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Reducing subspaces of C00 contractions

Cha�q Benhida, Emmanuel Fricain and Dan Timotin

Abstract. Using the Sz.-Nagy–Foias theory of contractions, we obtain gen-
eral results about reducibility for a class of completely nonunitary contrac-
tions. These are applied to certain truncated Toeplitz operators, previously
considered by Li–Yang–Lu and Gu. In particular, a negative answer is given
to a conjecture stated by the latter.
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1. Introduction
We will denote by L2 the Lebesgue space L2(T, dm), where dm is normal-

ized Lebesgue measure. The subspace of functions whose negative Fourier co-
e�cients are zero is denoted by H2; it is identi�ed with the space of analytic
functions in the unit disc with square summable Taylor coe�cients. An inner
function is an element ofH2 whose values have modulus 1 almost everywhere
on T.

If � is an inner function, then the space K� = H2 ⊖ �H2 is usually called
a model space; it has been the focus of much research, in function theory in
the unit disc as well as in operator theory (see, for instance,[7, 6]; or [2] for
a more recent account). In particular, in the last two decades several papers
discuss the so-called truncated Toeplitz operators, introduced in [8], which are
compressions to K� of multiplication operators on L2.

Originating with work in [1], the question of reducibility of a certain class
of truncated Toeplitz operators has been recently investigated in papers by Yi,
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Yang, and Lu [4, 5] and Gu [3]. Besides certain remarkable results, they also
contain intriguing questions that have not yet found their solution.

The current paper has several purposes. First, we put the problem of re-
ducibility of the truncated Toeplitz operators in a larger context, that of the Sz.-
Nagy–Foias theory of completely nonunitary contractions [9], and show that
some results in the above quoted papers may be generalized or given more
transparent proofs. Secondly, we answer in the negative a conjecture stated
in [3] and prove a statement that replaces it.

The plan of the paper is the following. After presenting in the next section the
elements of Sz.-Nagy theory that interest us, we obtain in Section 3 some gen-
eral results about reducibility for completely nonunitary contractions. These
results are applied in Section 4 to a certain class of truncated Toeplitz opera-
tors. The connection to [5] is achieved in Section 5, while the relation to [3] is
the content of the last section.

2. Sz.-Nagy–Foias dilation theory
The general reference for this section is the monograph [9], in particular

chapters I, II, and VI.

2.1. Minimal isometric dilation. Ifℋ is a Hilbert space andℋ1 is a closed
subspace, we will denote by Pℋ1

the orthogonal projection ontoℋ1.
A closed subspaceM ofℋ is said to be reducing for an operator T if bothM

and M⟂ are invariant with respect to T. A completely nonunitary contraction
T ∈ ℒ(ℋ) is a linear operator that satis�es ‖T‖ ≤ 1, and there is no reducing
subspace of T on which it is unitary. The defect of T is the operator DT = (I −

T∗T)1∕2, and the defect space isDT = DTℋ.
Wewrite T ∈ C⋅0 if T∗n tends strongly to 0, and T ∈ C00 if T and T∗ are inC⋅0,

that is Tn and T∗n both tend strongly to 0. If T ∈ C00, then it can be shown that
dimDT = dimDT∗ . The subclass of C00 for which this dimension is �nite and
equal toN is denoted by C0(N). We will mostly be interested by contractions in
the class C00.

An isometric dilation of T is an isometric operator V ∈ ℒ(K), withK ⊃ ℋ,
such that PℋVn|ℋ = Tn for any n ∈ ℕ. Note that if T = PℋV|ℋ and
VH⟂ ⊂ H⟂, then V is a dilation. An isometric dilation V ∈ ℒ(K) is called
minimal if K =

⋁∞

n=0
Vnℋ. This is uniquely de�ned, modulo a unitary iso-

morphism commuting with the dilations; in [9] there is a precise description
of its geometric structure. This becomes simpler for contractions in C⋅0; since
this is the only case we are interested in, wewill describe theminimal isometric
dilation in this case.

We will say that a subspace X ⊂ K is wandering for V if VnX ⟂ VmX for
any n ≠ m, and in this case we will denote M+(X) ∶=

⨁∞

n=0
VnX. Note that

M+(X) is invariant with respect to V.

Lemma 2.1. If T is a completely nonunitary contraction and V is its minimal
isometric dilation, then T ∈ C⋅0 if and only if there exist wandering subspaces
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L, L∗ ⊂ K for V, with dimL = dimDT and dimL∗ = dimDT∗ , such that

K = M+(L∗) = ℋ ⊕M+(L). (2.1)

In this case, the operators

� ∶ DTx ↦ (V − T)x, �∗ ∶ DT∗x ↦ x − VT∗x (2.2)

extend to unitary operatorsDT → L andDT∗ → L∗.

