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Regularity and continuity of commutators
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of multilinear maximal operators

Feng Liu, Qingying Xue and Pu Zhang

ABSTRACT. This work is devoted to investigating the regularity and continu-
ity properties for the commutators of multilinear maximal operators. More
precisely, let [l;, ] and M; be the commutators and maximal commuta-
tors of the multilinear maximal operator 9t with B, respectively, where b=
(by, ..., by,) with each b; being a locally integrable function. It is proved that
for0 < s <1,1 < py,ees Py, P9 < 00,1/p =1/p; + -+ + 1/ppy1, the
operator [B, M ] is bounded and continuous from WHP1(R") X --- X W1Pm(R™)
to WLP(R") if each b, € WhPm+1(R"?), from WSP1(R") X --- X W5Pn(R") to
wsP(R") if each b; € WPm+1(R"), from FPYY(R™)x ---x FP™1(R"™) to FP4(R")
ifeach b, € FP™Y(R") and from BY"Y(R")x---xBY™1(R") to BPY(R") if each
b, € BY™"(R"). The corresponding results for 9t; are also considered.

1. Introduction and main results
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The regularity theory of maximal operators has been the subject of many re-
cent articles in harmonic analysis. The boundedness of multilinear operators
is also always an active topic of current research. Based on the above topics, a
natural question is that whether the multilinear maximal operator and its com-
mutators have somewhat regularity properties. This is the main motivation of
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this work. To be more precise, we shall establish the boundedness and conti-
nuity for the above operators on the Sobolev spaces, fractional Sobolev spaces,
Triebel-Lizorkin spaces and Besov spaces.

Let us start with a brief recollection of some recent developments on the reg-
ularity theory of maximal operators.

1.1. Regularity properties for maximal operators

For f € LIIOC(R”) with n > 1, the centered Hardy-Littlewood maximal oper-
ator M is defined by

Mpe)=sup s [ 1l
r>0 |B(x,r)] B(x,r)

where B(x,r) is the open ball in R"” centered at x with radius r, and |B(x,r)|
denotes the volume of B(x, r). Analogously, the uncentered maximal function
M f at a point x is defined by taking the supremum of averages over open balls
that contain the point. One famous result of harmonic analysis is the celebrated
theorem of Hardy-Littlewood-Wiener that asserts that M : LP(R") — LP(R")
is bounded for 1 < p < 0. For p = 1 we have M : LY(R") —» LL*®(R")
bounded. The same bounds hold for M.

Regularity properties of maximal operators have been studied extensively.
The first work related to Sobolev regularity was due to Kinnunen [18] who es-
tablished the boundedness of M : WL'P(R") — WLP(R*) for1 < p < oo,
where W1P(R") is the first order Sobolev space, i.e.

WIPQR™) 1= {f t R" = Rt || fllwon = [fllion + VS llzon) < ook

where Vf = (D,f,...,D,f) is the weak gradient of f. The same conclusion
also holds for M by a simple modification of Kinnunen’s arguments or [17,
Theorem 1]. Since then, more and more works were devoted to extending
the main result of [18] to various variants. For example, see [19] for the lo-
cal case, [20] for the fractional case and [6, 25] for the multilinear case. Due
to the lack of the sublinearity for the derivative of the maximal function, the
continuity of M : WLP(R") - WLP(R") for 1 < p < oo is certainly a non-
trivial issue. This question was addressed in the affirmative by Luiro [29] and
was later extended to a local version in [30] and a multilinear version in [6, 24].
Another way to extend the regularity theory of maximal operators is to study
its behaviour on different smooth function spaces. Korry [22] firstly showed
that M is bounded on the fractional Sobolev spaces W5P(R") defined by the
Bessel potentials for 0 < s < 1and 1 < p < oo. The above result was ex-
tended by Korry [21] who proved that M is bounded on the inhomogeneous
Triebel-Lizorkin spaces F¥*(R") and inhomogeneous Besov spaces BYY(R")
for0 <s<1land1 < p, g < oo. Later on, Luiro [30] established the continuity
of M : FPIR") —» FPAYR") for0 < s < 1and1 < p, g < co. Recently,
Liu and Wu [26] extended the above results to the maximal operators associ-
ated with polynomial mappings. In addition, the above authors established the
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continuity of M : BY4(R") = BPI(R")for0 < s < 1and1 < p, g < co. Other
interesting works related to this topic are [1, 4, 5, 7, 16].

The study of multilinear operators has also been an active topic of current
research, which originated in the works of Coifman and Meyer in the 70’s (see
[8, 9] for the background) and was later studied by many authors (see [15, 23]
etc.). It is not motivated by a mere quest to generalize the theory of linear op-
erators but rather by their natural appearance in analysis. It is well known that
the multilinear maximal operator introduced originally by Lerner et al. [23]
plays a key role in the theory of multilinear Calderéon-Zygmund operator. In
2015, Liu and Wu [25] studied the Sobolev regularity for the multilinear maxi-
mal operator associated to balls

fm(f)(x)=sup1‘[ﬁ f If,pldy;, x €R™,
B

B>x j=1

where m > 1 and f = (f1,->fm) with each f; € Llloc([R"). The above supre-
mum is taken over all the open balls B containing x. Liu and Wu [25] proved
thatfor1 < p;,...,pp < 0,1 <p<ooand1l/p=1/p;+ -+ 1/pm,

M : WLPL(R™) X - X WhPn(R") - WLP(R") is bounded.
Moreover, iff = (f1,--»fm) witheach f; € WLPi(R™), then

m
1M Iwro@ny < C T TIF illres e (1.1)

j=1

The above results are based on the following bounds

1M P lIoey < € TSz g (1.2)

