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A characterization of
length-factorial Krull monoids

Alfred Geroldinger and Qinghai Zhong

ABSTRACT. An atomic monoid is length-factorial if each two distinct factor-
izations of any element have distinct factorization lengths. We provide a char-
acterization of length-factorial Krull monoids in terms of their class groups
and the distribution of prime divisors in the classes.
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1. Introduction and main results

By an atomic monoid, we mean a commutative unit-cancellative semigroup
with identity in which every non-invertible element is a finite product of irre-
ducible elements. The monoids we have in mind stem from ring and module
theory. An atomic monoid H is said to be

« half-factorial if for every element a € H each two factorizations of a
have the same length;

« length-factorial if for every element a € H each two distinct factoriza-
tions of a have distinct lengths.

Thus, an atomic monoid is factorial if and only if it is half-factorial and length-
factorial. A commutative ring is said to be atomic (half-factorial resp. length-
factorial) if its monoid of regular elements has the respective property. All these
arithmetical properties can be characterized in terms of catenary degrees. In-
deed, it is easy to verify that a monoid is factorial (half-factorial resp. length-
factorial) if its catenary degree c(H) = 0 (its adjacent catenary degree c,q;(H) =
0 resp. its equal catenary degree c.q(H) = 0). Half-factoriality has been studied
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since the beginning of factorization theory and there is a huge amount of lit-
erature. Monotone and equal catenary degrees were first studied by Foroutan
([25]), and for some recent contributions we refer to [42, 50, 28, 34, 31]. Length-
factoriality was first studied (in different terminology) by Coykendall and Smith
([16]), who showed that an atomic integral domain is length-factorial if and
only ifit is factorial. However, such a result is far from being true in the monoid
case (we refer to recent contributions by Chapman, Coykendall, Gotti, and oth-
ers [11, 39, 40, 15] as well as to work on monoids that are not length-factorial
[12, 7]).

In the present paper, we focus on Krull monoids. Krull monoids are atomic
and they are factorial if and only if their class group is trivial. Let H be a Krull
monoid with class group G and let Gp C G denote the set of classes containing
prime divisors. Then H is half-factorial if and only if the monoid of zero-sum
sequences B(Gp) over Gp is half-factorial. There is a standing conjecture that
for every abelian group G* there is a half-factorial Krull monoid (equivalently,
a half-factorial Dedekind domain) with class group isomorphic to G* ([36, Sec-
tion 5]). The conjecture holds true for Warfield groups but not even for finite
cyclic groups G the structure or the maximal size of subsets G, C G, for which
B(Gy) is half-factorial, are known in general ([51, 52]).

Our main result provides a characterization of when a Krull monoid is length-
factorial, in terms of the class group and the distribution of prime divisors in
the classes. Recall that reduced Krull monoids are uniquely determined by their
class groups and by the distribution of prime divisors in the classes [29, Theo-
rem 2.5.4].

Theorem 1.1. Let H be a Krull monoid. Then H = H* X ¥ (P,) X H*, where P,,
is a set of representatives of prime elements of H,  (Py) X H* = H,.q, and H* isa
reduced Krull monoid without primes. The class groups C(H) of H and C(H*) of
H* are isomorphic, and H is length-factorial if and only if H* is length-factorial.
Let Gp« C C(H*) denote the set of classes containing prime divisors.

Then H is length-factorial but not factorial if and only if every class of Gp- contains
precisely one prime divisor, H* = B(Gp-),

GP* = {61,1, ceey el,[, 32’1, ceey ez’t, ceey ek’l, ceey ek,t,
815> 8ks €015 -+ » €0t 803 »

and

C(H*) = (el,l’ s el,ta81> .0 (ek,b aek,t’gk> ~(Z'® Z/”Z)k )
where

o« t €Ny, k,80,51,..,8 ENwithk +1+# sy + 5] + ... + 5, > 2, independent
elements ey 1,...,€14,€31, 55455 €k 15> 8k € C(HY) of infinite order
and independent elements g, ..., g € C(H™), which are of infinite order
in case t > 0 and of finite order fort = 0;

* 5o is the smallest integer such that syg; € (e;1,...,€;) and —spg; = s1€;1 +
.. + 5., foreveryi € [1,k];
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k , k
cegj ==, e forallje(1,t], go=~-2,._, g and
o n = gcd(sy, .-, S¢)-
Moreover, C(H™) is a torsion group if and only if t = 0 and in that case we have
C(H*) = (Z/nZ)*, wheren > 2, k € Nwith k + 1 # n, and ord(g;) = n for all
i e[kl

Theorem 1.1 shows in particular that, if H is a length-factorial Krull monoid,
then H* is finitely generated Krull with torsion-free quotient group, whence H*
is a normal affine monoid in the sense of combinatorial commutative algebra
([10]). We proceed with a series of corollaries. Based on the algebraic charac-
terization of length-factorial Krull monoids given in Theorem 1.1, we start with
the description of their arithmetic. We explicitly determine the system £(H) of
sets of lengths, which has been done only in seldom cases ([33]). In particular,
the set of distances and the elasticity are finite (a geometric characterization of
when the elasticity of Krull monoids with finitely generated class group are fi-
nite can be found in [41]). Moreover, we observe that £(H) is additively closed,
a quite rare property ([32]).

Corollary 1.2 (Arithmetic of length-factorial Krull monoids). Let H be a
length-factorial Krull monoid, that is not factorial, and let all notation be as in
Theorem 1.1.

1. The inclusion B(Gp:) & F(Gp-) is a divisor theory with class group iso-
morphic to C(H). The set of atoms
A(GP*) = {UO’ cee sy Uk’ VO’ see sy V[} 5
where, for every i € [0, k] and every j € [1,¢],

R i St _ % St _ _
Up = g, €1 o U, = €0 €y Vo=8o 8 Vj=egj - €j

and Uy« .. - U =V .. V]
2. Every B € B(Gp-) can be written uniquely in the form

k ¢
. Zj
B=U,y-..-.U* [TU" TV,
i=0 j=1

where X, g, ... » Vi» 205 - Zt € N, ¥; = 0 for some i € [0, k], and zj <§j
forsome j € [0, t]. Furthermore, we have

k t t
LB) = 2,y + 2, 2+ Pk + D+ (x =) 3 s;: v € [0,x]}.
Jj=0 j=0

i=0

3. For the system of sets of lengths L(H), we have

t
£(H)={{y+v(k+1)+(x—v)2sj: v E [O,X]}: V,X € NO}.
j=0

In particular, the system L£L(H) is additively closed with respect to set addi-
tion as operation.
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Next, we consider Krull monoids having some key properties, namely the
approximation property or the property that every class contains at least one
prime divisor. All Krull domains have the approximation property. Holomor-
phy rings in global fields are Dedekind domains with finite class group and
infinitely many prime divisors in all classes. Cluster algebras that are Krull
([26]) and monoid algebras that are Krull ([23]) are more recent examples of
Krull domains having infinitely many prime divisors in all classes. Examples
of Krull monoids stemming from module theory and having prime divisors in
all classes will be discussed in Section 2. Corollary 1.3 should be compared with
the classical result that a Krull monoid having prime divisors in each class is
half-factorial if and only if its class group has at most two elements.

Corollary 1.3. Let H be a Krull monoid and H* be as in Theorem 1.1.

1. If H satisfies the approximation property, then H is length-factorial if and
only if it is factorial.

2. Suppose that every nonzero class of H contains a prime divisor. Then H
is length-factorial if and only if H* =~ B(C(H) \ {0}) and (|€(H)| <3or
C(H) is an elementary 2-group of rank two).

As already said before, it was proved by Coykendall and Smith that a com-
mutative integral domain is length-factorial if and only if it is factorial ([16]).
Our next corollary shows that this result remains true for commutative Krull
rings with zero divisors and for normalizing (but not necessarily commutative)
Krull rings.

Corollary 1.4 (Length-factorial Krull rings).

