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ABSTRACT. We formulate a variant in characteristic p of the Zariski dense
orbit conjecture previously posed by Zhang, Medvedev-Scanlon and Amerik-
Campana for rational self-maps of varieties defined over fields of character-
istic 0. So, in our setting, let K be an algebraically closed field, which has
transcendence degree d > 1 over Fp. LetX be a variety defined over K, en-
dowed with a dominant rational self-map ®. We expect that either there ex-
ists a variety Y defined over a finite subfield [, of [F_P of dimension at least
d + 1 and a dominant rational map 7 : X --» Y such that to®” = F"ot for
some positive integers m and r, where F is the Frobenius endomorphism of
Y corresponding to the field Fy, or either there exists « € X(K) whose orbit
under @ is well-defined and Zariski dense in X, or there exists a non-constant
f : X -> P! such that fo® = f. We explain why the new condition in our
conjecture is necessary due to the presence of the Frobenius endomorphism
in case X is isotrivial. Then we prove our conjecture for all regular self-maps
on G}
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1.1. Notation. We let Ny := N U {0} denote the set of nonnegative integers.
For any self-map ® on a variety X and for any integer n > 0, we let ®" be the
n-th iterate of ® (where ®° is the identity map id := idy, by definition). For a
point x € X with the property that each point ®"(x) avoids the indeterminacy
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locus of @, we denote by O(x) the orbit of x under @, i.e., the set of all ®"(x)
forn > 0.

1.2. The classical Zariski dense orbit conjecture. The following conjec-
ture was motivated by a similar question raised by Zhang [Zha06] and was
formulated by Medvedev and Scanlon [MS14] and by Amerik and Campana
[ACO08].

Conjecture 1.1. Let X be a quasiprojective variety defined over an algebraically
closed field K of characteristic 0 and let ® : X --» X be a dominant rational self-
map. Then either there exists a € X(K) whose orbit under ® is well-defined and
Zariski dense in X, or there exists a non-constant rational function f : X --» P!
such that fo®d = f.

One sees immediately that if there exists a non-constant rational function
f : X - P!such that fo® = f, then no orbit Og(xr) can be Zariski dense
in X. So, the entire difficulty in Conjecture 1.1 is proving that when there
is no non-constant rational function f invariant under ®, then one may in-
deed find a point a with a Zariski dense orbit. Conjecture 1.1 was proven (see
[AC08, BGR17]) in the case K is uncountable. However, if K is countable, then
Conjecture 1.1 is very difficult and only a few special cases are known (see
[BGRS17, GH18, GS17, GS21, GS19, GX18, MS14, Xiel9]). The main difficulty
comes from the fact (as proven in [AC08, BGR17]) that, from a strictly geo-
metric point of view, there exist countably many proper subvarieties of X one
needs to avoid in order to find a point with a Zariski dense orbit; thus, when K
is countable, one needs to exploit the arithmetic dynamics of the setting from
Conjecture 1.1 in order to find a point whose orbit is Zariski dense.

1.3. Avariant of the conjecture in positive characteristic. The picture in
characteristic p is very much different due to the presence of the Frobenius
endomorphism for any variety X defined over a finite field (see [BGR17, Exam-
ple 6.2] and also the next Remark).

Remark1.2. If X isany variety defined over [ ,, then there exists no non-constant
rational function f : X --» P! invariant under the Frobenius endomorphism
F : X — X (corresponding to the field automorphism x — xP). However,
unless trdeg[FpK > dim(X), there is no point in X (K) with a Zariski dense orbit

in X (each orbit of a point & € X(K) lives in a subvariety Y C X defined over
[, of dimension dim(Y) = trdeg; L, where L is the minimal field extension of
p

[, for which a € X(L)). Note that the Frobenius endomorphism is very special
in the sense that for most maps one can expect a dense orbit for a point defined

over a field extension of [F_p with a transcendence degree smaller than dim(X).
The discussion from Remark 1.2 motivates the following conjecture.

Conjecture 1.3. Let K be an algebraically closed field of positive transcendence
degree over [, let X be a quasiprojective variety defined over K, and let @ : X -
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X be a dominant rational self-map defined over K as well. Then at least one of the
following three statements must hold:

(A) There exists a € X(K) whose orbit Og(at) is Zariski dense in X.

(B) There exists a non-constant rational function f : X -» P! such that
fo® = f.

(C) There exist positive integers m and r, there exists a variety Y defined over
a finite subfield [, of [F_p such that dim(Y) > trdegEK + 1 and there

exists a dominant rational map t : X --> Y such that
To®™ = F'or,

where F is the Frobenius endomorphism of Y corresponding to the field

Fy

Remark 1.4. Note that if X is any variety defined over [F_p, endowed with some
endomorphism &, then each point ¢ € X ([F_p) would be preperiodic under the

action of ® and so, the trichotomy from Theorem 1.3 cannot hold. Hence, it is
necessary to assume that K is transcendental over [, in Conjecture 1.3.

We note that in [BGR17, Theorem 1.2], it was proven that if there is no non-
constant rational function f invariant under @, then any point ¢ € X(K) out-
side a countable union of proper subvarieties of X would have a Zariski dense
orbit. So, in particular, [BGR17, Theorem 1.2] proves Conjecture 1.3 whenever
K is uncountable, which leaves once again the case when K is countable as the
outstanding open case in Conjecture 1.3.

1.4. Our results. We prove our Conjecture 1.3 in the case of regular self-maps
® of GI}.

Theorem 1.5. Let N € N and let K be an algebraically closed field of charac-

teristic p such that trdegeK > 1. Let @ : GN — G) be a dominant regular
p

self-map defined over K. Then at least one of the following statements must hold.

(A) There exists a € G (K) whose orbit under ® is Zariski dense in G
(B) There exists a non-constant rational function f : G --» P! such that

fo® = f.
(C) There exist positive integers m and r, a connected algebraic subgroup
Y of GY (defined over a finite field Fy) of dimension at least equal to

trdeg—K + 1 and a dominant regular map t : G — Y such that
p
To®™ = F'ot, (1)

where F is the usual Frobenius endomorphism of Y induced by the field
automorphism x — x49.

Remark 1.2 shows that indeed condition (C) is necessary due to the presence
of the Frobenius endomorphism of Gln\fl; we also illustrate the trichotomy from
the conclusion of our Theorem 1.5 in the next series of examples.
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Example 1.6. Let p be an odd prime number, let K be the algebraic closure of
Fp(1),let (B, B, B3) € G;y(K) and let ® : G;, —> G, be a regular map defined
over K.

(1) If @ is the translation map given by (xy, X5, X3) — (81X71, B2X3, B3X3),
then condition (B) in Theorem 1.5 holds if and only if §8;, 5,, 35 are
multiplicatively dependent, i.e., there exist integers c;, ¢, c3, not all

equal to 0 such that H?zl ﬁl.ci = 1. If the §8;’s are multiplicatively inde-
pendent, then conclusion (A) from Theorem 1.5 holds; clearly, conclu-
sion (C) does not hold in this example.

(2) If @ is given by (x1,Xy,x3) — (Byx}, B,x5, B3x2), then condition (B)
from Theorem 1.5 does not hold; this can be seen either directly, or by
invoking our Theorem 2.2 since conjugating ® by a suitable translation
yields the group endomorphism (x;, x,, x3) — (xf , xf , xg). Therefore,
no non-constant fibration can be invariant under ®. However, also
conclusion (A) from Theorem 1.5 does not hold for this example. In-
deed, for any point

a = (0‘1’“270(3) € GEH(K)i

the orbit of a under @ is contained in some proper subvariety of G2, of
the form V x G,,, where V' C G2, is a curve. More precisely, V is the

1/(p—1) 6—1/(19—1)
)

translation by the point (61_ ) of a curve defined over

.. . 1/(p—1 1/(p-1
[, containing the point (alﬁl/ (p=1) , 0y 2/ (p )).
2 3
(3) If ®isgiven by (x1, x,, X3) - (ﬁle ,Bax, Baxh ), then conclusion (A)
from Theorem 1.5 holds (neither conclusions (B) nor (C) hold for this
example) and so, there exists a point in G>,(K) with a Zariski dense
orbit.