Jj=1

wherel1 < p;,...,pp < 0,1<p<oandl/p=1/p; +---+1/p,,- One can
easily check that

M : LA (R") X --- X LPm(R"™) — LP(R") is continuous. (1.3)
Motivated by (1.1) and (1.3), Liu [24] showed that, among other things,
M : WEPL(R™) X --- x WhPn(R") - WLP(R") is continuous, (1.4)

where1 < py,...,pp<o0,1<p<ocandl/p=1/p;+--+1/pn-

Based on the above, it is natural to ask that whether the multilinear maxi-
mal operator I is bounded and continuous on the fractional Sobolev spaces,
Triebel-Lizorkin spaces or Besov spaces. Thanks to the work in [27] in which
the first two authors and Yabuta established the boundedness and continuity
for the multilinear strong maximal operators on the Sobolev spaces, Triebel-
Lizorkin spaces and Besov spaces, we have a good opportunity to obtain the
following results by using similar methods. Here we only list these results with-
out proofs, which are useful for our aim.
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Theorem A. Let1 < py, ..., Py P,q < 0,0<s<1landl/p=1/p; + - +
1/ P
(i) The map M : FPYIYR") x --- x FP™I(R") —» FPI(R") is bounded and
continuous. Moreover, iff = (f1, ., fm) With each f; € FPPI(R?), then

m
Ml ppaceny < C TS 1254 gy
j=1

(ii) The map M : BP"I(R™) x --- x BP"Y(R") - BPU(R") is bounded and
continuous. Moreover, if f = (f1, ..., f) With each f; € BY"(R™), then

m
1M llgragny < € LTI grra g
j=1

(iii) The map M . WSPL(R") X --- X W5Pm(R") - WSP(R") is bounded and
continuous. Moreover, if f = (f1, ..., [,,) with each f; € WSPi(R"), then

m
1M llwse@ny < C T LIS llwseiny-

j=1

1.2. Properties for commutators of maximal operators

It is well known that the commutator

[b, TI(f)(x) = bT f(x) = T(bf)(x)

with suitable operator T and function b was initialized by Coifman et al. [10]
who proved that the commutator [b, T] with T being Riesz transform is bounded
on LP(R") for 1 < p < oo under the condition that b € BMO(R"). Later on,
the study on commutator [b, T| with various of operators T on a variety of func-
tion spaces have been studied by many authors. The commutator of Hardy-
Littlewood maximal operator was first studied by Milman and Schonbek [31]
who established the LP (1 < p < o) bounds for [b, M] if b € BMO(R") and
b > 0. The above result was later improved by Bastero et al. [2] who stated that
the operator [b, M] is of type (p, p) for 1 < p < oo if b € BMO(R"). In [3]
Bonami et al. used [b, M] to study the product of a function in H'(R") and a
function in BMO(R"). Recall that the maximal commutator with b is defined
by

B, f (x) = sup — f () = b/ B)ldy,
B>x |B | B

where the supremum is taken over all the open balls B containing x. In 1991,
Garcia-Cuerva et al. [12] first proved that M is bounded on LP(R")for1 < p <
oo if and only if b € BMO(R"). One can consult [12, 35] for the boundedness
of Mb .

Recently, Liu et al. [28] studied the regularity properties of [b, M| and M.
The main results of [28] can be listed as follows:



1528 FENG LIU, QINGYING XUE AND PU ZHANG

Theorem B ([28]). Let1 < py, ps, p,gq <ooand1l/p=1/p, +1/p,.

(i) If b € WSP2(R") for some s € [0,1], then the map [b, M] : WSPL(R") —
WSP(R")is bounded and continuous. Moreover, the map M, : W5P1(R") —
WSP(R™) is bounded.

(i) Ifb € FP*4(R") for some s € (0,1), then the map [b,M] : FF"I(R") —
F f “I(R") is bounded and continuous. The same result holds for M,

(iii) If b € BP*(R™) for some s € (0,1), then the map [b,M] : BP*I(R") —
BPU(R") is bounded and continuous. The same result holds for M,.

1.3. Commutators of multilinear maximal operators

The primary aim of this work is to establish the bounds and continuity for
commutators of multilinear maximal operators on the Sobolev spaces, Triebel-
Lizorkin spaces and Besov spaces. We now introduce the following objectives
of research.

Definition 1.1. (Commutators of multilinear maximal operator). Let m > 1
and f = (f1,..,fm) and b = (by, ..., b,,) with each f; € Llloc([R”) and b; €
Llloc([R”). We define the commutator of 9% and b by the formula

m

[b, MI(Px) = (6, M(H(x), x € R,

i=1

where
[b, M) = by()IMX) = M1, e s Fiors Bifis Firs e s Frn)X).

The multilinear maximal commutator with b is defined by
- n .o
M(Nx) = 3, M),
i=1
where

fmi(f )(X) = sup ——

B>x |B|m

/Ib(X) b(yl)IHIf,(y,)Idy,

where the supremum is taken over all the open balls B containing x. Here
—_——
B™ = BXxBXx---xBanddy = dy,dy,---dy,. When m = 1, the operator

[E, M| reduces to [b, M]. Respectively, the operator M reduces to M,.

The commutator in the multilinear setting was first studied by Pérez and
Torres in [32] and was later developed by many authors (see [23] et al.). The
commutators of multilinear maximal operators associated to cubes was first
introduced by Zhang [36] who investigated the multiple weighted estimates for
these commutators.
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Before presenting our main results, let us point out the following comments,
which are useful for our proofs of main results.

Remark 1.2. (i) For any fixed 1 < i < m, the operator [I;, M ]; is neither posi-
tive nor sublinear. However, the operator EUZ% is positive and sublinear.

(i) Letl < p1yeees Py, P < o0and 1/p = 1/py + -+ + 1/ppy1- Letf =
(f1> > fm) with each f; € LPi(R") and b = (by,...,by,,) with each b; €
LP»+1(R). For any fixed i € {1, ..., m}, we get by (1.2) and Holder’s inequal-
ity that

m
1B, ML (Hllzecery < ClIbillzomss ey [ T 1S 12 o (1.5)
j=1
Combining (1.5) with (1.3) and Hélder’s inequality implies that
[E, M]; : LP(R") X --- X LP»(R") - LP(R") is continuous. (1.6)
On the other hand, one can easily check that
m%(f)(X) < b)) + M(f 1, -, fimr, bifis figrs s frd(X). - (1.7)
By (1.2), (1.7) and Holder’s inequality, we obtain
.o i
[0 (Olp@eny < ClibillLome ey TT 07 zes ey, (1.8)
j=1

It is not difficult to see that
m
LS ) = ML) < 35 MUF,
=1

where f; = (f1j, s fmj) a0d Fy = (f1, s 11, f1j = fo fisnjo oo fmj)-
This together with (1.8) implies that

zm% : L(R") X --- X LPn(R") — LP(R™") is continuous. (1.9)

(iii) For y € R", we define f,(x) = f(x — y). Letf = (f1, s )y fy =
((fl)x’-"’(fm)y_): b = (b1.,---_: b,.) anq by_) = ((by)y, ..., (by)y). Clearly,
M), = M(f,) and (im%(f))y = EDZ% (fy)foralli=1,..,m.

Based on the above, some questions naturally arise as follows.

Question 1.3. Are the commutators of multilinear maximal operators bounded
and continuous on the Sobolev spaces, fractional Sobolev spaces, Triebel-Lizorkin
spaces or Besov spaces?
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This is the main motivation of this work. We shall give a affirmative answer
to Question 1.3 by the following results.

