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All lines on a smooth cubic surface in terms
of three skew lines

Stephen McKean, Daniel Minahan and Tianyi Zhang

ABSTRACT. Jordan showed that the incidence variety of a smooth cubic sur-
face containing 27 lines has solvable Galois group over the incidence variety
of a smooth cubic surface containing 3 skew lines. As noted by Harris, it fol-
lows that for any smooth cubic surface, there exist formulas for all 27 lines
in terms of any 3 skew lines. In response to a question of Farb, we com-
pute these formulas explicitly. We also discuss how these formulas relate to
Schléfli’s count of lines on real smooth cubic surfaces.
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1. Introduction

Given a complex smooth cubic surface S containing three skew lines, we
compute the equations of all 27 lines on S. We then apply these equations to
study lines on real smooth cubic surfaces. Schlifli showed that real smooth cu-
bic surfaces contain 3, 7, 15, or 27 lines [Kol58]. Moreover, a real smooth cubic
surface contains three skew lines if and only if the cubic surface contains an
elliptic line (as defined by Segre [Seg42]). Given a real smooth cubic surface S
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that contains an elliptic line, we give a cubic polynomial g(t) € R[¢] (Proposi-
tion 3.1) and a pair of complex numbers sy, s, (Notation 5.5) that determine the
number of real lines contained in S.

Theorem 1.1. Let S be a real smooth cubic surface that contains an elliptic line.

(a) S contains exactly 7 real lines if and only if g(t) has only one real root and
81,8, are not real.

(b) S contains exactly 15 real lines if and only if (i) all roots of g(t) are real
and s;, s, are not real, or (ii) g(t) has only one real root and sy, s, are real.

(c) S contains 27 real lines if and only if all roots of g(t) and s;, s, are real.

Remark 1.2. Let k C C be a field. Let S be a smooth cubic surface over k
with three skew k-rational lines. As pointed out by the referee, the equations
in this paper allow one to characterize the number of k-rational lines on S. See
[McK21] for a similar application of these equations to the study of lines on
cubic surfaces over Q.

In algebraic geometry, enumerative problems can often be rephrased in terms
of covering spaces of incidence varieties. By studying the monodromy of these
covers, one can speak of the Galois group of an enumerative problem. These
Galois groups can provide additional insight into the enumerative problems
at hand. For example, Jordan showed that the Galois group of 27 lines on a
smooth cubic surface is the odd orthogonal group O, (Z/27) < Sy; [Jor57] (see
also [Har79, pp. 715-718]). Since O, (Z/2Z) is not a solvable group, there is no
equation in radicals for the 27 lines on a given smooth cubic surface. However,
given a smooth cubic surface and a particular arrangement of lines contained
therein, we obtain a new Galois group G < O, (Z/27) that may be solvable.

Let S be a smooth cubic surface over an algebraically closed field of charac-
teristic 0. Let P! be the projective space parametrizing cubic surfaces in P3,
and let G(1, 3) be the Grassmannian of lines in P3. Consider the incidence va-
rieties

@7 = {(S, Ly, s Lyy) € P X G(1,3)*” : L; C S forall i},
(DS,skew = {(S’Ll,LZ, L3) e P x G(1, 3)3 :
L;CSforalliand L; N L; = @ for all i # j}.

Jordan showed that the covering ®,; — ®; ., has Galois group of order
12, which is thus solvable [Jor57]. In fact, Harris noted that this Galois group is
dihedral [Har79, p. 718]. Because the Galois group of ®,; — ®; g is solvable,
Harris remarked there exists a formula in radicals for all 27 lines on a smooth
cubic surface in terms of the cubic surface and any three skew lines that it con-
tains [Har79, pp. 718-719]. At the Roots of Topology workshop at the University
of Chicago in 2018, Benson Farb asked if these formulas could be written out
explicitly. The bulk of this paper is devoted to giving explicit equations for all
lines on a smooth cubic surface in terms of any three skew lines on the same
surface. We then use these equations to prove Theorem 1.1 in Section 9.
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1.1. Outline. The layout of the paper is as follows. In Section 2, we introduce
notation and conventions for the paper. In Sections 3 through 7, we assume that
we are given a smooth cubic surface S containing the skew lines E; = V(x,, x;),
E, = V(x,,x3), and E; = V(x, — X,,Xx; — X3) and solve for the remaining 24
lines. In Section 8, we solve the general case using a projective change of coor-
dinates. We discuss how the formulas obtained in this paper relate to Schléfli’s
enumeration of real lines on smooth cubic surfaces over R in Section 9. In
Appendix A, we include visualizations of real cubic surfaces with 27, 15, and
7 lines. We are greatly indebted to Steve Trettel for preparing these graphics.
In Appendix B, we list the equations of all 27 lines on a smooth cubic surface
containing E1, E,, E;.

Given three skew lines on a smooth cubic surface, there are various ways
to geometrically recover the remaining 24 lines. Harris describes one such
method [Har79, pp. 718-719], which we utilize for most of our approach. How-
ever, we occasionally apply a different geometric method than Harris’s when
this simplifies the resulting computations. In Section 3, we consider the quadric
surface Q defined by the skew lines E;, E,, E;. These lines are contained in
one ruling of Q, and the other ruling intersects S in precisely three skew lines
C4,Cs, Cg. In Section 4, we intersect S with the planes spanned by E; and C;.
Each of these intersections consists of three lines by Bézout’s Theorem; these
lines are E;, Cj, and L; ;. For the next step, Harris suggests solving a quadratic
equation defined by Pliicker relations. This proved to be difficult in the gen-
erality needed for this paper, so we use a different approach in Section 5. In
particular, the four lines E, E,, L; 4, L5 5 are skew, so there are exactly two lines,
called C; and L, ,, meeting all four of these skew lines. Following Eisenbud and
Harris [EH16, 3.4.1], we let Q" be the quadric surface defined by Ey, E,, L3 4. By
Bézout’s Theorem, Q' N L 5 consists of two points. Each of these points is con-
tained in a line in the ruling that does not contain E;, E,, L3 4; these two lines
are C; and L, ,. In Section 6, we solve for four more lines. Here, the general
technique is to repeat the process of Section 4, using projective changes of coor-
dinates as needed. While Harris suggests computing the remaining ten lines in
this manner, the method becomes complicated for the lines E4, Es, Eq, Ly 5, Ly 6,
and Ls ¢. In Section 7 we solve for these final six lines using the same process
as in Section 5.