1. Let R be an additively regular Krull ring. Then R is length-factorial if and
only if R is factorial.

2. Let R be a normalizing Krull ring. Then R is length-factorial if and only if
R is factorial.

We end with a corollary on transfer Krull monoids. A monoid H is said to
be transfer Krull if there is a transfer homomorphism 6 : H — B, where Bisa
Krull monoid. Thus, Krull monoids are transfer Krull, with 6 being the identity.
However, in general, transfer Krull monoids need neither be cancellative nor
completely integrally closed nor v-noetherian. We discuss an example after the
proof of Corollary 1.5 (Example 3.4) and refer to the survey [35] for more. In
particular, all half-factorial monoids are transfer Krull but not necessarily Krull.
But reduced length-factorial transfer Krull monoids are Krull, as we show in
our final corollary.

Corollary 1.5 (Length-factorial transfer Krull monoids). Let H be a trans-
fer Krull monoid. If H is length-factorial, then H .4 is Krull whence it fulfills the
structural description given in Theorem 1.1.
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All results of the present paper, as well as prior work done in [11], indi-
cate that length-factoriality is a much more exceptional property than half-
factoriality and that this is true not only for domains (which is known since
[16]) but also for commutative and cancellative monoids. The innocent Exam-
ple 2.2 seems to suggest that the situation is quite different for commutative
semigroups that are unit-cancellative but not necessarily cancellative.

2. Background on Krull monoids

Our notation and terminology are consistent with [29]. We gather some key
notions. For every positive integer n € N, C,, denotes a cyclic group with n
elements. For integers a,b € Z, [a,b] = {x € Z: a < x < b} denotes the
discrete interval between a and b. For subsets A, BC Z,A+B={a+b: a e
A, b € B} denotes their sumset and the set of distances A(A) C Nis the set of all
d € Nfor which there is an element a € A such that [a,a+d]NA = {a,a+d}.
Foraset L C N, we let p(L) = supL/minL € Q; U{oo} denote the elasticity
of L, and we set p({0}) = 1.

Let H be acommutative semigroup with identity. We denote by H* the group
of invertible elements. We say that H is reduced if H* = {1} and we denote by
H,.q = {aH*: a € H} the associated reduced semigroup. An elementu € H
is said to be cancellative if au = bu implies that a = b for all a, b,u € H.

The semigroup H is called

« cancellative if all elements of H are cancellative;
« unit-cancellative if a,u € H and a = au implies that u € H*.
Thus, every cancellative monoid is unit-cancellative.
Throughout this paper, a monoid means a
commutative and unit-cancellative semigroup with identity.

For a set P, let #(P) be the free abelian monoid with basis P. An element
a € F(P) is written in the form

a= Hp"P(a) e F(P),
PpEP

where v, : F(P) — N, denotes the p-adic valuation. Then |a| = Zp ep Vpla) €
Ny is the length of a and supp(a) = {p € P: vp(a) > 0} C P is the support of
a. Let H be a multiplicatively written monoid. An element u € H is said to be

« primeifu ¢ H* and, for all a,b € H with u | ab, u + a implies u | b.

o irreducible (or an atom) if u ¢ H* and, for all a,b € H, u = ab implies

thata € H* or b € H*.

We denote by A(H) the set of atoms of H and, if H is cancellative, then q(H)
is the quotient group of H. The free abelian monoid Z(H) = F(A(H,eq)) is the
factorization monoid of H and 7 : Z(H) — H,.q, defined by 7(u) = u for all
u € A(H,eq), is the factorization homomorphism of H. For an elementa € H,

e Zy(a) = Z(a) = 7~ YaH>) C Z(H) is the set of factorizations of a, and

o Ly(a) =L(a) ={|z|: z € Z(a)}is the set of lengths of a.
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Note that L(a) = {0} if and only if a € H*. Then H is atomic (resp. factorial)
if Z(a) # @ (resp. |Z(a)| = 1) for all a € H. Examples of atomic monoids, that
are not necessarily cancellative, include semigroups of ideals and semigroups
of isomorphism classes of modules (see [24, Section 3.2 and 3.3], [31, Section 4],
and Examples 2.2 and 3.4). If H is atomic, then

1 <|L(a)] £ |Z(a)| forall aeH.
We say that the monoid H is
* half-factorial if 1 = |L(a)| for all a € H, and
« length-factorial if 1 < |L(a)| = |Z(a)| forall a € H.
Thus, by definition, H is factorial if and only if it is half-factorial and length-
factorial. Furthermore, H is factorial (half-factorial resp. length-factorial) if
and only if H,.4 has the respective property. Then
L(H)={L(a): a € H}
is the system of sets of lengths of H,
A(H) = U A(L) c N
LeL(H)
is the set of distances of H, and
p(H) = sup{p(L): L € L(H)} € Ry, U{co}

is the elasticity of H. We say that H has accepted elasticity if there is L € L(H)
such that p(L) = p(H). If H is not half-factorial, then min A(H) = gcd A(H).
We start with a simple lemma.

Lemma 2.1. Let H be a length-factorial monoid.
1. p(H) < o0.
2. If H is cancellative, then the elasticity p(H) is accepted.
3. If H is cancellative but not factorial, then |A(H)| = 1.

Proof. Without restriction, we may suppose that H is reduced. By definition,
H is half-factorial if and only if p(H) = 1 if and only if A(H) = @, and if this
holds, then the elasticity is accepted. Thus, we may suppose that H is not half-
factorial.

1. Assume to the contrary that p(H) is infinite and choose an element a € H
with p(L(a)) > 1. Then there exist uy, ..., U, Uy, ... , Ug, Wy, ... , W; € A(H), where
r,s,t € Ny, with {vy, ..., v} N {wy, ..., w;} = @ such that

A=Up e  UpU] + e Ug = UL+ e UplD] * e = Wy

with p(L(a)) = (r + t)/(r + 5) > 1. Since p(H) is infinite, there exists b € H
such that p(L(b)) > t/s. Moreover, there exist r',s’,t’ € N, and

X1y ooy Xpts Vs oees Vst» Z15 e s Zpp € AH) With {yq,...,y¢} N {21, ..., 20} =0

such that
b=X1 - XpY1 e Vg = X1 " e XpZ1 * een * Zpt
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with p(L(b)) = (*' +t')/(r' +s") > t/s. Since
a5 = (g o U Uy e 0TI (X e X Zy e Zp) S
= (X e XYy e Y)Y ¢ U - )T
and since H is length-factorial, we obtain that
Uy oo WUy e U TS (X + oo X1 Z e+ 2 ) and

(] e Xpr Y1 e Y)Y - Uy - e - W) TS
are equal in the factorization monoid Z(H). Since
{ui,....,vtn{wy,...,w;t =B and {yy,...,yeN{zy, ., 20} =0,
it follows that (v; - ... - v)" ™% and (y; - ... - y)'™ are equal in the factorization
monoid Z(H), whence s(t’ —s’) = s'(t — s). Therefore, t /s = t' /s’ > p(L(b)), a
contradiction.

2. This proof runs along similar lines as the proof of the first assertion. But,
we need to use cancellativity now which is not needed in 1. (see Example 2.2).
Assume to the contrary that p(H) is not accepted and choose an element a € H
with p(L(a)) > 1. Then thereexistr, s,t € Nyand uy, ..., U,, Uy, ..., Ug, Wy, ..., W; €
A(H) with {vy, ..., v} N {wy, ..., w,;} = @ such that

a=u1'...'urvl'...'US=u1'...'urw1'...'wt
with p(L(a)) = (r+t)/(r+s) > 1. Letay = v; - ...- v;. Then p(L(ay)) =t/s > 1.
Since p(H) is not accepted, there exists b € H such that p(L(b)) > p(L(ay)).
Moreover, there exist Xy, ..., Xy, V1, eor Vgrs Z15 - » 2 € A(H), where ¥/, s',t' €
Ny, with {y;, ..., ¥4} N {z1, ..., zp} = @ such that

b=X; e XY et Vg =Xyt e " XprZ] * et Zp
with p(L(b)) = (r' +t')/(r' +5") > p(ay). Let by = y; - ... - yg. Then p(L(by)) =
t' /s’ > p(ay). Since H is length-factorial and

! _ — ! _ — — I _ o
ay b = (U 0) T2y e ) T = (e Y)Wy )

it follows from
{u,...,vtn{wy,...,w;} =0 and {y,..,ye}N{z1,....20} =0

that (v; - ... - v,)" ™ and (y; - ... - yy )% are equal in the factorization monoid
Z(H), whence s(t' — s’) = s'(t — s). Therefore, we infer that p(L(ay)) = t/s =
t'/s" = p(L(by)), a contradiction.

