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Automorphism loci for degree 3 and degree 4

endomorphisms of the projective line
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ABSTRACT. Let f be an endomorphism of the projective line. There is a nat-
ural conjugation action on the space of such morphisms by elements of the
projective linear group. The group of automorphisms, or stabilizer group, of
a given f for this action is known to be a finite group. We determine explicit
families that parameterize all endomorphisms defined over Qof degree 3 and
degree 4 that have a nontrivial automorphism, the automorphism locus of the
moduli space of dynamical systems. We analyze the geometry of these loci in
the appropriate moduli space of dynamical systems. Further, for each fam-
ily of maps, we study the possible structures of Q-rational preperiodic points
which occur under specialization.
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1. Introduction

Let K be a field and P! the projective line. Throughout, K is a finite exten-
sion of Q. An endomorphism of P! of degree d can be represented as a pair of
homogeneous polynomials of degree d with no common factors. The space of
all such maps is denoted as Rat,. There is a natural conjugation action on Rat,
by PGL,, the automorphisms of P!, given as

f% :=atofoa forf € Rat; and a € PGL,.

The quotient by this action is a geometric quotient in terms of geometric invari-
ant theory and forms the moduli space of degree d dynamical systems on P!,
M, := Raty / PGL, [Sil98]. We denote a conjugacy class as [f] € M, and a
representation of a conjugacy class as f € Rat,. Our primary objects of study
are those conjugacy classes [ f] € M, for which there is a nontrivial « € PGL,
so that f* = f. Such an « is called an automorphism of f, and the set of all
such automorphisms forms a group

Aut(f) :={a € PGL, : f% = f}.

In additional to being special from the existence of these extra symmetries, con-
jugacy classes with nontrivial automorphisms are exactly the singular points of
the moduli space M, for d > 3 [MSW14].

Since every automorphism must leave certain sets of points invariant (such
as the set of periodic points of a given period), the automorphism group of a
given f must be a finite subgroup of PGL,. Sharper bounds than this permuta-
tion bound on the size of an automorphism group in terms of d can be obtained
but do not concern us here [Lev11]. Key to this work is the (classical) classifi-
cation in characteristic zero of the finite subgroups of PGL, restated in modern
notation by Silverman [Sil95].

It is important to note that Aut(f) is well defined on conjugacy classes. In
particular, given a € PGL,, the action on Aut(f) defined by ¢ = a~!ocoa pro-
vides a group isomorphism Aut(f) = Aut(f%). The conjugacy class of Aut(f’)
in PGL, is, thus, an invariant of [ f] rather than just f. Denote by A; C M,
the set of all conjugacy classes with a nontrivial automorphism. Let I" C PGL,
be a finite subgroup with representation p : I' — SL,. Denote the set of con-
jugacy classes whose automorphism group contains a subgroup isomorphic to
I' by A4(I"). Similarly denote A; C Raty as the set of rational maps with non-
trivial automorphism group with p(I') as a subgroup, i.e., A4(T') = {f € Ay :
Aut(f) 2 p(I)}. Itisimportant to note that while every finite subgroup of PGL,
has only one inequivalent representation, the choice of group representation af-
fects the representation in homogeneous coordinates of the map. In particular,
questions about the field of definition for elements of A4(T") are heavily depen-
dent on the choice of representation of T, e.g., [dFH135, Sil95].

The goals of this work are two-fold. The first is to give explicit parameteri-
zations for all maps in A, for 3 < d < 4. The case d = 2 is well known [FNO7].
The case d = 3 can be derived from the unpublished work of West [Wes14],
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but he focuses on the parameterizations of M5 as a whole and a side result is
the ability to determine which elements lie in A;. However, it is nontrivial to
move between West’s parameterization of M5 and elements of Rat;. Further,
his methods are not easily applicable in degree d > 3. The methods here can
be used for any degree, and we produce explicit families in Rat; and Raty, (M;
and M,). The second goal is to study other arithmetical dynamical properties of
these families with nontrivial automorphisms focusing on the structure of the
set of rational preperiodic points. The motivation for this portion is the uniform
boundedness conjecture of Morton and Silverman.

Conjecture 1.1 ([MS94]). Fix integersd > 2, N > 1, and D > 1. There is a
constant C(d, N, D) such that for all number fields K/Q of degree at most D
and all morphisms f : PN — PN of degree d defined over K,

# PrePer(f,K) < C(d,N, D),
where PrePer(f, K) is the set of preperiodic points for f defined over K.

This conjecture is equivalent to a uniform bound on the number of K-rational
preperiodic graph structures, where the vertices are K-rational preperiodic points
and edges connect a point Q to its forward image f(Q) [DS18]. While an un-
conditional bound remains out of reach, we use Poonen [Pon98] and Manes
[Man08] as our model and classify graph structures assuming an upper bound
on the period of a rational periodic point.

We now give a summary of the main results and an outline of the article.
Section 2 gives parameterizations of the automorphism locus A; C M;. The
classification of finite subgroups of PGL, is given in modern notation in Silver-
man [Sil95]:

Cyclic group of order n, denoted as C,,.

Dihedral group of order 2n, denoted as D,,.

Tetrahedral group 2, (or alternating group on 4 elements).
Octahedral group S, (or symmetric group on 4 elements).
Icosahedral group 25 (or alternating group on 5 elements).

Combining this classification with the already known dimensions of A3(I") from
Miasnikov-Stout-Williams [MSW14], we find families in the parameter space
Rat; that map finite-to-one onto families in M; of the appropriate dimension.

Theorem 1.2.

(1) The locus A5(C4) = A5(D,) is a single conjugacy class in M5 given by
f(z) = i (Corollary 2.3).

(2) The locus A3(AU,) is a single conjugacy class in M5 given by f(z) =

33 L . . . .
2_322. This single conjugacy class is exactly the intersection of .A;(C,)
and A;(C3) (Proposition 2.9).
3

(3) The locus A3(C3) is an irreducible curve in Mj; given by f,(z) = %,

a # 0 (Proposition 2.5).
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(4) The locus .A5(D,) consists of two irreducible curves given by

2 2
az+1 az® —1
,a#+1 and zZ) =
z3+az 7 8a(2) z3 —az

fa(2) = ,a # +1,

which intersect at the single point A5(D,) = A3(C,4) (Proposition 2.6).
(5) The locus A3(C,) is the union of two irreducible surfaces given by

2 +az az?+1
Jab@ = paypab 2t and s =

ab #1

which intersect in a curve that is the f, component of A5(D,) (Propo-
sition 2.7).

The methods are a combination of invariant theory as utilized in deFaria-
Hutz [dFH15], explicit forms for maps with cyclic or dihedral automorphism
groups from Silverman [Sil95], and explicit calculation using the generators of
the finite subgroups.

In the process of studying .45, we were able to complete the rational realiza-
tion problem over Q started in [dFH18].

Theorem 1.3. Every finite subgroup of PGL, can be realized as the automor-
phism group of a rational map defined over Q.

Section 3 studies these parameterizations as families in moduli space giving
explicit maps to sets of periodic point multiplier invariants that are finite-to-
one. To construct the multiplier invariants, recall that to each fixed point Q we
can compute an algebraic number called the multiplier 1, = f'(Q), where f
is a dehomogenization and ' represents the derivative. The multiplier is con-
jugation invariant and the set of fixed points is invariant (as a set) under con-
jugation. So, taking the elementary symmetric polynomials evaluated on the
set of multipliers produces invariants of the moduli space [Sil98]. We can sim-
ilarly construct invariants from the set of periodic points (or formal periodic

points) of any period. We denote these invariants alg”), where n denotes the pe-
riod of the points used and 1 < i < (deg(f))" + 1. These invariants were first
studied by Milnor [Mil93] to construct an isomorphism M, = A2. In higher de-
grees, we no longer get an isomorphism to an affine space, but utilizing enough
multiplier invariants does produce a finite-to-one map producing a mapping of
M into affine space [Mcm87]. We can then examine the image of A;(T) as a
variety in this affine space. In all families but one component of A;(D,), us-
ing the fixed points multipliers is sufficient; in that component, the multiplier
invariants of the 2-periodic points are needed. Theorem 1.4 summarizes the
embeddings of the familes A;(T') into the moduli space M5 and the geometric
results on A;(T"). The details of the embeddings into affine space via the multi-
plier invariants that are used to analyze the geometry can be found within the
referenced propositions.
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Theorem 1.4.
(1) The map
Z+a

A\ {0} - M,
\ {0} = Ms3,a az?

is one-to-one. The locus A5(C3) is an irreducible curve of genus zero
with one singular point corresponding to A3(2,). (Proposition 3.1)

(2) The map

az’?+1

AL\ {£1} > M;,
\El = M0 = z3+az

is two-to-one. This component of A;(D,) is a smooth irreducible curve
of genus zero. (Proposition 3.2)
(3) The map

AN\ {x1} > Ms,a -

az’ -1
z3 —az
is six-to-one. This component of A;(D,) described by the image is a

smooth irreducible curve of genus zero. (Lemma 3.3, Proposition 3.4)
(4) The map

z> +az

2 _ £ Tes
A%\ {ab = 1} —» M;3,(a,b) — e 11

is two-to-one. This component of A;(C,) is an irreducible rational sin-
gular surface. (Proposition 3.6)
(5) The map

az?+1
z3+ bz

A%\ {ab = 1} - Mj3,(a,b) —

is four-to-one. This component of A3(C,) is an irreducible singular sur-
face. (Lemma 3.8, Proposition 3.9)

Section 4 gives parameterizations of the automorphism locus A4 C M. The
methods are similar to Section 2.
Theorem 1.5.
(1) Thelocus.A4(Cs) = A4(Ds)is the single conjugacy class given by f(z) =
i. (Proposition 4.2)
(2) Thelocus A4(C4) is an irreducible curve in M, given by the 1-parameter
family f(z) = k— for k # 0. (Proposition 4.3)
(3) Thelocus.A4(D3)isanirredcible curve in M, given by the family f(z) =
2k for k # +1. (Proposition 4.5)
@) Thg locus A4(C3) is an irreducible surface in M, given by the family
S, (2) = z +klz for k,k, # 1. (Proposition 4.4)
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(5) The locus A4(C,) is given by the 3-parameter family
Z4 + k122 +1

kyz3 + ksz
for k3 + k3 # kyk,k;. (Proposition 4.6).

fkl,kz,k3(z) =

Section 5 studies these parameterizations as families in moduli space giving
explicit maps to sets of periodic point multiplier invariants that are finite-to-
one. In all families but A4(C,), using the fixed point multipliers is sufficient; in
that family, the multiplier invariants of the formal 2-periodic points are needed.
Theorem 1.6 summarizes the embeddings of the familes A,(T") into the moduli
space M, and the geometric results on A,(T'). The details of the embeddings
into affine space via the multiplier invariants that are used to analyze the ge-
ometry can be found within the referenced propositions.

Theorem 1.6.
(1) The map
z4+1
kz3
is one-to-one. The locus A4(C,) is an irreducible curve of genus zero

with one singular point. (Lemma 5.1, Proposition 5.2)
(2) The map

A\ {0} > My, k —

z* +kz
kz3 +1
is one-to-one. The locus A4(Ds) is an irreducible curve of genus zero

with one singular point. (Lemma 5.3, Proposition 5.4)
(3) The map

Al \{il} b M4,k =

z* + kyz

AZ \ {klkz = 1} g M4, (k15 kz) > k2z3 n 1

isone-to-one. The locus.A4(Cs)is a singular irreducible surface. (Propo-
sition 5.6)
(4) The map

zt+kiz2 +1

A3 \{k% + kg = kikykst — My, (ky, ky, k3) — k,z3 + k3z

is generically two-to-one. (Proposition 5.7)

Note that the singular point in the curves in parts (1) and (2) still have the ap-
propriate automorphism group, so we are not seeing the phenomenon of chang-
ing automorphism group we saw in the singular point in Theorem 1.4 (1) (and
in the cuspidal cubic which is A,). However, these two points do correspond
to non-conjugate maps with the same set of fixed point multiplier invariants.
Since the embeddings in affine space for these families use only the fixed points
invariants, in some sense this point is the point of intersection of the image of
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these two families in A*. This common point is the only (nondegenerate) such
point of intersection.

Having given parameterizations of A5 and A4, we turn to studying rational
preperiodic structures. From the set of preperiodic points S for f, we create a
directed graph whose vertices are the points in S and for P,Q € S there is an
edge from P to Q if and only if f(P) = Q. An important consideration for ratio-
nality questions on A, is which representative of the conjugacy class is used.
Studying Q-rational preperiodic points, conjugating by an element of PGL,(Q)
would not affect the rational preperiodic structure. However, conjugating by an
element over a field extension would affect the rational preperiodic structure.
This effect on rationality still occurs even when the new map is still defined over
the original field of definition, the rational twist case; see [LMT14] for uniform
boundedness for families of twists. Consequently, we study rational preperiodic
structures for the parameter space locus A,.

Section 6 classifies the Q-rational preperiodic structures that occur for maps
in the locus A; given by these parameterizations with Q-rational parameter
values. The graph structures are specified in the theorems of Section 6 and
summarized in the following theorem.

Theorem 1.7.

(1) Single conjugacy classes A3(C4) = As(D,), and A5(2,): Each has one
possible rational preperiodic graph structure. (Theorem 6.3)

(2) A3(C3): Assuming there are no points of minimal period 4 or higher,
then there are four possible Q-rational preperiodic graph structures for

fa(2) = Z3+2a. Each of these graph structures occurs infinitely often.
az
(Theorem 6.9).
(3) A3(Dy):

(a) Assuming there are no points of minimal period 4 or higher, then
there are four possible Q-rational preperiodic graph structures for

2
fo(2) = a32++1. Each of these graph structures occurs infinitely
z az

often. (Theorem 6.12).
(b) Assuming there are no points of minimal period 4 or higher, then
there are four possible Q-rational preperiodic graph structures for

fa(2) = Z::i Each of these graph structures occurs infinitely
often. (Theorem 6.15).
(4) A3(Cy):

z4az

(a) The family f,,(z) = = has at least 33 different Q@-rational
preperiodic graph structures. (Section 6.5).

(b) The family g, 5(z) = % hasatleast 23 different Q-rational prepe-
riodic graph structures. (Section 6.6).

The methods of this section are to first classify the occurrence of Q-rational
periodic points up to some bound on the minimal period, then to classify the
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rational preimages of the possible cycle structures. Further, we must classify
when distinct connected components can occur for the same choice of parame-
ter. In all these cases, the problems come down to finding all the rational points
on a curve. In the case of rational or elliptic curves, this set can be infinite. In
the case of higher genus curves, there can only be finitely many rational points
(Faltings’ Theorem). For the two A;(C,) components that are dimension two,
the task moves to finding all rational points on surfaces. The tools available
for such problems are much more limited, so instead we perform a census of
Q-rational preperiodic graph structures with Q-rational parameter values.

In Section 7 we study the Q-rational preperiodic structures that occur for
maps in the locus A, given by these parameterizations with Q-rational param-
eter values. The graph structures are specified in the Theorems of Section 7 and
summarized in the following theorem.

Theorem 1.8.

(1) Single conjugacy classes A4(C5) = A4(Ds) have one possible rational
preperiodic graph structure. (Theorem 7.1)

(2) A4(C4): Assuming there are no points of minimal period 3 or higher,
then there are four possible Q-rational preperiodic graph structures for

4
fi(z) = Zk+31. Each of these graph structures occurs infinitely often.
zZ
(Theorem 7.4).
(3) A4(D3): Assuming there are no points of minimal period 3 or higher,

then there are five possible Q-rational preperiodic graph structures for

fr(2) = i:ﬁ with possibly finitely many exceptional values of the pa-

rameter k. Each of these graph structures occurs infinitely often. (The-
orem 7.7).
(4) A4(C3): The family fy 4, (2) = P
preperiodic graph structures. (Section 7.4).
(5) A4(Cy): The family fi y, k,(2) = %i;l has at least 55 different Q-

rational preperiodic graph structures. (Section 7.5).

4
2 thz has at least 13 different Q-rational

The methods parallel those in Section 6, but the increase in degree causes an
increase in the complexity of the curves. The finitely many possible exceptions
for A4(D3) correspond to the rational points of several explicitly given curves
with genus at least 4.

Finally, in Section 8 we make some remarks on further problems.

The computations were done primarily in Magma [BCP97] and Sage [SJO5].
Code used for the computations can be found in the arXiv version® of this arti-
cle.

lhttps://arxiv.org/abs/2007 . 15483
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2. Automorphism loci in M;

In this section we determine .43, the conjugacy classes of degree 3 endomor-
phisms of P! that have a nontrivial automorphism. We will always be working
over Q.

We know that if I' C Aut(f) for some f € Raty, then I' must be isomorphic
to C,, D, A4, S4, or As; see [Sil95]. Also, from the classification of finite sub-
groups of PGL,, all isomorphic subgroups are in fact conjugate to each other;
see [MSW14, Lemma 2.3]. Thus, given a group, we can simply fix an SL, rep-
resentation and work only with this representation.

From previous work of Miasnikov, Stout, and Williams [MSW14] (hence-
forth abbreviated as MSW), we are able to determine the dimension of A;(T)
for any I

Lemma 2.1. When deg(f) = 3, Aut(f) must be C,, C3, Cy4, D,, D, or 2. The
dimensions of A;(T') for these groups are given by

(1) dim A;(C,) = 2,dim A5(C;3) = 1, and dim A;(C,) = 0.

(2) dim Az(D,) =1, and dim A5(D,) = 0.

(3) dimA;(A,) = 0.
Moreover,

(4) A3(Dy) € A5(Cy) C A5(Cy).

(5) A3(Dy) € A5(Cy).

(6) A3(4) C A3(C3) and A3(,) C A3(D,) C A3(Cy).

Proof. The groups that occur and the dimensions are calculated in Section 2
of MSW [MSW14]. The second half follows from the observation that if G is a
subgroup of H, then A4 (H) C A4(G). O

To determine A;(I"), we proceed in two steps. First we find a family in A; C
Rat; which parameterizes all maps that have I' contained in their automor-
phism group. Then we find a normal form for elements in this family. By nor-
mal form, we mean that the projection 7 : Rat; — Mj is an isomorphism
on this family, i.e., every member of the family represents a distinct conjugacy
class. However, in practice we typically end up with a finite-to-one projection
so that the dimension of the family in parameter space is the same as the di-
mension in moduli space. Stated more precisely, given a group I', we want to
find a k-parameter family in Rat; such that k = dim.A;(I') and for all maps
f € A5(), f is conjugate to some member of this k-parameter family.

2.1. A5(C,) and A3(D,4). From Silverman’s classification of maps with cyclic
automorphism groups [Sil95, Proposition 7.3], we know that if a degree 3 map

f has a C, symmetry generated by z — iz, then f must be of the form % for
az

some a € Q. This family of maps is actually a family of twists corresponding
to a single conjugacy class in M.

Proposition 2.2. Let f € Rat;. If C, C Aut(f), then f is conjugate to is
z
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Proof. Let ¢(z) = % and f,(z) = % for any nonzero a € Q. Consider the
z az

Mobius transform a(z) = pz, where p* = a. We can compute
1
(pz)* 1 1

opoa)(z) = P B fa(2). g

-1

9*(2) = (a

Note that the automorphism group of % is actually all of D, with the extra
z

symmetries coming from z — L By the containments from Lemma 2.1, we
z
have the following corollary.

Corollary 2.3. The automorphism locus A3(C4) = A5(D,) is a single point in
M; given by the conjugacy class of is
V4

2.2. A3(C3). From Silverman’s classification of maps with cyclic automorphism
groups [Sil95, Proposition 7.3], we know that if f € Rat; has a C; symmetry,
then f belongs to one of the following two families:

az®+b az
f1(2) = or fy(z)= b o

Since all parameters must be nonzero to be a degree 3 map, we can divide
through by a and b, respectively, to get

cz?