1.2. Related work. Pannizut, Sertz, and Sturmfels [PSS19] also give explicit
equations for certain lines on smooth cubic surfaces. Let S be a smooth cu-
bic surface whose defining polynomial f = Zl. k=3 %, j’k’lxéx{x’;xé has full
support (thatis, a; j x; # Oforalli+j+k+1 = 3). Pick 6 skew lines contained in
S and label them Ej, ..., E. Then there exists a unique blow-down 7 : S — P?
that sends Ej, ..., Eg to distinct points with 7(E;) = [1:0: 0], w(E,) = [0:1:0],
m(E;) =[0:0:1],and w(E;) = [1 : 1 : 1]. The authors give local charts {U}
on S and formulas for the quadratic maps {7|; : U — P2} [PSS19, Theorem
4.2]. Alllines on S can be recovered by 7771, so this result gives equations for all
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lines on a smooth cubic surface (whose defining polynomial has full support)
in terms of 6 skew lines.

1.3. Acknowledgements. We thank Benson Farb for asking this paper’s mo-
tivating question. We also thank Matt Baker, Dan Margalit, Joe Rabinoff, Bernd
Sturmfels, and Jesse Wolfson for helpful suggestions and support. We thank the
anonymous referee for their detailed comments and suggestions that greatly
improved the clarity and accuracy of the paper. Finally, we are especially grate-
ful to Steve Trettel for the included graphics.

2. Notation and conventions

Throughout this paper, we will work in P3 := [P’g:’: = Proj(C[xg, X1, X3, X3]).

2.1. Lines on cubic surfaces. Following [Har79], we denote the 27 lines on
a smooth cubic surface S by E;,Cjfor1 <i,j < 6and L;; fori # jand 1 <
i, j < 6. As Harris describes [Har79, p. 717], there are 72 different sets of six
disjoint lines on S:
{Ei}?=19

{Ei, Ej, Ex, Linndmonsi,j oo
{Ei, Ci, Lj i biis

{Ci’ Cj’ Ck’ Lm,n}m,n;éi,j,k’

{Ci }1'6:1 .

2.2. Cubic surface. For the rest of the paper, let S = V(f) be a smooth cubic
surface containing the skew lines E; = V(xg, Xx;), E; = V(x,,x3), and E; =
V(xg — x5, X; — X3), Where

i .k
f(xg, X1, X5, X3) = Z O j k1 XX X5 X
i+j+k+1=3

l
3

Since S contains E;, E,, E3, it follows that f(0,0,x,,x3) = f(xg,%;,0,0) =
f(xg, X1, X9, X1) = 0. Evaluating

f(170! 07 0)’ f(o’ 170’ O)’ f(O’ 0’ 1’ 0)7 f(()’ 0! 07 1)’ f(l’ 170’ O)’

f(O’ 0, 1’ 1)’ f(lio’ 1’ 0)’ f(oﬂ 1’01 1)’ f(l’ 1, 1’ 1)’ f(1’ _1’ 17_1)

induces the following relations:

®30,0,0 = %0,3,00 = X0,0,3,0 = %0,00,3 = 0, (1
®21,00 = %1200 = X0021 = %0012 = 0,
%0201+ Xo1,02 = X201,0 + X1020 =0,
®0.2,1,0 + A1002 + A1,101 + %0,1,1,1 =0,
®0,1,2,0 + %2001 + A101,1 + A1,1,10 = 0.
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2.3. Projective change of coordinates. An invertible matrix A € GL4(C)
gives a projective change of coordinates by [a, : a; : a, : az] — [by : b; : by : bs],
where (by, by, by, b3)T = A(ay, ay, a,, a;)T. By slight abuse of notation, we also
denote this projective change of coordinates by A : P3 — P3. Given a variety
X = V(gy,...,gn), the change of coordinates A takes X to

AX =V(gj0A™L, ..., g,0A D).

We also note that if £ = Y a;x; is a linear function and £0A™! = } b;x;, then
(A_l)T(a07 al’ a2a a3)T = (b07 bl: b2’ b3)T-

3. Three lines from a biruled quadric surface

The three skew lines E;, E,, E; define the quadric surface Q = V(xyx3; —
X1X,). Moreover, Q contains the rulings M; = {[s : as : 1 : a] € P3} and
N, ={[t:1:bt:b] € P3},withM ={1:a:0:0]}and N, ={[1:0:b:0]}.
Note that My, = E;, M, = E,, and M; = Ej.

Proposition 3.1. Let ty, ts, tg be the roots of

_ 3 2
g(t) = (ap01,0)t” + (2001 + A111,0t° + (X210 + X11,01) + Xo201

_ 3 2
= —((a1,020)t° + (9120 + A1,01,1)t° + (@102 + Ao 11,10t + Ao 1,02)-

Then Cy = V(xg — taxq, Xy — tyX3), C5 = V(xg — t5x1, X5 — t5X3), and Cg =
V(xg — tgxy, X3 — tsX3).