3. Assume to the contrary that |A(H)| > 2. Since min A(H) = gcd A(H), we
may choose d, d, € A(H) with d; # d such that d,, divides d. Letr, s, k,t € N,
and

Upy e s Upy Uy ey Ugy Wy vee s Wy s X1 ees Xios V1o wovs Vs Z15 wov s Zppd € A(H)
with

{u, ot N{wy, e w3 =0 and  {yy, ..,y n{z1, .., Zi4a} =0
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such that
@=Up et UpUy * e Vg = Up * s Uy * e * W
with
Ll@n[r+s,r+s+dyl ={r+s,r+s+dy}
and
b=y e XpY1 e Y = X1 et XpZ1 " ee * Zpgd
with
Lb)nlk+t,k+t+d]={k+t,k+t+d}.
Then
a®b% = (U oo - Uy - oo - V) - e s XpZy - e Zppg) 0

= (X] e XYy e YUy U Wy - ws+d0)d.

Since d(r + 5) + do(k + t + d) = dy(k +t) + d(r + s + dy) and H is length-
factorial, we obtain that the two factorizations (v - ... - Ug)%(zy - ... - Z;4.9)% and
71y (w1 - ws+d0)d are equal (in the factorization monoid Z(H)). Since
{ur, -, v N{wy, ..., Wy g} = B, we obtain (v - ... - v,)? divides (y; - ... - y,)% in
Z(H). Since {y;,..., ¥} N {z1, ..., Zi1qt = @, we obtain (y; - ... - y,)% divides
(U - ... - vg)% in Z(H), whence (v; - ... - V)% = (g - ... - y)% € Z(H). It follows
that y; - ...y, = (v; - ... - v,)%% and hence

b=xp e XUy s D)V =y - X (O ¢ 0DV BT ) W
which implies thatk + ¢t + d, € L(b) n [k + t,k + t + d], a contradiction. [

Our next example shows that the elasticity of a non-cancellative length-factorial
monoid does not need to be accepted and that the set of distances may contain
more than one element.

Example 2.2.

1. Let R be aring and € be a small class of left R-modules that is closed under
finite direct sums, direct summands, and isomorphisms. Then the set V(C) of
isomorphism classes of modules from € is a reduced commutative semigroup,
with operation induced by the direct sum ([6]). Suppose that all modules from
C are directly finite (or Dedekind finite), which means that

If M, N are modules from € such that M = M @ N, then N = 0.

This property holds true for large classes of modules (including all finitely gen-
erated modules over commutative rings; for more see [37, 20]) and is equivalent
to V(€) being unit-cancellative. We will meet such monoids V(C) at several
places of the manuscript (e.g., in Example 3.4).

2. For m € N, let us consider the commutative monoid H,, generated by
A, =1{ay,...,a,,, uy, u,} with relations generated by
Ry, = {(alu%: alug), (azu‘f, azug), e (amufm, amu;m)}’
say

— 2 _ 3 4 _ 6 2m 3m
Hm = (al, s Ay, U, Uy | alul = aluz, azul = azuz, ey amul
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Then H,, is a reduced, commutative, atomic, non-cancellative monoid with
A(H,,) = A,,. By construction, we have [1,m] C A(H,,), p(H,,) = 3/2, and
p(H) is not accepted. We assert that H,, is length-factorial.

We define, for any a,b € H,,, that a ~ b if there exists ¢ € H,, such that
ac = bc. Thisis a congruence relation on H,, and the monoid H,,, canc = Hyp,/ ~
is the associated cancellative monoid of H,,. For every a € H,,, we denote by
[a] € Hy, canc the congruence class of H. Then

Hpeane = F({la;] : 1 € [1,m]) x((w], [up] | [y * = [u,]),

whence it is easy to see that H,, .., is length-factorial. Let x;, x, be two atoms
of H,,. By our construction of H, we have [x;]| = [x,] if and only if x; = x,.
Therefore, the length-factoriality of H,, .,n implies that H,, is length-factorial.
By a result of Bergman-Dicks ([8, Theorems 6.2 and 6.4] and [9, page 315]), the
monoid H,, can be realized as a monoid of isomorphism classes of modules, as
introduced in 1.

Next we discuss Krull monoids. A monoid homomorphism ¢ : H — D is
called a
« divisor homomorphismifa,b € H and ¢(a) | ¢(b) (in D) imply thata | b
(in H);
« divisor theory (for H) if ¢ is a divisor homomorphism, D is free abelian,
and for every a € D there are a4, ..., a,, € H such that

a= ng (qo(al)’ i go(am))

A monoid H is a Krull monoid if it is cancellative and satisfies one of the fol-
lowing equivalent conditions ([29, Theorem 2.4.8] ):

(a) H iscompletelyintegrally closed and satisfies the ACC on divisorial ideals.
(b) H has a divisor homomorphism to a free abelian monoid.
(c) H has a divisor theory.

Property (a) can be used to show that a domain is a Krull domain if and only if
its multiplicative monoid of nonzero elements is a Krull monoid. Examples of
Krull monoids are given in [29] and in the recent survey [35]). In particular, let
V(€) be amonoid of isomorphism classes of modules, as introduced in Example
2.2.1. If Endgz(M) is semilocal for all M from €, then V(C) is a reduced Krull
monoid ([17, Theorem 3.4]), and every reduced Krull monoid can be realized
as a monoid of isomorphism classes of modules ([22, Theorem 2.1]).

To discuss class groups of Krull monoids, let H be a Krull monoid. Then
there is a divisor theory H,.q & F = F(P) and

C(H) = G(Hred) = q(F)/q(Hred) (2.1)

is the (divisor) class group of H. The divisor class group is isomorphic to the
(ideal theoretic) v-class group of H, and if R is a Krull domain, then the class
group of the Krull monoid R \ {0} coincides with the usual divisor class group
of the domain R. If the monoid H in Theorem 1.1 is length-factorial, then H* is
a reduced finitely generated Krull monoid. There are various characterizations
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of finitely generated Krull monoids ([29, Theorem 2.7.14]). In particular, every
such monoid is a Diophantine monoid (the monoid of non-negative solutions of
a system of linear Diophantine equations; [14]). For every a € q(F), we denote
by [a] = aq(Heq) C q(F) the class containing a. For g € C(H), P n g is the set
of prime divisors lying in g. Concerning the distribution of prime divisors in
Krull monoids of isomorphism classes of modules we refer to [21, 18, 43, 19, 3].

Let G be an additive abelian group and G, C G be a subset. We denote
by (G,) C G the subgroup generated by G, and by [G,] C G the submonoid
generated by G,. A tuple (eq,...,e,) € G", with r € N (respectively, the el-
ements ey, ...,e, € G) are called independent if e; # 0 for alli € [1,r] and
(e1,...,e,) =(e1) D ... D {e,), and it is called a basis of G ife; # O for alli € [1,r]
and G = (e;) @ ... ® {e,).

We discuss a class of Krull monoids needed in the sequel, namely monoids
of zero-sum sequences. For an element

S=gi -8 =] 8«® eFGy,
8€Gy

where g1,...,8, € Gy, |S| =€ = deGO vg(S) € N is the length of S, and
oS)=g1+..+8 €G isthesumofS.

We say that S is zero-sum free if Ziel g; #0forall@d # I C [1,¢]. The monoid
of zero-sum sequences

B(Gy) ={S € F(Gyp) : a(S) =0} C F(Gy)

over G is a Krull monoid, by Property (b), since the inclusion B(G,) & F(Gy)
is a divisor homomorphism. We denote by A(Gy) := A(B(G,)) the set of atoms
(minimal zero-sum sequences) of B(G,). The subset G, is called half-factorial
(non-half-factorial resp. minimal non-half-factorial) if the monoid B(G,) is
half-factorial (not half-factorial resp. G, is not half-factorial but every proper
subset is half-factorial). Half-factorial and (minimal) non-half-factorial subsets
play a central role when studying the arithmetic of Krull monoids (we refer to
[29, Chapter 6] for the basics and to [57, 53]). Note that minimal non-half-
factorial subsets are finite.