Theorem 1.4. Let1 < py,..., Py, p <0 and1/p =1/p;+---+1/ppy1. Let
b = (by,...,b,,) with each b; € WhHPm+1(R"), Then
[b, M] : WIPL(RM) X --- x WLPn(R") — WLP(R™)

is bounded and continuous. Moreover, iff = (f1, > [) Witheach f; € WEPi(R?),
we have

m m
[, M)l lwro ey < C(Z ”bi”Wl’PmH([R{")) TS0y (1.10)
i=1 =1

The above boundedness result holds for M.

Theorem 1.5. Let1 < py,...,Ppy1, 0,4 < 0,0<s<landl/p=1/p;+---+
1/pma- Letb = (by, ..., by,) with each b; € FP™V1(R™). Then

[b,M] : FPUR™) x - x FPMI(R™) — FPI(RM)

is bounded and continuous. Moreover, iff = (f1, ., fm) Witheach f; € FPFPI(R?),
we have

m m
1B, MNP paeny < C(Z; bl pomer ) T My Q1D
i= j=

The same result holds for M.

Theorem 1.6. Let1 < pq,..., P11, 0,4 < 00,0<s<landl/p=1/p;+---+
1/Pms1. Let b = (by, ..., b, )with each b; € BE™4(R™). Then

[b,M] : B{"I(R") x - x By™I(R") — BYI(R™)

is bounded and continuous. Moreover, iff = (f1, .., fm) Witheach f; € BP"{(R™),
we have

m m
105, M Pppaany < C( Z A H I illos gy (112)
i= Jj=
The same result holds for M.

By the facts WOP(R") = LP(R") and W5P(R") = F;D’Z(R”) forany s > 0
and 1 < p < oo and Theorems 1.4 and 1.5, we can get the following result
immediately.
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Corollary 1.7. Let1 < py,...,Ppy1, P < 0,0<s<1landl/p=1/p; + -+
1/Pms1- Let b = (by, ..., b,,) with each b; € WPm+1(R"), then

[b, IM] : WSPL(R™) X -+ X WSPm(R") — WSP(R")

is bounded and continuous. Moreover, iff = (f1,..., fm) Witheach f; € WSPi(R"),
then

m m
1B, I Pllwocry < C( X 1Billwsmer gny) TT Il

i=1 j=1

The same result holds for M.

Remark 1.8. Theorems 1.4-1.6 and Corollary 1.7 extend Theorem B to the mul-
tilinear version, which are of interest in their own right. On the other hand,
the continuity of MMy : WHPI(R") X --- x WhPn(R") — WIP(R") under the
conditions in Theorem 1.4 is certainly an interesting issue, even in the special
case m = 1.

Remark 1.9. There are some remarks on the proofs of Theorems 1.4-1.6:

(1) Theorem 1.4 for [I;, M| follows easily from the known Sobolev bounds and
continuity for I (see (1.1) and (1.4)) and a characterization of product
functions on Sobolev spaces (see Lemma 2.1). The main ingredients in the
proof of the boundedness for I; are some properties on Sobolev spaces
(see (2.1) and (2.22).

(2) Theorem 1.5 for [b, ] follows easily from Theorem A (i) and a character-
ization of product functions on Triebel-Lizorkin spaces (see Lemma 2.2).
The main ingredients in the proof of Theorem 1.5 for M are the mixed
vector-valued inequality for M (see Lemma 4.1) and some properties for
Triebel-Lizorkin spaces (see (2.3)-(2.6)).

(3) Theorem 1.6 for [5 , M] follows easily from Theorem A (ii) and a characteri-
zation of product functions on Besov spaces (see Lemma 2.3). The main in-
gredients in the proof of Theorem 1.6 for I ; are some properties for Besov
spaces (see (2.10)-(2.13)).

(4) Our methods apply to the multilinear maximal operators associated to cubes
and their commutators as well as the commutators of the multilinear strong
maximal operators.

This paper will be organized as follows. Section 2 will be devoted to pre-
senting some properties for Sobolev spaces, Triebel-Lizorkin spaces and Besov
spaces, which are the main ingredients in the proofs of main theorems. Section
3 is devoted to proving Theorem 1.4. In Section 4, we shall prove Theorem 1.5.
The proof of Theorem 1.6 will be given in Section 5. We would like to remark
that the main ideas in the proofs of Theorems are motivated by [26, 27, 34].
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Throughout this paper, the letter C will stand for positive constants,, not nec-
essarily the same one at each occurrence, but is independent of the essential
variables. In what follows, let R,, = {{ € R";1/2 < |{| < 1} and we denote by
A¢(f) the difference of f for an arbitrary function f defined on R" and ¢ € R,

e, Af(x) = fx+¢) = F(x).

2. Properties for Sobolev spaces, Triebel-Lizorkin spaces and
Besov spaces

In this section we shall present some properties on Sobolev spaces, Triebel-
Lizorkin spaces and Besov spaces, which are very useful in our proofs.

2.1. Properties on Besov spaces

Lete; = (0,...,0,1,0,...,0) be the canonical [-th base vector in R"” for [ =
L,2,..,n. Forafixed f € LP(R") with p > 1, all h € R with |h| > 0,y € R"
and i =1,2,..,n, we define the functions f, and f), by setting

fGx + hep) — f(x)
Al

fieo =

It is well known that

and f,(x) = f(x - y).

”f;l _Dif”Lp(R") —-0as h—->0 (21)

if f € WLP(R") for some p > 1. For convenience, we set

G(f: p) = lim sup I fn — f”LP(R")'
|h|=0 |k
According to [13, Section 7.11], we have
ueWHR"), 1<qg< o< uecLiR") and G(u;q) < . (2.2)

We now present the characterization of product functions on the Sobolev
spaces, which followed from [28].

