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Arithmetic of the canonical component
of the knot 74
Nicholas Rouse

Abstract. We prove two arithmetic properties of Dehn surgery points on
the canonical component of the SL2C-character variety of the knot 74. The
�rst is that the residue characteristics of the rami�ed places of the Dehn
surgery points form an in�nite set, providing evidence for a conjecture of
Chinburg, Reid, and Stover. The second is that the Dehn surgery points
have in�nite order in the Mordell-Weil group of the elliptic curve obtained
by a simple birational transformation of the canonical component intoWeier-
strass form.
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1. Introduction
Let Γ be a �nitely generated group, and let X(Γ) denote the SL2C-character

variety of Γ (see Section 2.1). When Γ is the fundamental group of a compact
3-manifoldM, work of Thurston and Culler–Shalen establishedX(Γ) as a pow-
erful tool in the study of the geometry and topology ofM. The focus of this paper
is arithmetic and algebraic properties of a particular component C (the canon-
ical component, see Section 2.1) of X(Γ) when Γ is the fundamental group of a
particular hyperbolic knot complement (74 of the tables of [17] and (15, 11) in
two-bridge notation.). This has already been studied for di�erent reasons ([5]).
There are two themes to this: the �rst is that, following [4], we are particularly
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interested in a canonically de�ned quaternion algebra,Ak(C), which is de�ned
over the function �eld of C, k(C), and specializes at Dehn surgery points of
C to quaternion algebras de�ned over number �elds. The second theme is to
view C as an elliptic curve and to consider the Mordell-Weil group of naturally
occurring number �eld points on C.

In more detail, for the �rst part, for knots satisfying an arithmetic condi-
tion on their Alexander polynomials (condition (⋆), see Section 3.2), Chinburg,
Reid, and Stover show in [4] that there are only �nitely many rational primes
lying under any �nite prime ramifying the specializations of this quaternion
algebra. Let us write S for this set of rational primes. Let us de�ne SD ⊆ S to
be the set of rational primes p such that there is a specialization to the charac-
ter of a hyperbolic Dehn surgery such that the quaternion algebra is rami�ed at
some prime lying above p. When condition (⋆) fails, it is shown in [4, Theorem
1.1(3)] (using work of Harari [10]) that S is in�nite. They furthermore state as
a conjecture [4, Conjecture 6.7] that

Conjecture 1.1. Let K be a hyperbolic knot in S3 that fails condition (⋆), then,
in the notation above, S = SD .

As we note in Section 3.3, 74 fails condition (⋆). Our �rst main result is:

Theorem 1.2. Let K be the knot 74 and T be the set of rational primes p such
that there exists a place p lying above p of the trace �eld of some hyperbolic Dehn
surgery (d, 0)atwhich the canonical quaternion algebra associated to that surgery
is rami�ed. Then T and hence SD are in�nite.

We now turn our attention to the second result, which concerns the arith-
metic of Dehn surgery points in the Mordell-Weil group. Thought of as a va-
riety embedded in P2(C), the projective closure of the canonical component C
of 74 has singular points, but it is birational to a curve of genus one. Together
with a choice of basepoint, such a curve is an elliptic curve. Concretely, the
canonical component, C, is cut out by R3−R2Z2+2R2−1 = 0 and is birational
via the coordinate change R = x, Z = y∕x to E, the a�ne variety cut out by
y2 = x3 + 2x2 − 1. The latter equation is a nonsingular Weierstrass equation
and hence determines an elliptic curve by taking the unique point at in�nity
to be the basepoint. We may then regard a “Dehn surgery point" on the elliptic
curve to be any point in the image of the birational map C ⤏ E.

A basic fact about elliptic curves is that their points can be made into an
abelian group, and (over C, say) the n-torsion points form a subgroup isomor-
phic toZ∕nZ×Z∕nZ. In general it is a di�cult problem to produce in�nite order
points in a particular number �eld on a given elliptic curve. One of the fewways
uses the theory of Heegner points (see e.g. [7]) which allows one to construct
in�nite orderQ-rational points on certain elliptic curves. However, experimen-
tal evidence suggested that hyperbolic Dehn surgery points were never torsion
points, and our secondmain result is that in fact every hyperbolic Dehn surgery
point has in�nite order.
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Theorem 1.3. Let E be the elliptic curve de�ned by y2 = x3 + 2x2 − 1. With
the conventions of the above paragraph, every hyperbolic Dehn surgery point has
in�nite order in the Mordell-Weil group of E.

In our setting characters of hyperbolic Dehn surgeries have in�nite order,
and they are rational points over their trace �elds. The proof of 1.3 (see Section
6) combines an algebraic fact (Proposition 6.1)withmostly topological results of
Bass, Hatcher, and Thurston. The algebraic fact shows that nonpositive 2-adic
valuation of the x-coordinate of a point on E obstructs being a torsion point.
The topological results imply that no Dehn surgery point can have such a form.

1.1. Outline. The paper is organized as follows. We introduce some back-
groundmaterial on canonical components, trace �eld, and quaternion algebras
in Section 2. Then we discuss their generalization, Azumaya algebras and how
they �gure into studying rami�cation in Section 3. We then give a proof of The-
orem 1.2 in Section 4. There are many lemmas used in the proof, and we delay
their proofs until Section 5 so that the proof of 1.2 may be read more easily. Fi-
nally in Section 6 we provide some background material on elliptic curves and
prove Theorem 1.3.

1.2. Acknowledgments. The author wishes to thank his advisor, Alan Reid,
for suggesting the problems in this paper as well as his support and guidance
in both the mathematical and writing phases of this paper’s preparation. The
authorwould also like to acknowledge the anonymous referees for their helpful
comments and suggestions, with special thanks to the one who pointed out
Theorem 5.11, which simpli�ed the original argument.

2. The canonical component, traces �elds, and quaternion
algebras
In this section we provide some background material about character vari-

eties and quaternion algebras. We then establish the canonical component of
74 and a tractable form of the canonical quaternion algebra.

2.1. Character varieties. We begin by recalling that, for a �nitely generated
group Γ, the SL2C-representation variety of Γ is R(Γ) = Hom(Γ, SL2C). Given a
generating set {
i}, we identify a representation � ∶ Γ → SL2C with

(�(
1), … , �(
n)) ⊂ SL2Cn ⊂ C4n.
Given a di�erent choice of generators, there is a canonical isomorphism be-
tween the two subsets of C4n obtained this way. Fixing an element 
 ∈ Γ, we
may de�ne a map I
 on R(Γ) that associates to a representation � the trace of �.
That is, I
 ∶ R(Γ) → C is de�ned by I
(�) = tr �(
) = ��(
). This I
 is a regular
function on the algebraic set R(Γ), and the ring T generated by all such I
 turns
out to be �nitely generated. This is [6, Proposition 1.4.1]. Fixing a generating
set I
1 , … , I
m for T, de�ne a map t ∶ R(Γ) → Cm by t(�) = (I
1(�), … , I
m(�)).
Then de�ne the SL2C-character variety of Γ to be t(R(Γ)) ⊂ Cm. This is a closed
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algebraic set, and di�erent choices of generators forT give isomorphic algebraic
sets. When Γ is the fundamental group of the complement of a hyperbolic knot
K in S3, we de�ne its canonical component to be the irreducible component
of X(Γ) containing the character of the discrete and faithful representation of
�1(S3∖K). We refer the reader to [6] for more detail.

2.2. Computation of the character variety. We start with the fundamental
group of the complement of 74 in S3 and some notation for the canonical com-
ponent.

Notation 2.1. Let K be the knot 74 in S3. Write ∆K(t) = 4t2 − 7t + 4 for
its Alexander polynomial. We also write Γ for the fundamental group of the
complement of K in S3. We use the following presentation

Γ = �1(S3∖K) = ⟨a, b|aw2 = w2b⟩,
where w = ab−1ab−1a−1ba−1b. For a representation � ∶ Γ → SL2C, we conju-
gate so that

�(a) = (x 1
0 1∕x)

�(b) = (x 0
r 1∕x) .

In de�ning an algebraic set, one should generally avoid expressions like 1∕x,
but here we use it as a shorthand for y where xy = 1. Also, note that this pre-
sentation for the fundamental group comes from the two-bridge normal form
for 74, namely (15, 11). These facts and the following are in [5, Section 5].

Proposition 2.2. If we write

Z = ��(a) = ��(b) = x + 1
x ,

and
R = ��(ab−1) = tr (1 − r x

−r∕x 1) = 2 − r,

then the SL2C character variety has canonical component given by the vanishing
of R3 − R2Z2 + 2R2 − 1.

2.3. Quaternionalgebras over�elds. Wenow recall some facts about quater-
nion algebras (see, e.g., [13, Ch.2]). Recall that a quaternion algebra A over
a �eld F of characteristic not equal to 2 is a 4-dimensional central simple alge-
bra over F. More concretely, A is a 4-dimensional algebra over F admitting an
F-basis {1, i, j, ij} with i2 = a, j2 = b, and ij = −ji where a, b ∈ F∗. One may

e�ciently encode this information with a Hilbert symbol, (a, bF ) . Note that
any quaternion algebra is described by many Hilbert symbols.