Proof. The lines Cy,Cs, Cy are contained in both the cubic surface S and the
ruling N;. Aline {[t : 1 : bt : b] : b € C}is contained in S if and only if
f(t,1,bt,b) = 0 for all b. Expanding this out and simplifying via the relations
given in Equation 1, we have

f(t, 1’ bt’ b) = (b - bz)g(t)’

which vanishes for all b € C if and only if g(¢) = 0. The roots tg4, t5, ts of g(t)
will correspond to Cy, Cs, Ce. In particular, N, = {[t; : 1 : bt; : b]} = V(x, —
t;X, X, — t;x3) is a line contained in S. Since N, N, N;_lie on the same ruling
of Q, we may (without loss of generality) call them C,, Cs, Cq, respectively. We
also note that ¢; # t; for i # j, or else we would have C; = C;, contradicting the
overall count of 27 lines on a smooth cubic surface. (]

4. Nine residual lines

Next, we consider the planes H; ; spanned by E; and C; for 1 < i < 3 and
4 < j < 6. Intersecting each H; ; with S will give a new line L; ; contained in S.
In particular, since E;, C; C S, Bézout’s Theorem implies that S N H; ; consists
of E;, C;, and a third line.
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Proposition 4.1. We have the equations Ly ; = V(xo — t;x1,€1;), Ly; = V(x; —
tix3,€5;), and Ly; = V((xg — x3) — t;(X; — X3), €'3;), where

1= (tizaz,o,l,o + 101,10 + %2,1,00%

+ (tiot10.2,0 + @0,1,2,0)%2

+ (tl-zal,o,z,o + ti(ap 1,20 + A10,1,1) + X0,1,1,1)%35
Coi = (tia 01,0 + A2001)%0

+ (tizaz,o,l,o + ti(a2001 + A111,0) + %1.1,01)%1

2
+ (00,0 + Q1011 + X1,0,0,2)X3,

_ (2
O3 = (t7ap01,0 + L1110 + Ao 21,001
+ (80,10 + X0,1,20 + A1,1,1,00%2

+ (£i02,0,0,1 — ®1,0,0,2)X3-

Proof. Note that Hy; = V(xy — ;x1), Hy; = V(x; — t;X3), and Hy; = V((xy —
x,)—t;(x; —x3)). Since SNH; ; consists of three lines, it is given by the vanishing
of a product of three linear homogeneous polynomials. Two of these factors
will be given by E; and C}, and the third will define L; ;. The intersection S N
H,; is given by the vanishing of f(¢;x;, Xy, x5, x3) by substituting x, = t;x;.
The linear factors corresponding to E; and C; are x; and x, — t;X3, respectively.
By simplifying (using the relations from Equation 1 when necessary), one can
check that f(t;x1, X1, X5, X3) = x1(x, — t;x3)¢ ;. It follows that L, ; is given by
the vanishing of x, — ¢;x; and ¢ ;.
Similarly, the intersection S N H,; is given by the vanishing of

f(xo, X1, tiX3, X3) = X3(Xo — £;X1)C 2,

again using the given relations to simplify when necessary. Thus L, ; = V(x, —
t;x3,¢,;). The intersection S N Hy; is given by the vanishing of f(x; + t;(x; —
X3), X1, X5, X3) = (X1 — X3)(X, — t;x3)¢3;, again simplifying with the given rela-
tions. Thus Ly ; = V((xg — x,) — t;(x; — X3),€3;). O

5. Two more lines from a quadric surface

To solve for the lines C; and L, ,, we need to find the two lines that meet the
four skew lines E1, E,, L3 4, L3 5. We first give a projective change of coordinates
Asuch that AE; = E;, AE, = E,,and AL; 4 = E;. We then intersect AL; s with
the quadric surface Q = V(xyx3; — x;x,) defined by E;, E,, E5. The intersection
Q N AL; 5 will consist of two points, which gives two lines in the ruling N; =
{[t : 1: bt : b]}, namely AC; and AL, ,. We then obtain C3 and L, , by applying
the projective change of coordinates A™!.
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Notation 5.1. Let

_ 2
€y =010 141110 T X210
Cy = 1405010 + %0120 + X1,1,1,00

C3 = 1405001 — 1,002

so that 5 4 = ¢y X1 + ¢;X; + ¢3X;. Similarly, let

_ 2
dy = 55010 tt5%11,10 + %2105
dy = tsa3010 + %0120 T A1,1,1,0

d3 = 500,01 — 41,0025
so that ¢35 = dyx; + dyx; + d3x3.
Proposition 5.2. We have that d; # 0.
Proof. Suppose d; = 0. Then L35 = V((xy — x,) — t5(x; — X3),dyX; + d3X3)
contains the point [t5 : 1 : 0 : 0], which is also contained in E, = V(x,, x3).

However, these lines are necessarily skew, so we obtain a contradiction. Thus
d; #0. O

Consider the projective change of coordinates given by

1 0 0 0
—ty C 0 0
T _ 4 1
AT = 0O O 1 —c
0 0 —t4 —C3

Note that AE, = E;, AE, = E,, and AL;, = E;. Any projective change of
coordinates in 3 is determined by its image on three skew lines. Moreover, A
takes the skew lines E;, E,, L; 4 to the skew lines Ey, E;, E;. It follows that A is
non-singular, so det A = —c;(c3 + t4¢,) # 0. Thus

1 O 0 0
Bl 0
- G a

(A 1)T = 0 ] __ &
Cc3+Coty c3t+Caty

A 1

0 0 - -

c3+Cyly c3+Cyly

is non-singular with A™'E| = E;, A™'E, = E;,and A7 E3 = Ly,.
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Notation 5.3. Let

ty—ts
Uy = T,
= _C3 + CZtS
2 c3+Coty’
Uy = ——,
3T e+t
0, = L dyc; — dscy
27 d, 3+t
vs — —_— = =

B dl C3 + C2t4 ’
so that AL; 5 = V(Xy + u; Xy + upx; + UsX3, X1 + UyX; + U3X3).

Recall that E;, E,, E; are contained in the ruling M, = {[s : as : 1 : al}
of Q = V(xpx;3 — x1x,). We will intersect AL; s with Q to obtain two lines in
the ruling N, = {[t : 1 : bt : b]}. Substituting x, = —u;x; — uXx, — uzx3 and
X; = —UyX, — U3X;3 in the defining equation for Q, we find that

QN ALy 5 = V(X5 + (U103 — Uy + 03)X,X3 + (Ug 03 — U3)X3).
The points of Q N ALj; 5 are determined by the ratio 22 so it suffices to solve
X3
the quadratic equation
X X
Uz(x—z)z + (v —uy + U3)x—z + (uv3 —u3) = 0. (2)
By Bézout’s Theorem, Q N AL; 5 consists of two points. There are thus two

distinct solutions to Equation 2. In particular, (130, —u, +03)? # 40,(u;03—us).
If v, # 0, then we can use the quadratic formula to solve this equation.