The arithmetic of Krull monoids is studied via transfer homomorphisms to
monoids of zero-sum sequences. We recall the required concepts. A monoid
homomorphism 6 : H — B is called a transfer homomorphism if it has the
following properties:

(T1) B=06(H)B* and 871(BX) = H*.
(T2) IfueH, b, c e B and 6(u) = bc, then there exist v, w € H such that
u = vw, 6(v) € bB*, and 6(w) € cB*.

Lemma 2.3. Let 6 : H — B be a transfer homomorphism of atomic monoids.
1. For every a € H, we have L (a) = Lg(6(a)).
2. Let p € H. Then p is an atom in H if and only if 6(p) is an atom in B.
Moreover, if p is a prime in H, then 6(p) is a prime in B.
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3. L(H) = L(B), whence H is half-factorial if and only if B is half-factorial.
4. If H is length-factorial, then B is length-factorial.

Proof. Without restriction, we may suppose that H and B are reduced. Then
(T1) implies that 6 is surjective.

1. This easily follows from (T 2) (for details in the cancellative setting we
refer to [29, Chapter 3.2]).

2. Let p € H. Since pisanatom in H ifand only if L5 (p) = {1} and similarly
for 6(p) and B, 1. implies that p is an atom in H if and only if 6(p) is an atom
in B.

Now suppose that p is a prime in H and let a, 3 € B such that 6(p) | af.
Then there is ¢ € H such that af = 6(pc). Then (T2) implies that there are
a,b € H such that pc = ab, 8(a) = «, and 6(b) = 5. Without restriction, we
may suppose that p | a, say a = pa’ for some a’ € H, whence a« = 6(a) =
6(p)6(a’). Thus, 6(p) is a prime in B.

3. This follows immediately from 1.

4. Suppose that H is length-factorial and choose some @ € B. Leta € H
such that 8(a) = a, and let k € Lg(a) = Ly(a). By (T2), every factorization
of a of length k can be lifted to a factorization of a of length k. Thus, if there
is only one factorization of a of length k, there is only one factorization of a of
length k. This implies that B is length-factorial. (]

Let all notation be as in Lemma 2.3. There are examples (even for cancella-
tive monoids) where 6(p) is a prime in B but p fails to be prime in H. Further-
more, B may be length-factorial, but H is not length-factorial.

The study of factorial versus length-factorial monoids can be seen as part of
a larger program. We briefly outline this and introduce (as suggested by the
reviewer) the concept of length-FF-monoids. A monoid H is said to be

 an FF-monoid (finite factorization monoid) if Z(a) is finite nonempty for
alla € H.

» a BF-monoid (bounded factorization monoid) if L(a) is finite nonempty
foralla € H.

« a length-FF-monoid if it is atomic and every element has only finitely
many factorizations of the same length.

A commutative ring R has one of these properties if the respective property
holds true for its monoid of regular elements. By definition, a monoid is an
FF-monoid if and only if it is a BF-monoid and a length-FF-monoid.

Every Krull monoid is an FF-monoid. Let H be a cancellative monoid. If
H satisfies the ACC on divisorial ideals, then H is a BF-monoid and every BF-
monoid satisfies the ACC on principal ideals. Suppose that H satisfies the ACC
on divisorial ideals and (H : H) # @. Then H is a Krull monoid, and H is
an FF-monoid if and only if the factor group A*/H* is finite ([29, Theorem

1.5.6]). In particular, a Noetherian domain R, whose integral closure Ris a
—X
finitely generated R-module, is an FF-domain if and only if R /R* is finite.
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The ring of integer-valued polynomials Int(Z) is an FF-domain and hence a
BF-domain but it does not satisfy the ACC on divisorial ideals. We continue
with two examples.

Example 2.4.

1. Let H C (Qs, +) be the additive submonoid of the non-negative rationals
that is generated by {1/p : p is prime}. Then H satisfies the ACC on principal
ideals by [13, Theorem 4.5]. Since A(H) = {1/p: p€ P}and1=1/p+ .. +
1/p, it follows that P C Ly (1), whence H is not a BF-monoid. We assert that H
is a length-FF-monoid. In order to show this, letr = L eHandletk € Ly (r),

where m, n € N such that gecd(m, n) = 1. It suffices tomshow that there are only
finitely many primes p such that 1/p can appear in a factorization of r of length
k. Suppose

n o .
r=_ = Z —, Wwhere py,..., p; are pairwise distinct primes,

t
qi,--,9; € Nand Zqi =k.

i=1

Ifi € [1,t] and p; does not divide m, then p; must divide g;, whence q; €
[pi, k]. Together with the fact that m has only finitely many prime divisors, the
assertion follows.

2. Let H be as in 1. and consider the monoid algebra

Q[H] = { Z rpXP: r,€Q and r,=0 foralmostallpe [P’}.
peP

Since Q[H | satisfies the ACC on principal ideals ([38, Proposition 4.2]), it is
atomic. Since X'/P is an atom forall p € P and X = X'/P . .. X'/P it follows
that P C Lgpy)(X), whence Q[H] is not a BF-monoid. We assert that Q[H ]
is not a length-FF-monoid. In order to prove this, we introduce some further
notation. For an element f = roX% + ri X% + ... + X% € Q[H], where
k € Ny, rg, ..., 7 € Q, and a, ..., € Hwith0 = a5 < o < ... < ag, we
define n(f) = ry, and m(f) = a;. Thus, m(f) = 0 ifand only if f € Q.
For an odd prime p, we consider the factorization

1-X=1-—XYP)P =1 =XYP)1 +X'/P 4 .. + X(P~D/P),

and we assert that both, 1 — X¥/P and 1 + X¥/P + ... + X®®=D/P  are atoms of
Q[H]. If this holds, then 1 — X has infinitely many factorizations of length two,
whence Q[H] is not a length-FF-monoid.

Suppose that 1 — X'/P = gh for some g,h € Q[H]. Then 1/p = m(g) + m(h)
and, since 1/p is an atom of H, it follows that m(g) = 0 or m(h) = 0. Thus,
g€ QorheQandl—X"Pisan atom.
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Suppose that 1 + X¥/P + ... + XP~Y/P = gh for some g, h € Q[H]. Without
loss of generality, we may assume that n(g) = n(h) = 1 and we set

g=14+u X% + .. +uyX% and h=1+40,XP + . +v,XP,

where k,¢ € Ny, uy = vy = 1, Uy,..., U, V,...,0p € Q\ {0}, and «ay, ..., a,
Bos-sPe EHWIthO=0ay<a; <..<oand 0= ) < f; < .. < By. We have
to show that eitherg =1orh = 1.

The coefficient of X%*# in gh is u v, # 0, whence ay, + 8, = (p — 1)/p.
Since for every i € [1, p — 1], the element i/p € H has unique factorization
in H, it follows that o = a/p and 8, = b/p for some a,b € [0, p — 1] with
a+b=p-1.Let

I=fieLkl: oy ¢{r/p:re(la—1l}, g=) uX%, g =g¢g-g.

iel

and

J:{JE [lsf] 6] g{r/p re [1’b_1]}}’ hZZZUJXﬁja h‘l :h_h'25
jeJ

with the convention that g, = 0ifI = fand h, = 0ifJ = @J. Then gh —
g1hy = gihy + hg, + 8, € Q[X/P]. As above, we use that i/p has unique
factorization in H for everyi € [1, p—1] and infer that the coefficient of X/ in
g1hy+h,g,+8,h, equals zero. Therefore, we obtain that g, h,+h,g,+g,h, = 0,
whence gh = gy h;. Since g1, h; € Q[X'/P], m(g) = m(g;), and m(h) = m(h;),
we set

g =1+uXYP+ . +ulXVP, hy=1+0XYP+ . +0,XP,

where u(’) = v(’) =1, ui,... ,ug,vi,...,vl’) € Q with u/, # 0, and vl’J # 0. Setting

Y = X'/P we obtain
1+Y 4+ +YP = +ulY + . +up YA +0)Y 4.+ 0, YP) € Q[Y].

