the least commonmultiple of all the positive integers �j). Therefore, the Zariski
closure of S(�⃗1, … , �⃗r; �1, … , �r)⋅Hmust be a subvarietyW de�ned overFp. Fur-
thermore,W is a proper subvariety of GN

m since, according to our assumption,
alsoV ⊂ GN

m is a proper subvariety (and 
−1 ⋅W ⊆ V). This concludes our proof
of Lemma 4.4. �

Lemma 4.4 yields the existence of a polynomial g(x) ∈ Fp[x1, … , xN] such
that g(
 ⋅ x⃗) vanishes at each point Φn(�⃗) for n ∈ S. Let g(x⃗) ∶= ∑M

i=1 ai
(
x⃗
)v⃗i ,

where the vectors v⃗i ∈ ℤN are distinct and each ai ∈ Fp is nonzero.
Let �⃗ ∶= (t1, … , td) ∈ Gd

m(K) and choose a point �⃗0 ∶= (t′1, … , t
′
d) ∈ Gd

m(K)
where (t′i )

m = ti for every 1 ≤ i ≤ d; in particular, (�⃗0)m = �⃗. Also, note that
t′1, … , t

′
d are algebraically independent over Fp. Similarly, de�ne

�⃗0 ∶= �⃗′1 ⊕⋯⊕ �⃗′s ∈ GN
m(K),

where
�⃗′i ∶= (t′1, … , t

′
1⏟⎴⏟⎴⏟

m(1)
i times

, t′2, … , t
′
2⏟⎴⏟⎴⏟

m(2)
i −m(1)

i times

, … , t′li , … , t
′
li⏟⎴⏟⎴⏟

m(li )
i −m(li−1)

i times

).

Since 
⃗m ∈ Γ, there must exist an N-by-d matrix B with integer entries such
that 
⃗m = �⃗B. This implies that 
⃗ = �⃗ ⋅ (�⃗0)B where � ∈ GN

m(K) is a point of
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order dividing m; in particular, �⃗ ∈ GN
m(Fp). Also, for every 1 ≤ k ≤ d de�ne

u⃗k to be a vector in ℤN whose i-th coordinate is equal to 1 whenever the i-th
coordinate of � is equal to tk and it is 0 otherwise. Then, for every n ∈ S we
must have

0 =
M∑

i=1
ai�⃗(A

n)t v⃗i 
⃗v⃗i

=
M∑

i=1

(
ai(�⃗)v⃗i

)
(�⃗0)m(A

n)t v⃗i
(
�⃗0

)Bt v⃗i

=
M∑

i=1
ci ⋅

d∏

k=1
(t′k)

m
(
(An)t v⃗i

)
⋅u⃗k+(Bt v⃗i)k , (39)

where ci ∶= ai ⋅ (�⃗)v⃗i ∈ Fp and (Btv⃗i)k denotes the k-th coordinate of Btv⃗i for
every 1 ≤ i ≤ M. Since t′1, … , t

′
d are algebraically independent over Fp there

must exist i < j such that

m
(
(An)tv⃗i

)
⋅ u⃗k + (Btv⃗i)k = m

(
(An)tv⃗j

)
⋅ u⃗k + (Btv⃗j)k

for every 1 ≤ k ≤ d, which implies that

m
(
(An)t(v⃗i − v⃗j)

)
⋅ u⃗k + (Bt(v⃗i − v⃗j))k = 0 (40)

for every 1 ≤ k ≤ d. But because there are only �nitely many pairs (i, j) of
indices in {1, … ,M}, by the pigeonhole principle, there is a pair (i, j) and an
in�nite subset S0 ⊂ S such that for every n ∈ S0, (40) holds. Let w⃗ ∶= v⃗i −v⃗j ∈
ℤN and (Btw⃗)k = ck ∈ ℤ for every 1 ≤ k ≤ d. So, for each n ∈ S0 and every
1 ≤ k ≤ d we have

m((An)tw⃗) ⋅ u⃗k + ck = 0. (41)