Remark 5.4. If QN AL; 5 consisted of fewer than two points, then there would
be at most one line meeting E;, E,, E3, L3 5, which would contradict the overall
count of 27 distinct lines on S.
Notation 5.5. Let
— (10 — Uy + 03) + V(U 0y — Uy + V3)% — 40, (ug03 — U3)

20,

$1 =

and

—(u 0y — Uy + v3) — V(U vy — Uy + 03)2 — 40,(ug V3 — U3)
20,

Sy =

be the solutions of v,(22)% + (U Uy — Uy + V3) = + (Ug 03 —u3) = 0. If (U0, — Uy +
X3 X3
03)? — 40,(u v — u3) = re’® withr > 0.and 0 < 6 < 27 is a complex number,

then we denote Vrei = /re®/2 and —V'rei® = —[rel®/2,

Proposition 5.6. We have the equations C; = V(xy+(—s,¢1—t4)xq, (1+8,¢5) x5+
(8163 — t4)x3) and Ly, = V(xg + (=861 — t4)X1, (1 + $263)%; + (85¢3 — £4)X3).
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Proof. Notethataline{[t:1:bt:b] : b € C}oftheruling N, is determined by

. b . . .
the ratio = = ?t = t. That s, the line N, = V(x, — s;x7, X, — 5;X3) contains the
X3 t

point of Q N AL, 5 corresponding to % = 5;. Without loss of generality, we may

denote AC3 = V(xy — $1X1, X, — 51x3) and ALy , = V(X — 5,%1, X, — $,X3). The
proof is then completed by applying A™'AC; = C;and A *AL , = L;,. O

Remark 5.7. If v, = 0, then Equation 2 only has one root, say s;. The other

. . . X .
solution to this equation comes from = = 0, which corresponds to s, = oo.
X2

Since N, = V(x,x3), wehave L; , = V(c; X1, —¢3x,—C3X3) = V(Xq, c3X54¢3X3).
This agrees with the formula L; , = V(x + (—=s3¢1 — £4)Xx7, (1 +5,¢5)%; + (5565 —
t4)x3) by dividing all terms by s, = 0.

6. Four lines as residual lines

Given our original three skew lines, along with the other fourteen lines that
we have found, the remaining ten lines are residually determined. Thatis, given
two lines Aj, A, in S, the intersection of S with the plane H containing A; and
N, isathird line contained in S. The intersection SNH is given by the vanishing
of the product of three linear homogeneous polynomials; two of these factors
correspond to A; and A,, and the third factor corresponds to the desired line.
We will frequently use projective changes of coordinates to simplify these com-
putations. However, we only use this approach to find four of the remaining ten
lines. Finding the lines E4, Es, Eg, Ly 5, L4 6, and Ls ¢ proved to be difficult, so we
give a different approach in Section 7. We will use the fact that E; is residual to
Cjand L;; ifi # j [Har79, p. 719].

6.1. C;and L, 3. Wewillsolve for L, ; and C, by applying the following discus-
sion for L = C; and L = L, ,, respectively. The plane containing E; and L :=
V(xy + ax;, bx, + cx3) is H = V(x + ax;). To obtain the third line, say A, con-
tained in SN H, we factor f(—ax;, X1, X,, X3) = X1(bx,+cx3)(mx; +nx, + pxs).
Simplifying, we find the following equations:

bm = a’a, 70— ad 110 + %210,

cm = a1 — Ay 101 + %2015

bn = —aa; g0 + 20,1205

Cp = —ady 90 + %1,0,25
bp+cn=—aaj11+ %111

Since L is a line, we note that (b, c) # (0,0), so |b|?> + |c|> > 0. Thus

5(020‘2,0,1,0 —aayq10+ Ap10) T 0_(02052,0,0,1 —adyg01 + % 201)
m= . (3)
|b]2 + [c|?
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Next, since |b|* + |c|®> > 0 and |b|? + |c|* > 0, we use the expressions
c’n = c(bp + cn) — b(cp)
= c(—aay 1,1 + Ao,1,1,1) — b(—aay g + %g102)
and
b%p = b(bp + cn) — c(bn)
= b(—aay 1,1 + @0,1,1,1) — c(—aay 20 + A1,20)
to solve for n and p. This yields

_ c(c(=aay g1 + dp1,11) — b(=aa g2 + @0102)) + b(—aai g0 + %120)
b]> + c|*

(4)
and
_ b*(b(=aay 011 + o11,1) = (=a0 20 + A01.20)) + E(=ac g2 + %102)
b B+ Iel? |

(5)
Remark 6.1. It follows that the residual line A in the plane H is given by V(x,+
ax;, mx; + nx, + px;), where m, n, p are as above.

Notation 6.2. Thinking of m, n, p (Equations 3, 4, and 5) as functions of a, b, c,
let

(my,ny, p1) = (M, n, p)(—=s1¢; — tg, 1 + 815, 8103 — Ly).
Likewise, let

(Mg, ny, py) = (M, N, p)(—8$3¢1 — b4, 1 + 55C2, 8,03 — Ly).
Proposition 6.3. We have the equations Ly 3 = V(xq + (=s1¢1 — t4)X1, myx; +
n1X; + p1x3) and Cy = V(xg + (=801 — £4)X1, MyXy + Xy + PyX3).