3

z2+a b,z
or z) = ,

a,z2 12(2) z3 + b,

f1(z) =

)]

where a,, a,, by, b, € Q\{0}. These two families in parameter space are exactly
A3(C3), and we next show they project onto the same irreducible curve in mod-
uli space.

Now that we are working with positive dimensional components of A3, we
set some terminology for parameterized families. A k-parameter family of ra-
tional degree d maps is a set of rational maps P! — P! of the form

f,y) = (Fox® + Fyx%ly + o+ Fgy? @ Fypx® + oo 4 Fog iy

for some polynomials Fy, ..., F,4,, in indeterminants u, ..., u;, where we may
require that some of the F; never vanish and the two defining polynomials of
f have no common factors for all (uy, ..., u;) considered. In particular, a k-
parameter family is parameterized by an open subset of A¥,

Lemma 2.4. A k-parameter family in Rat, induces a map
F:U—-> My

for an open subset U C A and this map is a morphism of varieties. In partic-
ular, the image is irreducible and so is its closure.

Proof. A k-parameter family is represented in the form

f,y) = (Fox® + Fyx®ly 4+ .+ Fyy? : Fyx® + .4 Fog 1y
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where the F; are polynomials in parameters (uy, ..., uy). These F; determine a
morphism of varieties ¢ : A¥ — A24+2 defined as

(u]_, ceey uk) = (Fo(ul, ceey uk), e ,F2d+1(u1, wee s uk))
The complement of the origin A24+2 \ {0} is an open subset and, thus,
U’ = ¢71(A%42\ {0}y

is also open in A¥. So restricting ¢ gives a morphism U’ — A24+2\ {0}
There is a projection morphism A24+2 \ {0} — P24*! defined

(ao, ey a2d+1) = (ao e s a2d+1).

Composing the restriction of ¢ with this projection yields a morphism U’ —
[p2d+1.

By definition, Raty is the complement of a hypersurface in P24+! and is open
itself. Therefore, its inverse image by the composite map from U’ is also an
open subset U of Ak,

One may further refine U as needed by intersecting it with the inverse im-
age of the complement of the hyperplane in P24+! defined by the vanishing
of a given a;. This amounts to requiring the corresponding coefficient of the
rational maps in the k-parameter family to be nonzero.

Finally, geometric invariant theory can be used to show the quotient map
Rat; — M, [Sil07, Theorem 4.36] is a morphism; thus, altogether we obtain
the desired map F : U — M.

From point set topology, nonempty open subsets of varieties are irreducible,
the closure of an irreducible subset of a larger topological space is irreducible,
and the continuous image of an irreducible set is irreducible. Therefore, the
image of F and its closure are both irreducible. O

For example, with the notation from Lemma 2.4, the 1-parameter family of
rational maps of the form f,(z) = —— written projectively as

az3+1
(x 1 y) P (axy? @ ax® +y3),
where a # 0 corresponds to taking
Fo=F, =F;=Fs=Fg=0
F,=F,=a
F,=1.
We have refined the open subset U from the proof by intersecting it with the in-
verse image of the complement of the hyperplane defined by a, = 0 (or, equiv-
alently, that defined by a, = 0), if the coordinates for P7 are (ay : a; : a, :

. ay). Lemma 2.4 then shows that the set of all conjugacy classes of maps of
the form f,(z) = a;il is an irreducible subset of M;.

Let f € Raty. To each periodic point z of period n for f, we can compute the
multiplier as A, := (f*)(z) for a dehomogenization f of f. The set of all mul-
tipliers of a given period is invariant under conjugation (but may be permuted)
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so applying the elementary symmetric polynomials to this collection of multi-
pliers produces a set of complex numbers that are invariants of the conjugacy
class—these multiplier invariants have also been called Milnor parameters. See
Silverman [Sil07, §4.5] for more details on dimension 1 and Hutz [Hut19] for
dimension > 1. The key fact we need is that they are invariants of the conju-
gacy class. In particular, if f, g € Rat, have different multiplier invariants for
any fixed n, then they cannot be conjugate. However, the converse is not true;
having the same multiplier invariants for some (or all) n does not make two
functions conjugate.

Proposition 2.5. A;(C;) is an irreducible curve in M; given by either one-
parameter family,

2 +a bz
fa(2) = 0z2 or gy(z) = b1

Proof. We first show that we can conjugate the two-parameter families in equa-
tion (1) to the one-parameter families given in the statement. We first con-

sider f;. Let 83 = 2, and consider the Mébius transform a(z) = %z so that
I
a~!(z) = Bz. We can compute

3

1 z3
(EZ) o g o
(o4 —_ —
1@ =———F|8= = B
a,( 1z Rer
2\s
_BZ+apt Z+af P +a,
azﬁzz a222 a222 )
2+

Thus, the two-parameter family

Zl is conjugate to the one-parameter family
az

fa,- Similarly for f,, we can set y3 = by, and consider the M&bius transform
a(z) = yz and its inverse a(z) = 2. Wecan compute
4
g
byyz ) 1 biz b bz
v3z3+b) vy p3zd+b, bz b+
b

2

HON|

b o bz .
where b = b—l. Thus, the two-parameter family % is conjugate to the one-
2 Eay]
parameter family gj,.
Next, consider the Mobius transform a(z) = ! Wecan compute
zZ

1 1 bz
a —_— —_ —
fy@= 1ip b2l bz3 41

T bz

= gp(2).
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Thus, the two one-parameter families f, and g, are conjugate and we can con-
sider either one. In particular, every f with a C; symmetry is conjugate to some

member of the family f,(z) = z +a. O

2.3. A3(D,). The representation of D, we will be working with is

{31 A P A e

where [_Ol (l)] and [(1) (l)] are the two generators. They correspond to Mobius
transforms o; = —z and a, = -

Proposition 2.6. .A;(D,) consists of two irreducible curves which intersect at
the single point A3(D,) = A3(C,).

+ayz2+azz+
Proof. Let f(z) = % be a degree 3 map. If f has a D, symmetry,

we can obtain restrictions on the coefficients from the equations f = f* and
f=r=

We get 14 equations and compute the irreducible components of the variety
generated by these equations as a subvariety of P’7. There are 8 irreducible com-
ponents, but only 4 of them correspond to degree 3 maps. Thus, f € Rat; hasa
D, symmetry (with this representation) if and only if it has one of the following
four forms:

k,z? k,z? +1
fl(z)_z;——klz fz(Z)=m
z3 + kyz z3 —kyz
f3(Z)_k 211 fa(2) = ks 21

where none of the parameters k;, k,, k3, or k, can be +1. We will show that f,
f3,and f, are all conjugate to each other, whereas f; is not in general conjugate
to the rest. First, consider the families f; and f,. Conjugating f, by the element

O(_l = e get
Tl 1) VeE

Z 4 kat3 k2+3
fo = —
2 ka3 4 1
ky—1
Thus, f, is conjugate to the map f;(z) = = +k3z , Where k; = iﬁi. Now we
-
show that f, is conjugate to f,. For every k4 ;é 1, setk, = I;”i and work
—

kgt3 2241 . .
with f,(z) = ’;43+k4+3 . Conjugating this map by o = [_11 i], we get [7(z) =

kq—1

z—k4z_
k4z2-1

fa(2). Thus, f,, f3, and f, are all conjugate to each other.
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To see that f; is not conjugate to the rest, we compute the multiplier in-
variants for the fixed points of f;. Interestingly, they are independent of the
parameter k;:

01 =—-12 O'2=54 O'3=—108 U4=81.

However, the multiplier invariants for the fixed points of f, are dependent on
the parameter ky:

2k +6
o1(ky) = ket 1
ki — 2k3 + 10k3 + 6k, + 9
ox(ky) = >
ky +2ks+1
—2k; + 6k, — 6k, + 18k,
o3(ky) = )
ki +2ks +1
ki — 6k; + 9k,
o4(ky) = BT —
ki +2ks +1

Solving the equations

oi1(ks) = =12, o,(ks) =54, o3(ks) = —108, ou(ky) =81,
we see that the only possible conjugacy occurs for k, = —3. Setting k, = -3,
we compute the multiplier invariants for the periodic points of period 2 for f;
and f,, denoted al@ for 1 <i < 10. For f; the invariants depend on k;, and for
f4 at ky = —3 they are constants. Solving the equations cl.(z)( fi)= cl.(z)( fa), we

see that the three values k; € {3,0,—3} are all conjugate to f, with k, = —3.
Further, note that the three elements of the f; family with k; € {3,0, —3} are all

in the same conjugacy class as % These are the only conjugacies in the families
z

f1and f,.
In summary, every degree 3 map f with D, symmetry is conjugate to some

. kiz2—1 . kyz2+1
member of the family f,(z) = - — or the family f,(z) = e and we can
z3—k,z z3+kyz
conclude that A5(D,) has two irreducible components which intersect at the
calculated conjugacy class. O

2.4. A3(C,).

Proposition 2.7. The locus A3(C,) is the union of two irreducible surfaces
which intersect in the f,(z) component of A3(D,).

Proof. From Silverman’s classification of maps with cyclic automorphism groups
[Sil95, Proposition 7.3], we know that if f is degree 3 with a C, symmetry; then
f is conjugate to one of the forms

kiz3 + kyz Lz?+ 1,
&= 7 J&= a5tz
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where k; k4 # 0 and l,1; # 0. Thus, we can divide through by k; and [;, respec-
tively, to obtain:

3+ ayz b,z?> + b,

f(Z)—m or f(Z)—m-

e first reduce these two three-parameter families to two-parameter families.
3
Consider the first family f,(z) = ———2

Conjugating it by the Mobius trans-

a,z2+a;

form a(z) = 1/asz, we get
3,4
3 z°+ —z
1 ((az) +anaz\  ayzd+aiz t
\as a,a5z% + a; a,a322 +a;  az2+1

. a
Thus, for every choice of a;,a,, a;, we can set k; = — and k, = a,; note that
as

i@ =

3
a; # 0 since k, # 0. Thus, the family f,(z) = = -ZIZ is conjugate to the family
ayz%+as
_ Ztkz
qo(z) N kyz241°
2
Similarly, given f,(z) = bizbz ,we can set §4 = bl and consider the Mdbius
z°+Db3z 2

transform a(z) = %z. We can compute

72

PO bl BT R Y ks
2 Z 4 b © 234 bif2z 23+ byf2z
B3 B
Thus, for any choice of by, b,, bs, we can set I; = b;8% and [, = b;52. So the
. _ byz%+b, . . . _ Lz2+1
family f,(z) = T is conjugate to the family ¢(z) = Y

Finally, we need to determine if these two-parameter families are ever conju-
gate to each other. Taking a generic PGL, element o = (Ccl Z) and conjugating,

we can setup a system of equations for ¢“ to be of the form ¢ by equating the
known coefficients (up to scalar multiple). This produces a variety with three
irreducible components:

Xy =V +3,5 +3,ky + ky, k3 +9),
Xy =V = b ky =k, kply — ky — 1, = 3),
Xs=V( —b,ky —ky, kyl, —ky +1—2 4 3).
The component X; is dimension 0 containing the three pairs of maps with
(L, 1, ke, ky) € {(—3,-3,0,0), (-3, -3, 3i, —3i), (=3, —3, —3i, 3i)}.

All such maps are conjugate to is The components X, and X; we now show
zZ
are the component f,(z) of A;(D,). Note that when l; = L,, this is exactly the
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family f,(z). The last defining equation for each variety solves as

L+3 -3
k1=k2=12+1 and k1=k2=12?,
2 2

respectively. Recall that [, = +1 is degenerate, so every (nondegenerate) map
with pair (kq, k,) is conjugate to a corresponding map with pair (I;, l,) and vice
versa. In other words, the two forms represent the same family f,(z) as families
in moduli space. Since 2—13 isin the f,(z) component of Az(D,), we have proven

the intersection statement. O
This completes the proof of Theorem 1.2.

Remark 2.8. Itis worth noting that for each of the cyclic automorphism groups,
the same procedure was able to produce a family in moduli space. Fix an in-
teger m > 2. The following algorithm will produce a k-parameter family in
A4(C,,) where k = dim(A4(C,,)).
(1) Start with the normal form z®(z™) from Silverman [Sil95, Proposition
7.3]. The number of parameters of this normal form is
dim A(C,,) + 2. Moreover, there are at least two parameters that are
nonzero.
(2) Divide through by one of the nonzero parameters.

% 0 .
] to eliminate another parameter.

(3) Apply a matrix of the form [ 0 1

2.5. A3;(MU,). We know that C, and C; are subgroups of 2, so that

Az(A,) C A3(C,)NA3(C3). This intersection turns out to be a single conjugacy

class giving A5(2A,).

Proposition 2.9. The locus A5(2,) is a single point in moduli space repre-
— 2,2

sented by f(z) = V2

A(C3) in M.

. This point is exactly the intersection of .A;(C,) and

z3 \/_32

Proof. We start by computing the intersection A3(C,) N A5(Cs). To determine
this intersection, we use a Groebner basis calculation similar to the end of the

proof of Proposition 2.7. Recall that A;(C5) is given by the family g,(z) = Z:;a.
3

Consider the component of A5(C,) given by [y, x,(2) = %zki Taking a
2

generic element of PGL,, a = <? Z), we consider the system of equations
obtained from the coefficients of
a —
S, = t8a

for some nonzero constant ¢. Note that f7; K, is degree 3, so that if /i , = g,,
1> 1-%2

then its numerator and denominator differ from those of g, only by a constant
multiple. The resulting equations have no solutions.
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kiz2+1
Z3+kyz
tg, and solve the resulting system of equations. In this case, there are two so-
lutions

Now consider the component given by [y x, = . Againweset f7 | =
’ 1,R2

a=-3, (ki,ky)= (i\/g, —T—\/E)
These two choices of (k;, k,) are in fact conjugate to each other. Furthermore,
the automorphism group of f ,, has order 12 at these values. The only group
with order 12 in our list of possible automorphism groups is 2. Thus, A5(C,)
and A;(C;) intersect at a single point in the moduli space, and the point of
intersection is .A3(2A,). O

As mentioned in the introduction, the choice of representation affects the
field of definition and it is natural to ask whether a map defined over Q has
2, as automorphism group. Hutz-deFaria [dFH15] proved that the “standard”
representation of 2, given by Silverman [Sil95] does not have a map defined
over Q with tetrahedral automorphism group. However, when computing the
intersection of A(C,) and A(C3) in Proposition 2.9, we discovered that the map

z3 -3
1@ =
has tetrahedral automorphism group (and is conjugate to the maps in Propo-
sition 2.9), which can be verified with direct computation by the algorithm of
Faber-Manes-Viray [FMV14] as implemented in Sage. This example completes
the construction started in Hutz-deFaria to show that every finite subgroup of
PGL, can be realized as the automorphism group of a map defined over Q.

Theorem 2.10. Every conjugacy class of a finite subgroup of PGL, can be re-
alized as the automorphism group of a rational map defined over Q.

3. Geometry of certain automorphism loci in M;

In this section, we examine the geometry of automorphism loci A3(I') C M3,
such as smoothness and genus. The method in general is to embed M; into an
affine space with a collection of multiplier invariants, i.e.,

n
T, M — AYH

(1 @, 0P ).

We can then examine the image 7,,(A5(I)) € A¥'+! and talk about the geometry
of the resulting variety.

3.1. A3(C3). Recall that every map with a C; symmetry is conjugate to some

map of the form f,(z) = Z:;a
Proposition 3.1. Define f,(z) = Z3+2a. The map
az
A\ {0} — M;

ar [fql



1630 GONTMACHER, HUTZ, JORGENSON, SRIMANI AND XU

is one-to-one.The locus .A3(C3) is an irreducible curve of genus zero with one
singular point corresponding to A;(2,).

Proof. We compute the multiplier invariants associated to the fixed points for
the family f,(z) as functions of a as

2

a“—6a+9
o,(a) = —

—6a3 + 21a? — 36a + 27
Uz(a) = 2

12a* — 44a3 + 63a% — 54a + 27
o3(a) = e

—8a3 + 36a? — 54a + 27
0'4((1) = 22 .

Then, to see which choices of parameters a and b have f, and f}, with the same
invariants, we solve the system of equations

o;(a) = g;(b) 1<i<4.

The only solutions occur with a = b. In particular, since for each choice of a,
f 4 has distinct multiplier invariants, each choice of a corresponds to a distinct
conjugacy class.

Because every choice of a provides a distinct set of fixed point multiplier
invariants and, hence, a distinct conjugacy class in M3, we can use the fixed
point multiplier invariants to parameterize this curve in Mj3. In particular, we
have a map 7; : A3(C;) — A3 defined by [f,] — (01,0,,03). We can omit o,
because it is dependent on (o4, 05, 03) through the standard index relation (see
Hutz-Tepper [HT13] or Fujimura-Nishizawa [FNO7, Theorem 1]). Then we can
consider the ideal generated by

a’>—6a+9—aoy,

— 6a’ 4 21a? — 36a + 27 — a’o,,

(12a* — 44a® + 63a? — 54a + 27) — a0,
We compute the saturation with the ideal (a) to avoid the vanishing of a and
compute the Grobner basis of the resulting ideal using lexicographic ordering to
eliminate a. We obtain the following relations among the multiplier invariants:

0 = 607 + 010, + 1507 — 180, — 903 — 36

0= og — 30,03 — 2407 + 120, + 36.
These relations define a curve in A3. This curve is irreducible over Q and has

genus 0. It is not smooth, and the only singular point is (—12, 54, —108). This

singular point corresponds to a = —3 and, thus, to the rational map f_5(z) =
z3-3
—3z2°

This rational map has a tetrahedral automorphism group. (]
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3.2. A3(D,). There are two components in the locus.A;(D,). We examine each
separately.

2
92+ The map
z3+az
Al \ {il} g M3

a [fal

is two-to-one. The component of the locus .A5(D,) described by the image in
M; of the family f, is a smooth irreducible curve of genus zero.

Proposition 3.2. Define f,(z) =

Proof. We first compute the fixed point multiplier invariants for this family as
functions of a as

o1(a) = 4a” + 12
az—-1
0,(a) = 6a* + 4a” + 54
a*—2a?+1
oy(a) = 4a* —24a* — 108
a*—2a%2+1
To show the map is two-to-one, we fix a and determine how many b satisfy
(01(a), 02(a), 03(a)) = (01(b), 05(b), 03(b)) ()

and then show that both solutions are conjugate. We start with the ideal defined
by equation (2) and exclude the cases a®> = 1 and b? = 1 through saturation.
The resulting ideal is (a® — b?). We conclude that f, and f; have the same fixed

az’+1

point multiplier invariants if and only if a = +b. We know that f,(z) = o
z az
2

and f_,(z) = _(;Z 1 are conjugate to each other via the Mdbius transform
z°—Qaz
a(z) = —iz:
1 a(-iz)?*+1 1 —az’?+1 —az*+1
fa@) =—5-— 3 e — =3 = f_a(2).
I (—iz)3 + a(—iz) I iz3—aiz z3—az

Furthermore, this shows we can parameterize the image of the family f, in
M; by the fixed point multiplier invariants. To study its geometry, consider the
ideal generated by

(4a® + 12) — (a® — 1oy,
(6a* + 4a® + 54) — (a* — 2a? + 1)o,,
(4a* — 24a? — 108) — (a* — 24> + 1)o;.
After saturation by (a? — 1), we eliminate a to obtain the relations
0=0;—20,—03+12
0 = 403 + 40,03 — 600, + 05 — 2803 + 216.