Lemma 2.1. ([28]). Let1 < py,py,p < owand1l/p =1/p1+1/p,. If f €

WLPL(R™) and g € WIP2(R"), then fg € WHP(R™). Moreover,
V(fg)=gVf+fVg,

almost everywhere in R". In particular,

”fg”WLP(R") < ”f”lePl(R")”gHWLPZ(R")-

2.2. Properties on Triebel-Lizorkin spaces

Denote by FP(R"™) the homogeneous Triebel-Lizorkin spaces. Lets > 0
and1 < p<oo0,1<q<00,1<r<oco. Wedenote by Ej, ; , the mixed norm of
three variable functions g(x, k, {) by

o= (2 2 [ tmeskoorae) )

llglles
kez

LP(RR)
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It was shown by Yabuta [34] that

I llzpaqny ~ [1A2-k¢ fllES (2.3)

p.q.,r

for0<s<1,1<p<oo,l<g<oandl <r < min{p,q}. Moreover, it was
pointed out in [11, 14, 33] that

I lzpany ~ IIfllEPany + Iflle@ny, fors>0,1<p,qg<co,  (24)
1fllpaay < [1fllppagny, forsy <s5, 1< p, g <o, (2.5)

Il ppazgay < 1 f llppargny, fors € R, 1< p<oo, 1<q; <q;<oo. (2.6)

The following presents a characterization of product functions on the Triebel-
Lizorkin spaces.
Lemma 2.2. Let1 < p;,p,,p < o0, 1/p =1/py+1/p,and0 < s < 1. If
f € FPYI(R™) and g € FP*Y(R™), then fg € FPI(R™). Moreover,

1/ &llgpary < CILF 1o 18]l 22 g 27)

Proof. Itis clear that

Ao-icg (F&(X) = Dy f(0)Ag-1¢ 8(X) + f(X)Ar-r8(X) + 8(X)Ag-kr f (), (2.8)
forallx € R",{ € R,, and k € Z. In light of (2.3) and (2.8), we have

LP(R™)

1 gllzracan < c||(kZ s /m Aot fAz—kggldé‘)q)l/q
(YA

(B2 wsei))
(VA n

e B2 teosseria))”
(VA n

By Minkowski’s inequaltiy and Holder’s inequality, we get from (2.3)-(2.6) that

(g o))

kez

LP(RM)

LP(R")

LP(R7)

/(1)
< ksp/p1||A,_ p19/p
<[[( Z@rmiazse lummmra) L
p/(p29)
X 2ksp/p2||A_ p2q/p
||(k§z( 182-x¢8llLrarosk,,)) ) o2

< C”fHFSPm/P,m (R")”g||psp§f,ff'p2(w)

< ClIf llprragnylIgllpr2a gny,
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”(kgzzksq( fm n IfAz_k;gldg)q)l/ ! o

1/
(2@ lasscellen)?)
kez

< C||f||LP1(R")||g||FPZQ/P:P2(Rn)
sp/p2

< flleer

LP2(R")

< CI\fllpran l1gllgr2a .

Similarly,

1/
(2 | ereflac)')

These estimates together with the estimate || fg|lLorny < |1 lLor wm)l1€llLr2®m)
and (2.4) give (2.7) and completes the proof.

LP(R") S C||f||Fspl’q(|Rn)||g||Fsz,q(Rn).

2.3. Properties on Besov spaces

We denote by B”Y(R") the homogeneous Besov spaces. It was proved by
Yabuta [34] thatif0<s < 1,1 < p<o,1<g<o0and1<r < p,then

ey~ ( 5 29 [ e (HI&e)”

kez
For a measurable function g : R" X Z x R,, - R, we define

lelps 1= (T 20 [ [ tacek ooppaxag)) "

kez

q

)l/q. (2.9)

LP(R")

Then, by (2.7) and Fubini’s theorem, we have

”fHBf‘q([R") ~ ”AZ—"{f”p,q,s' (2.10)

It is well known that (see [11, 14, 33])

fllgragmny ~ 1flgragny + 1flLony, fors>0,1<p,qg<oco,  (2.11)
”f”Bfl’q(R") < ”f”sz’q(R")’ fors; <s,, 1< p, q<oo, (2.12)

||f||Bf’q2(Rn) < Hf”Bf’ql(R”)’ forseR,1<p<o,1<q <q,<o0. (2.13)
The following presents a characterization of product functions on the Besov
spaces.
Lemma 2.3. Let1 < p;,p,,p < o0, 1/p =1/py+1/p,and0 < s < 1. If
f € BP"(R™) and g € BP*Y(R"), then fg € BYY(R"). Moreover,

1/ &llzpany < CIIfIp2racn) 1815229 (gm)- (2.14)
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Proof. By (2.11) and the trivial estimate ||fg|[Lorn) < || f1|Lor @) ||8]|Lr2m7), tO
prove (2.14), it suffices to show that

I/ &llgpany < CILf Il gpragnyl|8llgr2agn)- (2.15)
By (2.10), (2.12) and Minkowski’s inequality, we have

/p\1/
1£gllgracen < (D) 259( f fR 1Ak f (A, g () Pdxdg) )
kez

R

' /
+c( 3 20( f | reonscaeorasas)”")

kez

/
o 3 20( f f 180081 Fe0)1Pdxag) ).

kez
By (2.10)-(2.13) and Hélder’s inequality, we conclude that

(3 2t f e S goopaxds) )
e o )p/(qpl)

< ( D @5SPIPHIA kg fll s osesw, ) )IPH/P
kez o
p/(ap.
X( > (2kse/p2 ||A2—k§g||LP2(Rnx§Rn))qp2/p)
kezZ

< C”f”Bm qpl/p(Rn)||g||sz/qp2/p(R,,)
sp/p2

p1
< C”f”Bfl w18l P29 ey

(Z2a( [ [ 1reomcaeoraas)™)™

kez

1/q
< C||f||LP1(Rn)( Z (2ks||A2—k§g||LPz(Rnxmn))q)
kez

< ClISf o ey lIgll 522 ey
< C”f“Bfl’q(Rn)||g||B§’2’q(Rn)'
Similarly one has

ks q/p\1/q
(> 259( 18Rk fOOIPAxAS ) ) < Cllfllgragun I8l g2 -
R, /R

kez
Then (2.15) follows from the above estimates. O

3. Proof of Theorem 1.4

Throughout this section, letus fix1 < py, ..., ps1, P < o0and1/p =1/p; +
4+ 1/Pms1- Letf = (f1,..., fm) with each f; € WLPi((R"). For convenience,
lets, t be such that1/s = 1/p; + -+ 1/pp,and 1/t = 1/p; + 1/ppyr- Itis
clearthatp <s< p;,p<t<p;,1/p=1/pps1+1/sand1/p=1/t+1/p,+
4+ 1/ppm.
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3.1. Proof of Theorem 1.4 for [I;, ]
To prove (1.10), it suffices to show that

m
116, M (Pllwroey < Cllbillwrome @y [ IS jllyres G.1
j=1

for eachi = 1, ..., m. By (1.5), inequality (3.1) reduces to the following

m
IVIb, MIPllrery < Clibillwromes ey L IF il g (32)
j=1

foreachi=1,...,m.