2.2. Analytic vector valued functions. If ℰ is a Hilbert space, then H2(ℰ)

is the Hilbert space of ℰ-valued analytic functions in D with the norms of the
Taylor coe�cients square summable. As in the scalar case, these functions have
strong radial limits almost everywhere onT, and somay be identi�edwith their
boundary values, de�ned on T.

Denote byTℰ
z multiplication by z acting onH2(ℰ); it is an isometric operator.

If ! ∶ ℰ → ℰ′ is unitary, then the notation !̃ will indicate the unique unitary
extension !̃ ∶ H2(ℰ) → H2(ℰ′) such that !̃Tℰ

z = Tℰ′

z !̃.
Suppose X ⊂ K is wandering for the isometry V ∈ ℒ(K). Then the map
FX , de�ned by

FX(

∞∑

n=0

Vnxn) =

∞∑

n=0

�nxn, (2.3)

is unitary fromM+(X) toH2(X).
Another class of functions that we have to consider take as values operators

between two Hilbert spaces ℰ, ℰ∗. More precisely, we will be interested in con-
tractive analytic functions; that is, functions Θ ∶ D → ℒ(ℰ, ℰ∗), which satisfy
‖Θ(z)‖ ≤ 1 for all z ∈ D. As in the scalar case, Θ has boundary values Θ(eit)
almost everywhere on T.

A contractive analytic function is called pure if ‖Θ(0)x‖ < ‖x‖ for any x ∈ ℰ,
x ≠ 0. Any contractive analytic function admits a decomposition in a direct
sum Θ = Θp ⊕ Θu, where Θp is pure and Θu is a constant unitary operator;
then Θp is called the pure part of Θ. A contractive analytic function will be
called bi-inner if Θ(eit) is almost everywhere unitary. (We prefer this shorter
word rather than call them inner and *-inner).

The appropriate equivalence relation for contractive analytic functions is
that of coincidence: two analytic functions Θ ∶ D → ℒ(ℰ, ℰ∗), Θ′ ∶ D →

ℒ(ℰ′, ℰ′∗) are said to coincide if there exist unitary operators ! ∶ ℰ → ℰ′,
!∗ ∶ ℰ

′
∗ → ℰ′∗, such that Θ′(�)! = !∗Θ(�) for all � ∈ D.

2.3. Functional model and characteristic function. The model theory of
Sz.-Nagy and Foias associates to any completely nonunitary contraction T a
pure contractive analytic function ΘT(z), with values in ℒ(DT, DT∗), de�ned
by the formula

ΘT(z) = −T + zDT∗(I − zT∗)−1DT|DT. (2.4)
A functional model space and an associated model operator are constructed by
means of ΘT, and one can prove that T is unitarily equivalent to this model
operator.
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As we will be interested only in C00 contractions, we will describe the model
only in this case, in which it takes a signi�cantly simpler form. The reason is
that T ∈ C00 is equivalent to ΘT bi-inner. The functional model associated to a
bi-inner contractive analytic function Θ ∶ D → ℒ(ℰ, ℰ∗) is de�ned as follows:
themodel space is

ℋΘ = H2(ℰ∗) ⊖ ΘH2(ℰ), (2.5)

while themodel operator SΘ is the compression toℋΘ of Tℰ∗
z . IfΘ is pure, then

T
ℰ∗
z is precisely a minimal unitary dilation of SΘ.
Note that (2.5) shows that SΘ satis�es the assumptions of Lemma 2.1 with

L = Θℰ, L∗ = ℰ∗. In particular,

dimDSΘ
= dimℰ, dimDS∗

Θ
= dimℰ∗. (2.6)

Suppose Θ ∶ D → ℒ(ℰ, ℰ∗) and Θ′ ∶ D → ℒ(ℰ′, ℰ′∗) coincide, by means of
the operators ! ∶ ℰ → ℰ′, !∗ ∶ ℰ′∗ → ℰ′∗. Then the unitary !̃∗ ∶ H2(ℰ∗) →

H2(ℰ′∗) satis�es !̃(ℋΘ) = ℋΘ′ and

!̃∗SΘ = SΘ′!̃∗.

Returning now to the contraction T and its characteristic function, the next
lemma is a particular case of one of the basic results in [9, Chapter VI].

Lemma 2.2. If T ∈ C00, then the formula (2.4) de�nes a bi-inner pure analytic
function with values in ℒ(DT, DT∗), and T is unitarily equivalent to SΘT . SΘT is
called the functional model of T.

There is a relation between the functional model and the geometrical struc-
ture of a minimal unitary dilation given by (2.1), as shown by the next result.