Proof. If(a,b,c) = (—s;¢; —t4, 1 + 51, S103 — t4), then L := V(xy + axy, bx, +
cx;) = C; and hence the residual line is A = L; 5. If (a,b,c) = (—=s5¢1 — 14,1 +
5,Cp, 85¢3 — by), then L := V(xy + axy, bx; + ¢x3) = L; , and hence the residual
line is A = C,. Remark 6.1 then gives us the desired equations. O

6.2. C; and L,3;. We now apply the approach of Section 6.1 for L = C; and
L = L, , to solve for L, ; and C;, respectively. We will give a projective change
of coordinates B that fixes E, and takes L := V(x, + ax;,bx, + cx3) to BL =
V(x, + axy, X,). Intersecting the cubic surface BS = V(foB™!) with the plane
H containing E, and BL, we will be able to solve for the third line A contained
in BS N H. We then obtain the desired line, namely C, or L, 3, as the line B~A.
Let

[bI2+[c|>  [b|2+[c|?
c -b

1 0 0 0
01 0 0

BH = 0 0 b ¢
00
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Note that L is a line, so (b, ¢) # (0,0). Since (b, c) # (0,0), it follows that B
is well-defined and moreover det B = —1. We have that BE, = E, and BL =
V(xo + ax;, x, + (bc — bc)xs) = V(xy + axy, x,). The plane H = V(x,) contains
both E, and BL. The intersection BS N H is given by the vanishing of

f°B_1|x2=0 = f(xo, X1, X3, —bXx3)

= x3(xg + axy)(hxy + jx; + kx3).
Evaluating foB™!| x,=0, We obtain the following relations:

h=ca;010¢— 001D, (6)
Jtah=o0a1110c—a1101b,

k = o020 — arg11bC + ayg02b% (7)
Subtracting ah from j + ah, we have

J=a1110C— ar101b — a(ay010¢ — 2001b)- (8)

Remark 6.4. It follows that BSN H contains the lines E,, BL, and A = V(hx,y+
jx1 + kxs,x,). Applying B~!, we have

k bk ., bx + cx3)
b+lc ™% bl 2 3

B7IA = V(hxy + jx; +

Notation 6.5. Thinking of h, j, k (Equations 6, 8, and 7) as functions of a, b, c,
let (hy, j1, k1) = (h, j, k)(=s1¢1 —t4, 145105, 5103 —14). Likewise, let (hy, jo, k) =
(h, j,k)(=s5¢1 = tg, 1 4 555, 5,63 — Ly).

Proposition 6.6. We have the equations

(s163—t4)ky (A+sic)ky

2 3
[1+s16,]2+]s103—14]2 [1+s162]2+[s1c3—14]?

(1 + s162)x; + (8165 — t4)x3)

Ly = V(hixo + jix; +

and

(s263—t4)ky _ (A+s,¢0)k,

2
(14556512 +]sc3—14]2 (14556512 +]s¢3—L4]

(14 5562)%; + (5,05 — £4)X3).

Cy = V(hyxo + jox; +

2 X3

Proof. If(a,b,c) = (—s;¢; —t4, 1 +51C5, 5103 — t4), then L := V(xy + axy, bx, +
cx;) = C; and hence the residual lineis A = BL, ;5. If (a, b, ¢) = (=s,¢; — 14,1+
$,C,8,¢3 — ty), then L 1= V(x, + ax;, bx, + ¢x3) = L, ;, and hence the residual
line is A = BC;. Remark 6.4 then gives us the desired equations. O

Remark 6.7. If s, = o0, we can again obtain the correct lines from the above
formulas by dividing all terms by s, = oo as discussed in Remark 5.7.
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7. The final six lines

We now want to solve for Ey, Es, Eg, Ly 5, Lsg, and Lse. For i, j, k distinct
elements of {4, 5, 6}, we note that L; j and E; are the two lines passing through
the four skew lines C;, Cj, Ly, and L, ;. We will use the same methods as
in Section 5 to solve for these lines. We first give two projective changes of
coordinates. Let

1 0 0 0
2100 =
(AT = |k and (B )T = ey S |
J 0 0 ¢ 1 L,j.k 0 0 - 0
00 4 1 o 1
: 0 0 0 —-
€
where
t—t
y=Q- t»_:{ tiot,0,1,0 + te11,1,0 + %02,1,0)s 9
J

6= ti“l,O,Z,O + 6 (81020 + %0120 + X1011) + (%0120 + Xo1.1,1)
2
€=l 000 + Lt 020 + X020 + A101.1) + (01,20 + X0,1,1,1)-

Since ¢; # t; (as noted in the proof of Proposition 3.1), we have that A, ; is
non-singular. As a result, the fact that C;,C;, and L, are skew implies that
A;iCi, A; jCj, and A; ;L . are skew. Moreover, we have that A4; ;C; = V(xo, X;)
and A; ;C; = V(x;, x3). We also have

ALy = V((Ej = t)xo + (& — bi)xq,
(tiaz,o,m + tean,1,0 + %2,1,0)(X + X1) + 6x; + €X3)

Iy

= V(x, + X1, ¥X1 + 60Xy + £X3).

t—ty
As mentioned in the proof of Proposition 3.1, we have that t; # ¢ j # i, SO
% is a complex number not equal to 0 or 1. Also note that if § = 0, then
"k
ACjand A; jL,  intersectat [0 : 0 : 1 : 0], contradicting the fact that they are
skew. Similarly, ife = 0, then A; ;C; and A; ;L,  intersectat [0:0:0: 1], again
contradicting our skew assumption. We thus have that § # 0 and € # 0, so the
change of coordinates given by B; ;. is well-defined and non-singular. Now we

have
B; j kA jCi = V(xg, X3),
A jCj = V(xy, x3),
B; j kA Lk = V(xg — X1, X5 — X3).
These three skew lines lie on the ruling N, = {[t : 1 : bt : b]} of the quadric
surface Q = V(xpX3 — X1X;). In particular, we have Ny = B, j xA; jCi, Ny, =
Bi,j,kAi,jCj! and Nl = Bi,j,kAi,le,k' NeXt, we will intersect Bi,j,kAi,jLZ,k with
Q. By Bézout’s Theorem, this intersection will consist of two points (which are
distinct by the same reasoning outlined in Remark 5.4). The lines in the ruling
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= {[s : as : 1: a]} passing through these two points will be B; ; x A; ;L; ; and
l,J,kAl’JEk We have that

B jiAi jLog = By j i V((tj — ti)xy + (& — ti)X3, X0 + X1 + 0X; + 0X3)

)/(t-—tk) ti—ty ti—t
z\/( L X, + 15 XZ——kX3,
&€ €

p(tj—tr) ay(t —t)
mxo + (— t.j_tkk - L= ) X1 + xz - —x3)
) S(ti—ty)
=V(Ex, +x, — X
( e 1 tX e(tj—ty) o
oy (t;—t;)—pe(t;—ty) i
Xy + s(t——tk) _( ) X3)-

where

_ 2

T =t010 + (tj010 + Q2001 + A1110) + (o001 + A1101),  (10)
_ 2

p =t 010+ tk(tidao10 + 2001 + 11,10) + (%001 + A1101),
_ 2

0 =10 020+F kX011t X1002-

Proposition 7.1. We have that 7 # 0.