Since 1 +Y + ...+ YP lisirreducible in Q[Y], we obtain, after renumbering if
necessary, that b = 0, m(h) = 0,and h = 1.

The examples show that non-BF-monoids may or may not be length-FF-
monoids. Thus, the length-FF-property could be a tool leading to a better un-
derstanding of the non-BF-property. Indeed, although the concepts of BF- and
FF-monoids and domains were introduced more than thirty years ago ([2]), the
arithmetic of non-BF-monoids has not been studied yet in a systematic way (a
main obstacle is that they miss the ACC on divisorial ideals).

Furthermore, the examples show that the length-FF-property does not al-
ways imply the BF-property, whence it need not imply the FF-property. This is
in analogy to the fact that length-factoriality does not always imply factoriality.
But, since the latter implication does hold true for large classes of monoids in-
cluding all domains, it is a natural question in the same vein to ask in which
classes of monoids or domains the length-FF-property implies the FF-property.
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3. Proof of Theorem 1.1 and of its corollaries

In this section we prove our main results. To do so, we start with three lem-
mas on Krull monoids.

Lemma 3.1. Let H be a reduced Krull monoid with divisor theory H & F =
F(P), class group G = C(H), and let Gp = {[p]: p € P} C G be the set of classes
containing prime divisors.

1. The map B: H — B(Gp), defined bya = py - ... - p¢ = [p1] - - - [Pr]
where¢ € N and py, ..., ps € P, is a transfer homomorphism.

2. The map B is an isomorphism if and only if every class g € Gp contains
precisely one prime divisor.

3. We have G = [Gp] and G = [Gp \ {g}] for all classes g € Gp that contain
precisely one prime divisor.

Proof. 1. This follows from [29, Theorem 3.4.10].

2. Since B(Gp) is reduced, (T1) implies that g is surjective. Thus, § is an
isomorphism if and only if every class g € Gp contains precisely one prime
divisor.

3. This follows from [29, Theorem 2.5.4]. O

Lemma 3.2. Let G be an abelian group and let G, C G \ {0} be a subset such that
G =[Gy \ {g}] for all g € G,. Suppose there is B € B(G,) having two distinct
factorizations

B=U1'...'Uk=V1'...‘Vf,
wherek,¢ > 2and Uy, ..., U, V,...,V, € A(Gy).

1. For any distinct g, h € G, there exist two atoms A;, A, € A(G,) such that
Vg(A;) = 1and h € supp(4,) C Gy \ {g}
2. If B(G,) is length-factorial, then A(Gy) = {Uy, ..., Uy, V1,..., Vel

Proof. 1. Let g, h € Gy with g # h. Since —h € G =[G, \ {g}], there is an atom
A, € A(Gy\ {g}) such that h € supp(A,) C Gy \ {g}. Since —g € G =[G, \ {g}],
there is an atom A; € A(Gy) such that vy(A4;) = 1.

2. Suppose B(G,) is length-factorial. Assume to the contrary there is an atom
A € AGy) \{Uq, ..., U, V1, ..., Vi) If | supp(A)| = 1, say supp(A) = {g}, then
ord(g) is finite and by 1. there exists an atom A; with v4(A;) = 1, whence A; #
A. Therefore, A divides A‘frd(g). If | supp(A)| > 2, then for every g € supp(A),

it follows by 1. that there exists an atom A, € A(G,) with g € supp(A4,) such
that supp(A) ¢ supp(Ag). Then A # A, for every g € supp(A) and A divides

Vo (A
ngsupp(A) Agg( )'
To sum up, there exist s € N and atoms W, ..., W with A # W, for every
i € [1,s] such that A divides W, - ... - W,. We may suppose W; - ... - W =
AX, - ...- X;,wheret > 2and X,,...,X; € A(Gy). If ¢ = k ort = s, then B(G,)
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is not length-factorial, a contradiction. Suppose ¢ # k and t # s. By symmetry,
we may suppose that ¢ > k. If t > s, then

Wy o WKW, VIS = (Uy - - Up) S (AX, - - X)ETK

has two distinct factorizations of length ¢t — sk, whence B(G,) is not length-
factorial, a contradiction. If s > ¢, then

Wy WIKU - U ) = (Ve V) THAX, - - X))

has two distinct factorizations of length s¢ — tk, whence B(G,) is not length-
factorial, a contradiction. O

Lemma 3.3. Let G be an abelian group and let G, C G \ {0} be a subset such
that [Gy \ {g}] = G forall g € G,. Suppose that B(G,)) is length-factorial but not
factorial.

1. G, is a minimal non-half-factorial set.

2. Forevery g € Gy, there exist A; € A(Gy) such that vy(A;) = 1and [{A €
A(Go) 1 vg(A) > 0} = 2.

3. For any two distinct atoms Ay, A, € A(G,), either

supp(A;) Nsupp(4,) =@ or |ged(A;, 4y =1.

Proof. Since B(G,) is length-factorial but not factorial, it is not half-factorial.

1. There is a By € B(Gy) such that |L(By)| > 2, which implies that supp(B)
is not half-factorial. Let G; C supp(B,) be a minimal non-half-factorial subset
and let B; € B(G,) such that |[L(B;)| > 2. Then Lemma 3.2.2 implies A(G,) =
A(Gy).

Assume to the contrary that Gy \ G; # §J. Let h € G, \ G,. Then by Lemma
3.2.1, there is an atom A € A(G,) with h € supp(A), whence A & A(G,), a
contradiction. Therefore, G, = G; is a minimal non-half-factorial subset.

2. Let g € G,. By Lemma 3.2.1, there exists an atom A; such that vy(A4;) = 1
and hence | supp(4;)| > 2. Let h, € supp(A4,) \ {g}. Then Lemma 3.2.1 implies
there exists an atom A, € B(G \ {ho}) such that g € supp(A,). Thus, A, # A;.
Furthermore, for every h € supp(A4;) \ {g}, Lemma 3.2.1 implies that there
exists an atom A, € B(G, \ {g}) such that h € supp(Ay).

Assume to the contrary that there exists an atom A; € A(Gy) \ {A;, Ag} such
that g € supp(As). Therefore,

A3 H A\;lg(As)Vh(Aﬂ — A\llg(As)Xl . 'Xs ,
heGo\{g}
where s € N and X,...,X; € A(G, \ {g}). It follows by Lemma 3.2.2 that
Ay €{A1, A5} U{A, : h €supp(A) \ {g}} U{X; : i € [1,s]}, a contradiction.
3. Let A}, A, € A(G,) be distinct such that supp(A;) N supp(A,) # @. As-
sume to the contrary that there are g, h € G, such that gh divides gcd(A;, A,).

By 2., there is no other atom A such that supp(A) N {g,h} # @. If g = h,
then there is no atom A with v4(A) = 1, a contradiction to 2. If g # h, then
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—h € [Gy\ {g}] implies that there is an atom A € A(G, \ {g}) with h € supp(A),
a contradiction. O

Proof of Theorem 1.1. Let H be a Krull monoid. By [29, Theorem 2.4.8], there
is a decomposition H = H* X H,, where H, is a reduced Krull monoid, iso-
morphic to H.4. If Py C H,, is the set of prime elements of Hy and H* = {a €
Hy: p taforall p € Py}, then Hy = F(Py)xH* ([29, Theorem 1.2.3]). Clearly,
H* is a reduced Krull monoid. By definition, H is length-factorial if and only
if Heq = H, is length-factorial, and H,, is length-factorial if and only if H* is
length-factorial.

Let H* & F(P*) be a divisor theory. Then H, = F(Py) X H* & F(Py) X
F(P*) = F(P), where P = P, ¥ P*, is a divisor theory, whence we obtain that
(we use (2.1))

C(H) = C(Hy) = q(F(P))/a(Ho)
= q(F (Py)) X q(F(P¥))/a(F (Po)) x q(H™)
= q(F(P*))/q(H") = C(H").

Let Gp. C C(H*) denote the set of classes containing prime divisors, and note
that 0 ¢ Gp-. It remains to prove the characterization of length-factoriality.
Note that the Moreover statement, dealing with the case of torsion class groups,
follows immediately from the main statement. We proceed in two steps.