We now work with (3.2) for i = 1 and other cases are analogous. By (1.1)
and Lemma 2.1, we have

161 I()llwrony < NIbrllwremsr ey M Iwrsn)
m

(3.3)
< Cllbylhwramss ey L1 IS ilhtos any
j=1
For convenience, we set bel = (bif1, f2,-» fm)- Invoking Lemma 2.1,
1b1 f1llwrerny < Cliballwremes @ny |l f1llwre: @n)s
which combine with (1.1) leads to
. m
[1MMCf 1o )lwre@ny < Cliby|lwtome @mn) H 1S illwes - (3.4)

j=1
Then (3.2) with i = 1 follows from (3.3) and £3.4).

Next we prove the continuity result. Let f; = (fy j, ..., [, ;) With f; ; = f;
in WLPi(R?) as j — oo for alli = 1, ..., m. We want to show that

1B, M1,(f ) = [B, ML (Dllwregny = 0 as j — oo (3.5)

foralli = 1,..., m. Without loss of generality we only work with the casei =1
and other cases are analogous. By Lemma 2.1, we have that, b, f; € W1{(R"),
b, f1,; € WH(R") and

Ib1f1,; — bifillwri(wny
= [[b1(f1; — fOllwrwn) ‘
< ||b1||W1’PmH([R")”f1,j —f1||WLP1(Rn) — 0 as j — oo,

which together with (1.4) implies

(D1 f1,js [ajs s Fmj) — b1 f1s fas s Fr)llwrony = 0 as j — co. (3.6)
Observe from (1.1) that wz(fj) € WLS(R") and Em(f) € WIHS(R™). By (1.4) and

Lemma 2.1, we have
b)) = B Pllwroen)
< billwrema @my | 5) — MO lwrs@ny = 0 asj — oo.
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This together with (3.6) yields (3.5) for i = 1.
3.2. Proof of Theorem 1.4 for My

We want to show that

||5mﬂ(f)||W1P(Rn) < Clibillwreme ey H 1 illwes ey (3.7)
j=1

foreachi =1, ..., m. By Remark 1.2 (ii), to prove (3.7), it suffices to show that

”le (f)”LP(R") < C”b ||W1pm+1(|R") H ”f]“WlpJ(R") (38)
j=1

for each i = 1,...,m. We only prove (3.8) for i = 1 and other cases are analo-
gous. Fix y € R", we get by Remark 1.2 (iii) that

L)), () = M)
= | (fy)(X) M0

<swp s [ flen,00- (b1>y<z1>||1‘[<f]>y<z]>$

B>x |B|m

~[b1(x) = by (2| HfJ-(zj)HdzldzZ - dzy,
j=1

1 ! (3.9
< Sup —— [(b1)y(x) = (b1)y(21) — by(x) + bi(z))]
B>x |B| Bm
x| H(f,-)y<zj)|dz1dzZ -+~ dz,,

j=1
+sup — f 1by(x) — by (zy)|

Bax IBIm

x| 11<f,~)y<zj) - T siepldzdz, - dz.
j= Jj=

Noting that

T10 G- Hfj(zp—z«fl)y(zl) fl<zl>>(Hfﬂ<zM))( IT ¢z),

j=1 j=1 u=1 v=I+1

which together with (3.9) implies that
A, () — M)

S S L (3.10)
< 1(b)y(x) = by )M)X) + MM(f 16, ) + D IM(Fy)(x),
=1
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where

Frony = (b)) = DS 1, Faseees Fu)s

Fiy = (f1sees fits (FDy = F1s Frays oo s (Fondy)-

By Holder’s inequality and Minkowski’s inequality, we get from (1.2), (1.8) and
(3.10) that

IRy = MEP oy
< 1By, = bYMPl o + 1R Lo )l Lo
+ 2 IMEE o)
=1

m
< Cll(by)y = billemer ey [ [ 1S llzes ey (3.11)
Jj=1

m
+C Y bl @ll(FDy = Filleigny
=1

-1 m
X [T Ifalleeeny TT NGy llzes -
u=1

v=I+1

We note that {|(f yllzeigny < I Dy=Fjlleei@n+I1fjllzei ey and G(by, ppsr) <
o0, G(f}, pj) < oo. These facts, together with (3.11), imply

GEML(f); p) < oo, (3.12)

Combining (3.12) with (2.2) and (1.8) implies zmll;(f) € WHP(R™). Fix1 <i <
n. Givenl € {1,..,m}, we get from (2.1) that (f;), — D;f; in LP(R") and
(b1)}, = Dyby in LP=+1(R™) when h — 0. Moreover, (M }( - DR f)in
LP(R™)as h — 0. We also know that (f;)_p., — fin LP/(R") and (b;)_pe, — by

in LPn+1(R") when |y| — 0. Therefore, we can find a sequence of numbers
{hihk>1 withlimy_, , by = 0 and a measurable set E with |[R" \ E| = 0 such that

@D (Fnee, () = [1(x), (b)pye, () = by(x), (f z)Lk(X) — D;fi(x), (bl)i,k -
D;b,(x) as k —» oo for all x € E;

(if) (M ( f));lk(x) — D( )(x) ask — oo forall x € E.
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By (3.11) and Fatou’s lemma, we have

DR oy
< H lim 1nf(2ml(f))hk

LP(Rn)

< c|| ngiglf(bl)hk

LPm +1(Rn) H ||f]||LpJ(Rn)

m
+C Z 1151 || Loms ey

lim inf(f)),

LPI(R" ) H ||fﬂ||LpN(Rn)

X H ||11m1nf(fv) —hge;

v=I+1

< C||D b1||me+1(Rn) H ||f]||LPJ(|R”
j=1

Lpv(Rn)

m
+C D b1 llomss @I Difillagny TT 1 illzeien)

=1 1<j<m
J#l

m
< Cllbyllwromes gy LIS o
j=1
This gives (3.8) for i = 1 and completes the proof of Theorem 1.4. [l

4. Proof of Theorem 1.5

In order to prove Theorem 1.5, we need the following lemma.