Proof. If7 = 0, then A; ;L = V((¢;—t))x,+(t;—t))X3, pX1 +0X,+0X3). Note
that A; ;C; = V((t; —£;)x, (¢; —j)x3) = V(x1, x3). Thus the point[1:0:0:0] is
contained in both A; ;L, ; and A; ;C}, so these lines are not skew. However, this
contradicts the fact that L, ; and C j are skew, so we conclude that 7 # 0. O

. . s )
We compute the intersection Q N B; j 1 A; L, i by substituting x, = —y—xl +

o(ti—ty) oy(ti—t;)+pe(tj—ty)

— _ o kit _

E(tj_tk)x3 and x, = v — X m(t,— k)x3 into the defining equa

tion for Q. We thus have Q N B;  xA; jLrx = \/(ﬁx2 + (W —
me(li—ly

( i ))x1 X3 — —( i )xz) Lines in the ruling M, are determined by the ratio

=, so it suffices to solve the quadratic equation y5( )2 + (W -
7=l

(t_tk DT 2 i( ] ) = 0. These solutions are given by
]

X1 _ 1 ( oy (=)t =) +pe(t— ) =8t~ 1)
X3 2y8 (=t )t —t)

N \/ (UGt oe =t 8t 15 | dyda bty ,)>

ﬂ(ti—tk)(tj—tk) T tj_tk

Note that these solutions are given by Bézout’s Theorem applied to QNB; ; 1 A; ;L k-
By Remark 5.4, these solutions are necessarily distinct.

Notation 7.2. Note thaty, §, ¢ (see Equation 9) and 7, p, o (see Equation 10) de-
pendoni, j, k. Lety; j i, 6; j ks €i,j k> i j ks Pi,j o Oi,j,k denote the values of y, 6, ¢, 71, p, 0
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as functions of i, j, k. Furthermore, let

+ L[ oramt)—t)pe(t—t ) ~8(ti—t)?
qi’j’k 2y6 (=t )t j—ty)
N \/ (TP P B 1 | 4r0 ))
(=t )(Ej—tx) Tt
and
- 1 A UY(fi—fj)(fj—tk)'ho&([j—tk)2—5(fi—tk)2
Qjk = 2 a(ti—t)(tj—t)

ﬂ(ti—tk)(tj—[k) Ve tj—[k

i—tj j j 2_5 i~ 2 9 i—tj
_\/(ay(t ) —t)+pe(tj— 2 — (L —ty.) )2+4y_cr(t tj)).

Remark 5.4 implies that qi‘*j e F 9k It follows that we have theline M= =

i,j.k
+ +
\/(xo - qi’j’kxb X1 — qi,j,kx3)'
Proposition 7.3. We have the equations
Ep = V(xo — t;x) — 5i,j,kq:_j,k(x2 — 1;X3),

ti—tx
( ti—ty

J/i,j,kq:j’k)(xo —tjX1) — Ei,j,quj,k(xz — 1jX3))
and

Lij = V(xo = tixy = 03 jkq ; , (%2 = 1iX3),

ti—ty
(g—%

= Yy )Xo = 4X1) = €5y ;4 (2 = X3)).
Proof. Without loss of generality, we may assume
— R P
By juAijCk = V(Xo = q; ;- X2, X1 = G} X3)
and
By juAijLij = V(Xo = X25 X1 = G; ;1 X3)-
We thus have
Cr = (By jxAi )" V(xo — q:—j’ka’xl - qgj,kxz),
Lij = (BijrAij) " V(xy — q; kX2 %1~ qi_’j,kx3).

The inverse matrices are

1 -1 O 0
1 —t; t; 0 0

T _ i J
Ai,j ti—t;| 0 0 1 -1
0 0 -t ¢
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and
1 0 0 0
_ Lt —s
B.T. ) _ t—t 0 J/l,],k
b 0 0 & O
0 0 0 _Ei,j,k

8. The general case

Let S’ = V(f”) be a smooth cubic surface, where

i J kol
fl(xo’xl’XZ’ X3) = Z Bi,j,k,lx(l)xlxzxg,'
i+j+k+1=3

Moreover, let

3 3
Ay =V ax;, ) alx;),
i=0 i=0
3 3
A2 = \/(Z Bixi, Z b;xi),
i=0 i=0

3 3
Az =V(Dex;, ) 0x;)
i=0  i=0

be three skew lines contained in S’. We will give a projective change of coor-
dinates A taking A; to E; for 1 < i < 3. Applying the work of the previous
sections of the paper, we will have formulas for all 27 lines on AS’, with each
a; j ) being given by a formula in terms of the §; j i ;. The formulas for the 27
lines on S’ will then be obtained by applying A~!. Consider the matrix

(L19) 06 50 56

/ /

(B—I)T= a Cll bl [11
a, a, b, 0|

27 27

az a; by by

which gives BE; = A; and BE, = A,. Since A; and A, are skew, B is non-
singular. Next, we will give a projective change of coordinates C that fixes E;
and E, and takes B~'A; to E;. The composite change of coordinates CB~! will
then be the desired change of coordinates A. Let

3 3
B = V(D 6x;, D) elx).
i=0 =0

Since B is non-singular, the lines E;, E,, and B! A; are skew. Thus B~!A; is
not a subspace of {x, = 0} or {x; = 0}, so B~'A; is determined by the points
B7'A;N{x, =0} =[0:a:b:cland B-'A;N{x; =0} = [d : e: f : 0]. Moreover,
since B~'A; does not meet E; or E,, we may assume that B~'A; N {x, = 0} =
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[0:1:b:cland B 'A;Nn{x; =0} =[d :e:1:0]. In terms of the defining
equations for B~!A;, we have