For each n ∈ ℕ, we have that An equals

s⨁

i=1

⎛
⎜
⎜
⎜
⎜
⎝

li⨁

j=1

⎛
⎜
⎜
⎜
⎜
⎝

pn⋅ni
(n
1

)
p(n−1)⋅ni ⋯

( n
m(j)
i −m(j−1)

i −1

)
p(n−(m

(j)
i −m(j−1)

i )+1)⋅ni

0 pn⋅ni ⋯
( n
m(j)
i −m(j−1)

i −2

)
p(n−(m

(j)
i −m(j−1)

i )+2)⋅ni

⋮ ⋮ ⋱ ⋮
0 0 ⋯ pn⋅ni

⎞
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎠

.

Let w⃗ ∶= (w1, … , wN). Since w⃗ is nonzero, we let wr be the �rst nonzero entry
of w⃗ from the left. Due to the de�nition of each u⃗k, we have that there exists a
unique 1 ≤ k ≤ d such that the r-th coordinate (u⃗k)r of u⃗k is non-zero. Also,
there exist unique integers 1 ≤ i′ ≤ s and 1 ≤ j′ ≤ li′ such that

i′−1∑

q=1
m(lq)
q +m(j′−1)

i′ < r ≤
i′−1∑

q=1
m(lq)
q +m(j′)

i′ .
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Then, the coe�cient of
( n
r−m(j′−1)

i′ −1

)
p

(n−(r−m(j′−1)
i′ )+1)⋅ni′ in (An)tw⃗ ⋅ u⃗k (note that

we have a dot product of vectors) is equal to

wr(u⃗k)r, (42)

which is non-zero as both wr and (u⃗k)r are non-zero. Furthermore, there is no
other (nonzero) term in (An)tw⃗ ⋅ u⃗k containing pn⋅ni′ multiplied by a polyno-
mial in n of degree greater than or equal to r − m(j′−1)

i′ − 1 (note that this is a
consequence of our choice for the coordinates of �⃗). Therefore we get

m((An)tw⃗ ⋅ u⃗k) =
s∑

i=1
Qi(n)pn⋅ni ,

where each Qi is a polynomial with coe�cients inℚ and furthermore, Qi′(n) is
nonzero of degree r − m(j′−1)

i′ − 1. Thus, equation (41) becomes

s∑

i=1
Qi(n)pn⋅ni + c = 0 (43)

for every n ∈ S0. But, the left-hand side of (43) is the general term of a non-
degenerate linear recurrence which can have only �nitely many solutions (see
[Sch03] for a thorough treatment of the famous Skolem-Mahler-Lech problem
represented by equation (43)) since not all of the Qi’s are identically equal to
zero and furthermore, because the ni’s are distinct positive integers, the quo-
tient of any two pni appearing in the equation (43) is not equal to a root of unity
and also no pni is a root of unity (note that the characteristic roots of the linear
recurrence sequence from (43) belong to the set {1, pn1 , … , pns }). This contra-
dicts the fact that S0 is an in�nite set. So, any in�nite subset of the orbit of �⃗
under Φ must be Zariski dense in GN

m, which concludes our proof of Proposi-
tion 4.1. �

The next lemma will be used in the proof of Theorem 2.5.

Lemma 4.5. Let p be a prime number, let N ∈ ℕ, let v⃗ ∈ ℤN , let �1, … , �r ∈ ℕ,
and let A, B1, … , Br, C beN-by-N matrices with integers entries such that A is in-
vertible andmoreover, none of the eigenvalues ofA aremultiplicatively dependent
with respect to p. If there exists an in�nite subset S ⊆ ℕ with the property that for
each n ∈ S, there exist n1, … , nr ∈ ℕ0 such that

Anv⃗ = Cv⃗ +
r∑

i=1
pni�iBiv⃗, (44)

then v⃗ must be the zero vector.
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Proof. Note that there exists a matrix P such that A = P−1DP where D =
J�1,i1

⨁J�2,i2−i1
⨁⋯⨁J�l,il−il−1 (il = N). Thus, equation (44) becomes

(P−1DnP)v⃗ = Cv⃗ +
r∑

i=1
pni�iBiv⃗,

which is equivalent to

DnPv⃗ = (PC)v⃗ +
r∑

i=1
pni�i (PBi)v⃗. (45)