These define a curve in A3. The curve is smooth, irreducible, and has genus
0. O
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The other component of A3(D,) is given by the family g,(z) = % Recall

that this family has fixed point multiplier invariants that are independent of
the parameter a. We consider the multiplier invariants of the periodic points of
period 2:

2a® + 36a* + 18a% + 72
a*—2a2+1
a'? 4+ 76a'® + 514a® + 1228a° + 9a* + 2268
a® —4ab + 6a* —4a2 +1
40a'? +1208a'® + 7304a® + 32528a° + 30744a* + 51192a2 + 40824
a® —4ab + 6a* —4a? +1
636a'? +11232a'° + 85806a® + 335448a° + 785376a* + 927288a> + 459270
ad —4ab + 6a* —4a? +1
5080a'? + 74700a'® + 624024a® + 2354184a° + 6805944a* + 7637004a® + 3306744
a® —4ad + 6a* —4a% +1
21286a'? + 365112a'® + 2597184a® + 11914776a° + 25286094a* + 32122656a> + 14880348
ad —4a® + 6a* —4a? +1
(2) _ 45720a'? +1030968a® + 6945912a® + 29498256a° + 47711592a* + 63772920a® + 38263752

2 _
0, =

o

o =

o =

(2) _
oy’ =

@ _
oy =

% = ad —4a + 6a* —4a? +1

o@ _ 51516a'? + 979776a'? + 11396457a® + 12045996a° + 86093442a* + 57395628a” + 43046721
8 ad —4a + 6a* —4a2 + 1

0@ _ 29160a'? + 13122a'® — 7085880a® + 40389516a° + 86093442a*
9

ad —4a® + 6a* —4a% +1
@ _ 656la’? —236196a'® + 3188646a® — 19131876a° + 43046721a*

a
10 a® —4a® + 6a* —4a? +1

2_
Lemma 3.3. Define g,(z) = af—l The map
z°—az
@ AL\ {1} > M;
a8l
is six-to-one. The map
fz . @(Al) s A?)
FARCRNSNID
is injective.

Proof. Note that the ideal generated by (0(2) , ai?) is in fact generated by

1
(ng), ogz), agz)). So we just need to focus on these three invariants. Thinking of

the invariants as functions of a, we need to find all b so that
(6@, 6 (@), 0P (@) = (17 (b), a7 (B), 0 B)) .

Taking the ideal generated by these equations and saturating by the ideals (a? —
1) and (b? — 1), we have the principal ideal generated by the polynomial

(—a+b)a+b)ab—a—b—-3)ab—a+b+3)ab+a—b+3)ab+a+b—3).

We check that the six parameter values

produce functions that are all conjugate.
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If b = —a, g, is, in fact, conjugate to g, via the Mobius transform a(z) =

1 a(iz)? -1 1 —az?-1 —az* -1
g2)= ————— =7 — — = = g_4(2).

i (iz*—a(iz) i —-iz3—aiz z3+az

Ifb = a—+3 then g, is conjugate to g, via the Mobius transform a = <_11 1)
a—

This calculatlon is straightforward, but omitted.

Ifb = ; = -2 then g_, is conjugate to g, since —-> = COH Ty,
—a-1’ —a-1 (—a)—-1
this ch01ce of b is also conjugate to a.
Ifb=—" 13 = —a—+3 , then g, is conjugate to ga+3 and g,.
a— a— a—1
Ifb = ::3 _aa__31 = —Z—, g5 is conjugate to geo and g, as well.

+1
The six parameter values that produce the same trlple (0(2) ;2), ogz)) are all
conjugate, so ¢ is six-to-one and %, is injective on the image (p(Al). ]

Proposition 3.4. The curve given by the component g,(z) =

0fA3(D2)
is a smooth irreducible curve of genus 0.

Proof. By Lemma 3.3 we can parameterize the curve with the coordinates
(o @) (2) (2))

in A3. In terms of the parameter a, this gives the equations
0 =(2a% + 36a* + 18a> + 72) — (a* — 2a% + 1)o,
0 =(a'? + 76a'® + 514a® + 1228a° + 9a* + 2268)
—(a® — 4a® + 6a* — 4a? + 1)0,,
0 =(40a'? + 1208a'® + 7304a® + 32528a° + 30744a* + 51192a” + 40824)
—(a® — 4a® + 6a* — 4a? + 1)o;.
Saturating with respect to (a? — 1) and eliminating a yields the relations
0 = 9160, — 400, + 03 — 16056
0 = 160007 — 800,03 + 03 + 8594560, — 10539205 — 136334016.
These relations define a smooth, irreducible curve of genus 0 in A3. O

z3+az

3.3. A3(C;). We start with the family f, ,(z) = T
Z

Lemma 3.5. The map
@ : A%\ {ab =1} - M;
(a,b) = [fapl
is two-to-one. The map
7 (A% \{ab =1} - A®
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[fa,b] > (01,02,03)
is injective.

Proof. We calculate the fixed point multiplier invariants as functions of (a, b)

as
a’b +ab’>—-2ab+3a+3b-6

o1(a,b) = ab—1

o,(a,b) = ;(a3b3 —2a*b? — 2a?b?® + 4a3b + 7a*b? + 4ab® — 8a’b
(@b —17

— 8ab®+ 7ab — 6a — 6b +9)

os(a,b) = ;( —2a*b3 + 5a3b? + 5a%b> — 4a®b — 12a*b? — 4ab? + 4a®

(ab—1)2

+14a2b + 14ab? + 4b® — 1242 — 18ab — 12b + 9a + 9b),

where we have omitted o, as usual due to its dependence from the standard
index relation. To determine the degree of ¢, we consider the equations

(0-3(a’ b)’ GZ(a, b)’ 03(a’ b)) = (Gl(c’ d)’ 0-2(05 d)’ O'3(C, d))

We saturate the resulting ideal with respect to (ab—1) and (cd —1), the parame-
ter values where the family is degenerate, and find the irreducible components
of the resulting variety in A* as

(c,d)=(a,b) or (c,d)=(b,a).
The maps f,; and f} , are conjugate by a(z) = S

Z
In no other situation are the fixed point multiplier invariants equal, so 7; is
injective on the image of ¢. O

3taz

Proposition 3.6. The component of A5(C,) given by f,, = z is an irre-

bz2+1
ducible rational surface defined by

0 = 360, — 12070, + 0,05 — 20703 — 120703 + 8030,05 — 070503 + 40,03
— 6007 — 194030, + 640202 — 40,03 + 807 + 40703 + 60020,03
— 36010503 + 40,03 — 180,0,03 + 03 + 318070, + 180005 — 560,
+ 2610703 — 1080,0,03 — 360203 — 810,03 + 540,07 + 2703 + 68407
— 576010, — 14405 — 648003 + 10803 — 21600, + 8640, + 43203 + 1728
whose projective closure is parameterized by the map
¢ P25 ScP3
(x:yiz)m (P ¢ ¢3: ds)
for

1
¢ = Exsy + 6x°z + 2x*yz + 24x*z% + 18x3yz? + 72x%yz3 + 288x%z*
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+ 108xyz* — 864xz>

13 37
¢, = ﬁxsy +9x°z + Tx“yz —27x%z? + 51x3yz? + 216x323 + 90x2yz3

— 504x2z* + 54xyz* — 432xz° + 324yz° + 12962°
¢3 = X’y + 22—3x4yz + 36x3yz% + 36x%yz3 — 648yz°
=Xz + %x“z2 + 36x3z3 + 36x%z* — 6482°.
This surface is singular with singular locus given by the conjugacy classes de-

scribed by

{a,b):a=blui(ab): a+b=—6luf(ab): b= a%z}.

Proof. To obtain the surface equations, take the fixed point multiplier invari-
ants and consider the ideal generated by
(a’b + ab? — 2ab + 3a + 3b — 6) — (ab — 1)oy,
(a*b® — 2a3b? — 2a?b> + 4a3b + 7ab? + 4ab> — 8a®b — 8ab? + 7ab
—6a —6b +9)— (ab — 1)%0,,
(—2a3b3 + 5a3b? + 5a%b? — 4a3b — 12a?b? — 4ab> + 4a> + 14a?b + 14ab?
+ 4b3 — 12a® — 18ab — 12b? + 9a + 9b) — (ab — 1)%0;.
We saturate by the ideal (ab — 1) to avoid the parameters where the family is
degenerate and compute the elimination ideal to eliminate the variables a and

b. This results in the single equation in (o, 0,, 03) in the statement.
The parameterization was computed in Magma and is easily checked by sub-

stituting (04, 05, 03) = (¢$1/ P4, P2/ Pa, P3/P4) into the surface equation.
The singular locus is also computed in Magma and its irreducible compo-

nents computed in Sage are given by
(

o3 =4
S1 1490, =6

o, =4
s, :‘012—202—03+212=0

405 + 40,03 + 05 — 600, — 2803 +216 =0
5, 02 — 30,03 — 240, + 120, + 36 =0

" (602 + 010, + 1507 — 180, — 903 — 36 = 0.

To analyze the components, we proceed similarly through elimination of
variables. Starting with the ideal defined by the equations of the component
along with the defining equations of the fixed point multiplier invariants we
eliminate (0;, 0,,03) to get an ideal in a@ and b. Then we saturate by (ab — 1) to
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avoid the degenerate elements. The component S; corresponds to the degener-
atecasea=b = 1.
The component S, results in the components

(a+b+6)b—a)=0.

When a = b, this is the component of A;(D,) from Proposition 3.2.
The component S; results in the components

(ab +2b —3)*(ab + 2a — 3)?> = 0.

These correspond to a = bi+z and b = % Since f,p and f} , are conjugate by
a : ,

a(z) = L thisisa single component in the moduli space. O
z
2
Now we move to the next family with a C, symmetry, g, »(z) = a:::.
z y4
2
Lemma 3.7. For the family g, ,(z) = a:::, the image of the map 7, : [g,] —
z y4

(0,,0,,03) is a curve given by
0=03—20,—0;+12
0 = 403 + 40,0, + 02 — 600, — 280 + 216.
Proof. The fixed point multiplier invariants give the equations
0 = (4a® — 4ab + 4b*> + 12) — gy(ab — 1)
0 = (4a* — 12a3b + 22a?b? — 12ab> + 4b* + 28a? — 52ab + 28b? + 54)
—o0,(a’b? —2ab +1)
0 = (—8a* + 28a’b — 36a?b? + 28ab>® — 8b* — 60a’ + 96ab — 60b? — 108)
— o5(a?b? — 2ab +1).

Saturating with respect to (ab — 1) to avoid degeneracy and eliminating a and
b give the stated equations. O
To study the geometry of this family, we need to use the multiplier invariants
of the periodic points of period 2.
2
92+ The map
z3+bz

@ : A2\ {ab =1} - M;
(a,b) = [8ap]

Lemma 3.8. Define g, ;(z) =

is four-to-one. The map
71 0 (A% \ {ab=1}) - A

1 1 1 2 2
[8ap] » (Gi ) 02 ),ag ),oi ), crg )

is injective.
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Proof. To compute the degree of ¢, we consider the ideal generated by
(01(a, b), 0x(a, b), 53(a, b), 0{(a, b), 0 (a, b))
= (o1(c, ), a5(c, d), 03(c, d), 0P (e, d), 0(c, @)

as an ideal in K[a, b] where K is the function field Q(c, d). This forms a zero di-
mensional variety and Singular (via Sage) computes the degree of its projective
closure as 4. For (almost) every choice of (¢, d), we have the four pairs (a, b) €
{(c,d),(d,c),(—c,—d),(—=d,—c)}. The functions g, ,(z) and g ,(z) are conju-

gate via oy(z) = l, and g, ,(z) and g_, _,(z) are conjugate via a,(—z) = iz. So
zZ

the four points with the same A> coordinates all are from the same conjugacy
class. O

az’+1
3

Proposition 3.9. The component of A;(C,) given by g, ,(z) = isan irre-

z>+bz

ducible surface defined by

0=0, —20, —03+12

0 = 402 + 40,03 + 02 — 600, — 2803 + 216

0 = 16320,03 + 79208 + 36480,0%01 + 1760030 + 12480,03(6P)? + 59607 (o)
— 11520,02(6\?)? — 54403(0'?)? — 2160,03(6P)* — 9802(0'?)* + 960,(0 7))’ + 4003(0'?)°
+ (01 — 4148160,0% — 19542403 — 6028800,030"> — 284512080 — 1116480,02(”)?
— 5376003(0'7) + 547200,05(0\7)? + 2804802(0'?)? + 11760,(0)* + 148005(0"7)*
—624(0)° + 52480,030%” + 2512040 + 67840,020'V0 + 320003061
- 1280203(052))2022) - 64c§(a§2))20;2) - 76802(052))3022) — 3200, (0(12))3022) - 12(052))40;2)
+ 18436608007 + 99459840% + 160352000,020"" + 9804928030 + 14654720,05(cP)?
+12045120%(0\7)2 — 3135360,(07)* — 4346240;(0?) — 6720(0"?)* — 5159680,020
— 247040030 — 3069440,030 70 — 158400020170 > + 99840, ()20
+ 473605017208 + 4992(6P)3 0 + 39680,05(0%7 )2 + 182402(6)* + 15360,06 P (0P)?
+6400;07(6P)? + 48(01?)2(617)* — 2444313600,02 — 20112998407 — 1207019520050
— 1388805120207 — 53809920,(0'7)2 — 1055116805(0' )2 + 1890944(c' )3
+70871040,030% + 5656320020 + 16519680,0 0% + 240768005070
—59520(0\7)207 — 587520,(c)? — 4262403(c)* — 998407 (617 )2 — 64(c()?
+11875921920,05 + 188038195207 + 2650060800,0'> + 812934144550 + 32237568(c"")?
— 20653056005 — 49351680050 — 9967104070 + 345600(c5”)> — 19035648000,

— 775907942405 — 159103180807 + 1236695040 + 11418402816

0 = 122407 + 3792050\ — 468000,0%(0'”)> — 20564030\ )2 — 796800,53(c”)? — 4085602 (")
+16800,02(07)* — 37403 (6P)* + 276000,03(6”) + 1398802(0)® — 55800,(c'?)
—266503(0\")° — 22(6P)7 + 6701520 + 267774720,0% 0> + 14457920030
+274032000,03(6P)? + 1358130802 (0?2 — 171239040,0%(c'?)® — 857528003 (0> )3
— 70579200,05(0\?)* — 331890202(cP)* + 33384480,(”) + 13317040,(0'”)* + 78251(cP)°

@ @

+1207680,040' + 660960501 + 2044160,030 0P + 114464040 Dol

— 1427200,02(6P 120 — 6713603620 — 1799680,05(0'?)20? — 93248070120
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+585120,(07)*0%”) + 2846003 (6P)* 0 + 264(0'? )0 — 86503056960,0% — 400268393603

— 149596627200,030' — 6856974368030 — 34595675840,02(”)* — 161987228803 (012
+16315187200,03(0”)® + 74308990402(0'?)? + 449062800,(0'\”)* + 480516400, (>)*
—22136400(0')® + 539763200, 030" + 28303472040 + 1289160960,020 7 7

+ 6384364803070 + 55310080,05(0\7 20 + 266502402(07 20 — 271342080, (0”)?0\”

— 1101830403(0'?)*0” — 884100(c V)40 + 3525120,02(0%)? + 18441603 (c5)?
+2782720,0300(67)? + 1491840267 (6)? — 2002560,(0\? 2(6)? — 9976003(6P)? (012
—1056(0\” (03" + 5166537154560,07 + 2635892401920% + 4843618259200,0%0">)
+27814829196803 07 + 485134804480,05(c”)? + 3845827132802(0'?)? — 103595525760,(0\)?
— 1332752992005(0)® — 254963456(c'”)* — 141396696320,020 — 6383331328030

— 95632092160,030' 70> — 4488508992076 PP + 2949020160, ()20
+9251276803(0 7 20 + 179583360(0\” 0 + 985523200,03(0 )

+4650864002(0 )2 + 551216640,0'7 (017)? + 227659520300 (0 2 + 3316752(0\ 2 (01?2
+2219520,(07) + 1142400,(6)? + 140807 (01”)® — 75785722444800,02 — 59178731627520°
— 39085139128320,030'” — 4290578293248020"” — 1849085625600, (c”)?

— 35115078873603(0\7)2 + 62583639424(0?)? + 2250025943040,030% + 1647638860802

+ 556748398080,0 707 + 76642562304030 70 — 17514090240\ 26 — 19331170560,(c )
— 119776550403(0” 2 — 3641510400 ()2 — 4120472(c')? + 385532530606080,05

+ 5892231307622402 + 88729477539840,0'7) + 26426257744896030'>) + 1107358166016(c" )2

— 6871109990400,0%") — 1576478785536030%") — 3364608291840 707 + 11296544256(c)?

— 6339929160288, — 25240722663628803 — 532811315957760"” + 4117883033600
+380265217671168.

This surface is singular with singular locus given by the conjugacy classes de-
scribed by

{(a,b) : a>—ab+b>+3=0}u{(a,b) : a=—bl

Proof. We compute the fixed point multiplier invariants and the first two mul-
tiplier invariants for the points of period 2:

01

%)

O3

ng) _
@ _
(ab-1)*
+ 290a*b* + 16a%b% + 96b® + 512a°b + 204a3b3 + 512ab’ + 80a*
— 151ab? + 80b* + 2268).

9

4a’ — 4ab + 4b* + 12
ab-1
4a* — 12a3b + 22a°b? — 12ab? + 4b* 4 28a® — 52ab + 28b? + 54
azb? —-2ab+1
—8a* + 28a3b — 36a’b? + 28ab?® — 8b* — 60a’ + 96ab — 60b? — 108
a2b?2—-2ab+1
2a®b3 + 16a* + 4a*b? + 16b* + 18ab + 72
a2b?2—-2ab+1

(a®b® + 32a’b3 + 12a°b° + 32a3b” + 96a® + 16a°b?
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We clear denominators to create the associated ideal. We saturate by the ideal
(ab — 1) to avoid degeneracy and eliminate the variables a and b. This results
in the surface defined by the four equations in the statement.

The irreducible components of the singular locus are calculated in Magma.
For each component, we eliminate variables to have equations in (g;, 0,, 03) to
get

(0 = 0% — 240, — 405 + 108
s, : | 0 = 0,03 + 360, + 603 — 216
|0 =02 -1080, — 360; + 648
k0=c11—2<72—c53+12
(0 = 62 — 30480, — 137203 + 13500
s, : | 0 = 0,05 + 64080, + 288605 — 28512
" |0 =02 - 135000, — 608403 + 60264
0=0;—20,—03+12
(0 = 0% + 54902 — 30375000, — 133390807 + 14819112
g . ]0= o5 —7/3007% + 1020, + 238 /505 — 2808/5
> |0 = 0,05 +29/600% — 1170, — 273 /505 + 3078/5
0=0; —20,—03+12.

To determine the pairs (a, b) for each of these components, we add in the equa-
tions defining the invariants in terms of a and b and eliminate o4, 0,, 03. This
results in the defining equations

Sy :(@®>—ab+b*+3¥=0

Sz . (a + b)6 =0

S3 . (a + b)S =0.
Note that the component(s) with a = —b is the component of A3(D,) from
Proposition 3.4. (]

4. Automorphism loci in M,

As for A, we utilize Miasnikov, Stout, and Williams [MSW14] to determine
the possible components of A4 and their dimensions. Unlike in M, in M, there
are no automorphism groups other than cyclic and dihedral ones.