Lemma 2.3. Suppose T ∈ C00, V ∈ ℒ(K) is a minimal isometric dilation of T,
and L, L∗ are wandering subspaces for V satisfying (2.1). Extend �, �∗ in (2.2) to
unitary operators �̃ ∶ H2(DT) → H2(L), �̃∗ ∶ H2(DT∗) → H2(L∗), and de�ne
Ω = F∗

L∗
Φ∗.

(i) The mapF∗
L∗
Φ∗ΘTΦ

∗FL is the inclusion ofM+(L) intoM+(L∗).
(ii) We have

ΩℋΘT
= ℋ, Ω(DT∗) = L∗, ΩΘT(DT) = L,

ΩT
DT∗

z = VΩ, ΩSΘT = TΩ.
(2.7)

(iii) If Θ = �∗ΘT�
∗ is written Θ(�) =

∑∞

n=0
�nΘn (with Θn ∶ L → L∗), then

Θn = PL∗(V
∗)nJ, (2.8)

where J denotes the embedding of L intoM+(L∗).
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3. Reducibility
In the sequel of the paper we will be interested by reducibility of certain con-

tractions. Fortunately, this can be easily characterized through characteristic
functions.

Lemma 3.1. Suppose T ∈ C00 has characteristic function ΘT ∶ DT → DT∗ .
Then the following are equivalent.

(i) T = T1 ⊕ T2.
(ii) There exist nontrivial orthogonal decompositionsDT = E1 ⊕ E2,DT∗ =

E1∗ ⊕E2∗ which diagonalize ΘT(�) for all � ∈ D; that is,

ΘT(�) = (
Θ1(�) 0

0 Θ2(�)
) . (3.1)

In this case dimDTi
= dimEi = dimDT∗

i
= dimEi∗, and ΘTi

coincides with Θi .

Proof. If T = T1 ⊕ T2, then DT = DT1
⊕ DT2

, DT∗ = DT∗
1
⊕ DT∗

2
, and for-

mula (2.4) splits according to these decompositions into ΘT(�) = ΘT1
(�) ⊕

ΘT2
(�). So (3.1) is valid, taking Ei = DTi

, Ei∗ = DT∗
i
.

Conversely, if Θ(�) ∶= ΘT(�) = Θ1(�) ⊕ Θ2(�), then, according to (2.5),
ℋΘ = ℋΘ1

⊕ ℋΘ2
, and ℋΘ1

,ℋΘ2
are invariant with respect to SΘ. Since

this last operator is unitarily equivalent to T, T is also reducible. Moreover,
SΘ|ℋΘi

is unitarily equivalent to SΘi , and the equality of the dimensions fol-
lows from (2.6). �

Corollary 3.2. Suppose T ∈ C00. Then T is reducible if and only if there exist
nontrivial subspaces E ⊂ DT , E∗ ⊂ DT∗ , such thatΘT(e

it)E = E∗ for almost all t.

Proof. If nontrivial subspaces as assumed exist, then, since ΘT(e
it) is unitary

almost everywhere, we also have ΘT(e
it)E⟂ = E⟂∗ for almost all t. The decom-

positionsDT = E ⊕ E⟂,DT∗ = E∗ ⊕E⟂∗ satisfy then (3.1). �

The following is a geometrical reformulation of Corollary 3.2 in terms of the
spaces L, L∗ appearing in an arbitrary minimal isometric dilation of T.

Corollary 3.3. Suppose T ∈ C00 andV ∈ ℒ(K) is a minimal dilation of T, such
that (2.1) is valid for L, L∗ wandering subspaces for V. Let d be a �nite positive
integer or∞. Then:

(i) If T has a nontrivial reducing subspace such that the restriction has d-
dimensional defects, then there exist nontrivial subspaces L1 ⊂ L, L1∗ ⊂
L∗, both of dimension d, such that

L1 ⊂ M+(L
1
∗). (3.2)

(ii) The converse also holds if d < ∞.

Proof. (i). Suppose T has a reducing subspace with defect of dimension d. We
apply Lemma 3.1, which gives decomposition (3.1), where Θi(�) ∶ Ei → Ei∗,
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and dimE1 = dimE1∗ = d. So Θ1H
2(E1) ⊂ H2(E1∗); in particular, if we look at

E1 as the constant functions inH2(E1), we have

Θ1E
1 ⊂ H2(E1∗). (3.3)

Denote then L1 = �E1 and L1∗ = �∗E
1
∗ (�, �∗ in (2.2)). We consider the

unitary operator Ω from Lemma 2.3. Formulas (2.7) yield also ΩE1∗ = L1∗,
ΩΘ1(E

1) = L1, and Ω(H2(E1∗)) = M+(L
1
∗). Therefore (3.3) implies (3.2).