Now suppose for the sake of contradiction that v⃗ is nonzero. This implies that
Pv⃗ is nonzero (since P is invertible). Let j be the �rst nonzero coordinate of Pv⃗
from the right. Let i0 = 0 and suppose that is−1 < j ≤ is for some 1 ≤ s ≤ l.
Comparing the j-th coordinate of both sides of equation (45) we get that there
exist a, c1, … , cr ∈ ℚ with a ≠ 0 such that

a�ns = c1pn1�1 +⋯+ crpnr�r .

for each n ∈ S. This fact contradicts [CGSZ21, Theorem 5.1 (A)]; therefore, v⃗
must indeed be the zero vector, as claimed in Lemma 4.5. �

Proof of Theorem 2.5. Let Γ ⊂ Gm(K) be a �nitely generated subgroup. We
�rst prove a useful reduction.

Lemma 4.6. It su�ces to prove Theorem 2.5 after replacing Φ by an iterate Φl
(for some l ∈ ℕ).

Proof of Lemma 4.6. So, assume conditions (i)-(ii) are satis�ed for the start-
ing point �⃗ (with respect to Γ) and for the endomorphism Φl (for some given
l ∈ ℕ). We claim that �⃗ will also satisfy conditions (i)-(ii) in Theorem 2.5 for
the endomorphism Φ. Clearly, condition (i) is una�ected since it refers strictly
about the coordinates of the given starting point �⃗. Now, in order to check con-
dition (ii), we let S ⊆ ℕ0 be an in�nite subset and we want to prove that

US ∶=
{
Φn(�⃗)∶ n ∈ S

}
(46)

is Zariski dense inGN
m. In particular, there exists i0 ∈ {0, … , l−1} such that the

set
Si0 ∶= {n ∈ S∶ n ≡ i0 (mod l)}

is an in�nite subset. Since condition (ii) is veri�ed by
(
Φl, �⃗

)
, then the set

US,i0 ∶=
{
Φn−i0(�⃗)∶ n ∈ Si0

}
(47)

must be Zariski dense inGN
m. BecauseΦi0 is a dominant group endomorphism,

then also Φi0
(
US,i0

)
⊆ US (see (46) and (47)) is Zariski dense in GN

m, as desired
in the conclusion of Lemma 4.6. �
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Using Lemma 4.6 (and therefore after replacing Φ by a suitable iterate), we
may assume that the matrix A corresponding to the endomorphism Φ has the
property that for each of its eigenvalues �, if � is multiplicatively dependent
with respect to p, then actually,

� = pm for somem ∈ ℕ. (48)

Note that the exponentm from (48) can be chosen indeed to be a positive integer
since m = 0 would lead to A having eigenvalues root of unity (which is not
allowed by hypothesis (1) in Theorem 2.5), while a negative integer wouldmean
that � from (48) would not be an algebraic integer (which contradicts the fact
that � is an eigenvalue of a matrix with integer entries).

We let g ∈ ℤ[x] be the minimal polynomial for the endomorphism Φ. We
let ℎ1(x) be the polynomial with integer coe�cients, which is a factor of g(x)
having all the roots (with corresponding multiplicities) of g(x)which are of the
form (48). Then we can write g(x) ∶= ℎ1(x) ⋅ ℎ2(x), where also the polynomial
ℎ2(x) has integer coe�cients. Furthermore, ℎ1(x) and ℎ2(x) are coprime poly-
nomials. We let G1 = ℎ1(Φ)

(
GN
m
)
and G2 = ℎ2(Φ)

(
GN
m
)
. Then G1 and G2 are

both connected algebraic subgroups of GN
m. Since ℎ1 and ℎ2 are coprime, then

there exist polynomials with integer coe�cients Q1 and Q2 along with some
positive integer l0 such that