Lemma 4.1. When deg(f) = 4, Aut(f) must either be C,, C3, Cy4, Cs, D5, or
Ds. The dimensions of A,(T") for these groups are given by
(1) dim A4(C,) = 3,dim A4(C3) = 2, dim.A4(C4) = 1, and
dim A4(Cs) = 0.
(2) dim A4(D3) =1, and dim A4(Ds) = 0.
Moreover,
(4) A4(Cy) C ALC).
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(5) A4(D;) C Ay(Cs).
(6) A4(Ds) C Ay(Cs).

Proof. Which groups occur and their dimensions are calculated in Section 2
of MSW [MSW14]. The second half follows from the observation that if G is a
subgroup of H, then A, (H) C Ay4(G). O

The analysis in M, for functions whose automorphism group contains cyclic
and dihedral groups is more or less the same as in M; - in particular, we made
use of the fact that for a function f, if Aut(f) 2 C, then the equivalence class
of f in M, can be written as f = z-1(z"), where 9 is a rational function [Sil95,
Proposition 7.3].

4.1. A,4(Cs5) and A4(Ds5).

Proposition 4.2. The loci A4(Cs) and A4(Ds) both are the single conjugacy
class given by f(z) = %
z

Proof. The only form i can take such that z - 1(z°) is degree four is when

P(z%) = é, where ab # 0. We can divide through by a to write z - (z) = —;

czt’

and since this is conjugate to f(z) = %, we know that .A4,(Cs) is just a point in
z

M,. Furthermore, Aut(f) = D5 so that A,(Cs) = A4(Ds). O

4.2. A,(Cy).

Proposition 4.3. The locus A,4(C,) is an irreducible curve in M, given by the
4

1-parameter family f(z) = Zk—+31 for k # 0.
Z

Proof. Functions of the form f(z) = z - (z*) have degree 4 only when

az*+b bz
f1(z) = or fy(2)= m,

where all the coefficients must be nonzero (or else we have a drop in degree
due to cancellation). Thus, in both cases we can divide through by the coeffi-
cient of z* to have two-parameter families. Then in the first case, we can conju-

cz3

4 y
gate f1(z) = ZkHZl via the matrix o = [ écl (1)] to get a one-parameter family
2Z
4
fi(2) = Zk+31 , which is what we should expect since the dimension of this locus
zZ
is 1 by Lemma 4.1. In the second case, we can conjugate f,(z) = fj{ by the
EAREY)
matrix § = [3(1){2 (l)l to get a one-parameter family f/(z) = Zl These two
z

o ] . |0 1 o
one-parameter families are conjugate via [1 0], so they are the same family in

the moduli space. O
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4.3. A4(C3) and A4(D3).

z4+k z
kyz341°

Proposition 4.4. The locus .A4(C3) is given by the family f; . (z) =

Proof. By Lemma 4.1 the locus A,4(C;) is dimension 2 and functions of the
form f(z) = z - (z3) have degree 4 only when

az' + bz
f&O="ara

where a # 0 and d # 0. Thus, dividing through by a, we get the 3-parameter
family

zt+kyz
fl2)= m,

3
where k; # 0. Conjugating via the matrix a = l\/E (1)] we get

(Wk32)* + ki ksz 1 kiz* +kiz  z*+ky/kyz

@ = = =
ky(Wksz)3 + ks ks Koksz® +k; kyz3 +1
Renaming k; = k;/k; and k, = k,, we see that f*(z) = :‘;ki. Thus, every
2

degree 4 rational map with a C; automorphism is conjugate to a map of the
form
4
z" 4+ kiz
z) = ———.
Sk j,(2) PR
O

Recall that Dj is generated by a;(z) = {3z and a,(z) = 1/z, where {3 is a
primitive third root of unity. Maps with automorphism group containing {3z
are described in Proposition 4.4, so we can start with that family and see which
members additionally have «, as automorphism.

Proposition 4.5. The locus .A4(Dj3) is an irreducible curve in M, given by the

. z4+kz
family f(z) = P
_ z*4k, z
Proof. Let fy 4, (2) = Py We compute
4
z" 4+ kyz
2 o(@)=—2=.
1,82 klz3 + 1

So for fy x,(2) = f:lz kz(z) we must have k; = k,. O
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4.4. A4(Cy).
Proposition 4.6. The locus .A,4(C,) is given by the 3-parameter family
Z4 + k122 +1
fkl,kz,k3(z) = m

Proof. By Lemma 4.1 we know the automorphism loci of C, in the moduli
space has dimension 3. Furthermore, we know that a degree 4 map f hasa C,
automorphism if and only if it is of the form
az* +bz? + ¢ az® + bz
h@ = dz3 +ez or fa(2) = czt+dz2 +e’
First observe that for the family f,(z), we can conjugate by the matrix § =
01 .
[1 0] to obtain
ff(Z) _ct dz? + ez*
az + bz3

Thus, the families f; and f, are the same in moduli space, so we consider only
f1(2). For f(z) to be degree 4, we need a # 0 and ¢ # 0. Dividing through by

a, we get
Z4 + k122 + kz

hi@) = kiz3 + kyz
where k, # 0. Conjugating via the matrix a = \7(? (1)1, we get
4.4 SN2 z*+ Lzzz +1
V)2 +kh(ky2+k 1 7 4K

fi@) =

WGy +kwloz  k  kyzd+ iz
e,
Renaming k; = LZ, and k, = k3, and k; = iz, we see that every f; map is
Vi, Vi
conjugate to a map of the form
zt+ iz + 1

zZ) = .
Sy Jep ks (2) oo+ Kz

5. Geometry of certain automorphism loci in M,

In this section, we examine the geometry of automorphism loci A4(I") C M.
Similar to the methods in Section 3, we study the embedding via multiplier
invariants

T, . M, — AF

(n) (n)
[f1= (o]0l

and the geometry of the image of this embedding.
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zZ

5.1. A4(C,). We start with the family f;(z) = % for k # 0.

Lemma 5.1. The maps
@ AT\ {0} - M,
k= [fi]
and
7y p(AT\ {0}) — A*
[fi] = (ogl), ogl), 0;1), agl)
are injective.

Proof. We show the composition 7;0¢ is injective, and thus, both maps are
injective.
Consider the ideal generated by
(01(k1), 02(k1), 03(k1), 04(k1)) = (01(ky), 02(k3), 03(k3), 04 (ky)).
Computing its lexicographic Groebner basis, we get two generators:
ki + 8ky — k3 — 8k;,
kik2 + 8kyky + 16k, — k3 — 8k3 — 16k,.
These factor as
(ky — ky)(ky + k; + 8),
(ky = ky)(ky + 4).

The first says that for f and f, to have the same fixed point multiplier invari-

ants, we must have k; = k, or k, = —4. However, if k, = —4, then the second
generator tells us that k; = —4 and we are still in the case k; = k,. Thus, the
map ¢ and the map 7; are one-to-one. (|
Proposition 5.2. The curve in A* given by the image of 7; on the family f(z) =
4
Zk+31 of A4(Cy) is given by the system of equations
A

0 = 3607 + 3070, + 2220° — 96010, — 803 + 2400, — 5600, — 800
0 = —1202 — 0,0, — 140, + 320, + 603 + 40
0 = 14402 — 07 + 2880, — 4480, + 360, — 640.

It is a singular irreducible curve of genus 0 and the singularity corresponds to
the rational map .
f@ =
Proof. The fixed point multiplier invariants give the equations
0 = (k> — 12k + 16) — ko,
0 = (=12k> + 70k? — 144k + 96) — k?c,
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0 = (54k* — 252k + 528k? — 576k + 256) — k305
0 = (—108k> + 513k* — 1008k> + 1120k? — 768k + 256) — k*o,.

Saturating by the ideal (k) and looking at the generators gives the stated equa-
tions. Using Sage, we can determine that these relations define a singular, irre-
ducible curve of genus 0 in A4. The only point of singularity is

(—20, 160, —640, 1280)

and it corresponds to the rational map in the statement. O

4
5.2. A4(D3). We now move on to the family f(z) = % with k # +1.
zZ

Lemma 5.3. The maps
@ AN\ {x1} > M,
k= [fi]
and
7y p(AT\ {£1}) — A*
[fi] = (0,00, 0, oV
are injective.
Proof. We show the composition 7,0¢ is injective, and thus, both maps are
injective.
We want to compute the ideal generated by
(01(k1), 05(ky), 03(k1), 04(ky)) = (01(ky), 02(k3), 03(ky), 04(ky)).
This gives the ideal generated by
ki + 8k — k3 — 8k,
kik3 + 8kyky + 16k; — k5 — 8k3 — 16k,.
This ideal is the same as the ideal considered in the proof of Lemma 5.1, so the
result follows at once. O

Proposition 5.4. The curve given by the image of 7; on the family f,(z) =
z4+kz

—— of A4(D;) is defined by

kz3+1
0 =0} — 140} — 7020, + 670} + 440,0, + 1207 — 3600, — 1600, + 1200
0 =0} +20° — 40,0, — 210} — 20, + 903 + 60
0 = —20; + 507 + 80,0, — 480, — 320, + 90, + 240.

It is a singular irreducible curve of genus 0, and the singularity
(=20, 160, —640, 1280) corresponds to the rational map
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Proof. The fixed point multiplier invariants give the equations

0= (2k? — 4k +12) — (k + 1)o;

0 = (k* — 10k> + 25k? — 24k + 48) — (k* 4+ 2k + 1)o,

0 = (—6k> + 24k* — 62k> + 60k? + 64) — (k3 + 3k? + 3k + 1)o;

0 = (12k> — 52k* 4+ 96k> — 144k? + 128k) — (k> + 3k? + 3k + 1)oy,.
Eliminating k gives the stated equations involving only the fixed point multi-
plier invariants. Choosing an appropriate monomial ordering, we arrive at the
stated relations. These relations define a singular, irreducible curve of genus
0 in A%, The only point of singularity is (—20, 160, —640, 1280). This choice of
fixed point multiplier invariants corresponds to the rational map in the state-

ment.
]

z*4k, z
kyz3+1°

5.3. A4(C3). Now we move on to study the family fy ;. (z) = with

kik, # 1.
Lemma 5.5. The map
g 1 A2\ {kiky = 1} = M,
(ky, kp) = [fkl,kz]
is two-to-one. The map
71 0 (A2 \ {kiky = 1}) = A?
[fil = (01,05, a5
is injective.
Proof. To compute the degree of ¢, we consider the ideal generated by

(01(ky, k2), 02(ky, ky), 03(k1, k3)) = (01(t1, £2), 02(t5, £2), 03(81, 1))

as an ideal in K[k, k,], where K is the function field Q(t;,t,). This forms a
zero dimensional variety, and Singular (via Sage) computes the degree of its
projective closure as 2. For (almost) every choice of (¢, t,) we have two pairs
(k1,ky) € {(t1,t,),(t2,11)} and one can easily verify that f; ., and fj  are

conjugate via a(z) = L
z
O

It is interesting to note that O’S) is determined uniquely by

(O'gl), ogl), ogl)). This is not typical for elements of M,. We do have the standard

51), agl), ogl)) and 02_1) for all maps in My, but the

dependence of ail) is special to this family.

linear relationship between (o
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z4+k, z

Proposition 5.6. The image of the family f} ,(z) = of A4(C3) under

kyz3+1
71 is the surface given by

0 = 97207 — 32400, — 1350703 — 54020, + 3240703 + 162030,05
— 9020305 + 270307 + 64807 — 57240750, + 14040203 + 480003 + 19205
+ 5400703 — 1224070,03 — 6480,0505 + 320503 — 1080,0,0; + 118807
— 3672020, + 77760,05 — 89603 + 53640705 — 30240,0,0; — 3840205
+ 14040103 + 6480,03 + 10803 + 21600° — 576000, + 38400
+ 43200,03 — 105600,03 + 216003 — 336000, + 288000, — 176000
+ 32000.

This surface is reduced, irreducible, and singular with singular locus given by
the conjugacy classes described by

(k1, k) €{(0,4/3)} U{(—4, —H} U {(9/4,—4)}

3888t + 46656 £ +18t2 .
U‘<9f3+216t2+ 19441’ 9t2+216t+1944) 17o0e Qz ©
9t — 36 8§ —t
U (—3t+24’_ 3 )'te‘@\{g}} (4)
-16 —t—3)\ .
U (21‘—6’ > ).tEQ\B}} (5)

Proof. As usual, we first compute the fixed point multiplier invariants using
only the first three:

1
" -(khey + kS — 6k, + 8Ky + 8K, — 12)
o, = m(kfkg — 632 — 6k2K3 + 9Kk, + 28k2K2 + 9k, K3 — 42Kk,
— 42k k3 + 18k; + 85k ky + 18k5 — 60k; — 60k, + 48)
o3 = m(%k;‘k;‘ + 21K + 21Kk — 36K4K2 — 80K3IS — 362k

4 31,2 21,3 4 3 21,2 3
+27kky + 135k3k2 + 135k2k3 + 27k, k3 — 90k3k, — 210k2k2 — 90k k3
+ 153k?k, + 153k, k2 — 36k? — 180k, k, — 36k2 + 96k, + 96k, — 64).

We look at the ideal in Q[k,, k,, 01, 05, 03] generated by the defining equations
of the invariants. We saturate by the ideal (k;k, — 1) to avoid degeneracy and
eliminate the variables k; and k,. This results in the surface defined by the
equation in the statement.

Using Magma, we see that the surface is reduced, irreducible, and singular.
Since this is a hypersurface, we compute the singular locus as the points on the
surface that also vanish on the partial derivatives of the defining equation. This
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variety has irreducible components

(0 = O3 =0
Sy : 3T 2
0=30,—4
. (0 =150, + 60, + 03 — 20
2|0 = 3602 + 120,05 + 02 — 3200, 8003
)
0 =150,0, + 80§ — 180,05 — 1500, + 800, — 9003 + 200
. .]0= 9007 — 402 + 90,03 + 1800, — 2800, — 400
« 3
o= 9003 + 1280503 — 288003 + 180005 — 4950003 + 12800,075
— 121507 — 450000, + 300000, — 1480005 + 60000.

The general procedure of analyzing the components is similar to the one used
in Section 3: we start with the ideal defined by the equations of the component
along with the defining equations of the fixed point multiplier invariants, elim-
inate (oy,0,,03), and finally saturate by (k;k, — 1). The first component S;
corresponds to the case k; = 0 and k, = 4/3.

The component S, results in a rational curve given by

0 = (ky + ky + 8)(9k;ky — 14k2k3 + 9k k3 + 12k7k,
+ 12k, k2 + 4k k, — 48k, — 48k, + 64)
0 = (ky + 4)*(9k>k, — 14k2k3 + 9k, k3 + 12k?k, + 12k, k2 + 4k k;,
— 48k, — 48k, + 64).
The common factor gives the rational curve (3) parameterized in the statement.

If k, = —4, then either k; = —4 or k; = 4/9 give the other two singular points.
The component S; results in a variety with the two irreducible components

0= k1k2 + 3k2 —4 and k1k2 + 3k1 —4=0.

These are conjugate by swapping (k, k) — (k,, k;) viaz — i This gives the
two curves (4) and (5) and finishes the parameterization given in the statement.
O

44k 22 +1
This family has infinitely many conjugacy classes that have the same fixed
point multiplier invariants. Computing the multiplier invariants for points of
period two was computationally infeasible, but computing the multiplier in-
variants for the points of formal period two was possible. We recall the defini-
tion of dynatomic polynomials and formal periodic points. For a rational map

f(z) = % define ®,(f) = F(z) — zG(z) and ®,(f) = ®,;(f") forn > 1. The
z

roots of @, (f) are the points with period n. We define the nth dynatomic poly-

nomial as @}, = [ | dln ®,4(f)*/D where u is the Mobius function. Its roots are

the points of formal period n and contain among them the points of minimal
period n. Similarly, for strictly preperiodic points, we define the generalized

5.4. A4(C,). We now move on to the family fi i i, (2) =
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(m, n)-dynatomic polynomial as ®;, ,(f) = % for m > 1. Its roots are the
points of formal period (m,n) and contain ar;mng them the points of minimal
period (m, n). See Silverman [Sil07, §4.1] for dynatomic polynomials and Hutz
[Hut15] for generalized dynatomic polynomials. We can also construct invari-

ants from the multipliers of the formal periodic points of period n and notate

them as ai(")*.
Utilizing just the 052)* did resultin a finite-to-one map, but there were a num-

ber of spurious values appearing. Additionally including 0;2)* resulted in the

correct mapping. As the computation is quite time and memory consuming,
we record the two higher multiplier invariants here.

(2)% -1 2 4 3 2 2 3

o = —————((8k2 — 12)k? + (—8k; k3 + 40k? — 24k, k; + (40k? — 96))k

¢ (k§+k§_klk2k3)2(( 2 12)k) + (8K, k3 + 40k2 — 24k ks + (40k7 — 96))K3
+ (=81 k3 + (—4k? + 120)k3 + (—8k3 — 64k ks + (—8k; + 80k7 — 192))k? + (—24k;
+ (—8K3 + 24k k3 + (8K} + 160)k2 + (—16k? + 64k, k3 )k, + ((8k? — 60)k3 — 32k, k3
+(16Kk% — 64)k§))

@ _ 1 4 _ 2 _ 8 (. 5 4 _ 3
% = ErE Ry 24kt = 136k — 126)k + (—=48ky 5 + 320k} — 56k,

+ (320k? — 600)k3 — 440k, k; + (168k? + 288))k] + ((24k3 — 16)kS — 384k, k3 + (200k?
+1216)k] + (—384k3 — 408k, )k + (—64k} + 2452k? — 2120)k2 + (—664k> — 960k, k3

+ (360k;) — 2704k; + 5568))k + (16k1k] + (64kT — 32)k + (=72k] — 1120k, )k3

+ (64k; + 664k7 + 2712)k] + (64k; — 1168k — 2680k, )k; + (—232k] + 8312k? — 9120)k?

+ (—16k; — 528k; + 832k k3 + (—160k? + 2656k, — 12288k + 16896))k; + (—24k}

+ 160k, k] + (64K + 32k; — 296)k§ + (—360k; — 112k, )k; + (242K} — 1120k? + 6652)k;
+(—232k; — 624k3 — 7392k, )k3 + (40kS — 976k + 10512k7 — 21312)k3 + (32k] — 1216k

+ 4992k} — 2560k, )k + (16k} — 448k$ + 3872k] — 135687 + 16896))k; + (—96k3 + (—64k;
+ 280k, k] + (64k] + 312k7 — 2632)k$ + (72k] — 920k; + 6008k, )k + (64k$ + 952k}

— 4200k + 13152)kj + (64k] — 544k; — 608k; + 1920k, k3 + (192k$ + 832k

— 3072k} —13312)k3 + (192k] — 2368k] + 9728k; — 13312k k3 )k; + (144k5

+ (128k3 — 600k, k] + (24k? — 280k} + 532k7 — 7720)kS + (—128k; — 952k3 + 6016k, )k3

+ (16k? + 152k} — 240k; + 5184)k; + (—192k; — 4864k; + 22528k, )k; + (—160k? + 2112k}
— 9216k? + 13312)k2)k2 + ((—192k? + 1224)k5 + (—48k; + 680k; — 712k, )k] + (320k}

— 824k? — 6112)k$ + (—160Kk; + 1776k — 6080k, k3 + (736k; + 512k% — 13824)k3 + (—64k;
+ 512k — 1024k, )k3)k, + ((24k} — 472k% + 1554)k8 + (—256k; + 1696k, )k,

+ (80k} — 1040k7 + 3392)kS$ + (—640k; + 2560k, )k3 + (32k; — 256k7 + 512)k§)).