) ez —od) (¢, —de
- ’ o €% ’ r.
C2C3 - C2C3 C2C3 - C2C3

/ / / /

e, — ey o2 = Cof
=—=2 " e=_"_<
€] — €40y €] — €40y

Note that ¢ and d are either both zero or both non-zero. If ¢, d are both zero,
then we instead construct a projective change of coordinates taking B~1A; N
{x;, =0}and B~'A;Nn{x, =0}to[1:0:1:0]and [0: 1 : 0 : 1], respectively.
We omit these calculations and simply discuss the case when ¢, d are non-zero.
If ¢, d are non-zero, the projective change of coordinates given by

1

00 0
de
=10 0

c=| ¢ b
0 01 —2

lc
0 00 -

givesusC([0:1:b:c])=[0:1:0:1]andC([d:e:1:0])=[1:0:1:0]. Thus
CB~!'A; = E;. Moreover, CE; = E; and CE, = E,, so the projective change
of coordinates A = CB~! takes A, A,, A5 to Ey, E,, E5, as desired. We may
thus apply the work done in previous sections to the surface CB~1S’, where the
a; j k) Will now be determined as functions of f3; j ; ;. For each line L C S, we
then get a line BC™'L c §'.

9. Smooth cubic surfaces over R

Over the real numbers, Schlifli showed that a smooth cubic surface contains
3, 7, 15, or 27 lines [Kol58]. Segre further classifies these lines into two types,
namely hyperbolic lines and elliptic lines [Seg42]. Finashin-Kharlamov [FK13]
and Okonek-Teleman [OT11] note that Segre in fact proved that the difference
between the number h of hyperbolic lines and the number e of elliptic lines on
a real smooth cubic surface is always 3. We note that if we are given three skew
lines on a real smooth cubic surface S, then we have at least one real root of
g(t) (see Proposition 3.1). Without loss of generality, we may assume that t, is
a real root of g(t), and we thus have that the line C, is defined over R. In this
case, S contains more than three lines and therefore must contain elliptic lines.
As a result, we have proved the following proposition.

Proposition 9.1. IfS is a real smooth cubic surface that contains no elliptic lines,
then the three lines contained in S are not skew.

In fact, we can prove that S contains three skew lines if and only if S contains
an elliptic line. First, we prove a basic graph theoretic fact that will simplify our
argument.
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Proposition 9.2. Let G be a graph of order at least seven, such that for any triple
of vertices vy, Uy, U3, at least two of vy, U,, U3 are connected by an edge. Then G
contains two distinct 3-cycles that share an edge.

Proof. If G has at least three connected components, then three vertices com-
ing from distinct components do not share any edges, so G can have at most
two connected components. If G has two connected components (say G; and
G,), then one component of G has at least four vertices. Without loss of gener-
ality, we may assume that G, has at least four vertices. Taking a vertex from G,,
the component G; must have diameter 1, which implies that G; contains two
distinct 3-cycles that share an edge.

Finally, suppose that G is connected. Fixing a vertex v of G, the subgraph
G’ of vertices that are distance greater than 1 from v must have diameter 1. If
G’ has four or more vertices, then G contains two distinct 3-cycles that share
an edge. If G’ contains zero or one vertex, then v has at least five adjacent
vertices. Any triple of these v-adjacent vertices must have at least one edge be-
tween them, which forces G to contain two distinct 3-cycles that share an edge.
If G’ contains two vertices, then G contains the graph illustrated in Figure 1. If
G’ contains three vertices, then G contains the graph illustrated in Figure 2. In
either case, we select three vertices that are pairwise non-adjacent and add an
edge between two of them. Repeating this process will always yield two distinct

3-cycles that share an edge, as desired. O
v v
FIGURE 1 FIGURE 2

Lemma 9.3. A real smooth cubic surface S contains three skew lines if and only
if S contains an elliptic line.

Proof. By Proposition 9.1 and Schlifli’s count of lines on a real smooth cubic
surface, we may assume that S contains at least seven real lines, say A, ..., A;.
We represent {A;} and their intersections as a graph G. The vertices of G are
given by the lines A;, and vertices are connected by an edge whenever the cor-
responding lines intersect each other. Note that a 3-cycle corresponds to three
coplanar lines. By Bézout’s Theorem, the plane containing these lines cannot
intersect S in another line, so we cannot have two distinct 3-cycles in G that
share an edge. The contrapositive of Proposition 9.2 implies that G has three
vertices with no shared edge among them, which means that S contains three
skew lines. O
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We are now prepared to give a proof of Theorem 1.1. If S is a real smooth
cubic surface that contains an elliptic line, then we can determine the number
of real lines contained in S by analyzing the formulas obtained in this paper.

Proof of Theorem 1.1. By Lemma 9.3, S contains three skew lines. Without
loss of generality, we may assume that S contains the lines E; = V(x,, x;),
E; = V(x,,X3), E3 = V(x5 — x5, X%; — X3) and that ¢, is a real root of g(t). We
thus have that the lines Cy, L; 4, L, 4, L3 4 are defined over R.

If S contains exactly 7 real lines, then this accounts for all lines contained
in S, so g(t) can only have one real root. Moreover, Proposition 5.6 implies
that C; and L, , are defined over R(t4, s;) and R(t4, s,) respectively, so s; and
s, cannot be real numbers in this case. Conversely, if g(¢) only has one real
root, then Cs,Cq,L; 5, L; ¢ are not real for 1 < i < 3, so S contains at most 19
lines. Furthermore, if 5,5, € R, then C; and L, , are not defined over R. If
two coplanar lines are real, their residual line must also be real. It follows that
C1,C;, Ly 5 are not defined over R, as these are coplanar with E;, E;, E; and
residual to L; ,, L ,, C; respectively. Thus S contains at most 14 real lines, so S
must contain exactly 7 lines. This proves (a).

If all roots of g(¢) and s, s, are real, then all lines computed in Sections 3-6
are real. Moreover, Harris shows that the remaining lines on S are rationally
determined [Har79, p. 719], which gives us that all lines on S are real. Con-
versely, if a root of g(¢) or s;, s, were not real, then some of the lines in S would
not be defined over R, proving (c).