(ii) Conversely, suppose we have the required spaces satisfying (3.2); there-
fore M+(L

1) ⊂ M+(L
1
∗). De�ne Θ′(�) = �∗ΘT(�)�

∗ ∶ L → L∗. By using FL∗ ,
we obtain Θ′H2(L1) ⊂ H2(L1∗), which means that Θ′(eit)L1 ⊂ L1∗ almost every-
where. Since dimL1 = dimL1∗ = d < ∞, we have in fact Θ′(eit)L1 = L1∗ almost
everywhere. As in the proof of Corollary 3.2, it follows that Θ′(eit)L1⟂ ⊂ L1∗

⟂

almost everywhere, whence we may obtain a decomposition similar to (3.1).
This implies the reducibility ofΘ′, and thus the reducibility ofΘT and of T. �

In particular, we obtain a nice result if we consider reducing subspaces with
defects of dimension 1.

Corollary 3.4. An operator T ∈ C00 has a reducing subspace with defects of
dimension 1 if and only if there exists y ∈ L, y∗ ∈ L∗, y, y′ ≠ 0, and a scalar
inner function u, such that y = u(V)y∗. In this case the characteristic function of
the reduced operator is precisely u.

Proof. By Corollary 3.3 applied to d = 1, the existence of a reducing subspace
with defects of dimension 1 is equivalent to the existence of elements of norm
1 y ∈ L, y∗ ∈ L∗, such that y ∈ M+(y∗). The Fourier representation Fy∗ maps
M+(y∗) ontoH2; more precisely, from (2.3) it follows thatFy∗(f(V)y∗) = f. In
particular, y is a wandering vector for V, which implies that u ∶= Fy∗y is an
inner function.

Ifwe denote byℋ1 the reducing subspace of dimension 1 obtained, thenhave
ℋ1 = M+(y∗)⊖M+(y). Through the Fourier representationFy∗ , this becomes
H2 ⊖ uH2. By comparing with the general formula for the functional model,
we see that the characteristic function of the reduced operator is u. �

Remark 3.5. Part of the results in this section may be extended to more gen-
eral contractions. Thus Lemma 3.1 is true for a general completely nonunitary
contraction; we have then to use in the proof the more complicated general
form of the functional model associated to T. Appropriately modi�ed versions
of Corollaries 3.2 and 3.3 can also be stated. However, since the statements are
less neat, we have preferred to restrict ourselves to the case T ∈ C00, which will
be used in the applications in the sequel of the paper.

4. A class of contractions
In the rest of the paper we will work in the Hardy space H2, applying the

above results to a particular class of contractions. ByT'wewill denote the usual
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Toeplitz operator onH2, that is, the compression of the operator of multiplica-
tion by ' onH2. Recall here that, for a scalar inner function K� = H2⊖�H2 =

ℋ� (see (2.5) with ℰ = ℰ∗ = ℂ).
Let then �, B be two scalar inner functions that satisfy the basic assumption

ker T
�B
= {0}. (4.1)

Note that f ∈ ker T
�B

if and only if �f ∈ ker T
B
= KB, whence (4.1) is equiva-

lent to �H2 ∩ KB = {0}.
We will consider the operator A�

B
∈ ℒ(K�), de�ned by

A�
B
= PK�TB|K�. (4.2)

The operator A�
B
is usually called the truncated Toeplitz operator on K� with

symbol B. It is known [8] that truncated Toeplitz operators are complex sym-
metric; that is, there exist a complex conjugation C� on K� such that

(A�
B
)∗ = C�A

�
B
C�. (4.3)

The next theorem identi�es concretely a minimal isometric dilation ofA�
B
; it

is a generalization of [5, Lemma 3.1].

Theorem 4.1. Let B and � two inner functions satisfying (4.1). The operator
TB ∈ ℒ(H2) is a minimal isometric dilation of A�

B
. For this minimal isometric

dilation we have
L = �KB, L∗ = KB. (4.4)

Proof. TB is an isometry on H2, and TB(K⟂� ) = TB(�H
2) ⊂ �H2 = K⟂

�
. Thus it

follows from (4.2) that TB is a dilation of A�
B
.

We show now by induction according to n that

K� + BK� +⋯+ BnK� = KBn�. (4.5)

Equality (4.5) is obviously true for n = 0. Suppose that it is true up to n−1. We
are left then to prove that

KBn−1� + BnK� = KBn�. (4.6)

It is immediate from the de�nitions that the left hand side is contained in
the right hand side. On the other hand, we have

KBn� = KBn−1� ⊕ Bn−1�KB = BnK� ⊕KBn .

If f ∈ KBn� is orthogonal to KBn−1� as well as to BnK�, it follows that

f ∈ (�Bn−1KB) ∩ KBn .