The first two fixed point multiplier invariants are given by

= : 2 2 3 2 2
N = T k1k2k3( — a2k — k2K, + K3 + dkyoks — 3kok? — 1242
2 3

+ 412 + 16k)

@ _ 1 31,3 3 313
o = TR F) (4Ik3hes — 4IK3KE + 4k, 3K + dkiie? — 4k2ies
2 3
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31,2 4 21,21,2 41,2 21,3 21,3
— 12k3K2ks + 16k kiks + 18k2k2Kk2 — 4kik2 — 12k, k2K + 28K3K3
5 3 3 2 2 31,2 3 21,2
— 12K + 8kkoks — 68k Kk — 20k2k K2 + 2063K2 + 4k kykd — 40Kk2K

+ 70k; + 96k, k2ks — 8k7kZ — 28k2k? + 16k, k3 — 2k§ — 144k
— 32kykyks — 16k,k2 + 96K + 32k§).
Proposition 5.7. The map
@ AS\{kZ + k2 = kikoks} — My
(k1. ko, k3) — [fkl,kz,k3]
is generically two-to-one. The map
T 1 p(A2\ {k2 + k2 = kykyk3}) — A*

1 1 2 2
[fk] N (O.g ),o.; )’O.g )*’Ug )*)
is injective.

Proof. Tryingto compute the degree generically as in the previous families was
not feasible with our hardware resources, so we instead specialize to a particular
choice of invariants and show that the degree is invariant under perturbation.

First note that the domain of ¢ is irreducible and the composition 7og is a
morphism, so the image is also irreducible. From Milne [Mil17, Section 10]
the dimension of fibers in this situation can only go up in a closed set, and the
number of points in a specific fiber is at most the degree of the morphism and is
equal to the degree for nonsingular fibers. We choose a nonsingular fiber where
the fiber dimension is zero and has two points in it showing that the degree is
two.

Choosing

g 7 729’49 ’ 2401

1 1 2 2 —22 82 2164 769442
@M, 0,0, g)*)=< )

generates a system of equations in (kq, k,, k3). We take the associated ideal and
saturate with respect to (—k;k ks + kg + kg) to remove any degenerate solutions
from the system. The resulting ideal is given by

I =(ky—2,3k; — k3, k3 —9).

This has the two solution (1, 2, 3) and (—1, 2, —3), which are conjugate via z —
iz. Call X the variety associated to I. The projective closure of X is dimension
0 and degree 2, so there should be two points when counted with multiplicity.
The two given solutions are both solutions of multiplicity 1, so they are all the
solutions to the system.

In general, we always get the two conjugate solutions

(kly kz, k3)’ (_k17 k2, _k3)’

so @ is two-to-one. Since these two solutions are conjugate, 7 is injective. [
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Computing the equation of the dimension three hypersurface for this family
via elimination was beyond the capabilities of our hardware.

6. Rational Preperiodic Structures in M;

Having completed the description of the loci A5 and A, and some of their
geometric properties, we now turn to arithmetic dynamical properties of the
families that make up the automorphism loci. Specifically, we look at the pos-
sible structures of Q-rational preperiodic points. The main motivation is the
far-reaching and open conjecture of Morton and Silverman that the number of
rational preperiodic points should be bounded independently of the particular
map chosen.

Conjecture 6.1 (Morton-Silverman [MS94]). Let f : PN — PN be amorphism
of degree d > 2 defined over a number field K of degree D. Then the number of
K-rational preperiodic points for f is bounded by a constant C depending only
on N, d, and D.

The best known results typically make some kind of restriction on f, such
as good reduction at certain primes. We are more interested in results such
as Poonen [Pon98] or Manes [Man08] that restrict to special families. There
are a number of results in this area, but we focus primarily on these two as
they are closest in type to our results for the families in A5 and .A,. Poonen
completely classified all possible Q-rational preperiodic graph structures for
the family f,.(z) = z? + ¢ assuming that there are no rational periodic points
with minimal period at least 4. This has been generalized to quadratic fields in
[DFK14]. Manes did the same for a family of quadratic rational maps with C,
automorphisms assuming there were no Q-rational periodic points with mini-
mal period at least 5. In particular, her family was the automorphism locus A,.
We proceed along the same lines as follows:

(1) Provide computational evidence of an upper bound on the minimal pe-
riod of a Q-rational preperiodic point.

(2) Analyze all possible rational preperiodic structures assuming that bound
on the minimal period.

In the case of the families with dimension in moduli space at most 1, we are
able to complete the classification of rational preperiodic graph structures, with
the exception of .A4(D3), where the classification has possibly finitely many ex-
ceptional parameters. These results make heavy use of techniques for finding
rational points on curves. For the families of dimension 2 and 3, the difficulty
in finding all rational points on surfaces and dimension 3 varieties is the im-
pediment to completing those classifications. In lieu of a full classification, we
examine the existence of periodic points and take a computational census of
the possible rational preperiodic graph structures. As techniques in these areas
improve, it would be good to return to this topic and complete those classifica-
tions.
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We end this introduction with a helpful lemma for points on curves and some
helpful references.

Lemma 6.2. Let C be a projective curve defined over Q. Suppose that thereisa
birational map defined over Q between C and a smooth projective hyperelliptic
curve X over Q. Then the nonsingular rational points on C is bounded above
by |X(Q)].

Proof. Since both C and X are curves, and C is birationally equivalent to X,
we know that there is a Q-rational isomorphism between X and C, the smooth
projective model of C [Ful08, Theorem 3 in Section 7.5]. In particular, |C(Q)| =

|X(Q)|. Furthermore, we have a surjective map from C to C, so the number of

non-singular rational points on C is bounded above by IC(Q)| = |X(Q)|. The
only other rational points on C are the singular points that could come from

non-rational points on X. ]

For references on curve quotienting and blow-ups, see Lorenzini [Lor96] and
Liu [Liu06].

6.1. The Single Conjugacy Classes. The cases A5(Cy), A3(D,), and A5(Ay)
consist of single conjugacy classes. Using the algorithm from Hutz [Hut15], we
compute each such structure.

Theorem 6.3. We have the following rational preperiodic structures.

» For A;(C,) = Az(D,), we represent the conjugacy class as f(z) = %
z
This function has rational periodic structure given by

aC; OIS
3-3

« For A;(2,), we represent the conjugacy class as f(z) = 23—2 This func-
—3Z

tion has rational periodic structure given by
)

Proof. Direct computation via the algorithm of Hutz [Hut15] as implemented

in Sage. (]
3

6.2. A3(C;). Wesaw in Proposition 2.5 that the family f,(z) = # witha # 0
az

gives A3(Cs).

We first examine an upper bound on the minimal period of a Q-rational pe-
riodic point. We make use of Lemma 6.4.

Lemma 6.4. If F € Q[x, y] is irreducible over Q but is reducible over some
extension field K of Q, and all the components are defined over K, then every
rational point on the curve defined by F = 0 is singular.
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Proof. Suppose F factorsinto F = g, g, ... g, over K. Consider the setS = {g7 :
o € Gal(K/Q)}. Observe first that g7 has to be another component of F, since
F° = glg7..g, = F. Then the polynomial g = Hh s h must be invariant
under the Galois action and is, therefore, defined over Q. Since g | F and F is
irreducible, we know that g = F (up to scaling). In particular, for every g; and
gj, we can find a 0 € Gal(K/Q) such that g7 = g;. If P is a rational solution
to F = 0, it is a rational solution to some g; = 0. But g;(P) = g/(c(P)) =
o(g;(P)) = 0,so P isin fact a root of all the components of F and, thus, must be
in the intersection. It then follows that P must be a singular point on the curve
defined by F = 0. O

Z3+a

Proposition 6.5. Let f,(z) =

az?

(1) The point oo is fixed for all choices of parameter a. There is a second
Q-rational fixed point for the parameters a = ﬁ fort € Q\ {0,1}.
These are the only occurring Q-rational fixed points.

(2) There are no rational parameters a where f,(z) has a Q-rational peri-
odic point with minimal period 2 or 3.

Proof. Clearly oo is fixed, so to look for additional fixed points, we examine the
first dynatomic polynomial

Di(f) =1 —-a) +a,
and the associated dynatomic curve ®7(f,) = 0. We want values of a where
this curve admits rational points. Linearity in a allows us to quickly solve when
1
zZ = ? e Q,
z2 1
-1 1-1
Each finite fixed point z € Q determines a unique a, so we can never have more
than two rational fixed points.

To determine rational 2-cycles, we compute the second dynatomic polyno-
mial

a =

Di(fq) = (@ + Dz° + (—a’ + a® + 2a)z° + a*.
The curve defined by @7(f,,) = 0, called the second dynatomic curve, has genus
3; so by Faltings’ theorem, it only has finitely many rational points. Computing
with Magma we see that its projective closure has an order two automorphism
group and the quotient curve C in P* has defining equations
— 160X + 65x;x, —49x; =0

— 588800x, — 108160x(x, + 12675x3 + 129654x;X3 = 0

with projection map ¢ : V(®5(f,)) — C. The curve C is genus one and has
rational point (0 : 1 : 0 : 0). We compute a Weierstrass model as
2 134217728 3 40462027902156800
28588707 y= 7355827511386641
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The curve E is rank 0 with torsion subgroup isomorphic Z/3Z. In particular,
C has at most 3 rational points. We find them through a point search as

{(11—630:O:1:O>,<—%Z:0:1:0),(0:1:0:0)}.

Every rational point of the second dynatomic curve must project to one of these
three points under ¢, so we compute all possible inverse images using Sage.

13
-1(22 .5-1-0)= -0 - S
é (160.0.1.0) £0:0:1),00:1:0)}
736
$710:1:0:0={0:0:1),(0:1:0),(1:0:0)L
Note that these inverse images are not disjoint due to the highly singular nature
of the points (0 : 0 : 1),(0 : 1 : 0),and (1 : 0 : 0). Taking the union of these

inverse image sets gives the Q-rational points on the second dynatomic curve
as

¢—1< 195:0:1:0):{(0:0:1),(0:1:0)}

{0:0:1),(0:1:0),(1:0:0)}
Only one of these points is affine and it corresponds to a = 0 which is degen-
erate. Hence, there is no Q-rational value of a where f, has a 2-cycle with
Q-rational points.
Now we look at the rational 3-cycles. We want to determine if there are any
rational points on the third dynatomic curve defined by the vanishing of

@} ; (a,2) =(a’+a+1)z* + (a® + @’ + a* + 6a® + 7a® + 8a)z*
+ (a'® + a® + a® + 2a” + 3a® + 4a> + 15a* + 21a> + 28a%)z'®
+ (a'' +2a!® + 3a° + 2a” + 5a% + 204> + 35a* + 56a°)z!°
+ (a'? + 2a'! +4a'® — 2a° — 2a® + 15a% + 35a° + 70a*)z!?
+ (a'? + 3a!! — a!® - 3a% — 5a% + 6a’ + 21a® + 56a°)z°
+ (a'? —a'® —4a° + a® + 7a’ + 28a°)z8
+ (—a'® + a® + 8a7)z3 + ad.
This curve is reducible over Q, and it has the following components:
X, a2+ azb + 28 + a?z3 + 2az’ +a®> =0
X, :a8z2 + a*zP + a°2° + 2% + 2a°z'% + a'025 + 6az!?
+15a%z'%? — 2a72% + 20a3z° — az3 + 15a*z% + 6a°z3 + a® = 0.
Both components are irreducible over Q but reducible over some extension field
of Q. For curves satisfying this condition, we have Lemma 6.4. Thus, any Q-
rational points on the curve X; must be in the intersection of the two compo-

nents. In particular, any Q-rational points must be singular. The only singular
point on X; is (0,0). We can similarly look at the other component X,. It turns

out that X, is reducible over the extension field Q(y/ —3) and both components
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are defined over this extension. Thus, we can use the same argument and com-
pute the singular points for X,. The only singular point is (0, 0). Thus, the only
Q-rational point on the dynatomic curve is (0,0), but we cannot have a = 0
since a = 0 gives us a zero in the denominator for the rational map f,(z).
Therefore, no member of the family has rational 3-cycles. O

Remark 6.6. The two components X; and X, appear to be the values of a where
there is one 3-cycle with points defined over the field of definition and where
all nine periodic points of period three are defined over the field of definition,
respectively.

A search for rational preperiodic structures with the parameter up to height
10, 000 using the algorithm from [Hut15] as implemented in Sage yields no pa-
rameters where f, has a Q-rational periodic point with minimal period at least
4. So we make the following conjecture.

z3

Conjecture 6.7. There is no a € Q so that f,(z) =
periodic point with minimal period at least 4.

+a .
has a Q-rational
az?

Assuming this conjecture, we are able to classify all possible Q-rational prepe-
riodic structures.

One of the curves appearing in the proof of Theorem 6.9 is a
non-hyperelliptic genus 3 curve with trivial automorphism group. The stan-
dard implementations do not yield a sharp point estimate, so we treat comput-
ing its rational points in Lemma 6.8.>

Lemma 6.8. Assuming the (weak) Birch-Swinnerton-Dyer conjecture, the curve
C C P? defined by

C: x*y?> +xy> —x3

z—x2yz—xy’z+yz> =0
has exactly the following six points as Q-rational points.
{1:1:1),01:1:-2),0:1:0),(0:0:1),1:0:0),(-1:1:0)}

Proof. We first show that the differences of the six known points form a rank
1 subgroup of the Mordell-Weil group of the Jacobian of C, denoted J. This is
adapted directly from Michael Stoll’s Magma code for computing Q-rational 6-
cycles [Sto08]. We know that prime-to-p torsion in J(Q) injects into J([F,) for
primes of good reduction. Magma computes

We conclude J(Q) has trivial torsion. To show the rank assertion, we use the
homomorphism

5
(DS . @ZPL - PiCC i HPiCC/[Fp’
i=0 pPES

2Thanks to Michael Stoll for detailed help with the computation and Andrew Sutherland for
access to preliminary data on the analytic rank for Lemma 6.8.
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where S is the set of primes of good reduction. We take S = {2,5,7,11, 13}
and compute that the kernel of ®g is a subgroup of rank 5 in Z% = @ZP;. We
apply LLL and find that there are (at least) four relations among the points; this
gives an upper bound of the rank as 1. However, looking at the image of &g, we
see that the degree 0 subgroup of Z° surjects onto Z/57; and since there is no
torsion, the rank must be at least 1. Hence, the rank is exactly 1.

This is just the rank of the subgroup supported on the known points, so is not
a conclusive rank calculation. However, Andrew Sutherland in private commu-
nication has calculated the analytic rank as 1 assuming that the L-function lies
in the (polynomial) Selberg class, which is implied by the Hasse-Weil conjec-
ture. Assuming BSD (and Hasse-Weil), this is a conclusive rank calculation.

The curve C is genus 3 and we assume that the rank of J(Q) is 1, so we can
apply methods of Chabauty to show that these six points are the only Q-rational
points on C [BPS16].> Recall that there is a pairing

Q}(@p) ><J(G:PP) - Qp

Q
(co,Q)H/ w
0

that induces a perfect Q-bilinear pairing

where J(Q p)l denotes the kernel of reduction. If G C J(Q,) is a subgroup
of rank less than dim(J) = 3, then there is a nonzero differential w that kills G
under this pairing. We apply this with p = 2 and with G the subgroup generated
by the known rational points. Fix a basis of regular differentials

o = x(zdx — xdz)
o F, 1 F, 2 F, )

where F(x,y, z) is the defining polynomial of C and F, the partial derivative
with respect to y; see, for example, [BK86, Corollary to Theorem 1 p. 634]. For a
given point P, find a uniformizing parameter of C at P that is also a uniformizer
at P modulo 2. We find a basis of differentials in terms of the uniformizer that
annihilates the known rational points. Looking at the degree of vanishing, we
can determine whether one or two rational points lie above each of the points
modulo 2.

The points (—1 : 1 : 0)and (1 : 1 : —2) are in the same residue class. We
calculate the basis of annihilating differentials as

14+t+2+ 4+ 02+ B8+ 10+ 11 413 4615 + 416 + 0(1%)
1+t+82 4+t 4+ +83+ 2+ + 2 41 + 117 4 0(t%)

_ y(zdx — xdz) _ z(zdx — xdz)

Since there is a non-vanishing constant term, there are at most two rational
points in this residue class modulo 2 [Sto06, Proposition 6.3].

3Thanks to Michael Stoll for sharing the details of this computation.
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For the remaining four points, we get the following four bases of annihilating
differentials.

1+t+E3+tr+02+ 00+ B + 4+ 117 +12° + 0(t%°)

t+EB 0748+ 0 12 13 18 L O(1?)
P+t 4+ 0+ 0104112 411+t + 0(t%)

T4t7 48+t 4 112 4613 4 116 19 4 0(129)
t+E2+C+t7 4+ 8+ + 1 + B 4+ 18 4119+ 0(120)
1+2+83+ 4+ 04+ 7 + 110 4+ 1 + 12 4655 + 617+ + 0(¢%)
(1424 3405+ 17+ 1% 4 110 4 112 4 115 4 116 4 (17 4 118 4 O(120)
E+2 4+ +t7+ 8+ B 44+ 18 4+t + 0%

For each point there is an element such that the constant term is nonzero and
the linear term is zero. By a standard Newton polygon argument; see [Kob84,
IV.4], this implies that the corresponding logarithm has at most one zero on
the residue disk of the point, so there is at most one rational point in the disk.

Consequently, there are at most six rational points on the curve. (]
Theorem 6.9. Let f € A5(C3). Assuming the (weak) Birch-Swinnerton-Dyer
3
conjecture, if f,(z) = # does not have a Q-rational periodic point of period
az
at least 4, then the Q-rational preperiodic structure for a € Q is one of the
following;
.. \ 1 1
G, := 0—>003 —>3 , a= L t = Xy —x for (x,y) a ra-
tional point on the curve y> —y = x> —1
with x #1

L] L] 1
G, := 0_>003 -3 , a=1Tt3’ t € @\ {0,1} and not G,
Gy i= o —=i—=u0). a=r, 1€\

G, i= g— o 3 ,  all other parameters a.

Proof. Proposition 6.5 describes the periodic points, so we need only consider
the strictly preperiodic points.

The point at infinity denoted oo is fixed for f, for every a. Its only non-
periodic preimage is 0. So we always have at least the preperiodic structure

[ ] [}
0 > o

We can also look for preimages of 0. Solutions to z*> + a = 0 for rational a
must look like a = I3 for some | € Q. Of the three possible preimages of 0, only
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one can ever be rational. This describes parameter values whose preperiodic
structures contain graph Gs.
To have both a second fixed point and a second non-periodic preimage of

oo (i.e., the union of G, and G3), we need a = % anda = I®fort,l € Q.