Step 1. Suppose that H and H* are length-factorial but not factorial.

Assume to the contrary that there exist distinct p,qg € P* such that 0 #
[p] = [q] € C(H*). Since H* < F(P*) is a divisor theory, there exist r > 2 and
pairwise distinct ay, ..., a, € H* such that p = ged(ay, ..., a,). Without loss of
generality, we may assume that a,, ..., a, € A(H*).

Leta; = p*qy ... qspy ...  pe, Wherek > 1,5 > 0,¢ > 1,qy, ...,qs € P*\ {p}
with [q;] = [p] for j € [1,s], and p,, ..., p¢ € P* with [p;] # [p] fori € [2,¢].
Ifk 4+ s > 2, then b, = p**Sp, - ... py and b, = ¢***p, - ... - p; are both atoms
of H*. We observe that

biby = (P**71qpy - o pe) (PG T py - - pe)
has two distinct factorizations of length two, a contradiction. Thus, k + s = 1
and a; = pp, - ... - p¢. Similarly, we may assume that a, = pp) - ... p;,, where
¢' > 2 with [p!] # [p] fori € [2,¢’]. We observe that

al(qp; " ‘P;,) =(gpy - " Pe)ay

has two distinct factorizations of length two, a contradiction. Therefore, every
nonzero class g € C(H™) contains at most one prime divisor. Thus, Lemma
3.1.2 implies that 8 : H* — B(Gp-) is an isomorphism, whence H* = B(Gp-)
and B(Gp-) is length-factorial but not factorial.

It remains to determine the structure of Gp.. Since H* & F(P*) is a divisor
theory and every class of C(H™*) contains at most one prime divisor, we obtain
that C(H*) = [Gp- \ {g}] for all g € Gp. by Lemma 3.1.3. Thus, the assumption



A CHARACTERIZATION OF LENGTH-FACTORIAL KRULL MONOIDS 1363

of Lemma 3.3 is satisfied which implies that Gp- is a minimal non-half-factorial
set. Let B € B(Gp«) with |L(B)| > 2 and let |B| be minimal with this property,
say

B=UoUl'...'Uk=VOV1'...'Vf,

where k,¢ € Nwith k # ¢, and U,, Uy, ..., Uy, Vo, V1,..., Ve € A(Gp+). Then
Lemma 3.2.2 implies that

{Uo, Ul’ ceey Uk, Vo, Vl’ ceey Vf} = A(GP*) .

The minimality of |B| implies that U; # V; for every i € [0,k] and every
j € [0,¢]. If there exist j € [0,¢] and a proper subset I C [0, k] such that
V; divides []._, U;, then [],_, U; has two distinct factorizations, a contradic-
tion to either the minimality of |B| or the length-factoriality of B(Gp-). There-
fore, ged(U;, V) # 1 € F(Gp.) for every i € [0,k] and j € [0,¢], whence
| gcd(U;, V)| = 1 by Lemma 3.3.3. It follows that |[U;| = ¢ +1and [V;| = k+1
for everyi € [0,k] and j € [0, ¢]. Since

lged(JJULBI = 11I(¢ + 1), |ged(JJ UL ] V)l <111, and
iel iel jeJ
lged(J Ui, [T VvpI<IICE+1-17])

iel jelo, e\

for every I C [0,k] and every J C [0, €], we obtain that
lgcd([ Ui [TVl = 11I11. (3.1)

iel jeJ

For every g € Gp-, there existi € [0,k] and j € [0, ¢] such that g € supp(U;)n
supp(U;). Then, by Lemma 3.3.2, for any i;,i, € [0,k] and any j;, j, € [0,¢]
we have either U; = U;, or supp(U; ) N supp(U;,) = @ and either V; =V or
supp(V;,) Nnsupp(V;,) = 0.

Assume to the contrary that there exist distinct i;,i, € [0, k] and distinct

J1-J» € 10,¢] such that U; = U;, and V; = V; . Then ged(U,, V) = g for
some g € Gp- and hence ged(U;, U;,,V; V) = g2, a contradiction to Equation
(3.1). Thus, by symmetry, we may suppose U; # U,, for any distinct i;,i, €
[0, k]. Therefore supp(U; )nsupp(U;,) = @ for all distinctiy, i, € [0, k]. Assume
to the contrary that there exist g € Gp- and j € [0, ¢] such that vg(V;) > 2.
Then there is i € [0, k] such that vg(Ul-) > 2, and hence there is no atom A &€
A(Gp-) with v4(A) = 1, a contradiction to Lemma 3.3.2. Thus, v4(V;) = 1 for
all g € supp(V;) and all j € [0,7].
We set Uy = g€}, - ... - ¢}, where 5, ...,5, € Nand gj,e11,...,e1; € Gp
are pairwise distinct. After renumbering if necessary, we may suppose e;; €
supp(V;) for every i € [1,t] and g; € supp(V,). Note that if supp(V;) N
supp(V;,) # @, then V; =V, , where jy, j, € [0, ¢]. Therefore,

B=Uj .. :Ug=Vyr: Ve =VIV] -V
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The length-factoriality of B(Gp.) implies that k + 1 # sy + ... + s;. Since
supp(U;,) N supp(U;,) = @ for any two distinct iy,i, € [0,k], Uy, ..., Uy and
Vi,...,V; can be written as the form

So ,51 St —
=g €, "€ Vi=eyjerj ek
and
U, = So ,51 St d V.=
0 =28 €€y AN 0=28081 " " 8k>
k
where e;1,...,€5, ... ,€ 155 €k > 825, 8k € Gps, 8 = —Zi 18i-and ey ; =

— Zk L€, forevery j € [1,¢]. Foreachi € [0,k], B({g;,e;1,--,e;,}) is half-
factorlal and length-factorial, whence it is factorial and for its set of atoms we
have A({g;, e; 1, ...,€;}) = {U;}. Thus, we obtain that s, is the minimal integer
such that —syg; € {e; 1, ...,€;y)-

In order to show that (ey 1,...,€1, €51, ..., €24, o, k11> - » €k—1,¢) IS indepen-
dent we set

Gl = {ely]_, ey el)t, 62,1, ey eZ,t, ey ek_]_,l, ey ek_l,t} .

Assume to the contrary that the above tuple is not independent. Then there
are two distinct T;, T, € F(G;) such that o(T;) = o(T,). By symmetry, we
may assume that T, # 14(g,). There exist non-negative integers xy, ..., X; with

X| + ... + x; = |Ty| such that T, divides V" - ... - V" in #(G,), whence V;" -
-V, tTZT is a zero-sum sequence. Slnce Vi . Vf‘Tle_ ! has only one
factorlzatlon and V1, ..., V, are the only atoms d1V1d1ng Vf LR Vtx‘Tle‘ Lt

follows that Vfl -...-fo T, Ty e Vfl et Vf‘ and hence T, = T, a contradiction.

Next we show that (g, e; 1, ..., ;) N(gj,€j1,--,€j; : J € [1,k]\{i}) = {0} for
everyi € [1, k]. Assume to the contrary that there exists 0 # h € (g;,€; 1, ..., €;)N
<gj’ej,1’ e €y : ] € [1’ k] \ {l}> Since <gi’ei 155 €, t> - [gl’el 15+ €, t] and
gjsej1>»ejit JEILKIN{D = [gj.¢j1,-5¢j 0 J € [LEI\{i}], there exist
a zero-sum free sequence T, over{g;,e;1, ..., ¢;;} and a zero-sum free sequence
T, over{gj,ejq, .. s jEelLk]\ {i}} such that h = O’(Tl) = o(T,). Let N be
large enough such that T, divides UN Then UN T, T, ! is a zero-sum sequence
such that supp(UNTz 1)n{gj,ej Lees€ipt JE[L k] \{i}} # @ which implies
that there exists v € [1,k] \ {i} such that U, divides UN T,T7 ! and hence U,
divides T, a contradiction. Therefore, we obtain that

C(H") =(Gp+) =(e1,1, €11, 81) D - D (k15> Ch > 8k) -

Leti € [1,k]andsetG; = (g;, €1, ..., €;). ThenG; = Z'®Z/mZ,wherem €

N is the maximal order of all the torsion elements of G;. Let gcd(sg, Sy, ..., S;) =
n. Then the fact that h = cr(gs"/ " Sl/ S s’/ ") has order n implies that n < m.
It remains to verify that n > m. Let a e G such that ord(ar) = m. Suppose
a = wyg; + wie;; + ... + wee;,, where wy,...,w, € Ny. Then (gl. ei,1
el.bf)t‘)m = Ulf" for some w € N with gcd(m, w) = 1, which implies that m divides
ged(Sg, Sy -e 5 8) = 1.
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Step 2. Suppose that H* =~ B(Gp-) and that Gp. has the given form. We have
to show that B(Gp.) is length-factorial but not factorial.