Though we will have occasion to consider quaternion algebra over function
�elds, our real objective is to study the quaternion algebras that are associated to
Dehn surgery points. These are quaternion algebras over number �elds. In this
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situation, there is a powerful classi�cation theorem that in some sense justi�es
investigating the rami�cation set of Theorem 3.5 and Theorem 1.2 in the �rst
place. We begin with a quaternion algebra A over a number �eld L. Given
a place p of L, one may form the completion Lp and extend A to a quaternion
algebraAp = A⊗LLp. There are exactly two isomorphism classes of quaternion
algebras over the local �eld Lp. If Ap is isomorphic toM2(Lp) then A is said to
split at p. Otherwise,Ap is the unique division quaternion algebra over Lp and
A is said to ramify at p. We state the version of the classi�cation theorem for
quaternion algebras over number �elds as it appears in [13, Theorem 7.3.6].

Theorem 2.3. Let A be a quaternion algebra over the number �eld L and let
Ram(A) denote the set of places at which A is rami�ed. Then,

(1) Ram(A) is �nite of even cardinality.
(2) Let A1 and A2 be two quaternion algebras over L. Then A1 ≡ A2 if and

only if Ram(A1) = Ram(A2).
(3) Let S be any �nite set of even cardinality of �nite and nonreal in�nite

places, then there exists a quaternion algebraA over L with Ram(A) = S.

There is a relatively easy way to compute the rami�cation sets. We use the
following description of the rami�cation of a quaternion algebra over a p-adic
�eld which is su�cient for our purposes.

Theorem 2.4 ([13, Theorem 2.6.6.(b)]). Let L be a non-dyadic p-adic �eld, with
ring of integersO andmaximal ideal p. LetA = (a, bL ), where a, b ∈ O. If a ∉ p,
b ∈ p∖p2, then A splits if and only if a is a square modulo p.

2.4. Number �elds and quaternion algebras associated to subgroups of
SL2C. Wenext turn to some background information about subgroups of SL2C.
A subgroup Γ of SL2C is non-elementary if its image in PSL2C has no �nite
orbit in its action onH3 ∪ Ĉ. Given an non-elementary subgroup Γ of SL2C, we
de�ne its trace �eld by kΓ = Q (tr 
|
 ∈ Γ) and quaternion algebra by the
kΓ-span of elements of Γ. That is,

AΓ = {
∑

�nite
�i
i

||||�i ∈ kΓ, 
i ∈ Γ} .

As shown in [13, p.78], we may write a Hilbert symbol for this quaternion alge-
bra as

(
�(g)2 − 4, �(g, ℎ) − 2

kΓ
) ,

where g, ℎ are noncommuting hyperbolic elements of Γ. In fact, this pointwise
construction extends to de�ne a quaternion algebra over the function �eld of
the curve.

Proposition 2.5 ([4, Corollary 2.9]). Let Γ be a �nitely generated group, and C
an irreducible component of the character variety of Γ de�ned over the number
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�eld k. Assume that C contains the character of an irreducible representation,
and let g, ℎ ∈ Γ be two elements such that there exists a representation � with
character �� ∈ C for which the restriction of � to ⟨g, ℎ⟩ is irreducible. Then the
canonical quaternion algebra Ak(C) is described by the Hilbert symbol

(
I2g − 4, I[g,ℎ] − 2

k(C) ) .

For the remainder of the section, let us specialize to the case of K = 74,
Γ = �1(S3∖K), and C the canonical component of the SL2C-character variety
of Γ. Recall that C is cut out by R3 − R2Z2 + 2R2 − 1. We now give an explicit
Hilbert symbol for the canonical quaternion algebra associated to Γ.

Lemma 2.6. The canonical quaternion algebra over k(C) is given by

(Z
2 − 4, R − 2
k(C) ) .

If we use the coordinate r = R − 2, then the Hilbert symbol is given by

(−r
3 + 4r2 − 4r − 1,−r

k(C) ) .

Proof. If we let a, b be the two generators for the knot group, they satisfy the
hypotheses of Proposition 2.5. We then know that our Hilbert symbol is given
by

(
I2a − 4, I[a,b] − 2

k(C) ) .

For the �rst term, we have that I2a − 4 = Z2 − 4.
Then from the description of the canonical component, we have Z2R2 =

R3 + 2R2 − 1. Since multiplying by a square doesn’t a�ect the Hilbert symbol,
we can substitute Z2 − 4 with Z2R2 − 4R2. Then,

Z2R2 − 4R2 = R3 + 2R2 − 1 − 4R2

= R3 − 2R2 − 1.

From Proposition 2.2, we may substitute the relation R = 2 − r to obtain

R3 − 2R2 − 1 = (2 − r)3 − 2(2 − r)2 − 1
= −r3 + 4r2 − 4r − 1.

For the second term, we use the trace relations ([13, p.121]):

Iab = IaIb − Iab−1
= Z2 − R,
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so
I[a,b] = I2a + I2b + I2ab − IaIbIab − 2

= 2Z2 +
(
Z2 − R

)2 − Z2
(
Z2 − R

)
− 2

= 2Z2 − Z2R + R2 − 2.

We can multiply
(
2Z2 − Z2R + R2 − 2

)
− 2 = 2Z2 − Z2R + R2 − 4 through by

R2 and use the relation from the canonical component to obtain

2Z2R2 − Z2R3 + R4 − 4R2 = 2
(
R3 + 2R2 − 1

)
− R

(
R3 + 2R2 − 1

)
+ R4 − 4R2

= 2R3 + 4R2 − 2 − R4 − 2R3 + R + R4 − 4R2

= R − 2.

�

Given the description of the canonical quaternion algebra over the function
�eld k(C), onemay also pass back to the pointwise-de�ned quaternion algebras
by specializing the entires of the canonical quaternion algebra to points on the
curve C. One must pay attention to the �eld over which these quaternion alge-
bras are de�ned however. Fortunately, the trace �eld and the residue �eld (in
the sense of algebraic geometry) coincide.

Lemma 2.7 ([4, Lemma 2.5]). Let C be an irreducible a�ne or projective curve
de�ned overQ. Let C̃ be the smooth projective completion of the normalization of
the reduction of C. For any z ∈ C̃∖ℐ(C̃), let �� ∈ C be the associated character,
i.e., the image of z on C under the rational map C̃ → C. Then

k(z) = Q (tr(�(
))|
 ∈ Γ) = k�.

is the trace �eld of some (hence any) representation � ∈ R(Γ) with character ��.

Remark 2.8. Until Section 6, we can ignore the the normalizations, reductions,
and smooth projective closures ofC because the canonical component is a smooth
a�ne curve. It is not smooth at in�nity, but our primary object of interest, Dehn
surgery points, lie on C.

3. Extending quaternion algebras over function �elds to
Azumaya algebras
In this section we describe some of the algebro-geometric considerations for

our problem. In particular, we explore the problem of extending a quaternion
algebra de�ned over the function �eld of a scheme to an element of the Brauer
group of that scheme. We beginwith general discussion of Brauer groups before
specializing to curves, and eventually to the canonical component coming from
74.
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3.1. Brauer groups of schemes. For any scheme X, one de�nes the Brauer
group by BrX = H2

ét(X,Gm), where Gm is the multiplicative group scheme.
We will have no need for the details of étale cohomology, and the reader may
think of X as a variety in this paper. Given this de�nition, we have an injection
BrX ↪ Br k(X) and exact sequence that describes precisely which elements
of Br k(X) are in the image of this injection. We present it as it appears in [16,
Theorem 6.8.3], though the result itself is due to Grothendieck and Gabber.

Theorem 3.1. Let X be a regular integral Noetherian scheme. Let X(1) be the set
of codimension 1 points of X. Then the sequence

0 → BrX → Br k(X)
res
,,→

⨁

x∈X(1)

H1(k(x), Q∕Z)

is exact with the caveat that one must exclude the p-primary part of all the groups
if X is of dimension ≤ 1 and some k(x) is imperfect of characteristic p, or if X is
of dimension ≥ 2 and some k(x) is of characteristic p.

In the above theorem, k(x) is the residue �eld at the point x, and res denotes
the residuehomomorphism into theGalois cohomology groupH1(k(x), Q∕Z) =
H1(Gal(k(x)sep∕k(x)), Q∕Z). Note that smooth varieties are regular schemes.
We say thatAk(X) “extends" over a point x ∈ X if the residue is trivial at x. This
exact sequence says thatAk(X) extends to an element of BrX if and only if it has
trivial residue at every codimension 1 point x in X. Elements of BrX are called
Azumaya algebras. QuaternionAzumaya algebras are Azumaya algebras that
locally look like quaternion algebras. Elements of Br k(X) that do not belong to
BrX are characterized in terms of their rami�cation sets as the following result
shows.