Setting these two equal, the problem comes down to finding rational points on
the (affine) curve
Ba-t)-1=0. (6)
This curve has genus 1 and a rational point at (¢, 1) = (0, 1), which allows us to
find an isomorphism to an elliptic curve using Magma. We get the Weierstrass
model y? — 9y = x* — 27, which has rank 0 and whose torsion subgroup is
isomorphic to Z/3Z. The rational points of the projective closure are (t : I :
r)=@©:1:0),0:1:1),Q1Q :0:0). The two points (0 : 1 : 0)and
(1 : 0 : 0) are singular. When we blow them up they both correspond to one
rational point. Since we only have three rational points on the elliptic curve,
there are only three on our original curve. Only one of these three rational
points is not at infinity. This point corresponds to a = 1 and gives ®7(f)(z) = 1
which is never 0. Thus, we can never have both a second fixed point and a
preimage of 0. Note that this eliminates the union of G; and G5 as well.
We can also look at when the preimage of 0 itself has a preimage. We already

3 3
know a = t3 for some ¢t € Q, so we need % = —t. This determines the curve
Z
2+ 22t + 3 =0,
which is a singular genus 3 non-hyperelliptic curve. It has a C; automorphism
given by (z,t) — (wz,wt), where w is a cube root of unity. Quotienting out

by this action in Magma gives us all of P!, so a different analysis is necessary.
We can also perform the change of coordinates (z,t) — (u,v) = (%, z%t) to get

U3 +u + 1 = 0 - this is exactly P! as expected.
The first birational transformation we perform is sending the coordinates

2
(z,t) to (x,y) = (5,5), which gives us y> = —x5 — x2. The simple change
z Z
y — —y allows us to write the nicer version

Y =x>+x%
We see that this is now a superelliptic curve, but in a singular model so still not
desirable to work with. Another birational transformation (x,y) — (u,v) =
1 vy .
(x , x2) gives

3

=u*+u,

a nonsingular Picard curve. Magma computes that this curve has rank 0, and
since this number is strictly less than 3 (its genus), we can use the Chabauty-
Coleman [Cha41, Col85] method to find all its rational points. We can check
that p = 2 is a prime of good reduction (define the curve in Magma over [F, and
check ifit is singular). Code written by Jan Tuitman and Jennifer Balakrishnan
[BT18] verifies that, in fact, there can be at most three rational points on the
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curve. Thus, there are only three points on our original curve, which Magma
findstobe (0 : 1 : 0),(0 : 0 : 1),(1 : 0 : 0). The only affine point is (0, 0),
so z = 0,t = 0 is the only solution. However, these values send the expression
z3+83

o to infinity, not 0, so it is not a valid solution. Thus, the rational preimage
zZ

of 0 cannot have a rational preimage.
We next see if the second fixed point can have non-periodic rational preim-

ages. To simplify the equations, instead of the parameterization a =

1-13’

t # 0,1 for the existence of a second fixed point, we replace t with % to have
3
a= t;—l, t # 0,1 with (affine) fixed point t. We know that
f a(z) =t,

which produces the equation
1
t3—-1
The variety defined by equation (7) has two irreducible components: the case
where the preimage is the fixed point itself, z = ¢, and the genus 1 curve defined
by

e -1 +-t*z22+3)=0. (7)

C:z832—-z>—zt—t>=0.

Using the point (0 : 1 : 0) as the point at infinity, we get the model

y-y=x’-1 (®)
It is rank 1 with generator (1 : 0 : 1) with trivial torsion. We have a mapping
Y. E->C

¥(x,y,2) = (xz,xy — xz,yz — z°).

So every rational point on the elliptic curve corresponds to a rational point on
the curve C. The image of (1 : 0 : 1) gives ¢t = 1, which is the degenerate case,
but the other rational points with x # 1 correspond to parameters a where
the additional fixed point has a non-periodic rational preimage. Furthermore,
since the curve C defining the pair (z, t) is degree 2 in z, if there is one rational
preimage of the fixed point, then there is typically two rational preimages of
the fixed point. The exceptions are obtained by taking the discriminant of the
defining equation of C in Q[¢][z]. This discriminant is

t2(4t3 - 3).

So the only rational ¢ value where there could be a single preimage is t = 0,
which is degenerate. So we have structure G;.
Now we check if structure G; can be extended by the finite fixed point having

a second rational preimage. We continue to utilize the parameterization a =
3

t;—l, so we are looking for a rational point on a component of the curve defined

by fa(z) =t
(t12 — 4t° + 61° — 43 + 1)z° + (4t12 — 9r° + 91® — 3¢3)z6
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+ (3t12 — 61% + 3t9)z3 + 112 — ¢°
= £((t12 = 269 + 19)28 + (2612 — 219)z5 + 11222).

After saturation by the ideal (¢, z), the degenerate case, this curve has three
irreducible components. Two of these components correspond to fixed points
and preperiodic points with period (1,1), respectively,

z=t
BPz2—z2—tz—t2=0.

The third component represents the preperiodic points with period (2,1) and
is an irreducible genus 13 curve defined by

2019 — 32616 — 25¢7 — Z448 4 22319 + 32043 4 2t — 42310
— 227+ 12—z 42233 -6 = 0.

Utilizing Magma, we quotient by the automorphism (z,t) — ({532, {5t), where
{5 is a primitive third root of unity. This results in the genus 3 curve defined by

—x3y+y*+5x3 —2x2y +xy? —19y° +11x%2 —9xy +136y* +23x —433y+517 = 0.

Simplifying the (projective closure) equation with a change of variables defined

1 -1 1
by the SL;(Z) elementm =|0 5 —4 |, we get the reduced equation
o 1 -1

X2y +xy3 —x3—x?y—xy*+y=0.

Lemma 6.8 calculates the Q-rational points of the projective closure of this
curve as

{1:1:1),(-1/2:-1/2:1),(0:1:0),(0:0:1),(1:0:0),(—1:1:0)%

These give the six points on the nonreduced curve

{d:1:0,1:-13/2:-3/2),(1:—4:-1),(-1:5:1),
(1:0:0),(-2:5:1)}
On the original curve, we find the four points
{0:1:0,0:0:1),0:1:1),(1:0:0)%

Computing the inverse image of the quotient map of the six points on the nonre-
duced curve, we find only the four rational points on the original curve already
known. So these are the only four rational points on the original curve. These
are all either points at infinity or degenerate cases, so there are no non-periodic
second rational preimages of the finite fixed point.

There are no possible ways to extend the structures G, G,, and G5 rationally,
so these are the only possible structures of Q-rational preperiodic points for
fa(2) fora € Q. O
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6.3. A3(D,) First Component. There are two families with a D, symmetry.

We first look at the family f,(z) = az’+1
cases.

. Note that a = +1 are degenerate
z3+az

Proposition 6.10. The following describes Q-rational periodic points for f,(z) =
az’+1
fora € Q.

z3+az
(1) For every a, f,(z) has the rational periodic points

L] /\ L] L] L]
0 Y] 1 3 -1 3
~__~
(2) The points +1 are the only Q-rational fixed points for alla € Q \ {£1}.
(3) If there are any additional rational periodic points with period 2, then

all six points of period 2 are Q-rational.
(4) Thereisnoa € Q \ {1} so that f,(z) has a Q-rational 3-cycle.

Proof. The first dynatomic polynomial is ®}(f) = —z*+1. In particular, every
member of the family has two rational fixed points 1 and —1 and two complex
fixed points +i. The second dynatomic polynomial is given by

D5(fo) = (a* = 1)z° + 2a° — 2a)z* + (a® — D)z

The associated curve is reducible over Q and the irreducible components are

z=0

a—1=0

a+1=0

z4 +2az? +1=0. 9)
Note that a = +1 are degenerate cases. The points 0 and oo form a 2-cycle.

—z4-1 .
- such that z is

Z
periodic with period 2. Furthermore, we know if z is a rational point of period
2,then 1/z, —z, and —1/z are all points of period 2 since the maps z — +1/z
and z — —z are automorphisms of f,(z). Since f, is a degree 3 map, we know
that there are at most three rational 2-cycles and six points of period 2. Thus,
for every member of the family, either we have only 1 rational 2-cycle (0 and
o) or all 2-cycles are rational.
Now we look at rational 3-cycles. The third dynatomic polynomial is calcu-
lated as
O;(fo) =2** + (@® + 2a° + 9a)z* + (a® + 9a°® + 14a* + 41a® + 1)z%°

+ (7a° 4+ 28a’ + 55a° + 118a> + 12a)z'®

+ (15a!° + 54a® + 118a® + 248a* + 59a? + 1)z'°

+ (12a'! + 73a® + 1404’ + 376a> + 180a° + 11a)z'*

+ (3a'? + 52a'® + 115a® + 334a® + 361a* + 58a% + 1)z!?

+ (12a'! + 73a® + 1404’ + 376a> + 180a* + 11a)z'°

From the last component (9), for every z, we can find a =
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+ (15a!° + 54a® + 118a® + 248a* + 59a% + 1)z8
+ (7a° + 28a’ + 55a° + 118a> + 12a)z°
+ (a® 4+ 9ab + 14a* + 414 + 1)z* + (@’ + 2a® + 9a)z? + 1.

The associated dynatomic curve has genus 27 and is difficult to work with di-
rectly. First observe that if (a, z) is a point on ®3(f,) = 0, then (a, f,(z)) and
(a, f2(z)) are also on the curve. Thus, we can quotient this curve by a C; sym-
metry by setting t = z + f,(z) + f2(z). We need to find the curve X obtained
through this quotient. We know that finding this curve X is equivalent to find-
ing the minimal polynomial of t = z + f,(z) + f2(z) € K, where K is the
extension field of Q(a) defined by the third dynatomic polynomial.
The curve X defined by this minimal polynomial is given by

X : 28 +(a® +4a® — a)z® + (a® + 2a° — 4a* + 8a® — 1)z*
+ (3a’ + 4a® — 23a® + 20a)z? + 9a* — 24a* + 16 = 0.
Observe that we can quotient out by another C, action by identifying x = z2.
This gives us the curve

Y @ x* + (@’ + 4a® — a)x3 + (a® + 2a% — 4a* + 8a? — 1)x?
+ (3a” + 4a® — 23a® + 20a)x + 9a* — 24a® + 16 = 0.
This curve has genus 3 and is hyperelliptic with simplified model

Y' 1 y? = x% —6x% +19x* — 30x% + 9.

Observe, that this curve covers a genus 1 curve by setting x = x2,

E : y? =x*—6x3+19x? — 30x + 9.
This curve E has smooth model as an elliptic curve

10 32 4
P2V P4 32
E' :y 3 Xy 9 y=x"+ 3x .
The curve E’ has rank 0 and the torsion subgroup has order 6. Therefore, there
are at most six rational points on E. A search using height bound 1000 on the

projective closure of E finds five rational points:
3:3:1),3:-3:1),(0:1:0),(0:-3:1),(0:3:1).

This list is complete since (0 : 1 : 0) is a singular point and blows up to 2
rational points. Observe that affine rational points on E can be lifted to affine
rational points on Y’ only if the x-coordinate is a square. Thus, the only affine
rational points on Y’ are (0, —3) and (0, 3). We also know that since Y is of the
form y? = f(x), where f(x) has even degree with leading coefficient a square,
Y’ has two points at infinity, both of which are rational. Thus, on Y’, there
are only four rational points. Then Y has at most four non-singular rational
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points. Searching using a height bound 1000 on the projective closure of Y, we
find four rational points:

0:1:0,1:0:0,(-1:1:1),d:-1:1),

where the first coordinate is a, the second x, and the third a homogenizing
variable. All these points are singular points. When we blow them up, (0 : 1 :
0) blows up to be two rational points, (1 : 0 : 0) blows up to be two rational
points, (—1 : 1 : 1) becomes a single point that is not rational,and (1 : —1 : 1)
also becomes a point that is not rational. Thus, we have found all four rational
points in the smooth projective model of Y. We only lift the affine rational point
(—1,1) since (1,—1) has x = —1 and we replaced x? with x to get from X to Y.
This point has a = 1, which is degenerate. Thus, there is no choice of a € Q
for which f,(z) has a Q-rational 3-cycle. (|

A search for rational preperiodic structures with the parameter up to height
10, 000 using the algorithm from [Hut15] as implemented in Sage yields no pa-
rameters when f,(z) has a Q-rational periodic point with minimal period at
least 4.

az’+1

Conjecture 6.11. There are noa € Q such that f,(z) = has a Q-rational

periodic point of minimal period at least 4.

z3+az

Theorem 6.12. Assuming Conjecture 6.11, the possible rational preperiodic

2
structures for f,(z) = af:l for a € Q are the following.
z°+az
L] L] L] /\ L] . I K
G, 3 1 3 NG a not in one of the families G,, G3, or G4
N\ . N Y 2+t+1
G2 .élg.é—l 0 0 a:—, tE@\{il,O}
~__~ t
. . . 77 N\ ° VRN VRN _t4 -1
G3313—1 0 o ° ° ¢, a=—,
~__~ ~__~ ~__~ 2t2
teQ\{x1,0}

G, 1 a=-t*, t€Q)\{+1,0}

Proof. Proposition 6.10 combined with Conjecture 6.11 classifies the Q-rational
periodic structures. For preperiodic structures, we start by looking for non-
periodic rational preimages of the fixed points. Recall from Proposition 6.10
that for every a € Q, f,(z) has exactly two Q-rational fixed points +1. Observe
that if f,(z) = 1, then f,(—z) = —1, so it suffices to consider the preimages of
1. To have f,(z) = 1, we must have (az? + 1) — (z> + az) = 0. This defines a
reducible curve over Q, and the irreducible components are

z—1=0 and az—2z> —-z—-1=0.
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We only need to consider the second component. This component is linear in

a so we solve as ,
t“+t+1
a= — t &1{0,+1}.

We exclude t € {0,—1} for degenerate a values and t = 1 is the fixed point
as its own preimage. Thus, for every t € Q \ {#1, 0}, we can find an a such

that 1 has a non-periodic Q-rational preimage under f,(z). Since z Lis
4

an automorphism of f,(z), if f,(z) =1, then f,(1/z) = 1. Furthermore, since
this irreducible component is quadratic, it can have at most two rational points.
Thus, the two rational points must be z and 1/z.
Now we look for a second non-periodic rational preimage of 1, i.e.,az € Q
with f2(z) = 1. We need to find (rational) solutions to
a’z” + a*z> + 2° + 3az” + 5a%z° + 3a3z% + az® + a’z
—(a?z® +3a%z% + a*z* + azb + 5a%z* + a3z? + 3az? + 1) = 0.
This defines a reducible curve over Q with irreducible components
0=z—1 (fixed points),
0 =az —z?>—z—1 (points satisfying f,(z) = 1), and
0 =a?z’ + a’z® — a?z* — az® — z° — @23 — 2az* — a?z* + az’ + a’z
—2az> -z —az—1.

We need only consider the third component. It defines a genus 3 curve, but
we can quotient by a C, symmetry by identifying (a, z) with (a, 1/z). If we set
t =z + 1/z, we get the curve after this quotienting as

X:B+(a?+at’+(@*+2a-3)t—-a*+3a>-3a+1=0.
This is a genus 1 curve and is birationally equivalent to the elliptic curve
X' y?—2xy +2y =x>—3x%+2x
via the map on projective closures
x =2at* + 2a’t*h — 8at*h — 8a’th? + 4at*h* — 8t3h? + 16ath?
+26t2h® — 8th*
y =2at* + 4t*h — 2a3h? + 2a*th? — 26at*h?
—14t3h* — 26a%h® + 36ath® — 6t2h3 + 58ah* + 90th* — 30h3
z=—1 +2t*h.
We compute that X’ has rank 0 and its torsion subgroup has order 6. Thus,
there are at most six non-singular rational points on X. Searching using height
bound 1000 on the projective closure produces
(a,t,h)ye{(-1:-2:1),3:2:1),(0:1:0),(1:0:0),
1:0:1),(-1:2:1)}
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where h is a homogenizing variable. The curve X has singular points(1 : 0 : 1)
and (—1 : 2 : 1). We blow up the singular points and in the blowup, (1 : 0 : 1)
becomes two points, both of which are rational pointsand (=1 : 2 : 1) becomes
one closed point which is not rational. Thus, the above list is complete since
we have found six rational points. Now we need to lift these rational points
back to the original curve. Recall thatt = z + 1/z, so we can solve for z. Only
t = +2 produces rational points, but ¢t = +2 lifts back to z = +1, which are
fixed points. Thus, there is no a € Q such that f2(z) = 1 and f,(z) # 1 for
some z € Q.

Now we look at non-periodic preimages of the 2-cycle comprised of 0 and co.
First consider if there is an a such that f,(z) = 0. It suffices to look at f,(z) = 0
since if f,(z) = oo, we have f,(1/z) = 0 due to the automorphism z — 1/z.

Solving az? + 1 = 0, we get z = +,/ =y Thus, as long as a = —k? for some
a
k € Q, we have f,(z) = 0 for two Q-rational z values.
Now we consider non-periodic second preimages: f2(z) = 0 for some z such
that f,(z) # 0. We need to find rational solutions to the equation
a3z’ + a*z’ + 2° + 3az” + 5a%z° + 3a3z% + az’ + a’z = 0.

This equation defines a reducible curve over Q. The irreducible components
are

z=0
Z24+a=0
a’z* + 28 + 2az* + 3a%?z2 +a = 0. (10)

The first two components correspond to f,(z) being the point at infinity, so
we only need to study the third component. It has genus 3, but observe that it
covers a genus 1 curve:

X :a®x?+x3+2ax? +3a’x +a =0.
This curve is birationally equivalent to the elliptic curve
E :y?>+8xy+2y=x3—12x> —4x
via the map (of projective closures)
x = 2a%x* — 4a’x3h + 4ax*h — 6a%x?h? + 8ax3h? + 8x*h? — 12ax?h?
+ 4x3h® — 16axh* — 10x%h* — 8xh> — 2h®
y = —4a’x* — 8ax*h + 36a2x*h? — 32ax3h? — 12x*h? + 8ax*h® — 32x3h3
+96axh* + 36x2h* + 32xh> + 8h®
z = —x°h —3x*h? — 2x3h3 + 2x2h* + 3xh> + K,

where h and z are the homogenizing variables of X and E, respectively. The
curve E has rank 0 and its torsion subgroup has order 6. Searching with a height
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bound 1000 on the projective closure, we find five rational points on X:
(a,x,h)€e{(0:1:0),(0:0:1),1:0:0),(-1:1:1),(1:-1:1}
Among these five points, four of them are singular points:
1:-1:1),(-1:1:1),(0:1:0),(1:0:0).

The first point blows up to be two rational points, the second blows up to be
two rational points, and the third blows up to be one rational point. The last
one blows up to a closed point, but that point is not rational. Thus, we have
found all six points on the projective smooth model of X, and the list must be
complete. Recall that we cannot have a = 1 or —1, and we only look at affine
rational points. Thus, the only rational point on the projective closure of X that
we care aboutis (0 : 0 : 1). Itliftsto (0 : O : 1) on the third irreducible
component in equation (10), but z = 0 is a periodic point. Therefore, we can
conclude that there is no a € @ such that f2(z) = 0 and f,(z) # 0.

Now we look for non-periodic preimages of one of the other possible ratio-
nal 2-cycles. In particular, if we can find an a € Q such that f,(z) enters
into a 2-cycle that is not the 0-co cycle. Recall from component (9) of the sec-
—t*-1

212
for t € Q \ {£1,0} to have extra 2-cycles. Furthermore, we can compute the

(1,2) generalized dynatomic polynomial characterizing points with formal pe-
riod (1,2), (see Hutz [Hutl5, Section 3]) as

ond dynatomic curve in the proof of Proposition 6.10 that we need a =

o, (fo) = (2% + a)(az? + 1)(z® + (2a® + 2a)z% + (a* + 64 — 1)z*
+ (2a® + 2a)z* + 1).

4
When we set a = ;Tzl the irreducible components of CDE“I 2)( fq) become

zt* =2zt 4+ 23—z =0
zt* + 222t -2t -z =0
22283 —zt* 4z -2t =0
22°t3 +zt* —z -2t =0
22°t2 —t*—1=0
Z2tt+ 22 - 212 = 0.
The first four are quadratic in z and all have discriminant t® + 14t* + 1. So
rational points occur when there are rational points on the curve
C:k*=3+14t*+1.
This covers the curve
E:y*=x*+14x>+1,
via the substitution y = k, x = t2. The curve E is birational via

(x,y,2) = (2x%z + 2yz? + 1423, 4x3 + 4xyz + 28x22, z3)
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to the rank 0 elliptic curve y? = x> — 28x? + 192x with torsion subgroup iso-
morphic to Z/2Z X Z /4Z. A point search gives the eight points
0:1:0,0:0:1),(8:16:1),(8:-16:1),(12:0:1),(16:0: 1),
(24 : 48 :1),(24 : —48 : 1).