So f = �Bn−1g with g ∈ KB; and also f ⟂ BnH2, which means �g ⟂ BH2,
or �g ∈ KB. It follows that 0 = T

B
(�g) = T

�B
g. By (4.1), this implies g = 0,

whence f = 0.
Since

(⋁

n

KBn�
)⟂

=
⋂

n

Bn�H2 = {0},
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it follows that

H2 =

∞⋁

n=0

Tn
B
K�. (4.7)

Therefore TB is aminimal isometric dilation of A�
B
.

Then

H2 =

∞⨁

n=0

BnKB =

∞⨁

n=0

Tn
B
KB = M+(KB), (4.8)

whence L∗ = KB.
On the other hand, we have

KB� = K� ⊕ �KB = KB ⊕ BK�, (4.9)
Therefore

H2 =

∞⨁

n=0

BnKB = K� ⊕ �H2 = K� ⊕

∞⨁

n=0

Tn
B
�KB = K� ⊕M+(�KB), (4.10)

whence L = �KB. �

Corollary 4.2. With the above assumptions, A�
B
is in C00.

Proof. In view of equation (4.10), it follows from Lemma 2.1 that A�
B
is in C⋅0.

On the other hand, it follows from (4.3) that

((A�
B
)∗)n = C�(A

�
B
)nC�,

whence A�
B
is also in C0⋅. �

Using the identi�cation of aminimal unitary dilation in Theorem4.1wemay
compute the characteristic function of A�

B
. The next theorem generalizes [3,

Theorem 2.4] (see Section 6 below).

Theorem4.3. LetB and � two inner functions satisfying (4.1). The characteristic
function of A�

B
is Φ ∶ D → ℒ(KB) de�ned by

Φ(�) = AB
�

1−�B

. (4.11)

Proof. We have identi�ed in Theorem 4.1 L, L∗ with �KB, KB respectively. We
intend to apply Lemma 2.3 (iii). Since we want to consider the characteristic
function of A as an analytic function with values in ℒ(KB), the embedding J is
precisely multiplication by �. Then, if Φ(�) =

∑∞

n=0
�nΦn, (2.8) yields

Φnf = PKBB
n

�f

for f ∈ KB. Thus Φn = AB

�B
n . Therefore

Φ(�) =

∞∑

n=0

�nAB

�B
n = AB

�
∑∞

n=0
�nB

n = AB
�

1−�B

. �

We may also obtain a more precise form of Corollary 3.4.



REDUCING SUBSPACES OF C00 CONTRACTIONS 1605

Corollary 4.4. Let B and � two inner functions satisfying (4.1). Then the follow-
ing assertions are equivalent:

(i) The operator A�
B
has a reducing subspace such that the restriction has

one-dimensional defects.
(ii) There exist u inner and ℎ1, ℎ2 ∈ KB, ℎ1, ℎ2 ≠ 0, such that

� =
ℎ2

ℎ1
(u◦B), (4.12)

(iii) There exist u, v1, v2 inner, with

ker Tv1B̄ ∩ ker Tv2B̄ ≠ {0},

such that
� =

v2

v1
(u◦B). (4.13)

Proof. The equivalence of (i) and (ii) follows by applying in this case Corol-
lary 3.4. We have L∗ = KB, L = �KB, and so the existence of the required
reducing subspace is equivalent to the existence of ℎ1, ℎ2 ∈ KB, ℎ1, ℎ2 ≠ 0 and
an inner function u, such that �ℎ1 = u(V)ℎ2. Since V = TB, u(V) is multipli-
cation by u◦B, and we have

�ℎ1 = ℎ2(u◦B). (4.14)

If (ii) is true, then we must have ℎi = vig for some inner functions v1, v2 and
g outer, so (4.13) is true. Note that, if v is an analytic and bounded function in
D, then

vℎ ∈ KB ⇔ ℎ ∈ ker TvB̄. (4.15)
So v1g, v2g ∈ KB is equivalent to g ∈ ker Tv1B̄ ∩ ker Tv2B̄.

The implication (iii)⟹ (ii) follows easily by reversing the steps. �

Note that the function u in (ii) and (iii) of the previous corollary is non con-
stant because otherwise �ℎ1 ∈ KB, and thus ℎ1 ∈ ker T

�B
which contradicts

hypothesis (4.1).

5. A particular case
Let us consider now the particular case when B is a �nite Blaschke product.

Denote ��(z) = (z − �)∕(1 − �̄z). If B has roots (counting with multiplicities)
w1, … , wk, it is known that

KB =
{ p(z)

∏k

i=1
(1 − w̄iz)

∶ p polynomial of degree ≤ k − 1
}
. (5.1)

In this case condition (4.1) has a simple equivalent form.