Theorem 3.2 ([4, Theorem 1.1.(3)]). Let Γ be a �nitely generated group with
SL2C character varietyX(Γ). LetC be a geometrically integral 1-dimensional sub-
variety de�ned overQ that contains the character of an irreducible representation
and write C̃ for the smooth projective closure of the normalization of C. Finally
suppose that Ak(C) is not in the image of the canonical injection Br C̃ → Br k(C).
Then there is no �nite set of places S of Q with the following property: the k(w)-
quaternion algebra A� ⊗k� k(w) is unrami�ed outside the places of k(w) over S
for all but �nitely many smooth points w ∈ C(Q) for which � = �w is absolutely
irreducible.

Remark 3.3. Both the SL2C character variety and canonical component for 74
are de�ned over Q, and the canonical component is geometrically integral be-
causeR3−R2Z2+2R2−1 is irreducible even after passing to an algebraic closure.
The canonical component is singular at in�nity, but—as we will see in the next
section—the obstructions to coming from an Azumaya algebra are residues as-
sociated to smooth a�ne points on the canonical component, so we will often
slightly abuse notation and write C in place of C̃.
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3.2. Quaternion Azumaya algebras on dimension 1 canonical compo-
nents. Now let Γ = �1(S3∖K) forK a hyperbolic knot. Write C for the normal-
ization of a canonical component of SL2C character variety. Since this scheme
has dimension 1 and its residue �elds have characteristic zero, we may ignore
all the caveats in Theorem 3.1. Moreover, on a curve, the codimension 1 points
are just all the points on the curve except for the generic point. The authors of
[4] consider the question of whether the canonical quaternion algebraAk(C) ex-
tends over all ofC. Essentially what they prove is thatAk(C) always extends over
the points that are characters of irreducible representations and over points at
in�nity. In the case of canonical components coming from knots in S3, they
further cast the residue condition at the characters of reducible representations
in terms of the arithmetic of the Alexander polynomial. In particular

De�nition 3.4. Let K be a knot in S3. If for each root z of its Alexander poly-
nomial in a �xed algebraic closure of Q and each square root w of z, we have
an equality of �elds Q(w + w−1) = Q(w), then we say that K (or its Alexander
polynomial) satis�es condition (⋆).

Theorem 3.5 ([4, Theorems 1.2, 1.4]). Let K be a hyperbolic knot with Γ =
�1

(
S3∖K

)
, and suppose that ∆K satis�es condition (⋆). Then,

(1) Ak(C) comes from an Azumaya algebra in Br C̃ where C̃ denotes the nor-
malization of the projective closure of C.

(2) Furthermore, if the canonical component is de�ned over Q, there exists a
�nite set SK of rational primes such that, for any hyperbolic Dehn surgery
N onK with trace �eld kN , the kN-quaternion algebraAN can only ramify
at real places of kN and �nite places lying over primes in SK .

In particular, if condition (⋆) holds for theAlexander polynomial of the knot,
then Ak(C) extends over a smooth, projective model of C and is hence a quater-
nion Azumaya algebra. In view of the above theorem, we say thatK, ∆K(t), and
Ak(C) areAzumaya positive if condition (⋆) holds andAzumaya negative if
not.

Let us comment on the connection between the Alexander polynomial and
the question of extending Ak(C). If z is a root of the Alexander polynomial and
w is a square root of z, then condition (⋆) says that Q(w + w−1) = Q(w). In
fact Q(w + w−1) is the residue �eld for the character of a reducible represen-
tation ��, and Q(w) is the extension of Q(w + w−1) obtained by adjoining the
residue of Ak(C) at ��. So if the �elds are equal, the residue is trivial and the
result follows. To be precise, in the case of a quaternion algebra like Ak(C), its
residue at any point x belongs to the Galois cohomology groupH1(k(x), Z∕2Z).
This group classi�es (at most) quadratic extensions of k(x) and is isomorphic to
k(x)∗∕k(x)∗2 by Kummer theory. What is shown in [4] is that the at most qua-
dratic extension at the character of a reducible representation �� is precisely
Q(w)∕Q(w + w−1), so if there is an equality of these �elds, then the residue
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must be trivial. We note that their method of proof makes use of the tame sym-
bol, which gives a relatively easy way to compute residue homomorphisms in
this context. Given any pair of elements �, � ∈ k(C), the tame symbol of the

quaternion algebra ( �, �
k(C)

) at x ∈ C is (see [4, Theorem 3.1.(8)])

(−1)ordx(�) ordx(�)�ordx(�)∕�ordx(�),

where this is understood as an element of k(x)∗∕k(x)∗2 . The point is that when
the characteristic of k(x) is not 2, then this agrees with the residue. That is, the
residue atx is trivial if and only if this tame symbol represents 1 in k(x)∗∕k(x)∗2 .

In particular, the Brauer class of

(
I2g − 4, I[g,ℎ] − 2

k(C) ) .

can only have nontrivial residue when Ig = ±2 or I[g,ℎ] = 2. We note that
I[g,ℎ] = 2 corresponds to the character of reducible representations, and it turns
out to account for all the nontrivial residues. This is proved in [4, Proposition
4.1].

3.3. Calculations for K = 74. In this subsection our goal is to show how
the residues may be calculated either directly or by using the Alexander poly-
nomial, so let us now specialize for the remainder of the section to K = 74,
Γ = �1(S3∖K), and C the canonical component of the SL2C-character variety
of Γ. Let usmake some easy observations about∆K(t) = 4t2−7t+4, the Alexan-
der polynomial of 74. Its roots are (7±

√
−15)∕8, so the square rootsw of its roots

are ±
√
15
4
± i

4
. From this description it is clear that Q(w) = Q(

√
15, i) for each

value of w. Also note that w−1 = w, so Q(w + w−1) = Q(
√
15) for each value

of w. We will shortly see these �elds emerge in calculating the tame symbol at
characters of reducible representations. For now, note that these calculations
show that 74 does not satisfy condition (⋆).

Our curveC is given by the vanishing ofR3−R2Z2+2R2−1. Aswementioned
at the end of the previous section all nontrivial residues occur at characters
of reducible representations, that is, when R = 2, and at such characters we
compute the residue �eld as

Q[R, Z]∕(R3 − R2Z2 + 2R2 − 1, R − 2) ≅ Q[Z]∕(−4Z2 + 15)
≅ Q[Z]∕(Z2 − 15) ≅ Q(

√
15).

Not coincidentally, the residue �eld here isQ(
√
15). The tame symbol becomes

1

(
√
15
2 )

2

− 4

= −4 = −1 ∈ Q(
√
15)∗∕Q(

√
15)∗

2
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Via Kummer theory, we identifyQ(
√
15)∗∕Q(

√
15)∗

2
with quadratic extensions

ofQ(
√
15). So in our case, the class of−1 corresponds to the quadratic extension

Q(
√
15, i)∕Q(

√
15). In view of the exact sequence in Theorem 3.1, this shows

that Ak(C) is not in the image of BrC → Br k(C). In other words Ak(C) does
not extend to an Azumaya algebra. Then Theorem 3.2 says that the quaternion
algebras obtained by specializing Ak(C) at points in the character variety ram-
ify at primes lying above in�nitely many distinct rational primes. However we
do not know that these representations are geometrically interesting just from
Harari’s work. In fact this setup leaves open the possibility that there exists a �-
nite set SK for 74 as in the statement of Theorem 3.5. Our result shows that even
when one restricts to points corresponding to the characters of (d, 0) hyperbolic
Dehn surgery, there is still no such �nite set SK .

4. Proof of Theorem 1.2
Our goal is to understand the specializations of the canonical quaternion

algebra at Dehn surgery points. We already have a fairly explicit description
by combining Lemma 2.7 with Lemma 2.6. Indeed, we have that specifying a
point (r, Z) gives a �eld k� and a quaternion algebra over that �eld given by the
Hilbert symbol

(−r
3 + 4r2 − 4r − 1,−r

k�
) . (1)

Wenowgive a description of the rami�cation. It is stated purely algebraically,
but in our applications the �eld k will be the trace �eld of (d, 0) surgeries, and
r will be the corresponding coordinate coming from the character variety.

Proposition 4.2. Let r be an algebraic integer, k a�nite extension ofQ containing
r, and O the ring of integers of k. Let Nk∕Q(r) = ±pd11 ⋅ ⋅ ⋅ pdmm be the prime
factorization of the �eld norm of r in k∕Q. For each pi ≡ 3mod 4 with di odd,
there is a prime ideal pi ⊆ O containing r and lying above pi such that

(−r
3 + 4r2 − 4r − 1,−r

kpi
)

is a division algebra, where kpi denotes k completed at pi .