Q1(x) ⋅ ℎ1(x) + Q2(x) ⋅ ℎ2(x) = l0,

which means that G1 and G2 are complementary subtori of GN
m, in the sense

that G1 ≃ Gk
m and G2 ≃ GN−k

m , for some integer k ∈ {0, … ,N} and moreover,
GN
m = G1 ⋅ G2, while G1 ∩G2 is �nite (consisting only of points of order dividing

l0). Furthermore, Φ induces endomorphisms of both G1 and G2; call them Φ1,
respectively Φ2. In addition, the minimal polynomial of Φ1 is ℎ2(x), while the
minimal polynomial of Φ2 is ℎ1(x). Also, if we let � ∶ G1 × G2 ⟶ GN

m be the
map given by (x1, x2) ↦ x1 ⋅x2 (note thatG1 andG2 are subgroups ofGN

m), then
the following diagram commutes

G1 × G2 G1 × G2

GN
m GN

m.

(Φ1,Φ2)

� �

Φ

(49)

Note that � is a �nite morphism of degree l0. We now prove the following
lemma.

Lemma 4.7. It su�ces to prove the conclusion of Theorem 2.5 for the action of
Ψ ∶= (Φ1, Φ2) on G1 × G2.

Proof of Lemma 4.7. For a given �nitely generated subgroup Γ ⊂ Gm(K), we
let Γ̃ ∶= �−1(ΓN) and then let Γ1 ⊂ Gm(K) be the �nitely generated subgroup
spanned by the projections of Γ̃ onto each coordinate of G1 × G2

∼
→ GN

m.
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Assume there exists a point (x⃗1, x⃗2) ∈ (G1 × G2)(K) satisfying the conclu-
sions (i)-(ii) of Theorem 2.5 with respect to (Φ1, Φ2) and the subgroup Γ1. We
claim that x⃗ ∶= �

(
x⃗1, x⃗2

)
∈ GN

m(K) satis�es the conclusions (i)-(ii) of Theo-
rem 2.5 with respect to the endomorphism Φ and the subgroup Γ.

Indeed, �rst of all, condition (i) is satis�ed by x⃗ with respect to the subgroup
Γ since the same condition is satis�ed by (x⃗1, x⃗2) and subgroup Γ1. As for con-
dition (ii) in Theorem 2.5, we let S ⊆ ℕ0 be an in�nite subset. Since by our
hypothesis, the set

{
(Φ1, Φ2)

n (
x⃗1, x⃗2

)
∶ n ∈ S

}

is Zariski dense in G1 × G2, then its image under � will be Zariski dense in GN
m,

thus proving the desired condition (ii) for Φ, as claimed in Lemma 4.7. �

Now, G1 × G2 is itself isomorphic to Gk
m × GN−k

m ; our argument thus far has
been similar to the proof of our Proposition 3.2 in order to justify that we can
work with a dominant group endomorphism Ψ = (Φ1, Φ2) where Φ1 ∶ Gk

m →
Gk
m and Φ2 ∶ GN−k

m → GN−k
m given by x⃗1 ↦ x⃗A11 and respectively, x⃗2 ↦ x⃗A22 .

Moreover, the minimal polynomials of A1 and A2 are ℎ2(x) and ℎ1(x), respec-
tively.

We pick a starting point (x⃗1, x⃗2) for the action of Ψ on Gk
m(K) × GN−k

m (K) of
the following form:

∙ x⃗2 ∈ GN−k
m (K) satis�es both conditions (i)-(ii) from the conclusion of

Proposition 4.1 with respect to the �nitely generated subgroup Γ ⊂
Gm(K) (note that because of Condition (2) in the hypothesis of Theo-
rem 2.5, Condition (2) in Proposition 4.1 must hold); and

∙ x⃗1 has its k coordinates multiplicatively independent among them-
selves and also, the subgroup of Gm(K) generated by the coordinates
of x⃗1 has trivial intersection with the subgroup spanned by Γ and the
coordinates of x⃗2.

Let

Λ ∶=
{(
x⃗E11 , x⃗

E2
2

)
∶ E1 ∈ MN1,N1(ℤ) and E2 ∈ MN2,N2(ℤ)

}
; (50)

then Λ is �nitely generated and all the points in OΨ
(
x⃗1, x⃗2

)
lie in Λ.