We use the simple fact that if an abelian group G is a direct sum, say G = G; @
G, and if G| C G; are subsets for i € [1,2], then A(G] v G)) = A(G)) ¥ A(G).
We define, for every i € [0, k] and every j € [1,¢],

so St _ ,% St
Up=g,e 01 €y U, = €y
Vo = go gk, and V] - eo)j S eee ek,j .

Clearly, we obtain that

A(Gp:) = {Ug, ..., U, Vy, ...V} and Up-.. U=V .-V, (3.2)

Thus, B(Gp-) is not factorial. By definition, we have |U;| = Z;':o sj, [Vl = k+1

foreveryi € [0,k] and every j € [0, t]. Assume to the contrary that there exists
By, € B(Gp+) such that B, has two distinct factorizations of the same length.
We may assume that B is a counterexample with minimal length. Suppose

By=TJu" [TV and B,=[[U [T v/,
iel jeh iel, Jj€l,
are two distinct factorizations of the same length, where I;,1, C [0, k], J;,J, C
[0,£], a; € Ng for every i € Iy, a] € Ny foreveryi € I,, b; € N, for every
j € Ji, and b;. € N for every j € J,. The minimality of |By| implies that
LN, =@andJ, nJ, =@. If I, UI, = @, then those two factorizations of B,
must be equal, a contradiction. By symmetry, we may suppose I; # @. Then

Uier, supp(U;) C supp(HleI U HJGJ ’)1mp11es thatJ, = [0,t]andJ; = @,
whence I; = [0,k]and I, = ﬂ It follows that

t b

k
B=[[u =1/
i=0

j=0
k
whence (5o + ... +5) 2, _a; = Zl 0 @lUil = [By| = Z] ) j|V| (k +

1) Z;zl b;.. Since sy + ... + 5; # k + 1, we obtain Zi:o a; # ijl b;., a contradic-
tion to the fact that the two factorizations have the same length. 0

The system of sets of lengths £(H) of an atomic monoid H is said to be ad-
ditively closed if the sumset L, + L, € L(H) for all L,,L, € L(H). Clearly,
L, + L, = L, implies that L, = {0} for all nonempty sets L,, L, C N,, whence
set addition is a unit-cancellative operation. Thus, £(H) is additively closed if
and only if (£(H), +) is a reduced monoid with set addition as operation.

Let H be a Krull monoid with class group G and let G, C G denote the set
of classes containing prime divisors. Then the inclusion B(G,) & F(G,) is a
divisor homomorphism but it need not be a divisor theory ([54]). In Corollary
1.2 we prove that in case of length-factorial Krull monoids this inclusion is a
divisor theory.
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Proof of Corollary 1.2. Let H be a length-factorial Krull monoid, that is not
factorial, and let all notation be as in Theorem 1.1.

1. Since the inclusion H* & F(P*) is a divisor theory, H* = B(Gp-), and
every class of Gp. contains precisely one prime divisor, the inclusion B(Gp.) &
F(Gp+) is a divisor theory with class group isomorphic to C(H*) = C(H). The
assertion on A(Gp-) follows from Equation (3.2).

2. LetB € B(Gp«)and z € Z(B). By (3.2), z can be written in the form

z—HUC‘HV e Z(B),
=0

where ¢;,d; € N, for every i € [0, k] and every j € [0,¢], and we have to
determine the relations between the exponents c, ..., ¢, dy, ..., d;. Let

x; = min{c; : i € [0,k]}and x, = minﬂ%‘ P jE [O,t]} .
J

k t k t
) d; L di—X,5;
z=]]Uu"] |ij =Up o UV - VR T U™ ] |ij w0,
i i=0 j=0

We set x = x; + X5, y; = ¢; — X1, and z; = d; — x,s; for every i € [0, k] and
every j € [0,t]. Thus,

k t
B=Uy-... U* TTU TV}
i=0 j=0
has a factorization of the required form. Since for every v € [0, x],
k t
_ S Styx— Vi Zj
2 =Up+ e U’V o V¥ H U qvjf e Z(B),
= i
we have
k t
|z|€2yi+22 {v(k+1)+(x—v)Zs : Ox]}CL(B).
= e,

If B can be written uniquely in the asserted form then, since z is chosen arbi-
trary, it follows that

L(B) = Zyl+Zz +{V(k+1)+(x—V)ZSJ' Vv E Ox]}

i=0 Jj=0
It remains to verify the uniqueness assertion. Suppose that
k

t k t 2
B=Uy-..-U* [0} TIV) = Wo- - U [Tv” [Iv;. where
j=0 i=0 j=0

i=0
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© X, Y05 > V> 2055 Zt € Ny, y; = 0 for some i € [0,k], and z; < s; for
some j € [0,¢t], and

o« XY s Vis 205 5 21 € Np, yl.'0 = 0 for some i, € [0, k], and z}o <s;j, for
some j, € [0, t].

Note, if there would exist i € [0, k] such that U; divides H;zl V;j , then

t '
A
SjO = Vei,jo(Ui) < Veivjo(q Vj]) = Z](/) .
J:
tradiction. If /. then U divides TT*. U TT°_. V™. si
a contradiction. If x > x', then U, ivides J];_, U;" II,., V. Since
[
supp(U;,) N supp(U;) = @ for every i € [0,k] \ {ip}, we have Ui;;o+ divides

v z z L
U’ H;.:l Vj’ = H;zl ij , a contradiction. Thus, x < x’. By symmetry, we
obtain that x < x, whence x = x'. If y; > y! for some i € [0,k], then U;

must divide H;zl ij , a contradiction. Thus, y; < ylf for every i € [0,k]. By
symmetry, we obtain that yi’ < y;, whence y; = ylf for every i € [0,k]. Since

x = x"and y; = y/ for every i € [0,k], we infer that H;zl V]Z.j = H;=1 ij.j,

whence z; = z;. for every j € [0, t].

3. ByLemma2.3.3, Lemma 3.1.1, and Theorem 1.1, we have L(H) = £(B(Gp-)).
By item 2., we infer that

t
L(H) C {{y+v(k+ 1)+(x—v)2sj cvelox]}: y,xe NO}.
j=0
Conversely, if y,x € Njand B = (U - ... - Uk)xU(y), then {y + v(k + 1) + (x —
V)T _e8; v € [0,x]} = L(B) € £L(H), whence

L(H)={{y+v(k+l)+(x—v)2sj: Ve [O,x]}: V,X € NO}.
j=0

The given description shows immediately that £(H) is additively closed with
respect to set addition. O

Before proving Corollary 1.3 we briefly recall the involved concepts. Let H be
a Krull monoid and H,.q4 & F = F(P) be a divisor theory. Then H satisfies the
approximation property if one of the following equivalent conditions is satisfied
([29, Proposition 2.5.2]):

(a) For all n € N and distinct p, py, ..., p,, € P there exists some a € H such
thatv,(a) = 1and v, (a) = 0 forall i € [1, n].

(b) For all a,b € F, there exists some ¢ € F such that [a] = [c¢] € G and
ged(b,c) = 1.
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Proof of Corollary 1.3. Let H be a Krull monoid. Without restriction we may
suppose that H is reduced. Using the notation of Theorem 1.1, we have H =
F(Py) X H* and a divisor theory F(Py) X H* & F(Py) X F(P*). Let Gp« C
C(H*) = C(H) denote the set of classes containing prime divisors.

1. If H and H* are length-factorial but not factorial, then P* is finite by The-
orem 1.1. Thus, Condition (b) above cannot hold, whence H does not satisfy
the approximation property.