The above lemma is purely algebraic, but we will apply it when k is the trace
�eld of a (d, 0) surgery. In this setting r will specialize to the algebraic number
appearing in the lower left entry of �(b) (with the notation of Subsection 2.1)
at the character of a Dehn surgery. To apply this proposition, we write rd for
a root of the polynomial obtained by specializing the character variety (with
coordinates r and Z) to Z = 2 cos(2�∕d). Write qd(r) for this polynomial. Note
that (d, 0) hyperbolic Dehn surgery points are obtained by this specialization
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so that Q(rd, �d + �−1d ) = kd is the trace �eld at the (d, 0) surgery. We have

qd(r) = r3 +
(
6 − �2d − �−2d

)
r2 +

(
12 − 4�2d − 4�−2d

)
r −

(
4
(
�2d + �−2d

)
− 7

)
.
(3)

In this notation rd is a root of qd and is an algebraic integer. Of course, if qd(r)
is not irreducible, then rd is not well-de�ned. Even when qd(r) is irreducible,
rd is only de�ned up to Galois conjugation; however, the rami�ed residue char-
acteristics will not depend on the choice of Galois conjugate. For irreducibility
we have

Lemma 4.4. Let �d be a primitive dth root of unity for d ∈ Z≥1 odd. The polyno-
mial qd(r) ∈ Q

(
�d + �−1d

)
[r] is irreducible.

We prove this lemma using a result of [3] on real cyclotomic integers. Irre-
duciblity also allows us to compute the norm of rd. In particular, if we let kd be
the �eld generated by rd and �d + �−1d (so that kd is the trace �eld of the (d, 0)
surgery), then the relative �eld norm Nkd∕Q(�d+�−1d )(rd) is just the negative of
the constant term of qd(r), namely cd ∶= 4

(
�2d + �−2d

)
−7. So then the absolute

�eld norm of rd is equal to NQ(�d+�−1d )∕Q(cd). Then to apply Proposition 4.2, we
want to �nd d such that the factorization of NQ(�d+�−1d )∕Q(cd) = Nkd∕Q(rd) con-
tains prime divisors congruent to 3 modulo 4 an odd number of times. Such
prime divisors imply the existence of a prime above them at which the canon-
ical quaternion algebra is rami�ed by Proposition 4.2. We summarize this as

Proposition 4.5. Let d ≥ 3 be an odd positive integer. Let kd and Ad be respec-
tively the trace �eld and the canonical quaternion algebra associated to the (d, 0)
surgery. Let p be a positive rational prime such that

(1) p ≡ 3mod 4 and
(2) p dividesNQ(�d+�−1d )∕Q (cd) an odd number of times,

then there is a �nite place p of kd lying above p such that Ad is rami�ed at p.
To apply this to proving Theorem 1.2, we prove that in�nitely many rational

primes p satisfy the hypotheses of Proposition 4.5. In particular, we prove

Proposition 4.6. LetU be the set of positive rational primes with
(1) If p ∈ U, then p ≡ 3mod 4,
(2) If p ∈ U, then p divides Nkd∕Q (rd) for some d ∈ Z≥3 an odd number of

times.
ThenU is in�nite.

Then Theorem 1.2 follows by noting that U ⊆ S where U is as in the state-
ment of Proposition 4.6 and S is as in the statement of Theorem 1.2.

5. Proofs of lemmas and propositions
In this section we record the proofs of the lemmas appearing in the proof of

Theorem 1.2
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5.1. Irreducibility. First we prove Lemma 4.4. The key ingredient is the fol-
lowing result of [3].

Theorem 5.1 ([3, Theorem 1.0.5]). Let � ∈ Q(�) be a real algebraic integer
in some cyclotomic extension of the rationals. Let � denote the largest absolute
value of all conjugates of �. If � ≤ 2, then � = 2 cos (�∕n) for some integer n.
If 2 ≤ � < 76∕33, then � is one of the following �ve numbers:

√
7 +

√
3

2 = 2.188901059… ,
√
5 = 2.236067977… ,

1 + 2 cos (2�∕7) = 2.246979602… ,

1 +
√
5

√
2

= 2 cos (�∕20) + 2 cos (9�∕20) = 2.288245611… ,

1 +
√
13

2 = 2.302775637…

To apply this result, it will be easier to work with pd(R) ≝ qd(R − 2), so that

pd(R) = R3 − R2
(
�d + �−1d

)2 + 2R2 − 1
= R3 −

(
�2d + �−2d

)
R2 − 1.

(2)

The basic idea is to prove that any root of pn(R) must lie in an interval where
there are only �nitely many cyclotomic integers.

Lemma 5.3. Let a ∈ [−2, 2]. Then the absolute value of the largest real root of
R3 − aR2 − 1 is less than 2.21.

Proof. Figure 1 is a graph of the absolute value of the largest real root of x3 −
ax2 − 1 pictured as a function of a for a ∈ [−2, 2].

The right end point is the real root of R3 − 2R2 − 1 and is approximately
2.20556943040059. �

Remark 5.4. The discontinuity in Figure 1 comes from the fact that the discrim-
inant is zero for a ≈ −1.88988. For larger values of a there is exactly one real
root, and for smaller values there are three real roots.

Now we may prove Lemma 4.4.

Proof of Lemma 4.4. Since pn(R) is of degree 3, it su�ces to show that pn(R)
has no root in Q

(
�n + �−1n

)
. Suppose that pn(R) has a root �. Then after Ga-

lois conjugating pn(R), we may assume it is the largest among its Galois con-
jugates. That is, � = � . Indeed, from Figure 1, it is clear that to obtain a
root that is largest in complex absolute value among its Galois conjugates, we
must choose the largest Galois conjugate of �2n + �−2n . This Galois conjugate is
the real number 2 cos (4�∕n). By Lemma 5.3 and [3, Theorem 1.0.5], we then
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Figure 1. The largest real root of R3−aR2−1 as a function of
a ∈ [−2, 2].

have that � =
√
7 +

√
3

2 . However, for n ≥ 45, the largest real root of (the Ga-

lois conjugates of) pn(R) is greater than
√
7 +

√
3

2 . For n = 43, the largest real
root is approximately 2.18763964834393, which in particular is smaller than√
7 +

√
3

2 .
For n ≤ 41, we may use a software package to verify that each of those poly-

nomials are irreducible. �

Remark 5.5. We have p4(R) = R3 +2R2 −1 = (R + 1)(R2 +R+ 1), and p8(R) =
R3 − 1 = (R − 1)(R2 + R + 1), but pn(R) is in fact irreducible for all other even
values of n.

5.2. Rami�cation. Next we establish the rami�cation behavior of the canon-
ical quaternion algebra that we will use to produce the in�nite set of primes in
the statement of Theorem 1.2. We now prove Proposition 4.2.

Proof of Proposition 4.2. To �x notation, let p be a rational prime appear-
ing in the factorization of Nk∕Q(r) to an odd power, d. Suppose also that p ≡
3mod 4. Then we know that there are prime ideals p1,⋯ , pm′ of O that r be-
longs to. In fact, for some such prime ideal pi, we have that r belongs to pgi
but not pg+1i for some odd integer g. To see this, �rst write (r) ⊆ pg11 ⋯pgm′m′ ,
where each pi lies above p, pi ≠ pj if i ≠ j, and each power gi is maximal.
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Furthermore suppose that every prime ideal lying above p and containing r
appears in this factorization. Then we take the ideal norm N

(
pg11 ⋯pgm′m′

)
=

pg1f1⋯pgm′fm′ = p
∑m′

i=1 gifi = pd, where fi is the residue class degree. If each
gifi were even, then

∑m′

i=1 gifi would be an even integer, but d is odd, so there is
some i with gi and fi both odd. Then, wemay assume after scaling r by squares
that r ∈ p∖p2 where p has odd residue class degree f.

Now applying Theorem 2.4, we have that

(−r
3 + 4r2 − 4r − 1,−r

kp
)

is rami�ed if and only if −r3 + 4r2 − 4r − 1 is not a square modulo p. Since
r ∈ p, this is equivalent to asking whether −1 is a square modulo p. Indeed,
−1 is not a square in the �nite �eld Fpf if and only if p ≡ 3mod 4 and f is odd.
This can be seen via Jacobi symbols, for example. �

Recall that Lemma 2.6 gives a description of the quaternion algebra over the
function �eld of the canonical component. Specializing r to rd and taking the
ground �eld to be the trace �eld of the (d, 0) surgery, we obtain

(
−r3d + 4r2d − 4rd − 1,−rd

kd
) .

Moreover, NQ(�d+�−1d )∕Q (cd) is the norm of rd. So Proposition 4.2 says that the
quaternion algebra associated to (d, 0) hyperbolic Dehn surgery is rami�ed at
someprime lying above any rational primedivisor ofNQ(�d+�−1d )∕Q(cd) = Nkd∕Q(rd)
that appears to an odd power and is congruent to 3mod 4. This observation
proves Proposition 4.5. Then we are left to prove that we can actually �nd in-
�nitely many distinct such rational primes as d varies. This is the content of
Proposition 4.6, which we now turn to proving.

We wish to understand when NQ(�d+�−1d )∕Q (cd) has a prime divisor p that
is congruent to 3mod 4 and divides NQ(�d+�−1d )∕Q (cd) a strictly odd number of
times. In view of Proposition 4.5, this will say that p ∈ T where T is as in the
statement of Theorem 1.2. We will accomplish this by showing that for certain
d that

|||||NQ(�d+�−1d )∕Q (cd)
||||| ≡ 3mod 4. The lemma we now prove basically says

that NQ(�d+�−1d )∕Q (cd) is always 1mod 4.