Lemma4.1. ([34]) Forany1 < p, q, r < oo, it holds that
_ 1/q 1/q
(2 1927, ) (2 Wicllyn,)
S

We now turn to the proof of Theorem 1.5. Throughout this section we fix
1< piyeesPms1sPrq < 0,0<s<land1l/p =1/p;+ -+ 1/pms1- Let
f = (fi,-, fm) with each f; € FI"(R"). Let a, a,, be such that 1/a =
1/py + - +1/py and 1/, = 1/p; + 1/ppy1. Clearly, p < a, a0, < pq
and 1/p = 1/a + 1/p,41- The proof of Theorem 1.5 will be divided into two
subsections:

LP([R") Cpar LP(Rn)’

4.1. Proof of Theorem 1.5 for [I;, M|
By Minkowski’s inequality, inequality (1.11) reduces to the following

115, M1 ()| rany < ClIbillprmer q(R,,)HufJ” 59 gy (4.1)
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foreachi =1,..., m. We only work with (4.1) for the case i = 1 and other cases
are analogous. By Theorem A (i) and invoking Lemma 2.2, we have

b1 (o gy < ClIbyl| s gny M 29 gy
m

(4.2)
< Clballgzmsraggny LTI 11520 gy
j=1 ‘
m
19M(b1f15 f25 - ’fm)HFSp’q(R") < Cllbyf1llpzmany H ”fJ'HFfj'q(R")
j=2 (4.3)

m
< Clballpmsrsqgeny LTIl gy
j=1

Combining (4.3) with (4.2) leads to (4.1) for the case i = 1.
Let f; = (f1,j>-»Sm,) with each f;; — f;in FPM(R") as j — oo for all
i €{1,..., m}. It suffices to show that

It MY(f) = [b. MY(Pllppany = 0 as j = oo (4.4)

foralli = 1,..., m. We only prove (4.4) for i = 1 since other cases can be proved
similarly. Invoking Lemma 2.2, one has

||b1f1,j - b1f1||F§‘%‘1(Rn) < C||b1||FfM+1"1(Rn)||f1,j - f1||F51,q(Rn),
which together with the continuity result in Theorem A (i) yields that

1M1 f1js fajs s Fin) = MMy f1, for s frdllpragany = 0 as j — 0. (4.5)
On the other hand, by invoking Lemma 2.2 and Theorem A (i) again,

by (f ;) — blim(f)HFf,q(R,,) -0 as j — oo,
which together with (4.5) leads to (4.4) with i = 1.

4.2. Proof of Theorem 1.5 for M

We want to show that
m m
1985 ey < C( L Mbilmrsgan) TL IS legrony: 46)
i= j=
To prove (4.6), it suffices to show that
m
1)l ny < Clbillpomera g, 1‘{ 1 115209 gy (4.7)
=

for each i = 1, ..., m. Without loss of generality, we only work with (4.7) for the
case i = 1 and other cases are analogous. By (3.10) and (1.7), we have that, for
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any (x,k,{) e R" X Z xR,
|81 (ML)
<A, kgbl(x)lim(f)(x) + M(f, by-246)()
+|by (X)) Z M(Gy_yke)(X) + Z M (G, 12 )(X)
= T kO,

(4.8)

where

fl,bl,—z—kg = (AZ—k{blflafZ’ ,fm),
Gy 12kt = (b1Ageie F1 (F2)—atts oo s (Frm)—2k)s

Gl—ak¢ = (f15 s f1o15 Dok 1, (fra) 2k oo s (Frm)—2k¢)s
andforl=2,...m

ébl,l,—z—kg = (b1f 15 f2s s f1m1s Doke f15 (Fr1) =2k s oo s (F)—2k¢)-
In light of (4.8) and (2.3), we have
||§mll;(f)||pf’q(uv)
> q\1/q
<c|(X zksq(f |Agxeby | M(F)AE) )
kez R,

+C (Z 2"5‘1('/ER m(fl,bl,—z—kg)dg)q)l/q

Lp(R)

keZ LP(R™)

wel( 20 [ Sibim@ s 0n))”

kez R, 1 :1

+C Z 2ksq / Zs:rz(c;bll 2kg)dg))

keZ
=. A1 +A2 +A3+A4

(4.9)

LP(R")

LP(Rn)

By Hélder’s inequality, (1.2), (2.3) and (2.4), we have

s ) a\1/q
(Z2a( [ 1emiie))

m
< Clibyllgpmeraggmy I LI il oy (4.10)
j=1

A; < I PDllzen)

LPm+1(Rn)

< Cllballppmsrsaeny [T I 1125 gy
j=1
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Fixr € (1, min{q, p,,+1}), by Holder’s inequality, the bounds for M, Lemma 4.1,
(2.3) and (2.4), we have

A, < “ HMf Z 2ksq(/9; M(Az_kgblfl)df)q)l/q

kez

LP(R")
<C H IV f 11125 )
| (3 20( f FBseigby ) )

kez

Lom(Rnr)

:]§

ILf 12 ey

.
||

1/q

gl\)

=
m

25|/ (8gieby O, )

. 4.11
. Lom (R (4.11)

m 1/q
Humﬂm(zﬁwgwwmmﬂ

Lam(R")

I/\

:1§T:1§ i

1/
( T 2l )

||f] 1192 (R") LPm+1(RR)

IA

C L LIS jllzeinliallgemesaggeny

.
1l
—

m
< Clballgzmeraggny LTI 11520 gy
j=1

For A3, by Holder’s inequality and Minkowski’s inequality

m
A3 < C 16y |lpome )
s (4.12)

> 1/
%%f%AWQMWWV

LE(R7)
Let us fix | € {1, ..., m}. Noting that

MG 1)< > [ M@pref) [0 (4.13)

TCE; uetufl} ver!

where E; = {{ + 1,..,m}and " = {1,...,m} \ (r U {I}). Let a, be such that
1/a. = >, 1/ps+1/p;. Itisclearthatp < a, < pjand1/p = 1/a,+ Y. 1/p,.
ter xetr’

By (4.13), Minkowski’s inequality, Holder’s inequality and the bounds for M, we
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have

Le(RM)

H szsq / MG, 2k§)d§))

kezZ

<3 |TI,

TCE, ver

(3 20 fm T #ar fﬂ)dg”)q)l/q

kez n HETU{1}

<C > TTIMs ey (4.14)

TCE,, ver’

(gzksq( I Fscfa)) "

|
kez R, uetuil}

<c > TTIf e

TCE,, ver’

(D5 20( fm T M2y, fﬂ)dg)q)l/q

kez n METU{1}

LP(R")

Laf(Rn)

d

Lo (Rn)

Given t € E,,. By Holder’s inequality and Lemma 4.1, one has

(22, IT sarcronc))”

R, petufl}

1/
< || Z 2kSq H ||M(A2 ké‘f‘u)”Lp#/a (R, )) ’

kez uetu{l}

Loz (R"?)