The strategy of our proof for Theorem 1.5 is as follows. Each regular self-
map ® of GY) is a composition of a group endomorphism ¢ : GY — G with
a translation 7, (by a pointy € GN(K)) (see [Iit76, Theorem 2]). Then for each
point a € GY(K), the entire orbit O () lies in a finitely generated subgroup T
of GI.(K). Assuming O () is not Zariski dense in GY, then it means its Zariski
closure Z C G} is a proper subvariety. Since Z(K)NT is Zariski dense in Z, then
the result of [Hru96, Theorem 1.1] yields that Z is a finite union of translates of
subvarieties defined over [ ,. This property yields some useful information re-
garding the endomorphism ¢ in connection with the translation z,,. However,
in order to obtain even more precise information (which in turn delivers the
desired conclusion in Theorem 1.5) we employ the F-structure result of Moosa
and Scanlon [MS04, Theorem B] regarding the intersection of a finitely gen-
erated subgroup with a subvariety of G} (see Theorem 2.1 and also [CGSZ21,
Section 2.2] for a concise description of the main result from [MS04]).

The same strategy employed in our proof of Theorem 1.5 should extend with
appropriate modification to the general case when we replace G.;, by a split
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semiabelian variety G defined over a finite field (for example, one would need
to employ the results of [Ghi08] to describe the intersection of a subvariety
of G with a finitely generated subgroup, plus there exist additional complica-
tions due to the larger, possibly non-commutative ring of endomorphisms for
an abelian variety defined over a finite field). However, the variant of Theo-
rem 1.5 in the context of isotrivial abelian varieties defined over a field K of
transcendence degree 1 over [, is already quite difficult since the proof of one
of the main technical ingredients in our proof of Theorem 1.5 (see Proposi-
tion 4.1) does not extend to the abelian case.Instead, the Diophantine question
that arises in the case of abelian varieties defined over a function field with a
positive transcendence degree is challenging. So, we expect the extension of
Theorem 1.5 to the case of isotrivial abelian varieties defined over a function
field of a positive transcendence degree to be quite difficult. Furthermore, the
case of a non-isotrivial abelian variety defined over a function field of positive
characteristic will have additional complications since even the structure of the
intersection between a subvariety of such an abelian variety with a finitely gen-
erated subgroup is significantly more delicate. Finally, the general case in Con-
jecture 1.3 when X is an arbitrary variety is expected to be at least as difficult as
the general case in Conjecture 1.1. As kindly pointed out by the referee, when
X is an algebraic group, one often finds that if there is no Zariski dense orbit un-
der the action of @, then there exists some suitable algebraic group Y endowed
with a dominant map g : X — Y with the property that go® = g; so, when
X is not an algebraic group, then Conjecture 1.3 is significantly harder. The
increased difficulty for the characteristic p variant of our conjecture is not sur-
prising since quite a few arithmetic conjectures turned out to be very difficult
in characteristic p, even more so than in characteristic 0; for example, we men-
tion the variant of the Dynamical Mordell-Lang Conjecture, which was shown
to be very difficult in characteristic p even for the case of regular self-maps of
tori (see [CGSZ21] and the more general discussion from [BGT16, Chapter 13]).

We sketch briefly the plan for our paper. In Section 2, we state a precise ver-
sion of our Theorem 1.5 (see Theorems 2.5 and 2.6 which refine Theorem 1.5).
In Section 3, we prove Theorem 3.7 which solves Theorem 1.5 in the special case
® is a composition of a translation with a unipotent group endomorphism. In
Section 4, using Theorem 3.7 (along with a general reduction provided by our
Proposition 3.12 from Section 3.3), we complete the proof of Theorem 1.5 (along
with Theorems 2.5 and 2.6).

2. Additional results and some technical reductions

2.1. Generalities. As a matter of notation, we use id|x to denote the identity
map on the variety (or more general, the set) X. For N-by-N matrices we use
id := idy to denote the corresponding identity matrix.

For any field K and any finitely generated subgroup I' C G,,(K), we say that
x € G,,(K) is multiplicatively independent from T if there is no nonzero inte-
ger m such that x™ € I'. Similarly, given y,,...,7, € G,,(K), we say that x is
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multiplicatively independent from y,, ..., y, if x is multiplicatively independent
with respect to the subgroup of G,,(K) spanned by the y;’s. More generally,
we say that xq,...,x; € G,,(K) are multiplicatively independent from y,, ..., 7,
if the subgroup of G,,,(K) generated by the x;’s has trivial intersection with the
subgroup generated by the y;’s.

For any point y € GY, we let T, @ GY — GY be the translation-by-y
automorphism, i.e., ry(x) :=y-xforeachx € G%. Furthermore, in our paper
we find useful to use vector notation for the points of G%, i.e., from now on, the
point x € GY will be denoted as X : = (xy, ..., Xy).

Since End(GY) SM ~.N(Z), we have that each dominant endomorphism ¢
of GY is identified by an invertible N-by-N matrix A with integer entries such
that

p(X) = X4, (2)
Le,p(xy, ..., xy) = (Hil Xfl’i, s HN xaN’i). We will often identify the group

i=17i
endomorphism ¢ of G\, with its corresponding N-by-N matrix A as in (2). Fur-
thermore, we recall that any regular self-map of G% is a composition of a trans-
lation 7j; with a group endomorphism ¢.
For a point & := (ay,...,ay) € GY(K) and some vector U := (v, ...,Uy) €
7N we let

N
av = H al. 3)

i=1
In particular, given a group endomorphism ¢ corresponding to a matrix A as in
(2), given a point & € G (K) and also given a vector 0 with integer entries, we

have
- i - At_'

p(@) =@, )
where A’ represents the transpose of the matrix A. Also, for any @ € GY(K)
and any k € Z, we let &@* be the k-th power of the point & in GY (K).

For a regular self-map ® : GY — GI given by X ~ f - X4, a simple
computation yields the formula for the n-th iterate:
n-1 _i

@ = (B " ©

Finally, we state a special case of the Moosa-Scanlon structure theorem [MS04,
Theorem B] which will be used repeatedly in our proofs.

Theorem 2.1. Let K be an algebraically closed field of positive characteristic p,
let N be a positive integer, let V. C G be a subvariety defined over K and let
I' ¢ GN(K) be a finitely generated subgroup. Then, V(K) N T is a finite union of
sets of the form

U:=7-S1, . 0,01, ..,0,) - H, (6)
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where there exists some positive integer m such that
g, e,

the §;’s are positive integers, H is a subgroup of I and

r Sin;
- - >\p .
S(T1s e s 3 O1s e s Op) 1= | | (1) cnjeNgforj=1,..,r
j=1

2.2. A more precise statement for Theorem 1.5. Our strategy for proving
Theorem 1.5 is as follows. We will first prove Theorem 1.5 for group endomor-
phisms and then use our result to infer the general case in Theorem 1.5.

The next result is used in deriving a more precise statement for Theorem 1.5
in the case where @ is a group endomorphism.

Theorem 2.2. Let N € N, let K be an algebraically closed field of characteristic
p and let ® be a dominant group endomorphism of GY defined over K. Then the
following statements are equivalent:

(i) Forsomet € N, the kernel of ®¢ — id is positive dimensional.
(ii) There exists a non-constant rational function f : G. - P! such that
fo® = f.

Ifthe equivalent conditions (i)-(ii) do not hold, and also assuming that trdege—K >
p
N, then for any point & € G (K) with the property that its coordinates ay, ... , oty

are algebraically independent over I ,, we have that any infinite subset of Op(@)
is Zariski dense in G

Remark 2.3. Condition (i) from Theorem 2.2 tells us that for a dominant group
endomorphism @ of G} (defined over an arbitrary algebraically closed field K),
we have that ® preserves a non-constant fibration (as in condition (ii) from
Theorem 2.2) if and only if the matrix A € My y(Z) corresponding to @ (as in
(2)) has an eigenvalue which is a root of unity.

Remark 2.4. Given a group endomorphism @ : G, — GX corresponding to
some (invertible) matrix A € My y(Z) (see (2)), we see that condition (C) from
the conclusion of Theorem 1.5 is equivalent with asking that there are k :=
trdegEK + 1 Jordan blocks in the Jordan canonical form for A corresponding

to eigenvalues 44, ... , 4, with the property that for some positive integers m and
r, we have that

A== 2" =pr. (7)
Note that the eigenvalues 44, ..., 4, may be equal; we are only asking that they
correspond to distinct Jordan blocks for A. This observation will be used through-

out our proof of Theorem 1.5.