Lemma 5.1. If B is a �nite Blaschke product, then (4.1) is satis�ed if and only if

dimKB ≤ dimK�. (5.2)
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Proof. Indeed, �rst assume that (5.2) is satis�ed, and let f ∈ ker T
�B
. Then

�f ∈ ker T
B
= KB, whence f = T

�
(�f) ∈ T

�
KB ⊂ KB. If f ≢ 0, then � = �f

f

is a quotient of two polynomials of degree at most degB − 1, which contradicts
assumption (5.2).

Suppose now that dimKB > dimK�. Then �H2 has �nite codimension in
H2 strictly smaller than dimKB, whence �H2 ∩ KB ≠ {0}. Applying (4.15) in
case v = �, it follows that ker T

�B
≠ {0}, contradicting (4.1). �

Condition (5.2) is precisely the one considered in [3] and [5]. To discuss this
case, we need one more elementary lemma.

Lemma 5.2. Suppose ℎ1, ℎ2 are two polynomials of degree at most k − 1 and

|ℎ1| = |ℎ2| a.e. on T. (5.3)
Then,

ℎ2

ℎ1
=
B2

B1
,

where Bi are Blaschke products with deg B1 + degB2 ≤ k − 1.

Proof. First, a general remark. Suppose thatℎ is a polynomial andwriteℎ(z) =
zpg(z), with p ∈ ℕ ∪ {0} and g(0) ≠ 0. Denote the roots (counting with mul-
tiplicities) of g by �1, … , �l. Then, ℎo, the outer part of ℎ, is a polynomial of
degree deg g, which has roots Zo(ℎ)∪Zi(ℎ), where Zo(ℎ) ∶= {�i ∶ |�i| ≥ 1} and
Zi(ℎ) ∶= {1∕�̄i ∶ 0 < |�i| < 1}.

We may assume that ℎ1, ℎ2 have no common roots (otherwise we cancel
them). It also follows then that ℎ1 and ℎ2 have no roots on T (since this would
be a common root by (5.3) ). Also, only one of them may have the root 0; sup-
pose it is ℎ1, and write, as above, ℎ1(z) = zpg1(z), with g1(0) ≠ 0.

Assumption (5.3) implies that the outer parts of g1 and ℎ2 coincide. Since g1
and ℎ2 have no common roots, but g1o = ℎo

2
, we must have Zo(g1) = Zi(ℎ2) and

Zi(g1) = Zo(ℎ2). Then we can write ℎ2∕ℎ1 = B2∕B1, with

B1 = zp
∏

�i∈Z
♯

i
(ℎ1)

��i , B2 =
∏

�i∈Z
♯

i
(ℎ2)

��i ,

where Z♯
i
(p) = {�i ∶ p(�i) = 0, 0 < |�i| < 1} = {1∕�̄i ∶ �i ∈ Zi(p)}. Since we

have
deg B1 + degB2 = p + |Zi(g1)| + |Zi(ℎ2)| = p + |Zi(g1)| + |Zo(g1)| ≤ k − 1,

the lemma is proved. �

The next theorem generalizes [5, Theorem 1.4].

Theorem5.3. SupposeB is a �nite Blaschke product, while � is an inner function
with deg � ≥ degB. Then the operator A�

B
has a reducing subspace such that the

restriction has one-dimensional defects if and only if

� =
B2

B1
(u◦B), (5.4)
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where u is a non constant inner function, whileB1, B2 are �nite Blaschke products
with deg B1 + degB2 ≤ degB − 1.

Proof. We apply to this case Corollary 4.4 (ii). The existence of the required
reducing subspace is then equivalent to the existence of ℎ1, ℎ2 ∈ KB and an
inner function u, such that

�ℎ1 = ℎ2(u◦B). (5.5)
By (5.1), it is equivalent to assume in this equality that ℎi are polynomials of
degree ≤ k − 1, where k = degB. Taking absolute values, we obtain, since �
and u◦B are inner, that |ℎ1| = |ℎ2| on T. We may then apply Lemma 5.2 to
obtain the desired formula (5.4).

The converse is immediate, since (5.4) implies (5.5), with the degrees of ℎ1
and ℎ2 at most k − 1. If we further write gi(z) =

ℎi(z)
∏k

i=1
(1−w̄iz)

, we obtain

�g1 = g2(u◦B).

Since gi ∈ KB, this is equivalent, by Corollary 4.4, to the existence of the re-
quired reducing subspace. �

The condition becomes simpler if � is singular.
Theorem 5.4. Let � be a singular inner function and let B be a �nite Blaschke
product. Then the operator A�

B
has a reducing subspace such that the restriction

has one-dimensional defects if and only if

� = S◦B, (5.6)
for some singular inner function S.