Lemma 5.6. Let d ≥ 3 be an odd positive integer, �d a primitive dth root of unity,
and cd = 4(�2d + �−2d ) − 7. ThenNQ(�d+�−1d )∕Q (cd) ≡ 1mod 4.

Proof. Observe that cd ≡ 1mod 4, so the product over the Galois conjugates is
also 1mod 4. �

Then, if we want the absolute value of NQ(�d+�−1d )∕Q (cd) to be 3mod 4, we
need the norm itself to be negative. However, determining exactly which d
make NQ(�d+�−1d )∕Q (cd) negative turns out to be somewhat di�cult.
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5.3. The sign of the norm. We start with a lemma that is visibly not about
signs, but will later give us some information.

Lemma 5.7. Let � = i +
√
15

4 . Then

||||||||||

∏

d∣n
NQ(�d+�−1d )∕Q (cd)

||||||||||
= ||||2

n+1 Im (�n)|||| .

Proof. We prove that

⎛
⎜
⎝

∏

d∣n
NQ(�d+�−1d )∕Q (cd)

⎞
⎟
⎠

2

=
(
2n+1 Im (�n)

)2 .

Consider the function f ∶ Z≥1 → Z≥0 de�ned by f(n)2 = resx(xn − 1, 4x4 −
7x2 + 4). It’s not completely obvious that f(n)2 is a square integer. For now,
however, note that � is a root of 4x4 − 7x2 + 4. The other roots are −� and ±�.
By the multiplicative property of the resultant we have

f(n)2 = resx(xn − 1, 4(x − �)(x + �)(x − �)(x + �))

= resx(xn − 1, 2(x − �)(x + �) resx(xn − 1, 2(x + �)(x − �)).

If we write g(n) = resx
(
xn − 1, 2(x − �)(x + �)

)
and 
 = 2�, we may compute

g(n) = resx
(
xn − 1, 2(x − �)(x + �)

)

= 2n (�n − 1) (−�
n
− 1)

= 2n (�
n
− �n)

= 
n − 
n.

Note that since 
 is integral over Z (its minimal polynomial is x4 − 7x2 + 16),
the above calculation shows that g(n) is as well. Moreover, the �xed �eld of the
automorphism Q(�) → Q(�) determined by 
 ↦ −
 is Q(i). The easiest way
to see this is to note that this automorphism �xes i and takes

√
15 to −

√
15. It

follows that g(n) ∈ Z[i]. We can also calculate that

g(n) = 2n (�
n
− �n) = −2n+1 Im(�n)i.

It then follows that 2n+1 Im(�n) ∈ Z. On the hand, we can compute that the
other factor of the original resultant (that is, of f(n)2) is

resx
(
xn − 1, 2(x + �)(x − �)

)
= 2n(−�n − 1)(�

n
− 1) = 2n+1 Im(�n)i.
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It follows that f(n)2 = 4n+1 Im(�n)2 =
(
2n+1 Im(�n)

)2
. Since 2n+1 Im(�n) ∈ Z,

f(n)2 is in fact a positive square integer, and its positive square root is given by
±2n+1 Im(�n).

Writing Φd(x) for the dth cyclotomic polynomial, we have that xn − 1 =∏
d∣n Φd(x), so

resx
(
xn − 1, 4x4 − 7x2 + 4

)
=

∏

d∣n
resx

(
Φd(x), 4x4 − 7x2 + 4

)

=
∏

d∣n
NQ(�d)∕Q

(
4�4d − 7�2d + 4

)

Now consider cd �rst as an element of Q(�d). However note that �2dcd = 4�4d −
7�2d + 4, and NQ(�d)∕Q (�d) = 1, so NQ(�d)∕Q (cd) = NQ(�d)∕Q

(
4�4d − 7�2d + 4

)
.

ButNQ(�d)∕Q (cd) =
(
NQ(�d+�−1d )∕Q (cd)

)2
, sinceQ(�d) is a quadratic extension of

Q(�d + �−1d ). We summarize this as

resx
(
xn − 1, 4x4 − 7x2 + 4

)
=

⎛
⎜
⎝

∏

d∣n
NQ(�d+�−1d )∕Q (cd)

⎞
⎟
⎠

2

,

so

f(n)2 =
⎛
⎜
⎝

∏

d∣n
NQ(�d+�−1d )∕Q (cd)

⎞
⎟
⎠

2

.

�

Next we determine the residue class of 2n+1 Im (�n) for odd n.

Lemma 5.8. For all n ∈ Z≥1 odd, we have

2n+1 Im(�n) ≡ {1mod 4 if n ≡ 1mod 4
3mod 4 if n ≡ 3mod 4.

Proof. As in the proof of Lemma 5.7, if we write 
 = 2�, then 
 is an algebraic
integer, and 2n+1 Im(�n)i = 
n − 
n. Then, we have i

(

n − 
n

)
= 2n+1 Im(�n).

We may compute that

i
(

n − 
n

)
≡ {1mod 4 if n ≡ 1mod 4

3mod 4 if n ≡ 3mod 4.

It’s worth pointing out that this reduction is OK ↠ OK∕4OK where OK is the
ring of integers of the �eld K = Q(
). �

Combining Lemmas 5.7, 5.8, and 5.6 gives
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Lemma 5.9. Let n ≥ 5 be a positive integer such that n ≡ 1mod 4 and � =√
15 + i
4 . Then

∏

d∣n
NQ(�d+�−1d )∕Q (cd) = 2n+1 Im (�n) . (10)

Proof. By Lemma 5.7, we have an equality of absolute values. So we just have
to check that the signs are equal. It su�ces to check that they are both congru-
ent to 1modulo 4. Indeed, eachNQ(�d+�−1d )∕Q(cd) ≡ 1mod 4 by Lemma 5.6, and
when n ≡ 1mod 4, so is 2n+1 Im(�n) by Lemma 5.8. �

We are left to compute the sign of Im(�n) for integers n. Since � is on the unit
circle in the complex plane, we may write � = e2�ix so that �n = e2�inx. Then
Im(�n) < 0 if and only if nx2� is greater than 1∕2mod 1. The following result of
Furstenberg allows us to easily prove the existence of such n. Before stating it,
we recall that a multiplicative semigroup of the integers is called lacunary if it
consists of powers of a single integer and non-lacunary otherwise.

Theorem 5.11 ([9, Theorem IV.1]). If Σ is a non-lacunary semigroup of integers
and � is irrational, then Σ� is dense modulo 1.

We remark that the non-lacunary semigroups we consider are those of the
form

{lr11 l
r2
2 ⋯lrmm |li prime, li ≡ 1mod 4}

withm ≥ 2.

5.4. Proof of Proposition 4.6. Let us brie�y say where we are going. Recall
our notation from Section 4 that rd is the coordinate appearing in the Hilbert
symbol for the (d, 0) hyperbolic Dehn surgery. Proposition 4.5 reduced the ram-
i�cation of the quaternion algebra to �nding rational prime divisors on the
norm of rd, and it is technically simpler to work with cd = 4(�2d + �−2d ) − 7,
which has the property thatNQ(�d+�−1d )∕Q (cd) = Nkd∕Q(rd). Using Furstenberg’s
Theorem 5.11, we wish to construct a sequence (di) such that the set of residue
characteristics of rami�ed places of the (di, 0) surgeries form an in�nite set.
In view of Proposition 4.5, this amounts to �nding in�nitely many distinct ra-
tional prime divisors of NQ(�d+�−1d )∕Q (cd) = Nkd∕Q(rd) which are equivalent to
3mod 4 and appear to an odd power in the prime factorization of the norm.
Such a sequence will be constructed in Lemma 5.17.

Our �rst goal is to prove

Lemma 5.12. Let p be a rational prime. Then, p divides NQ(�d+�−1d )∕Q (cd) =
Nkd∕Q(rd) for only �nitely many values of d coprime to p.

Let us recall a fact from basic number theory. See, e.g., [14, Proposition
1.10.3].
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Proposition 5.13. Let p be a rational prime and d an integer such that p ∤ d.
Let Fp(�d) be the �eld obtained by adjoining a primitive dth root of unity to the
�nite �eld with p elements, Fp. Then this extension is cyclic of degree equal to the
multiplicative order of pmodd.

The next lemma follows from well-known facts, but we include a proof for
completeness.

Lemma 5.14. Let d ∈ Z≥3 be odd and �d a primitive dth root of unity. Then the
prime divisors of NQ(�d)∕Q(cd) not dividing d have multiplicative order modulo d
equal to 1 or 2.

Proof. Let p be a prime ideal of Q(�d) lying above the rational prime p such
that cd = 4�4d − 7�2d + 4 belongs to p. Note that since d is odd, cd is Galois
conjugate in Q(�d)∕Q to 4�2d − 7�d + 4, so it su�ces to show the lemma for
this latter algebraic integer. Also suppose that p ∤ d. Consider the reduction
map Z[�d] → Z[�d]∕p ≅ Fp(�d). Note that this reduction takes dth roots of
unity of Z[�d] bijectively onto dth roots of unity of Fp(�d) hence primitive dth
roots of unity remain primitive. By assumption, 4�2d − 7�d + 4 is in the kernel
of this map. Henceforth we write �d for the image of �d ∈ Z(�d) under this
reduction map. That is, 4�2d−7�d+4 = 0 in Fp(�d). This implies that {1, �d, �2d}
is linearly dependent overFp. Since {1, �d, �2d, … , �

m−1
d } is anFp-basis forFp(�d)

where m is the degree of the extension Fp(�d)∕Fp, we have that m ≤ 2. Then
by Proposition 5.13, the multiplicative order of pmodd is either 1 or 2. �

We may now easily prove Lemma 5.12.