Using Remarks 2.3 and 2.4, we see that in the case of group endomorphisms,
Theorem 1.5 is equivalent with the following result which is a stronger version
of Theorem 2.2.
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Theorem 2.5. Let K be an algebraically closed field of positive transcendence de-

gree over [F_p, let N € N and let ® be a dominant group endomorphism of G&,
corresponding to some matrix A € My n(Z). Assume the following two condi-
tions are met:

(1) there is no eigenvalue A of A which is a root of unity.
(2) theredoesnotexistk := trdege—K+1Jordan blocks in the Jordan canon-
p

ical form of A corresponding to eigenvalues A,,..., A satisfying the equa-
tion

/‘lmz...zl;;nzpr’ (8)

for some positive integers m and r.

Then there exists & € G (K) whose orbit under ® is Zariski dense in G%. Fur-
thermore, given any finitely generated subgroup I' C G,,(K), one can choose
& € GY/(K) such that

(i) the subgroup spanned by a4, ..., oy (the coordinates of @) has trivial in-
tersection with T'; and
(ii) any infinite subset of Og(&) is Zariski dense in G5

The next result provides a more precise form in the conclusion of Theo-
rem 1.5 for a dominant regular self-map of G.\..

scendence degree over[, let € GY(K), letgp : GN — GY bea dominantgroup
endomorphism corresponding to some matrix A € My ny(Z), and let ® := T509.

Assume there does not exist k := trdege—K + 1 Jordan blocks in the Jordan
p

Theorem 2.6. Let N € N, let K be an algebraically closed field of positive tran-

canonical form of A corresponding to eigenvalues A,..., 4, satisfying the equa-
tion AT" = --- = A" = p" for some positive integers m and r.
Then the following statements are equivalent:

(i) Thereisa non-constant rational function f : G --> P! such that fo® =
f
(ii) Thereisnoa € GY(K)whose orbit Oy(&) is Zariski dense in G.)..
(iii) There exists a positive integer ¢ and there exists a nonzero vector v € ZN
such that

Sfwt-1 A\ o
(AP) -G = Gand fZ ) ¥ = 1, 9)

Remark 2.7. We explain here the relevance of condition (iii) from Theorem 2.6.
The existence of a nonzero vector U € ZV satisfying (9) means that for each
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n € N and for each @ € G,(K), we have that (see (5))

nt-1 ,;

o (@) = (T #) 7 gy

(Ziw047) (T 47) 0. 35 (by condition (ii))

™®Ry

-

-1 AN\, R
(Z3204%) -(n9) . 35 (by condition (iii))

= &Y (by condition (iii)).

=

Therefore, Og¢ (@) is contained in a coset of the proper algebraic subgroup H C
GY given by the (nontrivial) equation X =1 (actually, H is invariant under
@’ according to the above computation). Thus, O(a) must be contained in a
proper subvariety of G\, (which is a finite union of cosets of H) and so, it can
never be Zariski dense in G Furthermore, one can find the non-constant ra-
tional function f : G, -» P! which is invariant under ® arguing identically as
in the proof of [GS21, Theorem 1.2] where a similar condition (iii) was given in
the general case of split semiabelian varieties defined over a field of character-
istic 0.

So, the implications (i)=(ii) and (iii)=(i) from Theorem 2.6 hold with iden-
tical proof for regular self-maps of tori regardless of the characteristic of the
field. The interesting features of Theorem 2.6 is that one can prove the implica-
tion (ii)=(iii) in positive characteristic as well. In characteristic 0, the proof of
(ii)=(iii) from [GS21, Theorem 1.2] employed the classical Mordell-Lang the-
orems for semiabelian varieties (as established by [Lau84, Fal94, V0j96]) and
it was incomparably much easier than the proof of our Theorem 2.6. Indeed,
in characteristic p, since the classical Mordell-Lang theorems do not hold (see
[Hru96]), one needs to employ a significantly more complicated approach in
order to establish the same equivalence as the one stated in our Theorem 2.6.

3. Reductions for the general case and the proof of a special case

3.1. General strategy for our proofs. We first describe the general approach
to proving our results. So, we write ® : G, — GX as 7509 for some point

E € G and some group endomorphism ¢ of G\, which corresponds to some
(invertible) N-by-N matrix A with integer entries.

Using [BGRS17, Lemma 2.1], in order to prove our results, we can always
replace ® by a suitable iterate, i.e., for any given ¢ € N,

« there exists a Zariski dense orbit under the action of @ if and only if
there exists a Zariski dense orbit under the action of ®¢; and

« @ leaves invariant a non-constant rational function if and only if ®¢
leaves invariant a non-constant rational function.

When we replace ® by ®¢, the group endomorphism ¢ is replaced by ¢’ (and

- ov -1 4
thus, the matrix A is replaced by A?), while the point £ is replaced by BZFO A
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(see (5)). The advantage in our approach is that now we can assume the follow-
ing: for each eigenvalue 4 of A, we have that either A = 1, or 1 is not a root of
unity.

We prove our results separately in the two cases outlined above, i.e., we deal
separately with the case when A is a unipotent matrix, and with the case when
A has no eigenvalue root of unity. In the latter case, the advantage is that no
matter what is the translation 5 appearing in ®, then we can conjugate ® by
another suitable translation 7; so that

Po= T};loCI)oT; (10)

is actually a group endomorphism of GY. Indeed, we choose ¥ such that
Fd-A — E

(note that id — A is an ivertible N-by-N matrix since we assume in this case
that A does not have eigenvalues which are roots of unity) and then we see that
¥ defined as in (10) is indeed a group endomorphism. Since our results are
invariant if we replace the self-map ® by a conjugate of itself with an automor-
phism of GY (see [GS19, Lemma 3.1]), the case when A has no eigenvalue root
of unity reduces to proving our result for group endomorphisms (i.e., we are
left to proving Theorem 2.5).

The case when @ : G — G is given by a composition of a translation s
with a group endomorphism ¢ corresponding to a unipotent N-by-N matrix A
is treated in the next section.

3.2. The case of unipotent maps. We start by defining the main property we
are investigating in this paper.

Definition 3.1. Let ® : G — G} be a dominant regular self-map defined
over an algebraically closed field K. We say that ® has property Py if either there
exists a non-constant rational function f : G -» P! such that fo® = f, or
there exists a point & € G%(K ) with a Zariski dense orbit under ®, or there exist
positive integers m and r, a connected algebraic subgroup Y of G of dimension at
least equal to trdegEK + 1 defined over a finite subfield Fy, C K and a dominant

regular mapt : G — Y such that
To®™ = Flot, (11)

where F is the usual Frobenius endomorphism of GY induced by the field auto-
morphism x — x4.

Next, we establish a useful reduction in all of our proofs.

Proposition 3.2. Let N € N and let A,B € My n(Z) be invertible matrices
with the property that there exists an invertible matrix Q € My x(Q) such that
B = Q7'AQ. Let ¢ and 3 be group endomorphisms of G, corresponding to the
matrices A and B, respectively.
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Let K be an algebraically closed field of characteristic p. For each ¥ € G5 (K),
we let @3 = 1309 and ¥; := 1509 be the corresponding dominant regular self
maps on G, defined over K.

Let k € N such that both matrices kQ and kQ™! have integer entries. We let

g : GY — G be the group endomorphism corresponding to the matrix kQ.
Then for each E € GN.(K), we have that if CIJg(E) has property Py, then ‘I’E has
property Px.
Remark 3.3. We note that if the matrices Q and Q™! have integer entries, then
the result of Proposition 3.2 follows immediately from [GS19, Lemma 3.1] since
we can consider the group automorphism g : G, — G corresponding to the
matrix Q and then ‘I’E = g_lofbg( 508 which means that ‘I’E has property Py if
and only if CIDg( 3 has property Px.

Proof of Proposition 3.2. Let E S Gﬁ(K). Lemmas 3.4, 3.5, and 3.6 deliver
the desired conclusion in Proposition 3.2. The next commutative diagram will
be used in our proofs for Lemmas 3.4, 3.5, and 3.6.