Proof. According to Theorem 5.3, it is su�cient to prove that (5.6) and (5.4)
are equivalent. The implication (5.6) ⟹ (5.4) is clear. Assume now that (5.4)
is satis�ed, that is we can write

B1� = B2(u◦B),

where B1 and B2 are �nite Blaschke products with deg B1+degB2 ≤ N−1 and
N = degB.

Since � is singular, B2must be a factor of B1 andmay be canceled. So wemay
assume B2 = 1, or B1� = u◦B, where deg B1 ≤ N − 1.

Write then u = B3S, where B3 is a Blaschke product and S is the singular
part of u. Thus we have

B1� = (B3◦B)(S◦B).

We have deg(B3◦B) = degB3 deg B; so, if B3 is not constant, then
deg(B3◦B) ≥ degB = N > degB1.

The contradiction obtained implies that B3 is constant, and so
B1� = S◦B.

Since the right hand side is singular, it follows that B1 is constant, which proves
the theorem. �
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6. The case B(z) = zN

The case B(z) = zN is investigated at length in [3]. In particular, the charac-
teristic function of A�

zN
is computed; let us show how Gu’s result follows from

Theorem 4.3 above.
We use the canonical basis ofKB formed by 1, z, … zN−1. To obtain thematrix

of AB
�

1−�B

, consider �rst AB
zn

1−�B

. We have

zn

1 − �B
=

∞∑

j=0

�jzn−jN =

∞∑

j=0

�jzN(n
′−j)+m,

where n = Nn′ + m, with 0 ≤ m ≤ N − 1. Since AB
zp

is nonzero only for
−(N − 1) ≤ p ≤ N − 1, we have to consider in the above sum only two terms,
corresponding to j = n′ and j = n′ + 1. Thus

AB
zn

1−�B

= AB

�n
′
zm+�n

′+1zm−N
.

Its matrix with respect to the canonical basis is

AB

�n
′
zm+�n

′+1zm−N
=

⎛

⎜
⎜
⎜
⎜

⎝

⋱ ⋱ �n
′+1 ⋱ ⋱

⋱ ⋱ ⋱ �n
′+1 ⋱

�n
′

⋱ ⋱ ⋱ ⋱

⋱ �n
′

⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱

⎞

⎟
⎟
⎟
⎟

⎠

, (6.1)

with two nonzero constant diagonals (one in case m = 0), corresponding to
entries aij with i − j = m or i − j = m −N.

Therefore, if we decompose
�(z) = �0(z

N) + z�1(z
N) +⋯+ zN−1�N−1(z

N),

then

AB
�

1−�B

=

⎛

⎜
⎜
⎜

⎝

�0(�) ��N−1(�) ��N−2(�) … ��1(�)

�1(�) �0(�) ��N−1(�) … ��2(�)

�2(�) �1(�) �0(�) … ��3(�)

⋱ ⋱ ⋱ ⋱ ⋱

�N−1(�) �N−2(�) �N−3(�) … �0(�)

⎞

⎟
⎟
⎟

⎠

. (6.2)

This is precisely the form given by [3, Theorem 2.4].
In the sequel we will solve a conjecture about A�

zN
left open in [3]. This ap-

pears as Conjecture 3.5 therein, and has the following statement.

Conjecture 6.1. Suppose B(z) = zN . Then the following are equivalent:
(i) A�

B
has a reducing subspace such that the restriction has one-dimensional

defects.
(ii) �(z) = b(z)u(zN) for some inner function u, while either b ≡ 1 or

b(z) =

l∏

i=1

 �i ,Ji , (6.3)
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where l ≤ N − 1, Ji ⊂ {0, … ,N − 1}, and  �,J is de�ned by

 �,J(z) =
∏

i∈J

�!i�(z). (6.4)

[3, Theorem 3.4] shows that (i) ⟹ (ii), while (ii) ⟹ (i) is proved only for
N = 3 in [3, Section 5].

Theorem 6.2. Conjecture 6.1 is false forN = 4.

Proof. Take two di�erent nonzero values �, � ∈ D, and de�ne

�(z) =
(z2 − �2)(z2 − �2)

(1 − �̄2z2)(1 − �̄2z2)
.

We have then
�(z) =  �,J �,J

with J = {0, 2} ⊂ {0, 1, 2, 3}, so � satis�es condition (ii) of Conjecture 6.1.
On the other hand, if � would satisfy condition (i), it would follow by Theo-

rem 5.3 that one should have

B2(z)�(z) = B1(z)u(z
4), (6.5)

with u inner and B1, B2 �nite Blaschke products with deg B1 + degB2 ≤ 3.
Obviously u has also to be a �nite Blaschke product. Equating the degrees

in both sides yields
deg B1 + 4 = degB2 + 4deg u.