Proof of Lemma 5.12. Any prime divisor p ∈ Z≥2 of NQ(�d+�−1d )(cd) is either
divides d itself or has multiplicative order equal to 1 or 2modulo d. Any prime
p hasmultiplicative ordermodulo d equal to 1 or 2 for only �nitelymany values
of d (e.g. take d > p2). We conclude that a given prime p dividesNQ(�d+�−1d )(cd)
for �nitely many values of d. �

Remark 5.15. The sequence of (d, 0) surgeries we construct have d only divis-
ible by primes congruent to 1mod 4, but the rami�ed primes we �nd are all
−1mod 4, so there is no issue of �nding the same prime in�nitely often as a
divisor of the surgery coe�cients.

Lemma 5.16. Let Σ be a non-lacunary semigroup of integers of the form

{lr11 l
r2
2 ⋯lrmm |li prime, li ≡ 1mod 4}.

Then there exists a sequence (ni)
∞
i=1 of positive integers such that

(1) Each ni is divisible only by the primes {lj} appearing in Σ,
(2) If j > i, ni ∣ nj .
(3) If i ≠ j, then ni ≠ nj ,
(4) If i is even, then 2ni+1 Im (�ni ) > 0, and
(5) If i is odd, then 2ni+1 Im (�ni ) < 0.
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That the sequence is built out of powers of primes from Σ guarantees that
each ni ≡ 1mod 4, and in fact each divisor of ni must also be congruent to
1mod 4.
Proof. We construct such a sequence by repeatedly applying Theorem 5.11.
Let x1 be de�ned by e2�ix1 = �. Note that x1 is irrational (in fact transcendental
by Gelfond-Schneider). Let n1 be any element of Σ such that n1x1 > 1∕2mod 1.
This implies that 2n1+1 Im(�n1) < 0. To construct n2, set x2 = n1x1 so that
e2�ix2 = �n1 . Since x2 is also irrational, Theorem 5.11 applies to Σx2 to prove
an m2 ∈ Σ such that m2x2 < 1∕2mod 1. Set n2 = m2n1. Note that n1 ∣ n2.
Proceeding in this manner constructs the desired sequence. �

We now extract a sequence (di)∞i=1 where di ∣ ni and di satis�es the hypothe-
ses of Proposition 4.2.

Lemma 5.17. There exists a sequence (di)
∞
i=1 of positive integers such that

(1) If i ≠ j, then di ≠ dj .

(2) For each i,
|||||||
NQ

(
�di+�

−1
di

)
∕Q

(
cdi

)|||||||
≡ 3mod 4.

Proof. We use the sequence (ni)
∞
i=1 constructed in Lemma 5.16. Let us �rst

construct d1. We have that

2n1+1 Im (�n1) =
∏

d∣n1
NQ(�d+�−1d )∕Q (cd) ,

by Lemma 5.9 and the fact that the li appearing in the de�nition of Σ in Lemma
5.16 are all 1mod 4. Since ∏

d∣n1
NQ(�d+�−1d )∕Q (cd) is negative by construction, we

must have that some NQ(�d+�−1d )∕Q (cd) is negative. Since NQ(�d+�−1d )∕Q (cd) ≡
1mod 4, by Lemma 5.6, we have that

|||||NQ(�d+�−1d )∕Q (cd)
||||| ≡ 3mod 4. Set this d

equal to d1. To construct d2, we �rst consider n2. We have that
∏

d∣n1
NQ(�d+�−1d )∕Q (cd)

|||||||
∏

d∣n2
NQ(�d+�−1d )∕Q (cd) ,

because n1 ∣ n2. However
∏
d∣n2

NQ(�d+�−1d )∕Q (cd) is positive, so there must be

some d2 such that d2 ∤ n1 but d2 ∣ n2 with NQ
(
�di+�

−1
di

)
∕Q

(
cdi

)
negative. Then,

as before,
|||||||
NQ

(
�d2+�

−1
d2

)
∕Q

(
cd2

)|||||||
≡ 3mod 4. Proceeding in this manner we obtain

the sequence. �

Now Proposition 4.6 can be proved easily.

Proof of Proposition 4.6. We consider the sequence (di)∞i=1 of Lemma 5.17.

For each such di, we have
||||||
NQ(�di+�

−1
di
)∕Q(cdi )

||||||
≡ 3mod 4, so there is some prime

p with p ≡ 3mod 4 that divides
||||||
NQ(�di+�

−1
di
)∕Q(cdi )

||||||
an odd number of times.
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By Lemma 5.12, any such prime p divides
||||||
NQ(�di+�

−1
di
)∕Q(cdi )

||||||
for only �nitely

many i. Since (di)∞i=1 is an in�nite sequence, we conclude that there must be
in�nitely many distinct rational primes that are congruent to 3 modulo 4 that
divide

|||||NQ(�d+�−1d )∕Q(cd)
||||| an odd number of times where d ranges over the odd

positive integers. Recalling that NQ(�d+�−1d )∕Q (cd) = Nkd∕Q(rd) completes the
proof. �

6. Torsion points
Recall from the introduction that E is the elliptic curve de�ned by y2 = x3+

2x2 − 1. We use the traditional variables x and y for an elliptic curve, and one
may specify the birational map from the canonical component which is cut out
by R3 + (2 − Z2)R2 − 1 = 0 either by the map C ⤏ E, (R, Z) ↦ (R, RZ) or by
the coordinate change R = x, Z = y

x . Theorem 1.3 follows from the following
proposition.

Proposition 6.1. Let E be the elliptic curve de�ned by the Weierstrass equation
y2 = x3 + 2x2 − 1. Then, excepting the 2-torsion points, every torsion point of E
has x-coordinate equal to an algebraic integer with positive 2-adic valuation.

We now introduce the relevant topological background material to explain
how Proposition 6.1 implies Theorem 1.3. We begin by �xing some notation
and recalling results of Hatcher and Hatcher-Thurston.

Theorem 6.2 ([12], [11]). Let K be a hyperbolic two-bridge knot. Then
(1) E(K) has no closed, embedded, essential surface.
(2) All but �nitely many Dehn surgeries are non-Haken and hyperbolic.

Asnoted in the introduction, the knot 74 is a two-bridge knot, so Theorem6.2
implies that the exterior of the knot has no closed, embedded essential surface
and all but �nitely many of its surgeries are hyperbolic and non-Haken. Bass’s
theorem (see [1] or [13, Section 5.2]) implies that if N = H3∕Γ is a hyperbolic
surgery on 74, then the traces of Γ are algebraic integers. In particular at points
corresponding the character of Dehn surgeries, the trace of a meridian (with
�nitely many exceptions) is an algebraic integer. However, when Z is integral,
the relation R3 + (2 − Z2)R2 − 1 = 0 implies that R is a unit. Then Proposition
6.1 says that R = x is never a unit when R is the �rst coordinate of a torsion
point on X.

Let us brie�y treat the �nitelymany exceptions. There are 3 boundary slopes:
0∕1,−8∕1, and−14∕1 (see [8]). The �rst is not hyperbolic; the second has inte-
gral traces as one can check in Snap; the third does have non-integral traces, so
we must check it directly. One may compute that R has negative 2-adic valua-
tion at this point and hence Proposition 6.1 also implies that this point cannot
be torsion.



ARITHMETIC OF THE CANONICAL COMPONENT OF THE KNOT 74 1515

Finally, the 2-torsion points are not covered by 6.1. The 1-torsion is just the
point at in�nity, and is in particular not in the image of the birational map de-
�ned above. The nontrivial 2-torsion consists of three points. The y coordinate
of each of them is 0 and the three x-coordinates are the roots of x3+2x2−1. All
of these roots are real, which implies that the trace �eld associated to the rep-
resentation is real, but every �nite covolume Kleinian group has nonreal trace
�eld, so no 2-torsion can be a hyperbolic Dehn surgery point.

6.1. Division polynomials for elliptic curves. We now recall some basic
facts and �x notation about the division polynomials associated to an elliptic
curve. These polynomials will be the main tool in the proof of Proposition 6.1.
In this section we use the variables x and y to be consistent with the literature
on elliptic curves, but one may convert back to traces on the canonical compo-
nent with the relations R = x and Z = y

x .

De�nition 6.3. For an elliptic curve E de�ned by the Weierstrass equation
y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, we de�ne the following standard
quantities

b2 = a21 + 4a2,
b4 = 2a4 + a1a3,
b6 = a23 + 4a6,
b8 = a21a6 + 4a2a6 − a1a3a4 + a2a23 − a24,
c4 = b22 − 24b4,
c6 = −b32 + 36b2b4 − 216b6,
∆ = −b2b8 − 8b34 − 27b26 + 9b2b4b6,
j = c34∕∆.