Y5
.
6y Xy 6 25 6N
bk w
o
cI’g(ﬁ)

Lemma 3.4. If there exists a non-constant rational function which is invariant
under CDg( By then there exists a non-constant rational function which is invariant

under ¥ 2

Proof of Lemma 3.4. Let f : G, - P! be a non-constant rational function
such that

fod)g(g) = f. (13)
Let f1 := fog (which is still a non-constant rational function since g is a dom-
inant group endomorphism). By the commutative diagram (12) and the equa-
tion 13, we get

J10¥5 = fogoW; = fod z0g = fog = fi,
thus proving the lemma. O

Lemma 3.5. Ifthere exists a K-point with a Zariski dense orbit under ® then

there exists a K-point with a Zariski dense orbit under ¥ ;.

o
Proof of Lemma 3.5. Let & € GY(K) whose orbit under CDg( 3 is Zariski dense

in GI. Since g is a dominant group endomorphism, there exists some ¥ €

g8y
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GY(K) such that g(¥) = &. Then for each n € N, using the commutative dia-
gram (12), we have that

D" _ (&) = D" . o(g(¥)) = g(PP)).
o ﬁ)( ) & &) = g( 5(7))
Since g is finite morphism, the orbit of ¥ under ¥ i must be Zariski dense in G%,
as claimed in Lemma 3.5. O

Lemma 3.6. If there exists a connected algebraic subgroup Y of G with a di-
mension larger than trdeg—K and a dominant regular map  : GN — Y such

that @) satisfies equation (11) for some positive integers m and r, then for the
dominant regular map tog : G — Y we must have

‘rogo‘PZ1 = F'otog.

Proof. Using the diagram (12) we have

m __ m
TogoWy =ToPy4)08
= F'otog by (11),
which concludes our proof of Lemma 3.6. (]

Combining Lemmas 3.4, 3.5 and 3.6 yields the desired conclusion for Propo-
sition 3.2. O

Theorem 3.7. Let N €N, let K be an algebraically closed field which is a tran-

scendental extension of [, let ¢ be a unipotent group endomorphism of GY, let

ﬁ € G(K) and let ® : GY — G be the dominant regular self-map given by
D= 7500 Then @ has property Px.

Before proving Theorem 3.7, we first recall the definition of upper asymptotic
density of a subset of non-negative integers.

Definition 3.8. Given a subset U of the set of non-negative integers, the upper
asymptotic density of U is given by
#{0<n<m:neU}

- .

lim sup
m—oo
Remark 3.9. Upper asymptotic densities will appear frequently in the rest of the
paper. So from now on, for the sake of simplifying our notation, we will refer
to the upper asymptotic density of some subset U C N simply as density of U
and also, denote it by d(U).

Proof of Theorem 3.7. Using Proposition 3.2 (along with the fact that any uni-
potent metrix with integer entries can be conjugate through a matrix with ratio-
nal entries to its Jordan canonical form), we may assume from now on, that the
matrix A corresponding to the group endomorphism ¢ is in Jordan canonical
form.
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The following result provides a precise criterion for the trichotomy in prop-
erty P satisfied by a self-map ® : G — G of the form ® = ¢ 509, where
@ is a group endomorphism corresponding to a unipotent matrix A in Jordan
canonical form. Before stating our result, we recall the notation J, ,, which
denotes a Jordan canonical block of dimension m > 1 corresponding to the
eigenvalue A.

Propisition 3.10. Let K be an algebraically closed field, which is transcendental
over F, and let ® : Gy (K) — G (K) be given by

N N
ay an.i
Cep s X)) — [ B [T ™ n B, T | (14)
i=1 i=1

where a; j are the entries ofamatrix A :=Jy; @ J1;,—i, D - D J1,i,—i,_, (Where
1<i <iy <+ <ip=N)and (B,..,Bn) € GY(K). Then, the following
statements are equivalent:

(i) Thereisa non-constant rational function f : G --> P! such that fo® =

f
(ii) Thereisnoa € GY(K)whose orbit is Zariski dense in G (K).
(iii) By, ..., B, are multiplicatively dependent.

Proof. Asnoted already in [AC08, MS14, BGR17], we have that (i)=>(ii). Now,
in order to prove that (ii)=>(iii), it suffices to show thatif §; , B;,, ... , §;, are multi-

plicatively independent then we can find a point in GY (K) with a Zariski dense
orbit. Note there exists a vector ¥ such that

WA—id
(7) N — (515""6i1—1’1’6i1+1""’5if_1’ 1).

It is easy to check that the map T;o(bor?_l is given by

% B34, where f/ 1= (1,..,1,8;,1,...,1,8,) € GN(K). (15)

Therefore, after conjugating ® with 7 (see also [GS19, Lemma 3.1]), we may
assume without loss of generality that

By, BN =1, ..., LB 1,00, 1, 5,,), (16)
i.e., B = Lunless k = i; for some j = 1,...,¢. We choose a point
& = (0(1, vee s ail_l, 1, ai1+1, vee s aiz_l, 1,..., aig—l’ 1) S G%(K), (17)

such that a; , ..., a; _1, Bi,» % 415 - » Xj,—1, fj, are multiplicatively independent
(note that since trdege—K > 0, we can find arbitrarily many multiplicatively
p

independent elements of K). We let
77 = (0(1, ] ail—lﬂ Bils ai1+1’ ] aig—l’ Big)'

Then the orbit of « under @ consists of points of the following form:

Og(a) = {5An_1+"'+A+id&A" ‘ne NO}.
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We claim that the orbit of @ under @ is Zariski dense. We argue by contradiction,
and therefore assume that its Zariski closure V is a proper subvariety of GY.
WeletI' C GY be the finitely generated group consisting of all elements of the
form 77¥ where E is any N-by-N matrix with integer entries; clearly, Og(a&) C T.
By Theorem 2.1, we know that V' N T is a union of finitely many sets of the form

U:=y-S,....10,;61,...,6,) - H, (18)
where there exists some positive integer m such that
Yy, Lt €T, (19)

the §;’s are positive integers, and H is a subgroup of I'.
Because O4(@) is contained in finitely many sets of the form (18), then there
must exist a given set U of the form (18) for which the following subset of N,:

S={neN,: " (a) e U}

has positive density d(S) (see Remark 3.9 regarding our notation for upper as-
ymptotic density of subsets of N).

The algebraic closure of H must be an algebraic group G contained in the
stabilizer of the variety W, which is the Zariski closure of U. Since V is a proper
subvariety and W C V, then G must also be a proper algebraic subgroup of GI\..
So, there must exist a nonzero vector U € ZN such that

()" = 1foreach € € H. (20)
Letn € S; so, ®"*(a) € U (see (18)). Equation (19) yields that
y™ =7 and " = 7% foreachi = 1,...,r,

where C, By, ..., B, € My ny(Z) and so,

r dinjp.
on@r = (7) g, @D

for some nonnegative integers n; and some €, € H. So, combining (21) with
(20) yields

(G = ﬁ(C+Z§=1 p°I"B;) 5 (22)

e L S n
On the other hand, we know that ®*(&) = 621:0 AT GA" (see (5)) and we also
compute:

1 (;l) (i1i1) 1 (;l) (it’_i:—l_l

] = LA ] e
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and so,
OIS n ) (5D

n
B
n

Al 4 4id = 0 ” (iljl) GB@O ” (ig_ig._l_l)

0 0 n 0 0 n
(24)

Therefore, using (22) along with formulas (23) and (24), we obtain that for each
n € S, we have

TN o Rt
Em(zi=01 Al) v, &(mAn)t‘J = (ﬁ)Ctv+Zj:1P J5JB;U . (25)
Now, both sides in (25) consist of products of powers of

Qs eees Q15 Biys Qi 15 oo s Ay 15 Biys Uiy 115 05 Ay 15 B, (26)
and since the N elements of G,,,(K) from (26) are multiplicatively independent,
then it means that the exponents of each a; and each ﬁij appearing in the left-
hand side of (25) must match the corresponding exponent of the «;, respectively
of Bij appearing in the right-hand side of (25).