We let S ⊆ ℕ0 be an arbitrary in�nite subset; we will prove that the set

U ∶=
{
Ψn

(
x⃗1, x⃗2

)
∶ n ∈ S

}

must be Zariski dense in GN
m. If U is not Zariski dense, then we let V ⊂ GN

m be
its Zariski closure. Using Theorem 2.1, there must exist a set of the form (18)
containing in�nitely many elements ofU. So, at the expense of replacing S by a
still in�nite subset (and thus replacing the setU with its corresponding in�nite
subset), we may assume without loss of generality that there exists a set

ℱ ∶= �⃗ ⋅ S(�⃗1, … , �⃗r; �1, … , �r) ⋅ H, (51)
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containing U. Now, regarding the set ℱ, just as before, there exists a positive
integerm such that

�⃗m, �⃗m1 , … , �⃗
m
r ∈ Λ, (52)

while the �j’s are positive integers andH is a subgroup of Λ.
Sincewe assumed thatU is not Zariski dense inGN

m, thenV is a proper subva-
riety ofGN

m and in particular, the Zariski closure ofHmust be a proper algebraic
subgroup of GN

m; so, there exists a nonzero v⃗ ∈ ℤn with the property that

for each ℎ⃗ ∈ H we have
(
ℎ⃗
)v⃗
= 1. (53)

We write v⃗ = (v⃗1, v⃗2) ∈ ℤN1 × ℤN2 . Using (52), there exist matrices Bi ∈
MN1,N1(ℤ) and Ci ∈ MN2,N2(ℤ) (for i = 1, … , r) along with matrices Dj ∈
MNj ,Nj (ℤ) for j = 1, 2 such that

�⃗mi =
(
x⃗Bi1 , x⃗

Ci
2

)
for each i = 1, … , r and �⃗m =

(
x⃗D11 , x⃗D22

)
.

So, for each n ∈ S, using that Ψn(x⃗1, x⃗2) ∈ ℱ, we must have some some
nonnnegative integers ni (for i = 1, … , r) such that

Ψn(x⃗1, x⃗2)mv⃗ =
(
Φn1 (x⃗1), Φ

n
2 (x⃗2)

)mv⃗

= Φn1 (x1)
mv⃗1 ⋅ Φn2 (x2)

mv⃗2

= x⃗m(A
n
1 )
t v⃗1

1 ⋅ x⃗m(A
n
2 )
t v⃗2

2

= x⃗D
t
1v⃗1+

∑r
i=1 p

ni�iBti v⃗1
1 ⋅ x⃗D

t
2v⃗2+

∑r
i=1 p

ni�iCti v⃗2
2 , (54)

where in (54) we also used (53). Since the coordinates of x⃗1 are multiplica-
tively independent among themselves, and also multiplicatively independent
with respect to the coordinates of x⃗2 we must have that

m(An
1 )
tv⃗1 = Dt

1v⃗1 +
r∑

i=1
pni�iBti v⃗1, (55)

for every n ∈ S. Hence, since none of the eigenvalues ofA1 are multiplicatively
dependent with respect to p, Lemma 4.5 yields that we must have v⃗1 = 0. So,
thismeans that for any vector v⃗ = v⃗1⊕v⃗2 ∈ ℤN with the property that

(
ℎ⃗
)v⃗
= 1

for each point ℎ⃗ in the Zariski closureH ofH insideG1⊕G2, wemust have that
v⃗1 is the zero vector in ℤN1 . Therefore, H is an algebraic group of the form
G1 ⊕H2 for some algebraic subgroupH2 ⊆ G2.

So, the Zariski closureW of the setℱ (which is itself contained in the Zariski
closure of the setU) must be of the form G1⊕W2 for some subvarietyW2 ⊆ G2
because G1⊕ 1⃗G2 is contained in the stabilizer ofW. However,W2 contains all
the points Φn2 (x2) for n ∈ S. Then using the fact that S is an in�nite subset of
ℕ0 along with Proposition 4.1, we conclude thatW2 must be the entire G2. So,
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actually W must be the entire G1 ⊕ G2 = GN
m, which means that any in�nite

subset of the orbit of (x⃗1, x⃗2) under (Φ1, Φ2)must be Zariski dense in G1 × G2.
This concludes our proof of Theorem 2.5. �

Proof of Theorem 2.6. As noted before (see [AC08, MS14, BGR17]), we have
that (i)⇒(ii).