2. Suppose that every nonzero class of G = C(H*) contains a prime divisor.
Note that 0 € A(G) is the only prime element of B(G) and B(G) = F({0}) X
B(G \ {0}). Thus B(G) is length-factorial if and only if B(G \ {0}) is length-
factorial.

First, we suppose that H* =~ B(G\{0}) and that either |G| < 3orG = C,®C,.
We have to verify that B(G) is length-factorial. If |G| < 2, then B(G) is factorial
and hence length-factorial. If |G| = 3 or G = C, @ C,, then it can be checked
directly that B(G) is length-factorial.

Conversely, suppose that H* is length-factorial. Since G \ {0} C Gp-, the
description of Gp: achieved in Theorem 1.1 implies that |G| < 3orG = C, ®
C,. O

In order to prove Corollary 1.4, we first gather some basics from the theory of
rings with zero-divisors. Let R be a commutative ring with identity and let R*
denote its monoid of regular elements. Then R is additively regular if for each
pair of elements a,b € R with b regular, there is an element r € R such that
a + br is a regular element of R ([44, 46]). Every additively regular ring is a
Marot ring and every Marot ring is a v-Marot ring. The ring R is a Krull ring
if it is completely integrally closed and satisfies the ACC on regular divisorial
ideals. If R is a Krull ring, then R" is a Krull monoid and if R is a v-Marot ring,
then the converse holds ([30, Theorem 3.5]). We say that R is atomic (factorial,
half-factorial, resp. length-factorial) if R has the respective property.

Next we need the concept of normalizing Krull rings. A cancellative but not
necessarily commutative semigroup S (resp. aring R) is said to be normalizing if
aS = Saforall a € S (resp. aR = Ra forall a € R). A prime Goldie ring is said
to be a Krull ring (or a Krull order) if it is completely integrally closed (equiv-
alently, a maximal order) and satisfies the ACC on two-sided divisorial ideals.
Thus, every commutative Krull domain is a normalizing Krull ring. For exam-
ples and background on non-commutative (normalizing) Krull rings we refer
to [56, 45, 48, 1], and for background on factorizations in the non-commutative
setting to [5, 55]. In particular, normalizing Krull monoids are transfer Krull.

Proof of Corollary 1.4. 1. Let R be an additively regular Krull ring. Then R*
satisfies the approximation property by [49, Theorem 2.2] (this needs the as-
sumption that R is additively regular). Thus, R* is a Krull monoid satisfying
the approximation property, whence the assertion follows from Corollary 1.3.1.

2. Let R be a normalizing Krull ring. Then R satisfies the approximation
property ([45, Proposition 2.9], [47, Theorem 4]). If H denotes the monoid of



A CHARACTERIZATION OF LENGTH-FACTORIAL KRULL MONOIDS 1369

regular elements, then H,.4 is a commutative Krull monoid by [27, Corollary
4.14 and Proposition 5.1]. Thus, the assertion follows from Corollary 1.3.1.

Proof of Corollary 1.5. Let H be a length-factorial transfer Krull monoid. We
have to show that H,.4 is a Krull monoid. Since H,.4 is a length-factorial transfer
Krull monoid, we may suppose that H is reduced. Let B be a Krull monoid and
let®’ : H — Bbe atransfer homomorphism. We may suppose that B is reduced
and start with the following assertion.

A. H is cancellative.

Proof of A. Let a,b,c € H such that ab = ac. Since 6’(a)0’(b) = 6'(a)d'(c),
we obtain that 6'(b) = 6'(c). If 6/(b) = 6'(c) = 1z, thenb = ¢ = 1. If
0'(b) =6'(c) = w; -...-w,, wherer € Nand wy, ..., w, € A(B), then there exist
by, ..., b, ¢, ..., ¢, € A(H)such thatb = b, -...-b,and ¢ = ¢; - ... - ¢,. Suppose
a=ay-..-ag, wherek € Nyand ay, ..., ay € A(H). Then the two factorizations
Z,=0Q; ...-qgb;-...-b, € Z(ab)and z, = a; - ...-aicy - ...- ¢, € Z(ab) of ab have
the same length k + r, whence z; = z,. Thus, by - ... - b, =¢; - ... - ¢, € Z(H),
whence b =c € H. O(Proof of A).

Thus, H is a reduced cancellative length-factorial transfer Krull monoid. If
H is factorial, then H is Krull. Suppose that H is not factorial. Then H is not
half-factorial. Let G be the class group of B and let G, C G be the set of classes
containing prime divisors. Thus, Lemma 2.3 implies that B is length-factorial
but not half-factorial. Theorem 1.1 implies that every class of G, contains pre-
cisely one prime divisor. Lemma 3.1.1 implies that there is a transfer homo-
morphism 8 : B — B(G,). Since every class of G, contains precisely one prime
divisor, Lemma 3.1.3 implies that G = [G, \ {g}] for every g € G,. Since the
composition of transfer homomorphisms is a transfer homomorphism again,
we obtain a transfer homomorphism 6 = o6’ : H — B(G,).

Let P, C H be the set of prime elements of H and Hy, = {a € H: p ¢
a for all p € P,}. Since H is cancellative, we obtain that H = F(P,) X Hy,. Since
G =[Gy \ {g}] for every g € G, the only possible prime element of B(G,) is
the sequence S = 0 € F(Gy). Thus Lemma 2.3.2 implies that, if P, # §J, then
6(P) = {0}. Thus, we obtain that 6(H,) = B(G, \ {0}) and hence 6y, : Hy —
B(Gy \ {0}) is a surjective transfer homomorphism. By Lemma 2.3, B(G,, \ {0})
is length-factorial but not half-factorial. By Corollary 1.2.1, A(G, \ {0}) is finite,
say A(Go \ {0} = {U},...U,,.V},.,V,L U, - .. .U, =V, .-V}, k.t €Ny,
k#¢,and U] # V;. foralli € [1,k]and j € [1,¢].

Assume to the contrary that 6y is not injective. Then there exist a,b € H,
with a # b such that T = 6(a) = 6(b),say T = W; - ... - W,, wherer € N and
Wi,..,W, € A(G, \ {0}). Then there exist a,, ..., a,, by, ...,b, € A(H,) such
thata=ay-...-a,,b = b, -...-b,,and 6(q;) = 6(b;) = W, foralli € [1,r]. Since
a # b, there exists iy € [1,r], say iy = 1, such that a; # b;. After renumbering
if necessary, we may suppose W; = U]. Let ¢ € H,, such that 8(c) = Hilz Ul
Therefore, 8(a;c) = O(byc) = U] - ... - U, = V| - ... V|, which implies that
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there exist uy, ..., g, Uy, ..., Vg such thata;c = uy - ... - up, byc = vy - ... - Vg, and
O(u;) =06(v)) = V;. for all j € [1,¢]. We observe that

ajbic=ayUy - ... - Vp =byuy - - Up .
If there exists j € [1,¢] such that a; = u;, then U] = 6(a;) = 6(u;) = V;,
a contradiction. Thus, a;b;c has two distinct factorization of length ¢ + 1, a

contradiction. Therefore 6y is injective, whence H, & B(G, \ {0}) is Krull and
so H = F(Py) X Hy is Krull. O

The monoids, discussed in Example 2.2.2, are reduced and length-factorial
but not cancellative. Thus, they cannot be transfer Krull by Corollary 1.5. We
end with an example of transfer Krull monoids.

Example 3.4. Let R be a Bass ring and let T(R) be the monoid of isomorphism
classes of torsion-free finitely generated R-modules, together with the opera-
tion induced by the direct sum (this is a monoid as discussed in Example 2.2.1).
Then T(R) is a reduced transfer Krull monoid by [4, Theorem 1.1]. There are
algebraic characterizations of when T(R) is factorial, resp. half-factorial, resp.
cancellative (see [4, Proposition 3.13, Corollary 1.2, Remark 3.17]). These char-
acterizations show that T(R) is rarely cancellative, whence rarely Krull, and
thus, by Corollary 1.3, it is rarely length-factorial.

Acknowledgement. We thank the reviewers for their careful reading and for
all their comments which led to the introduction of length-FF monoids.
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