Now, since U := (vy, ..., Uy) is nonzero, then there is some 1 < k < ¢ such
that the tuple (v;,_ 41, ..., V;, ) is nonzero (where we denoted i, := 0 for conve-
nience). We use equations (23) and (24) to compute the exponent of §; appear-
ing in the left-hand side of (25) and then comparing it with the exponent of §;
from the right-hand side of (25), we get

m(v (" v (" )+t (6)
ig_q1+1 lk _ ik_l ig_1+2 lk _ ik_l -1 I 1

r
= by + Z bjpéj”j, 27)
j=1
for some integers b, ..., b, which are independent of n (and only depend on

the entries of the matrices C, By, ..., B, and the entries of the vector V). Since
the tuple (v;,_, 41, ..., ;) is nonzero, then the polynomial

ik—ig_1

R . . .. n
P(n) :=m ]Zﬂ Oy 4s (ik 41 j) (28)

must be non-constant. So, equations (28) and (27) yield thateach elementn € S
must satisfy an equation of the form:

.
P(n) = by + ), b;p%m, (29)
j=1

forsomen; € N,. Because P is non-constant (while the §;’s are positive integers
and the b’s are given), [GOSS21b, Theorem 1.1] yields that d(S) = 0, therefore
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contradicting our assumption that S has positive density. Hence, indeed O (@)
must be Zariski dense in G, as desired for showing the implication (ii)=(iii).
Finally, in order to prove that (iii)=(i), we know that there exists a nonzero

S ¢ ; . , e
U € Z¢ such that Hj=1 ﬁ;’ = 1 since the ﬁij s are multiplicatively dependent.
Therefore, the non-constant rational function

¢
v,
fxq, o xy) 1= H xl.j’
j=1

isinvariant under @ (note thati, = N with our notation from Proposition 3.10).
This concludes our proof for Proposition 3.10. O

Proposition 3.10 finishes the proof of Theorem 3.7. (]

Remark 3.11. Our proof of Proposition 3.10 shows that for a regular self-map
® as given in (14), if in addition the vector § has the form (16) with §; , ..., 5;,

multiplicatively independent, then for any point & € GY(K) asin (17) such that

Ay e s Ky —15 ﬁila Ay 415 -5 Xiy—15 5i2a Xiyt 15 o> Xip—15 61'5

are multiplicatively independent, O4(&) is Zariski dense. Furthermore, our
proof of Proposition 3.10 yields the stronger statement that for a point @ €
GN(K) as in (17), for any subset S C N, of positive density, the set

{o"(a): n € S}
is actually Zariski dense in G5 . The strength of this refined result coming from

Theorem 3.7 allows us to prove an important reduction step in Theorem 2.6
(see Proposition 3.12).

3.3. The split case. The following result is instrumental in proving our The-
orem 2.6 by reducing it to our Theorem 3.7 combined with Theorem 2.5.

Proposition 3.12. Let K be an algebraically closed field of characteristic p > 0,
let Ni,N, € N, let N := N; + N,, let D be an invertible N,-by-N, matrix with
integer entries, whose eigenvalues are not roots of unity, let B be a unipotent N1-
by-N, matrix in Jordan canonical form, i.e.,

B:=J; ®J1,—i, @ DJri—i_,>
where iy = Ny, and letE =0,...,LB,L...,1,B) € Gzl(K). Let

V0= 1o Vig=1s LV iyt o> Vigm1> L Vig1s s Vi1, 1) € G (K)
andleta = (ay, ..., ay,) € G%Z(K). Assume the following elements of G,,(K)
are multiplicatively independent:

V1o -5 V=15 B1 Vi 15 -+ Vig—15 Bi» (30)
and define
77 = (715 57/1'1—1’51’ Vij+1s -+ Yis—l’ﬁis)-
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Also, assume that the a;’s are multiplicatively independent from the elements from

(30), i.e., letting T be the subgroup of G,,(K) spanned by the elements from (30)

and letting A be the subgroup of G,,(K) spanned by the a;’s, then T N A = {1}.
Let @, : G%l — G%l be the regular map defined by

- > \B =
X B-(X) foreach% € G

Let @, be the group endomorphism of Gh? given by ¥ — (f)D foreach X € Gh?,
and let ® be the regular self-map of G, : = G%‘ ® G%Z given by ®; @ P,.
Assume that for any positive density subset S C N, the set

{@l@): nes}
is Zariski dense in Gh*. Then Og(¥ @ @) is Zariski dense in GY.

Proof. Assume Og(¥ @ @) is not Zariski dense in GJ, and thus, let V C G}, be
its Zariski closure.

Let A :=I'M1 x AN2 ¢ GY(K); then Og(¥ @ @) C A. Then V N A is a finite
union of sets of the form (18), i.e., sets of the form

U:=17y-S1,...5,;01,..,0,) - H, (31)
where there exists some positive integer m such that
To o717 € A (32)

while the §;’s are positive integers and H is a subgroup of A. Because the entire
orbit of ¥ @ @ under @ is contained in the union of finitely many sets as the one
from (31), there must exist some set U as in (31) containing ®*(y & &) for all
integers n in some subset S C N of positive density.

Now, assume there exists some nonzero vector 171 € 7N and some vector

U, € ZN2 such that for the vector U := U, @ U, € ZV, we have that (E)U =1 for
each ¢ € H. We argue as in the proof of Proposition 3.10 and get that for each
n € S, we have
t

oG @y = (Foa) Zm ) (33)
for some suitable N-by-N matrices C, By, ..., B, with integer entries. Now, using
that U; is a nonzero vector, along with our hypothesis that the ,Bij 'sand the y;’s
are multiplicatively independent, while the «;’s are multiplicatively indepen-
dent from the Bij ’s and the y;’s, then arguing exactly as in the proof of Proposi-
tion 3.10 (see equations (27), (28) and (29)) we get that there exists some non-
constant polynomial P and some integers b; such that for each n € S, there are

non-negative integers n; such that

r
P(n)=b0+ijp51nf. (34)
j=1
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Since S has positive density, this yields a contradiction to the conclusion of
[GOSS21b, Theorem 1.1]. Therefore, there is no nonzero vector v; € ZN1 such
that for some U, € ZN2, we have that U = v, @ v, kills each element of H. We
let G C GY be the Zariski closure of H; then G is an algebraic subgroup. Now,
the fact that any vector U € ZV which kills each element of G must have its
first N; entries equal to 0 yields that G = Gﬁl X G, for some algebraic subgroup
G, C Gﬁz.

So, letting W be the Zariski closure of U in G%, then its stabilizer must con-
tain G and therefore, it contains Gﬁ‘ (seen as a subgroup of GY under the natu-
ral embedding X — X @ iﬁﬁz ): i.e., for each &, € GY' and each Ji € W, we have
thate - & € W. Hence, W = G%l x Z for some subvariety Z C Gﬁz. However,
Z must contain each CIDZ(&) forn € Sand S C Nj is a set of positive density;

then our hypothesis yields that Z = fo,f. Therefore, W = GI and so, indeed
O (¥ ® &) must be Zariski dense in GI\.. O

4. Proof of Theorem 1.5

We start this Section by proving a preliminary result used in the proof of
Theorem 2.5 and then we will proceed to proving Theorems 2.5 and 2.6.

Proposition 4.1. Let K be an algebraically closed field of transcendence degree
p—— - - A
d > 1overF, Let® : Gy (K) — Gp(K) be given by X — (X)", where A is an
invertible N-by-N matrix that has a conjugate of the form
N f[

PP om0 (35)
i=1 | j=1
where n;’s are distinct positive integers and mEJ )
that for every 1 < i < s we have

are non-negative integers such

©

i

»

.
0=m <m, <---<m§‘),

while
S

Z m'? = N.
_ J
j=1
Then one of the following statements must hold:
(1) Thereexists1 <i < ssuchthatt; > d.
(2) for any finitely generated subgroup A C G,,(K) there exists @ € G (K)
such that
(i) the subgroup of G,,(K) spanned by the a;’s (the coordinates of a)
has trivial intersection with A; and
(ii) any infinite subset of Og(Q) is Zariski dense in G)..

Remark 4.2. Note that condition (1) in Proposition 4.1 says precisely that con-
dition (C) from Theorem 1.5 holds for the given map ®.
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Proof of Proposition 4.1. Suppose that condition (1) does not hold. We will
prove the next lemma which reduces the problem to the case where A is equal
to a matrix of the form (35).

Lemma 4.3. It suffices to prove that condition (2) holds in the case where A is
equal to a matrix of the form (35).