The curve E has the seven rational points

(-1:4:1),0:-1:1),0:1:0),1:-4:1),(-1:-4:1),
1:4:1),0:1:1),
where (0 : 1 : 0) is singular and blows up to two rational points. On the
original curve C, we find the same seven rational points
(-1:4:1),0:-1:1),(0:1:0),1:-4:1),(-1:-4:1),
1:4:1),0:1:1).
These all have t € {+1,0} so correspond to degenerate cases. The last two
components are both birational to the same rank 0 elliptic curve, y? + 2xy =
x3 — 4x? + 2x, with torsion subgroup isomorphic to Z/2Z x Z /27, so they
have at most four rational points. In both cases, we have the rational points
(x,t) = (£1,£1). Since t = +1 are degenerate cases, these components do not
have any rational points. Thus, we cannot have f,(z) entering a 2-cycle that is
not the 0-co cycle.
Now that we have identified each of the separate possible components of the
rational preperiodic structure, we need to consider which of these components

can occur simultaneously. First we ask if 0 can have a non-periodic rational
preimage at the same time there are the additional 2-cycles. Recall that we

—th_
need a = —k? for some k € Q to have f,(z) = 0 and we need a = ;Tzl to have
extra 2-cycles. Thus, we are looking for rational points on the curve

X 1 t*+1-2k**=0.
This is a genus 1 curve that is birationally equivalent to the elliptic curve
E:y*+2xy=x3—4x*>+2x

via the map (of projective closures with 4 and z the homogenizing variables of
X and E, respectively,)

x = 2kt? + 2t3 — 2kth — 4t%h + 4th? — 2h3
y = —4kt? — 43 + 4t>h — 4th?
z =t3 —3t%h + 3th®> — h3.

This elliptic curve E has rank 0 with torsion subgroup of order 4. Searching
with a height bound 1000 on the projective closure, we find five rational points
onX:

k:z:he{d1:1:1),0:0:0),(-1:1:1),Q:-1:1),(-1:-1:1)}
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where h is a homogenizing variable. Only one of these points is singular, so we
know this is a complete list of rational points. The affine rational points force
z = %1, which are fixed points. Thus, we cannot have f,(z) = 0 and extra
2-cycles at the same time.

Now we check if both the fixed points and the 0 — o« 2-cycle can have non-
periodic rational preimages at the same time. Recall that we need a = —k? for

2
£ for some t # 0,+1 € Q
to have f,(z,) = 1. Thus, we are interested in the following curve

some k € Q to have f,(z;) = 0and we need a =

X:t*+t+1+k*=0.
This is a nonsingular curve of genus 1 that is birational to the elliptic curve

E : y?=x3—4x? + 16x,

via the map
x = 4kt
y = 8t2 + 8th + 8h?
z = —kh,

where k and z are the homogenizing variables of X and E, respectively. This
curve E has rank 0 and a torsion subgroup of order 4. Searching using height
bound 1000 on the projective closure, we find four rational points on X:

(k,t,h)ye{(0:1:0),1:0:0),1:-1:1),(-1:-1:1)}

The affine points all have ¢ in the excluded set {0, +1}. Thus, we can conclude
that there is no a such that f,(z;) = 0 and f,(z,) = 1.
Next we check if we can have additional 2-cycles as well as non-periodic

241+1
- to have f,(z) =1

preimages of the fixed points. Recall that we need a =

4
and we need a = —% to have extra 2-cycles. Thus, we need to find rational
points on the curve

X (2 +t+ D2k = (k* + 1)(-0).
This is a genus 1 curve that is birationally equivalent to the elliptic curve
E:y?=x3+3x2+2x
via the map
x = 2tkh + 2kh?
y = —2k*h — 2th?
z = k3 —kh?,

where h and z are the homogenizing variables of X and E, respectively. This
curve E hasrank 0 and the torsion subgroup has order 4. Searching using height
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bound 1000 on the projective closure, we find five rational points on the curve
X:

(t,k,h)€e{(0:1:0,0:0:1),1:0:0),(-1:1:1),(-1:-1: D}
Among these five points, three of them are singular

{(=-1:-1:1,(-1:1:1),0:0:0)%

The points (=1 : —1 : 1) and (—1 : 1 : 1) blow up to be closed points that
are not rational. The point (1 : 0 : 0) blows up to two rational points. Thus,
this search produces all the rational points on X. Considering only the affine
points, we have either k = 0 or a = —1. Thus, there is no (valid) a such that we
can have extra 2-cycles and f,(z) = 1.

We have exhausted all possibilities for rational preperiodic structures, leav-
ing only those enumerated in the statement. O

6.4. A; (DZ) Second Component. Now we look at the family with D, symme-
2
try g,(z) = ——. We first consider the possible rational periodic points.
—az

Proposition 6.13. Let g,(z) = for a# +1.

(1) Foreveryt € Q \ {0, +1}, the value a = 721 satisfies g,(z) has the four

fixed points {it, i%} For no other values of a € Q does g,(z) have a

Q-rational fixed point.

(2) Forevery a € Q\ {1}, the function g,(z) has exactly two 2-cycles with
Q-rational points: swapping 0 and oo and swapping 1 and —1.

(3) Thereisno a € Q so that g,(z) has a 3-cycle with Q-rational points.

Proof. The first dynatomic polynomial is

i(gy) = —z* + 2az* - 1.

This polynomial is linear in a, so it has a zero when a = 224— Thus, for every
z € Q, we can find an a such that z is a fixed point. Once z is a fixed point,
we know from the automorphism group that —z, i and —; are all fixed points.
Furthermore, for every a, the first dynatomic polynomial has at most four zeros,
SO z,—2Z, L and -1 are all the fixed points.

Now v&zle look %or 2-cycles with Q-rational points. The second dynatomic

polynomial is given by
D5(g,) = (—a® + 1z° + (a®> — Dz = (1 — a®)z(z — 1)(z + 1)(2* + D).

Since a = +1 are degenerate cases, we see that the roots of ®7(g,) do not depend
on a and every member of the family g, has exactly two 2-cycles with Q-rational
points: swapping 0 and oo and swapping 1 and —1.
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Now we look for 3-cycles with Q-rational points. The third dynatomic poly-
nomial is

Di(g,) = —z** + (a° + 4a® + 7a)z** + (—a® — 13a® — 24a* — 29a* + 1)z%°

+ (7a° 4+ 48a’ 4+ 91a® + 76a> — 2a)z'®
+ (=11a'® — 102a® — 214a°® — 168a* + a? — 1)z!'6
+ (6a' +103a° + 348a’ + 304a’ + 30a® + a)z'4
+ (—a'? — 44a'% — 28948 — 470a® — 111a* — 10a? + 1)z!?
+ (6a'! +103a° + 348a’ + 304a> + 30a> + a)z'°
+ (—11a'® — 102a® — 214a® — 168a* + a> — 1)z8
+ (7a° + 48a” + 91a> + 76a> — 2a)z°
+ (—a® — 13a% — 24a* — 2942 + 1)z*
+ (a’ 4+ 4a® + 7a)z* — 1.

The dynatomic curve ®3(g,) = 0 has genus 31. We can quotient by a C5 sym-

metry by identifying (a, z) with (a, g,(z)) and (a, g2(2)). Setting t = z+g,(z) +
g%(z), this quotienting produces the following curve:

X 8+ (—a’ —6a® —13a)t® + (a® + 14a® + 46a* + 56a% + 1)t*
+ (—4a® — 33a” — 78a° — 69a> + 4a)t?
+ 4a® + 12a°® + 25a* + 24a%? + 16 = 0.

This curve has genus 11. We should be able to quotient by another C, symmetry
by identifying (a, z) with (a, l). However, in this curve we have used t = z +
z
1 1
22  g@
We can find the minimal polynomial of ¢ + ¢, which defines the curve

g4(2)+g%(z) so we need to identify (a, t) with (a, t'), where t’ = i +

Y : u* 4 (—a® —2a* — 6a3 — 10a? — 13a — 8)u? + 4a® + 12a° + 25a* + 364>
+34a>+24a+9=0.
This curve has genus 5, but we can identify u? = x and get
Y : x2 4+ (—a’ +2a* — 6a® + 10a? — 13a + 8)x + 4a® — 12a° + 25a* — 364>
+34a®> —24a+9=0.
The new curve Y has genus 2 so is hyperelliptic. It is birational to the curve
H : y?>=4x5—-12x> + 25x* = 30x3 + 25x2 — 12x + 4
via the map
x=1/2a>+3/2a> +3/2a+1/2
y = 1/2xa* + 2xa® + 3xa® + 2xa + 1/2x — 1/4a° — 3/2a8 — 5a7 — 25/2a’
—49/2a> —73/2a* — 39a3 — 55/2a% — 45/4a — 2



1670 GONTMACHER, HUTZ, JORGENSON, SRIMANI AND XU

z=a’>+2a+1,

where z is the homogenizing variable of H. The curve H has genus 2 and its
Jacobian has rank 0 with torsion subgroup isomorphicto Z/6Zx Z /6Z. Using
Chabauty’s method for rank 0 Jacobians as implemented in Magma yields the
six rational points on (the weighted projective closure of) H as

1:-2:0,01:2:0,01:2:1),0:-2:1),(0:2:1),(0:-=2:1).

A point search up to height bound 1000 yields the points on (the projective
closure of) Y.

(z,a,h)e{4:1:0),(0:-1:1),4:1:1),1:0:0),(36:1: 1)}

The point (0 : —1 : 1) is a singular point which blows up to two rational
points, so these are all the rational points on Y. The affine points all have a =
+1, which is the degenerate case for this family. So there are no points that
corresponds to a rational 3-cycle. (|

A search for rational preperiodic structures with the parameter up to height
10, 000 using the algorithm from [Hut15] as implemented in Sage yields no pa-
rameters where g, has a Q-rational periodic point with minimal period at least
4.

2_

Conjecture 6.14. There are no a € Q such that g,(z) = af—l has a Q-rational
z°—Qaz

periodic point of minimal period at least 4.

Assuming Conjecture 6.14, we classify all rational preperiodic structures.

Theorem 6.15. Assuming Conjecture 6.14, the possible rational preperiodic

2
structures for g,(z) = a:—l for a € Q are the following.
zZ az

G =, 1 0 =, fortnotin the following cases
~__~ _
c/\o o/\. ] ] L4 L4 t4+1
G, = 1\_/—1 0\_/00 tt)—ti)l/tb—l/tj,a=7,
teQ)\ {£1,0}
./_\. ’ ./\. ’
G =1 -1 \0 oo/ , a=t% fort €\ {£1,0}
N~ ./ N~ TN,
G _ .\O/_\./. o/\c a_3t2+3t+3
BTN T %" " 2245t+2
) ) teQ\{1,-2,-1/2}

Proof. We start with non-periodic preimages of fixed points. Recall from Propo-

4
sition 6.13 that we have the four fixed points {+¢, +1/t} when a = % for some

t € Q\ {£1,0}. We want to know if these points can have rational preimages.
Because of the automorphisms z — 1/z and z — —z, it suffices to consider
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the preimages of any of the fixed points. Consider the equation g,(z) = t and
4
substitute a = % The resulting equation factors as

—(z —1)(23z* + (t* — 1)z — 21).

Since ¢t is the fixed point we need only consider the second factor component.
Its vanishing defines a genus 3 curve but is quadratic in z, so we have rational
solutions when the discriminant, with respect to x, is a square. This gives the
curve

84+ 14t* +1 =K%
Replacing u = 2, this becomes

ut 4+ 14u? + 1 = k%
Using the point (k : u : h) = (1 : 0 : 0) as the point at infinity, this is an
elliptic curve with model y* = x3 — 28x2 + 192x. This curve has rank 0 and
torsion subgroup isomorphic to Z/2Z x Z/4Z. So the original curve has at

most eight rational points. A point search up to height 1000 yields the seven
points (on the projective closure)

(x:t:hef{(zx4:+1:1),(x1:0:1),d:0:0)

where h is the homogenizing variable. The point (1 : 0 : 0) is singular and
blows up to two rational points, so we have found all eight (Q-rational points.
The affine points all have ¢ values that are degenerate, so there are noa € Q
such that g,(z) has a rational fixed point with a non-periodic rational preimage.

Now we look for non-periodic rational preimages of the points of period
2. Recall that every member of the family has exactly two 2-cycles {0, oo} and
{1, —1}. We want to know if we can have g,(z,) = 0or g,(z,) = 1witha, z, 2, €
Q. It suffices to look for non-periodic rational preimages of 0 and 1 since preim-
ages of —1 and oo are then obtained from the same automorphisms that produce
four rational fixed points when there is one. We first look at g,(z;) = 0. We
need to find rational solutions to the equation az?—1 = 0. This equation defines
a genus 0 curve with rational parameterization

t - (t3,1/t) = (a, z).

Thus, for every t € Q \ {0}, g,(1/t) = 0, where a = 2.

Now we look at g,(z,) = 1. We need to find rational solutions to the equation
(az? — 1) — (z* — az) = 0. This equation defines a reducible curve over Q and
the irreducible components are

z+1=0
az—z>+z—-1=0.

This first component corresponds to a periodic point, so we only look at the
second component. It defines a genus 0 curve with rational parameterization:

<3t2+3t+3 t+2>
= .

2024+ 5t+2°2t+1
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36243143

such that 1 has a non-periodic
2t245t42

Thus, for every t € Q, we can find a =

rational preimage under g,,.

Now we look for non-periodic rational second preimages of 0; i.e., determine
if we can have g2(z;) = 0 and g,(z;) # 0 or o with a,z; € Q. We need to find
rational solutions to the equation

a’z’ —a*z’ — 2° + 3az” — 5a%z° + 3a3z® + az’> —a’z = 0.
This equation defines a reducible curve and the irreducible components are
z=0
zZ—a=0
a’z* — 28 + 2az* — 34?22 +a =0.
The first component corresponds to periodic points. The second component

corresponds to z such that g,(z) = oo. Thus, we can just look at the third
component. Via the replacement z? ~ z, it covers an elliptic curve:

X :a*z? —z3+2az> - 3a’z+a=0.
The elliptic curve X is birationally equivalent to
E : y?>—8xy —2y = x> — 12x% — 4x,
via the map
x = 2a’z* + 4a’z3h + 4az*h — 6a%z*h? — 8az>h? + 8z*h? — 12az*h®
—4z3h3 + 16azh* — 10z*h* + 8zh°> — 2h®
y = 4a’z* + 8az*h — 36a’z*h? — 32az°h? + 12z*h? — 8az’h? — 32z3h3
+96azh* — 36z%h* + 32zh> — 8h®
z = z°h — 3z*h? + 22313 + 2z2h* — 3zh> + hS,
where h and z are the homogenizing variables of X and E, respectively. This

elliptic curve E has rank 0 and its torsion subgroup has order 6. Searching using
height bound 1000, we find five rational points on the projective closure of X:

(a,z,h)e{1:1:1),(0:1:0),(0:0:1),(1:0:0),(—=1:-1:1)}

where & is a homogenizing variable. Among these five points, (-1 : —1 : 1),
(1 :1:1),0:1¢:0)and (1 : 0 : 0)are singular points. The point
(=1 : =1 : 1) blows up to be two rational points, point (1 : 1 : 1) blows up
to be two rational points, point (0 : 1 : 0) blows up to be one rational point,
and point (1 : 0 : 0) blows up to be a closed point that is not rational. Thus,
our search has found all the rational points on X. The only affine rational point
such that a # +1is (0 : 0 : 1). But this corresponds to z = 0, which is the
periodic point. Thus, there is no a € Q such that g2(z;) = 0 and g,(z;) # 0 or
oo for rational z;.
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Now we look for non-periodic rational second preimages of 1; i.e., rational
2z, so that g2(z,) = 1 and g,(z,) # 1 or —1. We need to find rational solutions
to the equation

a’z’ —a*z°> — 2° + 3az” — 5a%z° + 3a3z® + az® — a3z

—(—a?z +3a%z° — a*z* + az® — 5a%z* + a*z> + 3az? - 1) = 0.

This equation defines a reducible curve over Q and the irreducible components
are

0=z-1
O=az+z*+z+1

2,5 3,3

0=a2z>—-a%z3 —a?z* + az® — z°

2,2

—a?z® +2az* — a?z? — az’ + a’z
+2az> -z +az—1.

The first component corresponds to z = 1 and the second component to g,(z) =
—1. Thus, we focus on the third component. It defines a genus 3 curve. We can
quotient by a C, action by identifying (a, z) with (a, 1/z). This gives curve

X:B+(=a*>—-—a’+@ -2a-3)+a’>+3a*°+3a+1=0,
where t = z + =. Thisisa genus 1 curve birational to the elliptic curve

z

E :y?—2xy+2y = x> —3x* + 2x,
via the map
x = 2at* — 2a*t*h — 8at3h + 8a’th? + 4at*h® + 8t3h* + 16ath?
— 26t%h® + 8th*
y = 2at* — 4t*h — 2a3h? — 2a%th? — 26at?h? + 14t3h? + 26ah> + 36ath’
+ 6t2h> + 58ah* — 90th* + 30h°
z = t5 = 2t%h,
where h and z are the homogenizing variables of X and E, respectively. The
curve E has rank 0 and its torsion subgroup has six elements. A search for
rational points on the projective closure of X using height bound 1000 finds
(a,t,h)e{1:-2:1),1:2:1),(0:1:0),(-1:0:1),
1:0:0),(-3:2:1)}
where h is the homogenizing variable. Among these points, (=1 : 0 : 1) and
(1 : 2 : 1) are singular points. The first one blows up to be two rational points,
and the second one blows up to be a closed point that is not rational. Therefore,
we have found all the rational points on X. Observe that the only affine rational
pointwherea # +1is(—3 : 2 : 1). Thus,weneed tosolvet = z+1/z = 2. The

only solution is z = 1. Thus, there is no a such that g2(z,) = 1 and g,(z,) # 1
or —1 for rational z,.
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Next we check if both pairs of 2-cycles can have preperiodic tails at the same

time; i.e., if we can have g,(z;) = 0 and g,(z,) = 1 with a, z;,z, € Q. Recall

363436543

that we need a = 2 to have g,(z;) = 0O and a = to have g,(z;) = 1.

265456542
Thus, we need to find rational solutions to

C: (Bt +3t,+3)— 2212 + 5t, +2) = 0.
This defines a genus 1 curve that is birationally equivalent to the elliptic curve
E : y? = x>+ 180x? + 11664x + 279936
via the map
X = 54t,h
y = 108t,t, + 216t h
z = —t,h —1/2h?,

where h and z are the homogenizing variables of C and E, respectively. The
curve E has rank 0 and its torsion subgroup has order 4. Searching for rational
points on the projective closure of X using height bound 1000 produces

(t1,t,,M)€{(0:1:0),1:0:0),1:1:1),(-1:1:1)}

where h is the homogenizing variable. Among these points, (0 : 1 : 0) and
(1 : 0 : 0) are singular points. The first one blows up to be two rational points,
whereas the second one blows up to be only one closed point that is not rational.
Thus, we have found all rational points on X. Checking whether these points
produce valid members of the family, we see that t, = 1 so that a = t% =1,
which produces degeneracy. Thus, we cannot have g,(z;) = 0 and g,(z,) = 1
at the same time for rational z; and z,.