Finally, if all roots of g(¢) are real and s;, s, are not real, then our process
gives us all the lines up until C; and L; , (see Sections 3 and 4), yielding a total
of 15 lines on S. Moreover, the lines C3 and L, ; are not real by Proposition 5.6,
so S contains fewer than 27 real lines and hence contains exactly 15 real lines.
Similarly, if g(¢) has only one real root (which we label t,) and s;, s, are real,
then precisely the lines Lsg, E;, Cj, L; j are real for 1 < i,j < 4. Conversely,
suppose S contains exactly 15 real lines. Then part (a) and part (c) imply that
either g(t) has one real root and s;, s, are real, or all roots of g(t) are real and
81, 8, are not real, which proves (b). O

Appendix A. Visualizations of real cubic surfaces

Using the formulas generated in this paper, we are able to write down explicit
equations for real cubic surfaces with 27, 15, or 7 lines. Let

— 2 2 2 7. 2 17
fl = xon — x0x2 + xOX3 — XoX1Xy + gxlxz — EXOXZX3
2 12 2 1
+ 2Xx7X; — 3XpX1X3 + Exox3 + Ex1x2x3,
o =x2x5 — xox2 + X2x5 — XoX1 X5 + X2X5 — 2X0X1 X3 + X, X2
2 — Aot2 049 0’v3 0142 17v2 04143 149
— XpX2X3 — xoxg + 2Xx1X,5 X3,

f3 = x3% = XoX3 + 2X0x3 — 2X0X1X5 + X7 Xy — XoX1 X3 + X7 X3 — X X3,
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Figure 3 shows the vanishing of f as a real cubic surface with its 27 lines.
Figure 4 shows the vanishing of f, as a real cubic surface with its 15 lines.
Figure 5 shows the vanishing of f; as a real cubic surface with its 7 lines. These
figures were generated by Steve Trettel using the equations above.

FIGURE 3. Real cubic surface with 27 lines
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FIGURE 4. Real cubic surface with 15 lines

FIGURE 5. Real cubic surface with 7 lines
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Appendix B. Table of lines

3 3
In the following tables, we describe aline L = V() a;x;, ) b;x;) by listing

i=0 i=0

its coefficients a, ..., as, b, ..., b3 as follows:

We also provide references to the relevant notation from throughout the pa-

per.

i j k.l

Section 2.2

ty,ts, tg

Proposition 3.1

€1,Cy,C3,d1,dy, ds

Notation 5.1

Uy, Uy, Uz, Uy, U
81,8

Notation 5.3
Notation 5.5

my, ny, p1, My, Ny, P

Notation 6.2

hl’jl’ kl’ h2’j25 k2

Notation 6.5

Yi,jko Oijkos i jk
TijJes Pijke> Tij ke
+
9.k

Equation 9
Equation 10
Notation 7.2
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E, 1 0 0 0
0 1 0 0
E, 0 0 1 0
0 0 0 1
E; 1 0 -1 0
0 1 0 -1
E, 1 —ts —55,6,44;(,.4 1555,6.4‘1;(,,4
::: - 75,6,4‘1;6/1 —ts(% = 75,5,4‘1;&4) —55,5,445&4 [555,6,411;&/1
Es 1 *54,(,,54116,5 t45A‘5.3q::6v5
::: - 74,6,5‘1:(,,5 _54,6.5‘12:55 1654,6,5431,,5
Es 1 —ly —54,5,5‘1:‘5,5 1454,5,6q15‘5
f‘::a - 1’4,5,5‘1:5,5 *[5(% - 3/4,5,651:,5'6) 1554,3.511;5,5
G hy i —ni b e
[siea e —l [rsscs P Isscs—ta 2
0 0 1+ 50, S503 — Iy
C, 1 =550 — 1y 0 0
0 my ny P2
C; 1 —s1c —ty 0 0
0 0 1+sc; §163— Iy
c, 1 —t, 0 0
0 0 1 —t,
s 1 —t5 0 0
0 0 1 —ts
Cs 1 —tg 0 0
0 0 1 —t,
Ly, 1 =801 — 1y 0 0
0 0 1+ 556, Spe3— 1ty
Lz 1 —810) — 1y 0 0
0 m ny P
Lig 1 —ty 0 0
0 tjaz.o,l‘n + 140,110 + X210 L4y 020 + %0120 f:al,o,z.n + 14(cto1,20 + A101,1) + X111
Lys 1 —ts 0 0
0 [ﬁaz,o,w + 150,110 + %0210 ts@1 020 + X0,1.20 @“1,0,2,0 +t5(xp 120 + A101.1) + A0 111
Lie 1 —tg 0 0
0 fott010 + t61 110 + X210 L1020 + %0120 focty 02,0 + t6(®0,1,20 + @1011) + To 111
0 0 148516, S1c3— 1ty
Lya 0 0 1 —t,
140010 + %2001 | L3%2010 + (@001 + F1110) + F1101 0 1301020 + Ll 011 + X002
Lys 0 0 1 —ty
150,10 + G200, | 120010 + E5(&a001 + A1110) + X101 0 t2a1,020 + tsG0,11 + %1002
Lyg 0 0 1 —t,
L6%20,1,0 + @201 12“2,0,1,0 +16(02001 + A1,110) + X101 0 [20‘1.0,2,0 +LQ10,1,1 + %1002
Ly 1 —t, -1 ty
0 130010 + ta@1 110 + X210 422010 + %0120 + %1110 L4@2001 — %1002
Lss 1 —ts -1 ts
0 lgaz,o,l,n + 151110 + %0210 ts@010 + 0,120 + %1110 150001 — X1,00.2
Ly 1 —tg -1 te
0 I(Z,O‘Z,O,l,o + 161110 + X210 600,10 + %0,1,20 + A11,10 L6%2,0,0,1 — %1,00,2
Lys 1 —ly —84564356 1484564556
Loty _ _ _
i, Vasedass —€4569456 Is€4569456
Lyg 1 —ly 84659465 148465055
::is = V465965 —ts( ?:is —Va559465) —€46546,5 t6€4,6546 5
Lsg 1 —ts —8s,64 1585644564
sl V5649564 —ta(% —V5640564) —E5649564 t6€s5,64956.4

fg—ty
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