Proof of Lemma 4.3. Since A has a conjugate of the form (35), there must ex-
ist a group endomorphism W corresponding to a matrix of the form (35) and a
dominant group endomorphism g : GY — GI such that the next diagram
commutes

GY 25 GY

L L (36)
GYN X5 GV,
Suppose that a satisfies conditions (i) and (ii) with respect to the group endo-
morphism W. We choose 8 € G, such that g(8) = &. Using Lemma 3.5, the or-
bit of 8 under ® must be Zariski dense in GY. Now suppose for the sake of con-
tradiction that there exists some non-zero vector v € Z» such that 8 Ve A \ {0}.
Let g correspond to a matrix B € My y(Z) which is invertible as g is dominant.

So, there must exist a non-zero integer m and a non-zero vector 0’ € ZV such
that B0’ = mv. This implies that

@’ = 77 = e A\ {0},

which contradicts the assumption that & satisfies condition (ii). This concludes
our proof of Lemma 4.3. (|

Therefore, from now on we may assume without loss of generality that A
is equal to a matrix of the form (35). Choose ty,...,t; € G, (K) that are alge-

braically independent over [F_p and moreover, the subgroup of G,,(K) generated
by t, ..., t4 has trivial intersection with A. We claim that any infinite subset of
the orbit of
a:=a @ da, €GY(K),

where

L (ST ST YO SRS PR 79
N—o———
- mfl) times mD — D times

(2)

mgl) times m;
under ® is Zariski dense. Note that for every 1 < i < s, &; is well-defined since
¢; < d. We also note that due to our choice for ¢y, ..., t 4, the entries of & satisfy
conclusion (i) from Proposition 4.1.

Now, suppose that there exists an infinite subset S C N, with the property
that the Zariski closure of the set {(D”(&) ne S} is a proper subvariety V' C
G%; we will derive a contradiction, which will thus show that a also satisfies
conclusion (ii) from Proposition 4.1.
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Let Iy be the finitely generated subgroup of G,,,(K) generated by ¢, ..., t; and
letT := Fév C GY(K). Then Oy(a) C I and furthermore, by Theorem 2.1, VNI
is a finite union of sets of the form (18), i.e., sets of the form:

U:=y1-S(,....0,;61,...,6,) - H, (37)
where there exists some positive integer m such that
Y.t el (38)

the &;’s are positive integers, and H is a subgroup of I'. We also recall that

S
S » 3 61, ..., 6,) consists of all points of the form H;:1 (ﬁj)p ™ for any
nonnegative integers ny, ..., n,.

Since S is an infinite subset of N, and each ®*(&) belongs to a set as in (37),
then the pigeonhole principle guarantees that at the expense of replacing S by
an infinite subset of it, we may assume that each ®"*(a) are contained in the
same set U as in (37).

Lemma 4.4. The Zariski closure of the set U from (37) is of the form y=! - W,
where W C GY is a proper subvariety defined over Fp.

Proof of Lemma 4.4. The Zariski closure of the subgroup H from (37) is an
algebraic subgroup of G, and therefore, it is defined over [F_p. Also, the Zariski
closure of the set S(73, ..., 73 &1, ... , 8,) is invariant under a suitable power of the
Frobenius endomorphism (more precisely, it is invariant under F°, where & is
the least common multiple of all the positive integers §;). Therefore, the Zariski
closure of (73, ..., y; 81, ... , 6,)-H must be a subvariety W defined over [F_p. Fur-
thermore, W is a proper subvariety of GY since, according to our assumption,
also V C G is a proper subvariety (and y~' - W C V). This concludes our proof
of Lemma 4.4. O

Lemma 4.4 yields the existence of a polynomial g(x) € [F_p[xl, .., Xn] such
that g(y - X) vanishes at each point ®*(a) forn € S. Let g(X) := Zf\il a (%),
where the vectors U; € ZV are distinct and each a; € [F_p is nonzero.

Let7] := (t,..,t;) € GL(K) and choose a point 7, := (t], b)) € G4 (K)
where (/)™ = t; for every 1 < i < d; in particular, (7)™ = 7. Also, note that

t},...,t, are algebraically independent over [F_p. Similarly, define

G =& @ @ € GY(K),

where
2! . __ !/ ! !/ / ! !
CARE GO AU PN AT TR A
———

(2)

@ .. @, ) _
m,” times m;” —m, times mgf’)—mgf’ D times

Since y™ € T, there must exist an N -by-d matrix B with integer entries such
that ¥ = 7. This implies that ¥ = ¢ - (7,)® where ¢ € GY(K) is a point of



1294 DRAGOS GHIOCA AND SINA SALEH

order dividing m; in particular, E € G%([Fp). Also, for every 1 < k < d define
1, to be a vector in ZN whose i-th coordinate is equal to 1 whenever the i-th
coordinate of « is equal to t, and it is 0 otherwise. Then, for every n € S we
must have

a;aA" iyt

I
.ME

N
I
—_

N
S

) @y o)

I
.Mg

~
Il
—

(ai( )

Il
.Mg

N
Il
—

d
c; - H(tllc)m((A ) Di)'uk"‘(B[Ui)k’ (39)
k=1

where ¢; 1= q; - (gj Yi e [F_p and (B'0;); denotes the k-th coordinate of B'v; for
every 1 < i < M. Since t;, s t& are algebraically independent over [F_p there
must exist i < j such that
m((A")'0;) - e + (B0 = m((A")'0]) - g + (B'U) )i
for every 1 < k < d, which implies that
m((A")'(0; = 0))) - iy + (B'(0; — U))) =0 (40)

for every 1 < k < d. But because there are only finitely many pairs (i, j) of
indices in {1, ..., M}, by the pigeonhole principle, there is a pair (i, j) and an
infinite subset S, C S such that for every n € Sy, (40) holds. Letw :=v; —0; €
ZN and (B'w), = ¢, € Z forevery 1 < k < d. So, for each n € S, and every
1 < k < dwe have

m((AM)'W) - ty + ¢ = 0. (41)
For each n € N, we have that A" equals

o —Dens D — D4 1)
pr (;l)p(n Vn .. (m(l')_,:(f—l)_l)p(n (m;"=m; )+

£, i i ) .
: - 0 nen . n (n—(mf})—mgj_l))+2)-ni

EB EB p (mg)_mgj—l)_z)P P

i=1 | j=1 : . ' ! .
0 0 vee pn'ni

Let ¥ := (wy,..., wy). Since W is nonzero, we let w, be the first nonzero entry
of & from the left. Due to the definition of each i), we have that there exists a
unique 1 < k < d such that the r-th coordinate (i), of i is non-zero. Also,
there exist unique integers 1 < i’ < sand 1 < j’ < ¢, such that

i'—1 i'—1

(£g) (-1 (¢q) 69
DimgCAml T <r <Y mg 4 my.
g=1 g=1
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G"-n

N\ +1)-ny > -
Then, the coefficientof ( i_,, 1) p(" (r ™ ) ) ™ in (A" - i (note that
r—m; —
we have a dot product of vectors) is equal to

wr(ﬁk)ra (42)

which is non-zero as both w, and (i), are non-zero. Furthermore, there is no
other (nonzero) term in (A™)w - 1) containing p"" multiplied by a polyno-
mial in n of degree greater than or equal to r — ml(,J 1 (note that this is a
consequence of our choice for the coordinates of &). Therefore we get

m((AM' - i) = D, Qi(n)p™™,

i=1

where each Q; is a polynomial with coefficients in Q and furthermore, Qy(n)is

=
1

nonzero of degree r — — 1. Thus, equation (41) becomes

D Qm)p"i+c=0 (43)
i=1

for every n € S,. But, the left-hand side of (43) is the general term of a non-
degenerate linear recurrence which can have only finitely many solutions (see
[Sch03] for a thorough treatment of the famous Skolem-Mahler-Lech problem
represented by equation (43)) since not all of the Q;’s are identically equal to
zero and furthermore, because the n;’s are distinct positive integers, the quo-
tient of any two p"i appearing in the equation (43) is not equal to a root of unity
and also no p™ is a root of unity (note that the characteristic roots of the linear
recurrence sequence from (43) belong to the set {1, p™, ..., p"s}). This contra-
dicts the fact that S, is an infinite set. So, any infinite subset of the orbit of &
under ® must be Zariski dense in G, which concludes our proof of Proposi-
tion 4.1. ([

The next lemma will be used in the proof of Theorem 2.5.