Our strategy for proving that (ii)⇒(iii) is to assume that condition (iii) does
not hold and then prove the existence of a point with a Zariski dense orbit.

First, note that there exists a suitable power An0 of A (for some n0 ≥ 1) such
that each eigenvalue of An0 is either equal to 1 or it is not a root of unity and
each eigenvalue ofAn0 which is multiplicatively dependent with respect to p is
actually of the form pm for some m ∈ ℕ0. Next, we prove that condition (iii)
from Theorem 2.6 is not changed when replacing Φ by Φn0 .

Lemma 4.8. Let n0 ∈ ℕ. If condition (iii) from Theorem 2.6 is not met for the
regular self-map Φ ∶ GN

m ⟶ GN
m, then condition (iii) is also not met for Φn0 ∶

GN
m ⟶GN

m.

Proof of Lemma 4.8. When we replace Φ by Φn0 , then we replace A by An0

and also, replace �⃗ by

�⃗1 ∶= �⃗
∑n0−1

j=0 Aj . (56)
Now, we assume there exists a nonzero vector v⃗ ∈ ℤN such that condition (iii)
is met for Φn0 , i.e., for some l ∈ ℕ we have:

(
An0l

)t v⃗ = v⃗ and
(
�⃗1

)(∑l−1
j=0 A

n0j
)t
v⃗
= 1. (57)

But then using (56), we see that

1 = �⃗
(∑l−1

j=0 A
n0j

)t
⋅v⃗

1 = �⃗
(∑n0l−1

j=0 Aj
)t
⋅v⃗,

thus proving (in connection with (57)) that condition (iii) would be met for Φ,
contradiction. This concludes our proof of Lemma 4.8. �

Lemma 4.8 allows us to replace Φ by Φn0 and therefore, it su�ces to �nd a
point �⃗ ∈ GN

m(K) with a Zariski denese orbit under Φn0 ; note that then also
OΦ(�⃗) would be Zariski dense in GN

m. So, from now on, we work under the
hypothesis that

∙ each eigenvalue of the matrix A corresponding to the group endomor-
phism ' (where Φ = ��⃗◦') is either equal to 1 or it is not a root of
unity; and

∙ each eigenvalue ofAwhich is multiplicatively dependent with respect
to p is actually of the form pm for somem ∈ ℕ0.

This hypothesis yields that there exists an invertible matrix P with rational
entries such that

P−1AP = J1,i1
⨁

J1,i2−i1
⨁

⋯
⨁

J1,is−is−1
⨁

D, (58)
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where D is an invertible matrix satisfying the following properties:
∙ no eigenvalue of D is a root of unity;
∙ there does not exist k ∶= trdegFpK + 1 Jordan blocks in the Jordan
canonical form of A corresponding to eigenvalues �1,. . . , �k satisfying
the equation �m1 = ⋯ = �mk = pr for some positive integersm and r.

We write N1 ∶= is and N2 ∶= N − N1; so, N1 is the dimension of the unipo-
tent matrix B appearing on the right-hand side of equation (58), while N2 is
the dimension of the matrix D. According to Proposition 3.2 (especially, see
Lemma 3.5), it su�ces to prove the existence of a point with a Zariski dense
orbit under the assumption that the matrix A actually has the form from the
right-hand side of (58). Furthermore, condition (iii) is unchanged when we
replace A by another matrix with integer entries of the form P−1AP where P
and P−1 have rational entries. Indeed, one can choose some positive integer
m such that both mP and mP−1 have integer entries and then condition (iii)
holds for the triple

(
A, �⃗, v⃗

)
(and l ∈ ℕ) if and only if condition (iii) holds for

(
P−1AP, �⃗m(P−1)t , mPtv⃗

)
(and the same integer l).