Remark 6.4. For the curve in Proposition 6.1, we have

a1 = 0, b2 = 8, c4 = 64, ∆ = 80,

a2 = 2, b4 = 0, c6 = 352, j = 16384
5 = 214

5 ,
a3 = 0, b6 = −4
a4 = 0, b8 = −8
a5 = −1.

De�nition 6.5. For an elliptic curve E de�ned by the Weierstrass equation
y2+a1xy +a3y = x3+a2x2+a4x +a6, we de�ne two families of polynomials



1516 NICHOLAS ROUSE

 n(x, y) and fn(x) by
 1 = 1,
 2 = 2y + a1x + a3,
 3 = 3x4 + b2x3 + 3b4x2 + 3b6x + b8.
 4 =  2(x, y)⋅(

2x6 + b2x5 + 5b4x4 + 10b6x3 + 10b8x2 + (b2b8 − b4b6) x + (b4b8 − b26)
)
,

and then recursively via

 2m+1 =  m+2 3m −  m−1 3m+1, (6)

 2 2m =  2m−1 m m+2 −  m−2 m 2m+1. (7)

We note that  n(x, y) is a polynomial in x when n is odd, and—using the rela-
tion (2y + a1x + a3)2 = 4x3 + b2x2 + 2b4x + b6— (2y + a1x + a3) n(x, y) =
 2(x, y) n(x, y) is a polynomial in x when n is even, so we may further de�ne

fn(x) = { n(x, y) n odd,
 2(x, y) n(x, y) n even.

These polynomials are known as the division polynomials.

Remark 6.8. The notation and terminology surrounding the division polyno-
mials is not entirely standard in the literature. The de�nition for  n above is
consistent with [18, Exercise 3.7]. The de�nition offn agreeswith theGP/PARI
([15]) function elldivpol so that fn(x) is the output of elldivpol(E,n).

Remark 6.9. The roots of fn(x) are precisely the x-coordinates of the nontrivial
n-torsion points.

Proposition 6.10. Let fn be as above. Then fn satis�es the following recursive
relations.

(1) If n = 2m, then

f2f2m = fm
(
f2m−1fm+2 − fm−2f2m+1

)
.

(2) If n ≡ 1mod 4 and we write n = 2m + 1, then
f22f2m+1 = fm+2f3m − f22fm−1f

3
m+1.

(3) If n ≡ 3mod 4, and we write n = 2m + 1, then
f22f2m+1 = f22fm+2f

3
m − fm−1f3m+1.

Proof. These all follow from the recursive formulas for  n, but we include a
proof since we were unable to �nd them in the literature.

We have to treat each residue class modulo 4 separately. So �rst suppose that
n ≡ 0mod 4. That is, n = 2m for m an even number. Using Equation 7, we
have

fn(x) =  2 2m
=  m(f2m−1 m+2 −  m−2f2m+1).
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Note that f2 =  22 , so

f2f2m =  2 m(f2m−1 2 m+2 −  2 m−2f2m+1)
= fm(f2m−1fm+2 − fm−2f2m+1).

Now say that n ≡ 2mod 4 so that n − 2m for m an odd number. Using
Equation 7 again, we obtain

fn = f2m =  2 2m
= fm( 2m−1fm+2 − fm−2 2m+1).

Then we �nd
f2f2m =  22f2m

= fm
(
( 2 m−1)

2 fm+2 − fm−2 ( 2 m+1)
2)

= fm
(
f2m−1fm+2 − fm−2f2m+1

)
.

Next we let n ≡ 1mod 4, so n = 2m + 1 form even. Using Equation 6 gives

f22fn =  42f2m+1
= ( 2 m+2)( 2 m)3 − f22fm−1f

3
m+1

= fm+2f3m − f22fm−1f
3
m+1.

Finally, we treat n ≡ 3 mod 4. That is, n = 2m + 1 form odd. Again using
Equation 6 yields

f2m+1 = fm+2f3m −  m−1 3m+1,
so we have

f22f2m+1 =  42f2m+1
= f22fm+2f

3
m − ( 2 m−1)( 2 m+1)3

= f22fm+1f
3
m − fm−1f3m+1.

�

6.2. Proof of Proposition 6.1. Let us now specialize to the case where E is
the elliptic curve de�ned by the Weierstrass equation y2 = x3 + 2x2 − 1. For
reference we list the �rst four division polynomials for this particular elliptic
curve.

f1(x) = 1,
f2(x) = 4x3 + 8x2 − 4,
f3(x) = 3x4 + 8x3 − 12x − 8,
f4(x) = 8x9 + 48x8 + 64x7 − 168x6 − 672x5 − 896x4

− 416x3 + 192x2 + 256x + 64.

Lemma 6.11. If 2 ∣ n, then f2 ∣ fn.
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Proof. Note that f2(x) = 4(x+1)(x2+x−1) and that x+1 and x2+x−1 have
roots equal to the x-coordinates of the nontrivial 2-torsion. Since E[2] ⊆ E[n]
whenever 2 ∣ n, we have that (x + 1)(x2+x−1) ∣ fn, so it su�ces to show that
4 ∣ fn. Let us write n = 2m and induct onm. The case ofm = 1 is trivial, and
we use the recursive formula

f2f2m = fm
(
f2m−1fm+2 − fm−2f2m+1

)

for the inductive step. Since 4 ∣ f2, but 8 ∤ f2, it su�ces to show that 16 ∣
fm

(
f2m−1fm+2 − fm−2f2m+1

)
. First suppose that m is even, so that m,m + 2,

andm−2 are all even. Then inductively, 4 ∣ fm, fm+2, fm−2, which implies the
result. Now ifm is odd,m+ 1 andm− 1 are even, so 16 divides both f2m=1 and
f2m+1. �

The main technical proposition is as follows.

Proposition 6.12. Let fn be as above.
(1)

deg(fn) = {n
2∕2 + 1 n even,
(n2 − 1)∕2 n odd.

(2) The leading coe�cient of fn(x) is 2n when n is even and n when n is odd.

(3) If n is odd, then fn(x) ≡ ±x
n2−1
2 mod 4.

(4) Let n be even and k equal to the 2-adic valuation of n. Then 2k+1 ∣ fn(x)
in Z[x], and 1

2k+1
fn(x) ≡ (x + 1)(x2 + x + 1)(xn2∕2−2)mod 2.

Before embarking on the proof, let us point out that Proposition 6.12 (3) and
6.12 (4) imply that, excepting the factors coming from the 1 and 2-torsion, the
constant term of every irreducible factor of fn(x) has a factor of 2, even after
dividing out by the leading coe�cient of fn(x). This is equivalent to the root of
these irreducible factors having positive 2-adic valuation. Proposition 6.1 and
hence Theorem 1.3 then follow.

Proof of Proposition 6.12. We prove all parts by induction on n. The base
cases are easy to check, so assume each statement is true for all indices less
than or equal to n − 1.

We �rst prove Proposition 6.12 (1). First suppose that n is even and write
n = 2m. We then have

f2f2m = fm
(
f2m−1fm+2 − fm−2f2m+1

)
.

Here we have to break into further cases where m is even or odd. Let us treat
m even �rst. Then our inductive hypothesis implies that deg(fm) = m2∕2 + 1,
deg(fm+2) = (m + 2)2∕2 + 1, and deg(fm−2) = (m − 2)2∕2 + 1. Moreover,
m ± 1 is odd, so deg(f2m+1) = m2 + 2m and deg(f2m−1) = m2 − 2m. Hence,

deg(f2m−1fm+2) = deg(fm−2f2m+1) =
3m2 + 6

2 . Our inductive hypothesis (in
particular Proposition 6.12 (2)) implies that the leading coe�cient of f2m−1fm+2
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is equal to 2(m + 2)(m − 1)2 = 2m3 − 6m + 4 whereas the leading coe�cient

of fm−2f2m+1 is 2(m − 2)(m + 1)2 = 2m3 − 6m − 4, so coe�cient of x
3m2+6

2 in
f2m−1fm+2 − fm−2f2m+1 is 8. In particular it’s nonzero so that deg(f2m−1fm+2 −

fm−2f2m+1) =
3m2 + 6

2 . It follows that deg(f2f2m) = m2∕2 + 1 + 3m2 + 6
2 =

2m2 + 4. Noting that deg(f2) = 3 gives that deg(f2m) = deg(fn) = 2m2 + 1 =
n2∕2 + 1.