Lemma 4.5. Let p be a prime number, let N € N, let U € ZN, let 54, ...,5, €N,
and let A, By, ..., B,,C be N-by-N matrices with integers entries such that A is in-
vertible and moreover, none of the eigenvalues of A are multiplicatively dependent
with respect to p. If there exists an infinite subset S C N with the property that for
each n € S, there exist ny, ..., n, € N, such that

r
A"G =T+ Y pSiBiD, (44)
i=1

then U must be the zero vector.
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Proof. Note that there exists a matrix P such that A = P~!DP where D =
Taiy DIy i,-i, @ - B J4,4,—i,_, (ie = N). Thus, equation (44) becomes

.
(PID"P)0 = CU + ), p"%iBv,
i=1

which is equivalent to

,
D"PU = (PC)U + ), p"i(PB;)U. (45)

i=1
Now suppose for the sake of contradiction that U is nonzero. This implies that
PU is nonzero (since P is invertible). Let j be the first nonzero coordinate of PU

from the right. Let i; = 0 and suppose thati;_; < j < i;forsomel < s < ¢.
Comparing the j-th coordinate of both sides of equation (45) we get that there

exist a,cq, ..., ¢, € Q with a # 0 such that
aA = ¢;p™% + .- 4 ¢, p™or.

for each n € S. This fact contradicts [CGSZ21, Theorem 5.1 (A)]; therefore, U
must indeed be the zero vector, as claimed in Lemma 4.5. O

Proof of Theorem 2.5. Let I' C G,,(K) be a finitely generated subgroup. We
first prove a useful reduction.

Lemma 4.6. It suffices to prove Theorem 2.5 after replacing ® by an iterate ®°
(for some ¢ € N).

Proof of Lemma 4.6. So, assume conditions (i)-(ii) are satisfied for the start-
ing point & (with respect to I') and for the endomorphism ®° (for some given
¢ € N). We claim that a will also satisfy conditions (i)-(ii) in Theorem 2.5 for
the endomorphism ®. Clearly, condition (i) is unaffected since it refers strictly
about the coordinates of the given starting point @. Now, in order to check con-
dition (ii), we let S C N, be an infinite subset and we want to prove that

Ug :={®"(a): n € S} (46)

is Zariski dense in GY. In particular, there exists iy € {0, ..., £ — 1} such that the
set

Si, ;={n€S:n=i, (mod?)}
is an infinite subset. Since condition (ii) is verified by (@7, &), then the set
US,iO = {(Dn_io(&) . ne Sio} (47)

must be Zariski dense in G\.. Because ®% is a dominant group endomorphism,
then also ® (Us; ) C Us (see (46) and (47)) is Zariski dense in G}y, as desired
in the conclusion of Lemma 4.6. O
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Using Lemma 4.6 (and therefore after replacing ® by a suitable iterate), we
may assume that the matrix A corresponding to the endomorphism & has the
property that for each of its eigenvalues 4, if 4 is multiplicatively dependent
with respect to p, then actually,

A = p™ for some m € N. (48)

Note that the exponent m from (48) can be chosen indeed to be a positive integer
since m = 0 would lead to A having eigenvalues root of unity (which is not
allowed by hypothesis (1) in Theorem 2.5), while a negative integer would mean
that 4 from (48) would not be an algebraic integer (which contradicts the fact
that 1 is an eigenvalue of a matrix with integer entries).

We let g € Z[x] be the minimal polynomial for the endomorphism ®. We
let h;(x) be the polynomial with integer coefficients, which is a factor of g(x)
having all the roots (with corresponding multiplicities) of g(x) which are of the
form (48). Then we can write g(x) : = h;(x) - h,(x), where also the polynomial
h,(x) has integer coefficients. Furthermore, h;(x) and h,(x) are coprime poly-
nomials. We let G; = h(®)(GY) and G, = hy(®)(G). Then G, and G, are
both connected algebraic subgroups of GY. Since h; and h, are coprime, then
there exist polynomials with integer coefficients Q; and Q, along with some
positive integer ¢ such that

Q1(x) - hy(x) + Qy(x) - hy(x) = €,

which means that G; and G, are complementary subtori of G, in the sense
that G, ~ Gk, and G, ~ G, for some integer k € {0, ..., N} and moreover,
GN = G, - G,, while G; N G, is finite (consisting only of points of order dividing
). Furthermore, ® induces endomorphisms of both G; and G,; call them @,
respectively ®,. In addition, the minimal polynomial of ®, is h,(x), while the
minimal polynomial of ®, is h;(x). Also, if welet: : G; X G, — G be the
map given by (x;, X,) = X; - X, (note that G; and G, are subgroups of GJ), then
the following diagram commutes

Gy x G, 2% 6 %o,
PR w
d
6y —2 v 6N

Note that ¢ is a finite morphism of degree ¢,. We now prove the following
lemma.

Lemma 4.7. It suffices to prove the conclusion of Theorem 2.5 for the action of
Y= ((1)1’(1)2) on Gl X Gz.

Proof of Lemma 4.7. For a given finitely generated subgroup I" C G,,,(K), we
letI' := ("}TN) and then let I'; C G,,(K) be the finitely generated subgroup

spanned by the projections of I onto each coordinate of G; x G, 5 GN.
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Assume there exists a point (X;,%,) € (G, X G,)(K) satisfying the conclu-
sions (i)-(ii) of Theorem 2.5 with respect to (®;, ®,) and the subgroup I';. We
claim that X := ((X},X,) € Gh(K) satisfies the conclusions (i)-(ii) of Theo-
rem 2.5 with respect to the endomorphism @ and the subgroup I

Indeed, first of all, condition (i) is satisfied by X with respect to the subgroup
I since the same condition is satisfied by (X;, X,) and subgroup I';. As for con-
dition (ii) in Theorem 2.5, we let S C N, be an infinite subset. Since by our
hypothesis, the set

{(@,,0,)" (%,%,) : ne S}

is Zariski dense in G; X G,, then its image under ¢ will be Zariski dense in G,
thus proving the desired condition (ii) for ®, as claimed in Lemma 4.7. O

Now, G, X G, is itself isomorphic to G, x GN=¥; our argument thus far has
been similar to the proof of our Proposition 3.2 in order to justify that we can
work with a dominant group endomorphism ¥ = (®,, ®,) where ®, : G5, —

G and @, : Gk - GN=k given by X; — )?fl and respectively, X, — 55?2.
Moreover, the minimal polynomials of A; and A, are h,(x) and h,(x), respec-
tively.

We pick a starting point (¥;, X,) for the action of ¥ on GX,(K) x GN¥(K) of
the following form:

« X, € G%‘k(K) satisfies both conditions (i)-(ii) from the conclusion of
Proposition 4.1 with respect to the finitely generated subgroup I' C
G, (K) (note that because of Condition (2) in the hypothesis of Theo-
rem 2.5, Condition (2) in Proposition 4.1 must hold); and

« X; has its k coordinates multiplicatively independent among them-
selves and also, the subgroup of G,,(K) generated by the coordinates
of X, has trivial intersection with the subgroup spanned by I' and the
coordinates of X,.

Let

>E, oE
A= {(37,52) By € My v, (D) and By € My, v, (@)} (50)
then A is finitely generated and all the points in Oy (X}, X,) lie in A.

We let S C N, be an arbitrary infinite subset; we will prove that the set

U :={¥"(X,X,) : n€S}

must be Zariski dense in G. If U is not Zariski dense, then we let V C G} be
its Zariski closure. Using Theorem 2.1, there must exist a set of the form (18)
containing infinitely many elements of U. So, at the expense of replacing S by a
still infinite subset (and thus replacing the set U with its corresponding infinite
subset), we may assume without loss of generality that there exists a set

F = 1-SGy, 7,381,005 8,) - H, (51)
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containing U. Now, regarding the set F, just as before, there exists a positive
integer m such that
A Lt €A, (52)

while the §;’s are positive integers and H is a subgroup of A.

Since we assumed that U is not Zariski dense in GY,, then V' is a proper subva-
riety of G} and in particular, the Zariski closure of H must be a proper algebraic
subgroup of GI\'; so, there exists a nonzero 0 € Z" with the property that

-

- -\ U
for each h € H we have (h) =1. (53)

We write U = (U;,0,) € ZM x ZN2, Using (52), there exist matrices B; €
My, n,(Z) and C; € My, n,(Z) (for i = 1,...,r) along with matrices D; €
MNJ_,N},(Z) for j = 1,2 such that

B, -C . > D, =D
n = (551‘,552‘) foreachi =1,...,rand A" = (3?11,5522).