Lot (Rn)

-/(ap)
< ” H Z (2ksoc IP||M(Ag-ig f 10| s g y)PEY ) ap,

,ueru{l} kez Lee®m)
</(apy)
< H Z ks /Pu| V(A - eS| puroe om, ))P,uQ/ ) i
ueruil} keZ LPH(R")
ksct, /p e /(apy)
=C H || Z 2 “NAz-ig f ullpuee o, ) ) ) LPE(R)
ueTuil} kez (R")
This together with (2.3)-(2.6) leads to
I(Z 2o [ T sicamscrone)')
%, K Law(R7)
uetu{l}
<c H 1l e g
uetufl} "‘ /PM (4.15)
<C I W ullrwnsarer
uerU{l} For /PM

<c IT ||fﬂ||F5uq(Rn).

uetuil}
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It follows from (4.14), (4.15) and (2.4) that

> 1/ m
”(EZZM( fm n MGz )d)) i S Cgllf sy (416)

Combining (4.16) with (4.12) and (2.4) yields

m
A5 < Clballpomers gy LT IF 1190 gy (417)
j=1
Similar arguments to those used to derive (4.16) may give that
|| Z 2’“‘1 f fm(Gbl l—2- kg)dg) )

< C”bl”Ffm-'—l’q(R") H ||fj||ij’q(|Rn)’
o

LP(R")

foreach I =1, ..., m, which together with Minkowski’s inequality implies
m
Ay < C||by|prmeragny 11 1S 1121 g (4.18)
J=

Then (4.7) with i = 1 follows from (4.9)-(4.11), (4.17) and (4.18).

It remains to prove the continuity result for M. Let f; = (fyj, -, [, ;) With
each f;; — f;in FY"(R") as j — oo foralli € {1,...,m}. It suffices to show
that

||§m%(fj) — m%(f)an,q(Rn) -0 as j > o (4.19)
foralli = 1,...,m. We only prove (4.19) for i = 1 since other cases are analo-
gous. By (2.4) we have that f; ; — f; in Ff"’q([R{”) and in LPi(R") as j — oo for
alli € {1,...,m}. By (1.9) and (2.4), to prove (4.19) with i = 1, it is enough to
prove that

||§m11;(fj) - ml};(f)”Fsp’q(R") —0asj— . (4.20)

Now we prove (4.20) by contradiction. Assume that (4.20) doesn’t hold. We

may assume without loss of generality that there exists a constant ¢ > 0 such
that

12 - M Pllgrageny > ¢, forall j > 1. (4.21)
Thanks to (1.9), we may assume, without loss of generality, by extracting a sub-
sequence that Sﬁllg(fj)(x) — imll;(f)(x) — 0as j — oo for almost every x € R".
Hence,

Ay k{(fm (fj) mL (f))(x) —>0as j—o o (4.22)

for every (k,{) € Z x R,, and almost every x € R". From (4.8), we have that,
for (x,k,{) e R" X Z xR,

A (ML) = MU ST, kO +TC kO, (423)
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where I is given as in (4.8) and
Ty, k. §) = [185-by COIIMCT D) + My -2-4)(X)
m

+b1GO)| D MGy g )(X)

=1

+ 2 MGy, 1j,—2+)(X) = (x, k, )

I=1

4
< Z qol,j(x’ ka g)a
i=1

(4.24)

where
@1,j(%, k. §) 1= [Agrg by (OIS )(x) — M(F)(0)I,

02,10, K, 8) 1= |IM(F1 by -2k )(X) = M(F 1y, k),

03,106, k,O) 1= by (O] Y MGy j, g+ )(X) = MGy _yr )X,

=1

m
@4 (x,k,§) = Z IIM(Gp, 1,j,—2-k¢)(X) = M(Gp, 1 —2-k¢ )X,

=1
fl,j,bl,—Z*k{ = (AZ*kQ‘blfl,jva,j’ ) fm,j)a
Gbl,l,j,—Z—kg’ = (blAZ—kQ’fl,j’ (fz,j)—z—kg, e (fm,j)—z—kg),

Gl,j,—2*k§ = (fl,jﬁ ) fl—l,j’ AZ*k{fl,j’ (fl+1,j)—2*k{’ ) (fm,j)—Z*kg)ﬂ
andforl=2,..,m

Gy, 1j—2-k¢ = (bif1js fajo ees f1m1,jo Dok f1js (Flan,j)=aks e s (Fm, j)=2-k¢)-

Similar arguments as in deriving (4.16) may imply that

||§0i,j||E;,q,1
m
< C|balgmsra gy Z 1f1j = Fillppagn (4.25)
x T[T Alfus - f#||Fqu ey + 1 Fullpres ) 1=1,2,3,4.
1<u<m
ul;l
Combining (4.25) with (4.24) implies that
||F ||ES < C”blllem+1q(|Rn)Z||fl] fl”Fplq(R”)
(4.26)

x TT (fus- fuquuq(Rn) + 1 ll e gy

1<u<m
H#L
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Also, we get from (4.9)-(4.11), (4.17) and (4.18) that
m
ITllEs , < Clibllppmeragny 11 I 11259 gy (4.27)
J:

By (4.26), we have that ||| BT 0 as j — oo, which yields that, there exists
a subsequence {j¢}57 | C{ j}‘}?’;1 such that

(o]
Z T, s, (4.28)

From (4.23), we see that

|Ap- kg(iml(f,f) m: (f))(X)I < Z Ly, (x,k, §) + T(x, k, §) =2 @(x, k, $),

(4.29)
for all (x,k,¢) € R" X Z X R,,. Combining (4.28) with (4.29) and Minkowski’s
inequality implies ||®|| B, < 0 It follows that fm d(x, k,$)d¢ < oo for every

k € Z and almost every x € R". This, together with (4.22), (4.29) and the
dominated convergence theorem, implies

/ |0k (M f;) m%(f))(x)mg —0ast > o (4.30)
R

for every k € Z and almost every x € R". Using the fact ||®||gs | < o0, we
p.q,
deduce that

(3 24( / q)(x,k,g”)dg”)q>1/ <o (4.31)
kez R,
for almost every x € R". We get from (4.29) that
f |80 (ML) = MENEOIS < f B(x, k. )E, (432)
ER,E ERn

for all (x,k,{) € R" X Z xR, and ¢ > 1. By the dominated convergence
theorem, we get from (4.30)-(4.32) that

R 5 /
(3 24 f 180 1 (MLF,) — MNEOIE) ) = 0 ast — oo, (433)
R,

kez
By (4.29) and the fact that ||®||gs | < o0,
p.q,

( > zksq(/s; |A2_k§(§))2l};(fj€) - Wl%(f))(x)ldg“)q)l/q

keZ

< (é}zzksq(fm e,k 1)) < oo,

(4.34)
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for almost every x € R". It follows from (4.33), (4.34) and the dominated con-
vergence theorem that

1804 (MACF5,) = MV, = 0 ast — oo,

which together with (2.3) leads to [|R}( fi)- M Pllppagny — 0as ¢ — oo,
This is in contradiction with (4.21). O

5. Proof of Theorem 1.6

This section is devoted to presenting the proof of Theorem 1.6. By Lemma
2.3, Theorem A (ii) and the arguments similar to those used in deriving the
corresponding result for [B , M ], we obtain (1.12) and the continuity for [E, mi :
BPYI(R™) x --- x BP™I(R™) — BPI(R™).