So, from now on, we may assume that the matrix A corresponding to the
endomorphism ' is itself equal to B⨁D.

For any vector x⃗ = (x1, … , xN) ∈ GN
m(K), we let x⃗B and x⃗D denote

(
x1, … , xN1

)

and
(
xN1+1, … , xN

)
respectively. Since D has no eigenvalues that are equal to a

root of unity, we can choose a vector 
⃗D ∈ GN2
m (K) such that

(

⃗D

)D−idN2 = �⃗D .
Also, there is a vector 
⃗B such that

(

⃗B

)B−idN1 =
(
�1, … , �i1−1, 1, �i1+1, … , �is−1, 1

)
.

Let 
⃗ ∶= 
⃗B ⊕ 
⃗D ∈ GN
m. It is easy to check that the map �
⃗◦Φ◦�−1
⃗ is given by

x⃗ ↦ �⃗′Bx⃗B ⊕ x⃗D, where �⃗′B ∶= (1, … , 1, �i1 , 1, … , 1, �is) ∈ GN1
m (K). (59)

According to [GS19, Lemma 3.1], it su�ces to prove that there exists a point
with a Zariski dense orbit for the regular self-map on GN

m given by (59). We
also note that condition (iii) is unchanged when replacingA and �⃗ byA and �⃗′,
where �⃗′ ∶= �⃗′B ⊕ 0⃗. Indeed, for any positive integer l, we have that

(Al)tv⃗ = v⃗ if and only if (Bl)tv⃗B = v⃗B and v⃗D = 0

since 1 is not an eigenvalue of Dl. Moreover, every eigenvector of (Bl)t corre-
sponding to 1must be of the form

(0, … , 0, vi1 , 0, … , 0, vis). (60)

So, for a vector as in (60), we have that

(
�⃗
)(∑l−1

i=0 A
i
)t
v⃗
= 1 if and only if

(
�⃗′

)(∑l−1
i=0 A

i
)t
v⃗
= 1.
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Therefore, in the proof of the implication (ii)⇒(iii) we may assume from now
on that �⃗B = �⃗′B and �⃗D = (0, … , 0) (see (59)).

Since condition (iii) does not hold, in particular we have that

�i1 , … , �is are multiplicatively independent. (61)

Indeed, otherwise we would have some nonzero vector w⃗ ∈ ℤs such that
s∏

j=1
�wjij = 1

and so, letting

v⃗ ∶= (0, … , 0, w1, 0, … , 0, w2, 0, … , 0, ws, 0, … , 0) ∈ ℤN

be the vector whose only possibly nonzero entries are its ij-th entries (for j =
1,… , s), we immediately see that

Atv⃗ = v⃗ and �⃗v⃗ = 1, (62)

thus showing that condition (iii) holds in this case. So, indeed, since we as-
sumed that condition (iii) does not hold, then we must have that the �ij ’s are
multiplicatively independent (as claimed in (61)). We let

�⃗B ∶= (
1, … , 
i1−1, 1, 
i1+1, … , 
i2−1, 1, 
i2+1, … , 
is−1, 1) ∈ GN1
m (K)

where the 
j’s are multiplicatively independent and also multiplicatively inde-
pendent with respect to the �ij ’s.

Since the eigenvalues of D satisfy the hypotheses of Theorem 2.5, then we
can �nd �⃗D ∈ GN2

m (K) which satis�es conditions (i)-(ii) from the conclusion
of Theorem 2.5 with respect to the subgroup Γ of GK

m spanned by all the �ij ’s
and all the 
j’s. In particular, this means that writing �⃗D ∶= (�1, … , �N2), we
have that the �j’s (along with the �ij ’s and the 
j’s) satisfy the hypotheses of
Proposition 3.12. Hence, the orbit of �⃗ ∶= �⃗B ⊕ �⃗D ∈ GN

m(K) under Φmust be
Zariski dense in GN

m, as claimed. This concludes our proof of Theorem 2.6. �

As noted in Section 2, Theorem 1.5 is a consequence of Theorem 2.6.
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