So, for each n € S, using that ¥"(X;,X,) € F, we must have some some
nonnnegative integers n; (for i = 1,...,r) such that
W (Fy, )™ = (B7(Fy), D)™
1, %2)"" = (@7(X1), D, (X,
= P} (x))" - ()™

_ omADT mAL)T,

1 )
DI +) r p"idiBfJ LDLUy+D ’ p"i‘SiC.‘lT
1 = 1 2 = 2
—Xll = ! -x22 =t I (54)

where in (54) we also used (53). Since the coordinates of X; are multiplica-
tively independent among themselves, and also multiplicatively independent
with respect to the coordinates of X, we must have that

.
m(A?)'0) = D!v, + ), p"oiBlo], (55)
i=1

for every n € S. Hence, since none of the eigenvalues of A; are multiplicatively
dependent with respect to p, Lemma 4.5 yields that we must have v; = 0. So,

N
this means that for any vector v = U, @0, € ZV with the property that (h) =1

for each point h in the Zariski closure H of H inside G, ® G,, we must have that
U, is the zero vector in ZN1. Therefore, H is an algebraic group of the form
G, & H, for some algebraic subgroup H, C G,.

So, the Zariski closure W of the set # (which is itself contained in the Zariski
closure of the set U') must be of the form G; @ W, for some subvariety W, C G,
because G; @ _1)62 is contained in the stabilizer of W. However, W, contains all
the points ®)(x,) for n € S. Then using the fact that S is an infinite subset of
N, along with Proposition 4.1, we conclude that W, must be the entire G,. So,
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actually W must be the entire G; @ G, = G), which means that any infinite
subset of the orbit of (X;, X,) under (®,, ®,) must be Zariski dense in G; X G,.
This concludes our proof of Theorem 2.5. O

Proof of Theorem 2.6. As noted before (see [AC08, MS14, BGR17]), we have
that (i)=(ii).

Our strategy for proving that (ii)=(iii) is to assume that condition (iii) does
not hold and then prove the existence of a point with a Zariski dense orbit.

First, note that there exists a suitable power A" of A (for some n, > 1) such
that each eigenvalue of A is either equal to 1 or it is not a root of unity and
each eigenvalue of A" which is multiplicatively dependent with respect to p is
actually of the form p™ for some m € N,. Next, we prove that condition (iii)
from Theorem 2.6 is not changed when replacing ® by ®"o.

Lemma 4.8. Let ny € N. If condition (iii) from Theorem 2.6 is not met for the
regular self-map ® : GY —s G, then condition (iii) is also not met for ®"o :
G — GY.

Proof of Lemma 4.8. When we replace ® by ®", then we replace A by A"
and also, replace 8 by

> >y0-L

By 1= i A (56)
Now, we assume there exists a nonzero vector U € ZN such that condition (iii)
is met for ®™, i.e., for some ¢ € N we have:

t
. . L \(T05 an)) @
(Amf) G = Fand (/31)( oA _ 1. (57)
But then using (56), we see that

-1 o\ VN

1= fER )T S )
thus proving (in connection with (57)) that condition (iii) would be met for @,
contradiction. This concludes our proof of Lemma 4.8. O

Lemma 4.8 allows us to replace @ by ®" and therefore, it suffices to find a
point @ € G (K) with a Zariski denese orbit under ®"; note that then also
O(a) would be Zariski dense in GY. So, from now on, we work under the
hypothesis that

« each eigenvalue of the matrix A corresponding to the group endomor-
phism ¢ (where ® = rgogo) is either equal to 1 or it is not a root of
unity; and

« each eigenvalue of A which is multiplicatively dependent with respect
to p is actually of the form p™ for some m € N,,.

This hypothesis yields that there exists an invertible matrix P with rational
entries such that

PTIAP =Ty @Jl,iz—il @ @Jl,is—is_l @D’ (58)
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where D is an invertible matrix satisfying the following properties:

« no eigenvalue of D is a root of unity;
« there does not exist k := trdegﬂK + 1 Jordan blocks in the Jordan
canonical form of A corresponding to eigenvalues 4,..., 4 satisfying
the equation 4" = --- = " = p" for some positive integers m and r.
We write N; := igand N, := N — Ny; so, N; is the dimension of the unipo-
tent matrix B appearing on the right-hand side of equation (58), while N, is
the dimension of the matrix D. According to Proposition 3.2 (especially, see
Lemma 3.5), it suffices to prove the existence of a point with a Zariski dense
orbit under the assumption that the matrix A actually has the form from the
right-hand side of (58). Furthermore, condition (iii) is unchanged when we
replace A by another matrix with integer entries of the form P~ AP where P
and P~! have rational entries. Indeed, one can choose some positive integer
m such that both mP and mP~! have integer entries and then condition (iii)

holds for the triple (A, ﬁ U) (and ¢ € N) if and only if condition (iii) holds for
(P‘lAP, E’”(P ), mpPt J) (and the same integer ¢).

So, from now on, we may assume that the matrix A corresponding to the
endomorphism g is itself equal to B P D.

For any vector X = (x,, ..., xy) € G,(K), welet Xg and X, denote (xy, ..., Xy, )
and (XN1+1’ ..., Xy ) respectively. Since D has no eigenvalues that are equal to a

5 L \D-id >
root of unity, we can choose a vector yp, € G%Z (K) such that (¥p) M = Bp-
Also, there is a vector 7 such that

(773) = (ﬁl""’ﬁil—l’1’ﬁi1+1""’6is—1!1)'
Lety := 75 ® ¥p € GY. Itis easy to check that the map r;o(bor%l is given by

B-idy,

¥ BLXE @ X0, where B} := (1,...,1,B,,1,..,1,8;,) €Gp'(K). (59
According to [GS19, Lemma 3.1], it suffices to prove that there exists a point
with a Zariski dense orbit for the regular self-map on G/ given by (59). We
also note that condition (iii) is unchanged when replacing A and 8 by A and £/,
where 8/ 1=, ® 0. Indeed, for any positive integer ¢, we have that

(A0 = Uif and only if (BY)'Ug = 0z and 0p = 0

since 1 is not an eigenvalue of D?. Moreover, every eigenvector of (BY)! corre-
sponding to 1 must be of the form

0, ...,0,0;,0,...,0,v,). (60)

So, for a vector as in (60), we have that

-

N 5
( ,)( )

-1 i)‘_>

(E>(Ei=0 " — lifand only if =1
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Therefore, in the proof of the implication (ii)=(iii) we may assume from now
on that 8 = 8, and 8 = (0, ..., 0) (see (59)).
Since condition (iii) does not hold, in particular we have that
Bi,» ---» Bi, are multiplicatively independent. (61)

Indeed, otherwise we would have some nonzero vector w € Z° such that
S
w,
H ‘Bi-j =1
=
and so, letting

v :=(0,..,0,w,0,...,0,w,,0,...,0,w;,0,...,0) € ZN

be the vector whose only possibly nonzero entries are its i;-th entries (for j =
1,...,s), we immediately see that

AU =Uand EU =1, (62)
thus showing that condition (iii) holds in this case. So, indeed, since we as-

sumed that condition (iii) does not hold, then we must have that the ,Bij ’s are
multiplicatively independent (as claimed in (61)). We let

ag 1= (V1o Vip=1> L Vig+1s > Vg1 L Vigs 15 o5 Vi1, 1) € G (K)
where the y;’s are multiplicatively independent and also multiplicatively inde-
pendent with respect to the ﬁij ’s.

Since the eigenvalues of D satisfy the hypotheses of Theorem 2.5, then we
can find @y € GZZ(K) which satisfies conditions (i)-(ii) from the conclusion
of Theorem 2.5 with respect to the subgroup T of GX spanned by all the ,Bl-j s
and all the y j’s. In particular, this means that writing ap = (aq,..., och), we
have that the o;’s (along with the 181', s and the y’s) satisfy the hypotheses of
Proposition 3.12. Hence, the orbit of & : = ay @ ap € GY(K) under ® must be
Zariski dense in G%, as claimed. This concludes our proof of Theorem 2.6. [

As noted in Section 2, Theorem 1.5 is a consequence of Theorem 2.6.
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