First, deg B1 = 3 would imply deg B2 = 0, so 7 = 4 deg u: a contradiction.
So the degree of the left hand side of (6.5) is between 4 and 6, which implies
deg u = 1. Again equating the degrees yields deg B1 = degB2 = 0 or 1.

Now u(z4) has either the root 0 of multiplicity 4, or four distinct roots. Both
possibilities are incompatible with the fact that the left hand side of (6.5) has
either 2 or three roots. We have obtained the desired contradiction, so � does
not satisfy (i) of Conjecture 6.1. �

In fact, we may replace Conjecture 6.1 with a precise result. We will need
the next lemma, also proved in [3, Theorem 3.4].

Lemma 6.3. If � ∈ D, then

��N (z
N) =

N−1∏

i=0

�!i�(z).

Theorem 6.4. Suppose B(z) = zN . Then the following are equivalent:

(i) A�
B
has a reducing subspace such that the restriction has one-dimensional

defects.
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(ii) �(z) = b(z)u(zN) for some inner function u, while b is either 1 or a �nite
Blaschke product given by (6.3), where l ≤ N − 1, Ji ⊂ {0, … ,N − 1},  �,J
are de�ned by (6.4), and, moreover,

l∑

i=1

min{|Ji|, N − |Ji|} ≤ N − 1. (6.6)

Proof. (i) ⟹ (ii). From Theorem 5.3 we know that � is given by (5.4), where
B1 and B2 have no common roots. We may denote the roots of B1 (counting
multiplicities) by

{�1
1
, … , �1s1 ; �

2
1
, … , �2s2 ; … ; �

p

1
, … , �

p
sp
},

where, for each i = 1, … , p, the values �i
1
, … , �isi are all distinct, and

(�i
1
)N = ⋯ = (�isi )

N .

Similarly, we denote the roots of B2 by

{�1
1
, … , �1r1 ; �

2
1
, … , �2r2 ; … ; �

q

1
, … , �

q
rq
},

where, for each i = 1, … , q, the values �i
1
, … , �iri are all distinct, and

(�i
1
)N = ⋯ = (�isi )

N .

Note that the condition deg B1 + degB2 ≤ N − 1 is transcribed as

s1 +⋯+ sp + r1 +⋯+ rq ≤ N − 1. (6.7)

In particular, p + q ≤ N − 1.
Now, it is easy to see that, for each i = 1, … , q, the Blaschke product

��i
1
…��iri

is equal to  �i
1
,Ji
for some Ji ⊂ {0, … ,N − 1}. So

B2 =

q∏

i=1

 �i
1
,Ji
. (6.8)

The matter is more subtle as concerns B1: it appears at the denominator,
which we do not want. We have, similarly,

B1 =

p∏

i=1

 �i
1
,J′
i

(6.9)

for some J′
i
⊂ {0, … ,N − 1}.

The factor ��1
1
(z)must be canceled by a factor in u(zN), so �1

1
must be a root

of u(zN). But then u(zN)must also have the roots !j�1
1
for j = 1,… ,N−1, and

so

u(zN) =

N−1∏

j=0

�!j�1
1
(z)u1(z

N).
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Since
�!j�1

1
(z)

 �1
1
,J′
1

=  �1
1
,J′′
1

with J′′
1
= {0, … ,N − 1} ⧵ J′

1
, we have

u(zN)

 �1
1
,J′
1

=  �1
1
,J′′
1
u1(z

N).

We may continue the argument (or use an appropriate induction) to obtain

u(zN)

B1(z)
=

p∏

i=1

 �i
1
,J′′
i
u′(zN) (6.10)

for an inner function u′, where J′′
i
= {0, … ,N − 1} ⧵ J′

i
. From (5.4), (6.8),

and (6.10) it follows that

�(z) =

q∏

i=1

 �i
1
,Ji

p∏

i=1

 �i
1
,J′′
i
u′(zN).

This is exactly the form given by (6.3). Moreover min{|Ji|, N − |Ji|} ≤ ri and
min{|J′′

i
|, N − |J′′

i
|} ≤ si, so (6.7) implies (6.6).

(ii)⟹ (i). Suppose b(z) is given by (6.3), with (6.6) satis�ed. De�ne

B2 =
∏

min{|Ji|,N−|Ji|}=|Ji|

 �i ,Ji

and
B1 =

∏

min{|Ji|,N−|Ji|}=N−|Ji|

 �i ,N⧵Ji .

Then
�(z) =

B2(z)

B1(z)
u1(z

N),

where
u1(z) = u(z)

∏

min{|Ji|,N−|Ji|}=N−|Ji|

��N
i
(z);

note that we have used Lemma 6.3. �
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