Now suppose that m is odd. We still have the same recursive relation be-
cause n is even. However since m is odd, we now have deg(fm) = (m2 −
1)∕2, deg(f2m−1) = m2 − 2m + 3, deg(fm+2) = (m2 + 4m + 3)∕2, so then
deg(f2m−1fm+2) =

3
2
(m2 + 3). Similarly, deg(fm−2) = (m2 − 4m + 3)∕2 and

deg(f2m+1) = m2 + 2m + 3 together imply deg(fm−2f2m+1) =
3
2
(m2 + 3) as

well. As before, one can compute using Proposition 6.12 (2) of the inductive

hypothesis that the coe�cient of x
3
2
(m2+3) is nonzero (in fact equal to 16), so

deg(f2m−1fm+2−fm−2f
2
m+1) =

3
2
(m2+3). Thenwe have deg(f2f2m) = 2m2+4,

so deg(f2m) = deg(fn) = 2m2 + 1 = n2∕2 + 1.
To handle the case of n odd, we have to separately consider when n is con-

gruent to 1 or 3modulo 4. If wewrite n = 2m+1, these two cases are equivalent
to m even and odd, respectively. Let us treat n ≡ 1mod 4 �rst. The recursive
relation is

f22f2m+1 = fm+2f3m − f22fm−1f
3
m+1.

Herem is even, so deg(fm+2) = (m2 + 4m+ 6)∕2, and deg(f3m) = (3m2 + 6)∕2.
Combining these gives deg(fm+2f3m) = 2(m2+m+3). Similar calculations give
deg(f22fm−1f

3
m+1) = 2(m2+m+3). Again the leading coe�cients do not cancel,

so fm+2f3m − f22fm−1f
3
m+1 has degree 2(m

2 + m + 3) with leading coe�cient
32m + 16. It follows that deg(f2m+1) = 2(m2 +m), so deg(fn) = (n2 − 1)∕2.

The last case is n ≡ 3mod 4. That is, n = 2m + 1 for m odd. We have the
relation

f22f2m+1 = f22fm+2f
3
m − fm−1f3m+1.

In this case,

deg(f22) = 6, deg(fm+2) =
(m + 2)2 − 1

2 , deg(f3m) = 3 (m
2 − 1
2 ) .

These imply
deg(f22fm+2f

3
m) = 2(m2 +m + 3).

Similarly, it follows from

deg(fm−1) =
m2 − 2m + 3

2 and deg(f3m+1) =
3m2 + 6m + 9

2
that deg(fm−1f3m+1) = 2(m2 + m + 3). Similar to earlier cases, we then have
that f22fm+2f

3
m −fm−1f3m+1 is of degree 2(m

2 +m+3)with leading coe�cient



1520 NICHOLAS ROUSE

32m + 16. Then, as in the n ≡ 1mod 4 case, we have deg(fn) = deg(fn) =
(n2 − 1)∕2, which completes the proof of Proposition 6.12 (1).

We now prove Proposition 6.12 (2). For a polynomial g, let us write LC(g) for
its leading coe�cient. We have actually done the relevant calculations in the
proof of Proposition 6.12 (1). When n ≡ 0mod 4, so n = 2m with m even, we
have that LC

(
f2m−1fm+2 − fm−2f2m+1

)
= 8 so that LC(f2f2m) = 8 LC(fm) =

16m. Hence, LC(f2m) = LC(fn) = 4m = 2n. Similarly when n = 2m for m
odd, we have LC

(
f2m−1fm+2 − fm−2f2m+1

)
= 16, so LC(f2f2m) = 16 LC(fm) =

16m. For n odd, we have that LC(f22f2m+1) = 16(2m + 1) so that LC(f2m+1) =
2m + 1.

For Proposition 6.12 (3), we �rst treat the case where n ≡ 1mod 4, so wemay
write n = 2m + 1 form even. We note that the relation

f22f2m+1 = fm+2f3m − f22fm−1f
3
m+1

implies that f22 ∣ fm+2f3m. In fact, Lemma 6.11 implies that f2 divides both

fm+2 and fm so that f42 ∣ fm+2f
3
m, which in particular implies that

fm+2fm
f22

≡

0mod 4 as it has a factor of f22 , which is divisible by 4. It follows that f2m+1 ≡
−fm−1f3m+1mod 4. By the inductive hypothesis, fm−1 ≡ ±x(m2−2m)∕2mod 4
and fm+1 ≡ ±x(m2+2m)∕2mod 4, so f2m+1 ≡ ±x(2m2+2m)mod 4. That is, fn ≡
±x(n2−1)∕2mod 4. The case of n ≡ 3mod 4may be handled similarly, complet-
ing the proof of Proposition 6.12 (3).

To begin the proof of Proposition 6.12 (4), let us �x the notation that when
n is even, fn = f2gn, and when n is odd fn = gn. We break into cases based
on the 2-adic valuation of n. Let k = v2(n) be �rst equal to 1, so we may write
n = 2m form odd. In this casem ± 1 are is even, so we have

f2f2m = fm(f22g
2
m−1fm+2 − fm−2f22g

2
m+1),

which implies
f2m = fm(f2g2m−1fm+2 − fm−2f2g2m+1).

Now sincem is odd, exactly one ofm+1 andm−1 is divisible by 4. Saym−1 ≡
0mod 4 (the other case is follows analogously). Then fm−1∕4 = f2gm−1∕4 is
divisible by 2 by inductive hypothesis. Then we have that

f2m
4 = fm (f24 g

2
m−1fm+2 − fm−2

f2
4 g

2
m+1)

≡ (x + 1)(x2 + x + 1)fmfm−2g2m+1mod 2. (13)

Now, since gm+1f2 = fm+1, the inductive hypothesis says
fm+1
4 ≡ (x + 1)(x2 + x + 1)x(m+1)2∕2−2mod 2,

so the fact thatf2∕4 ≡ (x+1)(x2+x+1)mod 2 implies gm+1 ≡ x(m+1)2∕2−2mod 2.
So then since fm and fm−2 both have odd indices, we may apply Proposition
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6.12 (3) to Equation 13 to obtain

f2m
4 ≡ (x + 1)(x2 + x + 1)x(m2−1)∕2x((m−2)2−1)∕2x(m+1)2−4mod 2

≡ (x + 1)(x2 + x + 1)x2m2−2

≡ (x + 1)(x2 + x + 1)xn2∕2−2,

which handles the case of k = 1.
Next, suppose that k = 2. We again write n = 2m and here have m even

with v2(m) = 1. Note that one of m + 2 and m − 2 will have 2-adic valuation
equal to 2, and the other will have 2-adic valuation at least 3. Both possibilities
lead to the same argument, so assume v2(m − 2) ≥ 3 and hence v2(m + 2) = 2.
Then wewrite fm+2 = 4(x+1)(x2+x−1)gm−2. Then our inductive hypothesis
implies

fm+2
8 ≡ (x + 1)(x2 + x + 1)x(m+2)2∕2−2mod 2.

So we have gm+2∕2 ≡ x(m+2)2∕2−2mod 2. The inductive hypothesis also implies
that 16 ∣ fm−2, and fm−2 = 4(x + 1)(x2 + x − 1)gm−2, so 4 ∣ gm−2. Hence,
gm−2∕2 ≡ 0mod 2. Note that since v2(m) = 1 andm−1 is odd we have fm∕4 ≡
(x+1)(x2+x+1)xm2∕2−2mod 2 and f2m−1 ≡ xm2−2mmod 2. Combining all this
we obtain

f2m
8 = fm

4 (f2m−1
gm+2
2 − gm−2

2 f2m+1)

≡ (x + 1)(x2 + x + 1)x2m2−2

≡ (x + 1)(x2 + x + 1)xn2∕2−2.
The last case to consider is k ≥ 3. As always, write n = 2m. Keeping the

notation of the previous parts, we write our recursive relation as

f2m
2k+1

= f2gm
2k

(
f2m−1gm+2 − gm−2f2m+1

2 ) .

The leading coe�cient off2m−1fm+2−fm−2f
2
m+1 is 8 by Proposition 6.12 (1) and

Proposition 6.12 (2). This implies that the leading coe�cient of f2m−1gm+2 −
gm−2f2m+1 = (f2m−1fm+2 − fm+2f2m+1)∕f2 is 2. Then,

f2m−1gm+2 − gm−2f2m+1
2 (14)

is monic, and the degree can be checked to be correct using the inductive hy-
pothesis. Then, it su�ces to show that every monomial term in Equation 14
other than the leading one is divisible by 2. That is, we want to show that every
monomial term besides the leading term in f2m−1gm+2 − gm−2f2m+1 is divisible
by 4. Sincem ± 1 is odd, we have that every term other than the leading terms
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in fm±1 are divisible by 4 by Proposition 6.12 (3), so we just need to show it for
gm±2. Note that whenm is even,

g2m = gm(f2m−1gm+2 − gm−2f2m+1),
so one may see that g2m only has its leading term not divisible by 4 inductively.

�

Remark 6.15 (A�ne Intersection Points). Chu showed in [5, Section 5.1] that
there are four a�ne points on the canonical component, C, for 74 which inter-
sect the other component of the character variety containing the character of an
irreducible representation. They lie in a number �eld L of degree 4. These inter-
section points detect Seifert surfaces and so are also of geometric interest. The
image of each of these points under the birational mapC ⤏ E has x-coordinate
equal to 1± i; in particular they have positive a 2-adic valuation. However they
are still in�nite order. One may compute with Magma ([2]) or other software
that the torsion subgroup of E(L) is isomorphic to Z∕6Z, but none of these four
points has order less that or equal to 6.
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