It remains to prove Theorem 1.6 for M. In what follows, we fix 0 < s < 1,
1< piyees P Psq<o0and1l/p=1/p; + -+ +1/pms1- Let a, a,, be such
that 1/a = 1/p; + -~ +1/p,, and 1/a,, = 1/py + 1/pyq- It is clear that

p<a,a,<pjandl/p=1/a+1/pysi-
‘We want to show that

m m
195 Pllgzagny < C( D Mbillgpmosan) LI gy D
i=1 j=1

By Minkowski’s inequality, to prove (5.1), it suffices to show that
. m
19 (Plgpaceny < Clibillgrmeragny H 1 152 g (52)
]:

foreachi = 1,..., m. Without loss of generality, we only prove (5.2) for the case
i = 1 since other cases are analogous. From (2.10) and (4.8), we have

1922l e
<co( T[] daseemiienraxds
R, Jrn

kez
< C(B; + B, + B3 + By).

)q/p)l/q (5.3)

where

B, := ( > 2’“‘1(fm

keZ

’

>, q/p\1/q
[ aaspiimmapaxae)”)

d

By = (3 2( fm (M(F, o) ()P
n Rn

kez

b

)q/p)l/q

B, := ( 2 2ksq<fm - (i |1 (OIM(Cy,24¢ )(x))pdx‘ig)q/p)l/q,

kez =1
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— (3 2 f f Zm(Gbl () dxd;)q/p)

kez

By (1.2), (2.10), (2.11) and Holder’s inequality, we have

kez 5
S ClIIM O Lanxr,)

(szW( f f |Ag-reby ()P dxdl
keZ R, /Rr (5.4)

<C H 1 11es ey 11 1] g gy
j=1

m
< Clballgrmraggny LTI 112 gy
j=1

- /p\1/
mc( ([ [ enhmissbcopa)”)”
R, /R

)q/pmﬂ)l/q

and

1/
B, < C( Z 2ksq(||A2—k§blf1||L°‘m([R"><ERn) H ”fj”ij(R"))q) q
kez

j=2
a\1/q
< C( > stq(||A2*’<§'b1||LPM+1(R"><2R,,) 11 ”fj”Lpi(R")) )
kez j=1
m (5.5)
< C TS llers @nylball gemera g,
j=1
m
< C|by | ooy 11 1 1l 5754 -
]:
By Minkowski’s inequality and Holder’s inequality, we conclude that
m
B; < CZ ||b1||Lpms1 )
I=1 (5.6)

X 3 24 /m f n (zm(é,,_z_kg)(x))“dxdg)q/“)l/q.

keZ
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Fix [ € {1, ..., m}. By the bounds for M and (2.10)-(2.13), we have

(2 2% TT ¥t

kez uetufl}

< ( Z 2ksq H ||M(A2—k§f,u)||LPM(R”><5Rn))q) q

kez netuil}

~ a/(puq)
H ( Z (zksocf/p#||M(A2_k§fu)||LPM(Rnan))pyq/af) K (5.7)
,LLG‘L'U{I} kez

< TT Ifullgpunares g

1/q
LE¥(R"xR ))

,LLE‘L'U{I} S“T/P/,(
H ”f#” PuPrd/or H ||fu||BPu‘1(Rn)
#eru{l} Biac by ,ueru{l}

Using Minkowski’s inequality, Holder’s inequality, (4.13) and the bounds for
M, one finds that

(22"”( |, [ emGorasa)y "
kez
2 (22 f f (T Maoief)

TCEl keZ uetuil}
% Hva) dxd{)Q/p) /4
ver’
<c ZE TT 1821, 1o e .
TCE;ver’
1/q
2ksq M(A f )
(k;Z #yu{l} 27k¢J Lo (RixR,, ))
<c 3 TTf ol
TCE;ver’
/q
2k M(Ag-c f,) .
(’EZ uelg{l} T L“T(R”Xﬂn))

If follows from (2.11), (5.7) and (5.8) that

/
Z 2ksq / / (Sﬁ(Gl - kg)(x))dedg)q p)

keZ

<C H ”fj”ij’q(Rn)'
j=1

(5.9)

Combining (5.9) with (2.9) and (5.6) implies that

m
B3 < C||by||gpmsraggm [ T Fillgei g (5.10)
Jj=1
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Similar arguments to those used in deriving (5.9) may imply

5 /p\1/
(B wcre )
kez R, JR"
m
< Clibyllgemerageny IT 1111525 gy
j=1

foreachl = 1, ..., m, which together with Minkowski’s inequality gives that
m
By < Clbilgresacan LT 1515y (511)
j:

Combining (5.11) with (5.3)-(5.5) and (5.10) implies (5.2) for i = 1.

Next we shall prove the continuity result for ;. The proof is similar as in
the proof of the continuity part for 3 in Theorem 1.5. Let f = Smj)
with each f;; — f; in B{"!(R") as j — oo foralli € {1,...,m}. It suffices to
show that

||2m%(fj) - zm;';(f)an,q(Rn) -0 as j— o (5.12)

foralli = 1,...,m. We only prove (5.12) for i = 1 since other cases are analo-
gous. By (2.11), we have that, f;; — f; in B{"Y(R") and in LPi(R") as j — oo
foralli € {1,...,m}. By (1.9), to conclude (5.12) with i = 1, it suffices to prove
that

Now we prove (5.13) by contradiction. Assume that (5.13) doesn’t hold. We
may assume, without loss of generality that, there exists a constant ¢ > 0 such
that

Hmll;(fj) - m%(f)lle’q(Rn) > ¢, for a]]j > 1.

Let {g; j}?zl, and Tj, T', ¥ be given as in the proof of Theorem 1.5. Similar argu-
ments as in deriving (5.9) may give that

m
”goi,ij,q,s < C; ”fl,j - fl”Bfl’q(Rn)

X T Ufuy = Fullgroagey + 1f ullgpus o)y ©=1,2,3,4.

1<u<m
p#l

It follows that

m
||Fj”p,q,s < CHblHBf’"“‘q(R") Z ”fl,j - fl”Bfl’q(Rn)
=1

X TT (s = Fullgrwa gy + 1l s gny)-

1<u<m
p#l

(5.14)
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By Minkowski’s inequality, (4.8), (5.4), (5.5), (5.10) and (5.11), we deduce that

m
[l < €l agrmosagany LTIl gy (5.15)
J:
The rest of proof follows from (5.14), (5.15) and the arguments similar to the
proof of Theorem 1.5. [l
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