Now we need to ask if we can have rational fixed points at the same time

as preperiodic tails for a 2-cycle. Recall that we have rational fixed points if
3024+30+3

20245042

4
a= % and we have g,(z) = 0ifa = u?> and we have g ,(z) = 1ifa =
We first study the curve

X:t*+1-2u*=0.
This defines a genus 1 curve birational to the elliptic curve
E:y?>+2xy=x3>—4x>+2x
via the map
x = 26> + 2t%u — 4th — 2tuh + 4th* — 2h*
y = —4t3 — 4t%u + 4t>h — 4th?
z =13 =3t*h + 3th® — b3,

where h and z are the homogenizing variables of X and E, respectively. The
curve E has rank 0 and four rational torsion points. Searching up to height
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1000 on the projective closure of X, we find
(t,uh)e{1:1:1),0:1:0),(-1:1:1),(1:-1:1),(-1:-1:1)}

The point (0 : 1 : 0) is a singular point and does not blow up to a rational
point. Thus, we have found all rational points on X. Note that all the affine
points have t € {0, +1} so correspond to either periodic ¢t = 0 or to degenerate
t = 1. Thus, we cannot have a rational preperiodic tail for 0 and rational fixed
points at the same time. Now we study the curve

X :(t*+ DR 4+50+2)— B2 +30+3)(2t) =0
corresponding to a rational preperiodic tail for 1 and rational fixed points at the
same time. This curve is genus 1 and is birational to the elliptic curve

E : y? = x>+ 9x? — 54x — 216
via the map
x = 9t?vh + 18t*h? — 15vh* — 12h*
y = 27830 + 54t3h — 81tvh?
z = —vh3 + h*,
where h and z are the homogenizing variables of X and E, respectively. The
curve E hasrank 0, and 4 rational torsion points. Searching using height bound
1000 on the projective closure of X’ produces:
(t,z,h)e{1:1:1),(0:1:0),(0:-=2:1),(0:-=1/2:1),
1:0:0),(-1:1:1}
The singular points are
{(-1:1:1),1:1:1),0:1:0),(1:0:0)}
The points {(—1 : 1 : 1),(1 : 1 : 1),(0 : 1 : 0)} blow up to closed points that
are not rational. The point (1 : 0 : 0) blows up to two rational points. Thus,
we have found all the rational points on X. The only affine rational points have

t € {0, +1} which are excluded in this case. Therefore, we cannot have a rational
preperiodic tail for 1 and rational fixed points at the same time. O

6.5. C, First Component. We consider the two-parameter family
z3+az
fa,b(z) = YR
We start by examining the fixed points and 2-periodic points.

3
Proposition 6.16. For f,;(z) = Zj—z, we have the following periodic points.
zZ

(1) The points 0and oo are always fixed. There are two additional Q-rational
fixed points for pairs (a, b) parameterized by
a—1

(a,b)=(a,1+ t2> t#0, t2# —a.

The two additional Q rational fixed points are given by z = +t.
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(2) The pairs (a, b) for which f,; has a 2-cycle with Q-rational points is
parameterized by the union of two surfaces.

S; : (a,b) = <a,—1+ _1t2_a) t#0, t> #—a

. _ 1 2 2 2 1
Sz.(a,b)—<a,—t—2—a—t> t#0, t*# —a, t ;é—a.

For S; there is one 2-cycle with points z = +t. For S, there are two
2-cycles with points given by the pairs

zet,— zejj—t,—¢.
t t

These two surfaces intersect on the line a + b = —2 and on this line
there is one 2-cycle with multiplicity 3 and points z = +1.

Proof. We first look at the fixed points. We compute the first dynatomic poly-
nomial as

O (fap) =—bz’ +2° +az -z

After removing the component z = 0, we set z = t and solve for b in terms of
a. This is a rational surface with parameterization given in the statement. To
see that there are exactly two fixed points, we substitute the parameterizations
of a and b into ®7(f ) to get

O (f o) = 2(a — 1)t — 2)(t + 2).

From this we see the two new Q-rational fixed points are z = +t.
Now we consider the second periodic points via the second dynatomic poly-
nomial

DX (fop) = (bz? + 22 + a + 1)(z* + az® + bz? + 1).

Each component gives the rational surface parameterized by the given parame-
terization obtained by setting z = ¢ and solving for b in terms of a. The points of
period two are obtained by factoring the dynatomic polynomial after substitut-
ing in the parameterization of a and b. Their intersection contains two curves:
a+b = —-2and ab = 1, but the second curve is the degenerate pairs (a, b).

O

Periodic points with higher periods and strictly preperiodic points are dif-
ficult to study for this family mainly because computational tools for rational
points on surfaces is much less well developed than for curves. Consequently,
we content ourselves with a census of Q-rational preperiodic structures for pa-
rameters a and b in Q with small height. By no means do we think this census
is exhaustive; rather, it gives a sense of the diversity of possibilities when there
are only C, symmetries.

z3+az

Table: Preperiodic Graphs for f, ,(z) = PETE Labelled by the Pair (a, b)
z



AUTOMORPHISM LOCI FOR DEGREE 3 AND DEGREE 4 ENDOMORPHISMS

1677

(0,1) (0,-1)

JORG

=00

(0,0)
JORNG
00

(0,-2) (0,-3)
JOR® JOR®
R
(0,—5/4) (0,—9/16)

— 99

(13 _9)

>3C A

(_1’ _5/2)

_—

=00

(—1/2:—15/4)

VRN
~__~

(25 _7/4)

(—7/4,-11/8)

—_—

40,
— D e
(0,—14/3) (—1,-13/4)
. NS . TN
I TN LY T,
N~
1/2,-7) (—3,-5/4)
TN
R

. “




1678 GONTMACHER, HUTZ, JORGENSON, SRIMANI AND XU

(=2/3,-11/4) (=3/2,-1/9)
e 000
(-1/4,-11/5) (11/4,-16)
: ) e TN
~ o~ N~
9 S ge e A
(—1,—25/9) (-16/9,—21/4)
S Ty

00

(—17/5,—17/20)
TN

(—9/25,-25/16)

(—2,-13/12)
. . D
(=3,-9/16)
~ A . ~
Bl eI ek
(_5/2’_7/4)
(4/5,-9/4)
I YN
T ,/'3'3




AUTOMORPHISM LOCI FOR DEGREE 3 AND DEGREE 4 ENDOMORPHISMS 1679

(-=5/4,-16/9)

"~ N
é-i/.t).é./.i)

>0 D

(7/8,-17/2)

.\./\. L]

(-19/3,-25/9)
* \ N\ * \
. / \_/ . / \_/ . / 3 3

6.6. C, Second Component. We move to the two-parameter family
az’+1

ga,b(z) = B4bz

We start by examining the fixed points and 2-periodic points.

2
Proposition 6.17. For g, ,(z) = a:TZl, we have the following periodic points.
z z

(1) The pairs (a, b) for which g, ;, has a Q-rational fixed point are parame-
terized by

1
— 2
(a,b) = (a,—t +a+t—2>,

fort # 0, t2 # a, and t2 # —2. There are exactly two Q-rational fixed
points given by !
Z =4t
(2) For every (non-degenerate) pair (a, b), g, has the 2-cycle 0-co. The

pairs (a, b) for which there are additional 2-cycles with Q-rational points
are parameterized by

1
_ 2
(a,b) = (a,—t —-—a-— t_2>’
fort # 0,t> # —a, and 1> # —%. There are exactly two 2-cycles with
Q-rational points given by

{xt} and {i%}

Proof. We first look at the fixed points. The fixed points are given by the equa-
tion
az’?+1=z*+ bz2
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Let z = t be a fixed point, we can solve for b in terms of a and ¢ as
1
b=-t>+a+—.
t2

This gives the stated parameterization. The omitted ¢ values are those where the
map is degenerate. With this parameterization, the first dynatomic polynomial
factors as

Di(gap) = (2 =)z + 1)(Z* > +1)

so there are two Q-rational fixed points +t.
Now we consider the second periodic points via the second dynatomic poly-
nomial

®5(gqp) = z(ab — 1)(z* + (a + b)z* + 1).

We see the periodic 2-cycle 0-co occurs for every choice of (a, b). Taking the
last factor and setting z = ¢ as a periodic point, we solve for b in terms of ¢ to
get
1
-2 _g_ =

b=-t"-a o
Then additional 2-cycles with Q-rational points are given by the stated param-
eterization. The omitted ¢ values are those where the map is degenerate. With
this parameterization the second dynatomic polynomial factors as

z(t = 2)(t + z)(—tz + 1)(tz + (% + a)(at? + 1).

So the additional Q-rational points of period 2 are +t and i%.
O

Similar to the first 2-parameter family, periodic points with higher periods
and (strictly) preperiodic points are difficult to study for this family. Again, we
content ourselves with a census of Q-rational preperiodic structures for param-
eters a and b with small height. One representative from each isomorphism
class as directed graphs is exhibited. The labeling of the points {0, co} are not
part of the graph data. Including those points in the data would add addi-
tional possible graph structures, such as having the strictly preperiodic points
in (a, b) = (0, —1) occur as preimages of 0 rather than co.

Table: Preperiodic Graphs for g, ,(z) = :i; Labelled by the Pair (a, b)
(0,0) (0,-1)
(.) N\ o,o . 3 . 3 (.) N, 7 '
~— T,
(0,-2) (-1,-1/4)
e T, N Y
N~~~ ~—~ [l L .
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(-1,-5/2) (—1,11/4)
TN . N~ N,
._>_/0\/°° ./ ~_ 7 3 3
(—1/2,-15/4) (2,-7/4)
'/\. o/_\o o/\o ./\. -q—og 0#'3
' - - | e
2.—3) (7/8,=23/8)
./\./. ./\_ /\ /‘\ 3
N, NN e
(8/5,—13/10) (1/2 =5/2)
Y T_> NN
AL TN TN
(=9/4,-16) (—1,—77/45)
./O\/m\.<_. ._>__>./o\/°°
(—1,—13/4)
I N TN
/ ~__7 \_/ \_/
(—1/4,-1/4)
~ o« o~
./0\_/00\ .3 .3
(=3/2,-3/2)
T O ,/'3
(—17/8,-17/8)
"' N N~ 3
(3/2,-9/4)
I N 7 O L O
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(=5/2,-7/4)
TN TN e
(—13/5,-13/15)
TN,
NN R
(—9/4,-23/8) (—19/3,-25/9)
N
N L
yd LA RN

7. Rational Preperiodic Structures in M,

In this section, we examine the Q-rational preperiodic point structures of the
families covering A, given in Section 4.
We start with the dimension 0 family.

7.1. The zero dimension loci A,4(Cs5) and A4(Ds). Recall from
Proposition 4.2 that A4(Ds) = A4(Cs) are given by the single conjugacy class

f@ ==

Theorem 7.1. For A4(Ds) = A4(Cs) the single conjugacy class f(z) = % has
z
Q-rational preperiodic structure given by

o TN, . .D

-1 1

Proof. Direct computation with the algorithm of Hutz [Hut15] asimplemented
in Sage. O

7.2. The dimension one family .A,(C,). The automorphism locus of A,(C,)
4
is covered by the family f;(z) = Zk—+31 We start with the periodic points.
Z
z4+1
kz3 *
(1) The point co is a fixed point for every k. When k = 1+t*fort € Q\ {0},
we have exactly two additional Q-rational fixed points, i%.

(2) There are two 2-cycles with Q-rational points for each of the following
two families of parameters

k=t>+t"2 forteQ\{0,+1}

Proposition 7.2. We have the following periodic points for f;(z) =
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k=—({*+t"2%) forte)\{0,+1}
and one 2-cycle for the family
k=-1+1t* forteQ) {0k

Furthermore, no Q-rational value of k appears in more than one of the
given parameterizations. In particular, there are at most two 2-cycles
with Q-rational points.

(3) The only Q-rational fixed point that occurs in conjunction with a 2-
cycle with Q-rational points is the fixed point oo, which occurs for every
parameter value.

Proof. Starting with rational fixed points, we can immediately see that oo is
always a fixed point. The first dynatomic polynomial is ®7(f%) = (1 — k)z* +1.
Since this is linear in k, there are additional rational fixed points when
zt+1
74

In particular, only two of the four fixed points +z, +iz are Q-rational with z €
Q. Substituting z = %, wegetk =1+t

Next we look for 2-cycles with Q-rational points. The second dynatomic
polynomial is

3(fi) = (z* — kz? + 1)(z* + kz2 + 1)((1 + k)z* + 1).

All three components are linear in k, so we get one-parameter families each of
which has two 2-cycles with Q-rational points.

k =

(1) The first factor vanishes when k = 24—21, which forz = +torz = i%
becomes k = t2+¢2. In this case, therie are two 2-cycles with Q-rational
points {t, %} and {—t, —%} fort € Q \ {0} except when ¢t = +1 where the
two 2-cycles collapse to fixed points.

4
(2) The second factor vanishes when k = = i

— ,whichforz =+torz = i%
becomes k = —(t? + t~2). In this case there are two 2-cycles with Q-
rational points {t, —%} and {—t, %} fort € Q \ {0} excpet when ¢t = +1
where the two 2-cycles collapse to a single 2-cycle.

(3) The third factor vanishes when k = 1_+;4
k = —(1 + t*). In this case there is one 2-cycle with Q-rational points
{%, —%} fort € Q\ {0}.
We must also check if any of these three sets of 2-cycles can occur at the same
time. We must find points on the pairwise intersections of the three curves.
(1) Fork = t7 + 7% = —(t + ;) there are two components:

. 1
, which for z = i? becomes

2 2 _
2+12=0

242 _
ey =-1
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neither of which has a (valid) Q-rational point.
For k = t7 + t;* and k = —(1 + t3), we get the genus 5 curve

24 L 4201 —
2+ +2+1=0.
Substituting u = ¢ and v = ¢3, this covers the elliptic curve
X u?+u’+u+1=0.

The curve X is birational to the elliptic curve

3_x2 +x,

E:y’=x
via the map

(u,v,w) ~» (z,y,—x),
where w and z are the homogenizing variables of X and E, respectively.
The curve E is rank 0 with torsion subgroup isomorphic to Z/4Z. The
four torsion points are

{0:1:0,01:0:0),(-1:1:1),(-1:-1:1}

Only the two points {(0 : 1 : 0),(1 : 0 : 0)} correspond to rational
points on the original curve, and these points do not correspond to valid
parameters.

Fork = —(t + t7%) and k = —(1 + t3), we get the genus 5 curve

244 4 2 —
2ty -1=0.
Substituting u = > and v = £3, this covers the elliptic curve
X:u?—-ul4+u—-1=0.

The curve X is birational to the elliptic curve

3 _x?+x,

E:y*’=x
via the map

(u,v,w) - (z,—y,x),
where w and z are the homogenizing variables of X and E, respectively.
The curve E is rank 0 with torsion subgroup isomorphic to Z/47Z. The
four torsion points are

{0:1:0,01:0:0),(-1:1:1),(-1:-1:1}

Only the two points {(0 : 1 : 0),(1 : 0 : 0)} correspond to rational
points on the original curve, and these points do not correspond to valid
parameters.

Now we investigate whether we can get rational fixed points other than the
point at infinity if we have rational 2-cycles. The first case is when the third
factor of ®;(f}) = 0 has a solution, so we want tosee if k = —(1 +t*) =1 +1*
is possible for some rational ¢ and l. This gives the curve

2+ +t* =0,
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which clearly has no solutions over Q. Doing the same thing for the second
component of ®3(f) = 0 yields

r+Q+MH2+1=0.
The substitution x = £,y = I? reduces this curve to
X:xX2+0Q+y)x+1=0,

which is a genus 1 curve with the rational point (x, y) = (=1, —1). We find that
this curve is birational to the elliptic curve

E : y? = x> —16x% + 96x — 192 (11)
via the map
x = 8xy — 8y?
y = —8xy — 8y? — 8xz + 8yz — 162>
z=Xxy—y*+xz-yz,

where z is the homogenizing variable for both curves. The curve E is a rank
0 elliptic curve with torsion subgroup isomorphic to Z/4Z. Thus, the curve
X has four rational (projective) points, which we find tobe {(0 : 1 : 0),(1 :
0:0),(-1:1:1),(-1: —1: 1)} These points are all nonsingular. The
only affine points are (—1, +1). Both of these points have at least one negative
coordinate so cannot lift to any points in Q since we covered by the squaring
map. Because there are no rational points on the original curve, there cannot
be any rational values of k for which f; has rational fixed points and rational
2-cycles in this case.
The first factor of @3(f}) = 0 is similar. The curve we get this time is

Xttt —1Q+MHrP+1=0,
which differs from the previous case by a minus sign. We can use the same

cover by x and y to get that this curve is birational to the same elliptic curve E
in equation (11). Again there are only four rational points on the curve X':

{1:1:1),0:1:0),1:0:0),(1:-1:1)}

This time we see that one point has two positive coordinates, so the original
curve has rational (affine) solutions {(1, 1), (1, —1), (-1, 1),(—1,—-1)}. They all
correspond to the value k = 2 (t = +1), which is the case where the 2-cycles
collapse to fixed points. (]

A search for rational preperiodic structures with the parameter up to height
10, 000 using the algorithm from [Hut15] as implemented in Sage yields no pa-
rameters where f has a Q-rational periodic point with minimal period at least
3.

Z4

+1 .
- has a Q-rational

Conjecture 7.3. There is no k € Q such that f;(z) = p
yA

periodic point of minimal period at least 3.
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Assuming Conjecture 7.3, we classify the Q-rational preperiodic structures.

Theorem 7.4. Assuming Conjecture 7.3, the possible (Q-rational preperiodic
4

structures for f(z) = Zk—+31 for k € Q are the following.
Z

Gl:g— o 3 , all k not in families G,, G5, or G4

Grio—>m )+ ) ), k=1+1* forteQ\{0}
. . VRN
Gs : o—>o<>3 °\_/°, k=-1+t*) forteQ)\ {0}

. . RN RN
Gyig—m ) . o k=240
~— ~— fort € Q\ {0, +1}.

Proof. Starting with rational fixed points, we can immediately see that oo is
always a fixed point and 0 is its only non-periodic rational (first) preimage for
all parameters a. Since the numerator of f;(z) is z* + 1, there are no rational
preimages of 0 in Q. However, we might have non-periodic rational preimages
of the additional rational fixed points when they do appear. We examine each

of the two rational fixed points z = i% whenk =1+ t*andt #0.

In the first case, we look at z = % We know that k = 1 + ¢4, so finding the
preimages of this point amounts to solving the equation

z4+1 1

1+t4z3
which determines the curve
(1 —zt)(Z?3 =z3+zt? +1) = 0.

The first factor corresponds to the fixed point itself since z = % is fixed. The
second factor can be reduced to the form

E:y’=x>+x*+x

using the transformation x = zt,y = z2. The curve E has rank 0 and torsion
subgroup isomorphic to Z/2Z. Since one of the coordinates of the transforma-
tion was the square map, each point of E has one or two preimages. We find the
original curve has three rational projective points {(0 : 1 : 0),(0 : 0 : 1),(1 :
0 : 0)}. The two points (0 : 1 : 0)and (1 : 0 : 0) are singular. The point
(0 : 1 : 0) does not blow-up to a rational point and (1 : 0 : 0) blows up to a
single rational point. Thus, these points give us the two points which are the
preimages of the torsion points of E. The only affine one of these is (0, 0), but it
is not valid since ¢t = 0 corresponds to all fixed points being the point at infinity.
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1 . .
Now we look at z = - In this case, we want to solve the equation

Z2+1 1
1+ t4)z3 t’
which is the same as finding rational points on
A +zt)(Z23+ 23 —zt2+1)=0.
The same transformation as above can be used to get
yi=—-x+x*-x,

which is also rank 0 with torsion subgroup isomorphic to Z/2Z. For the same
reason, there are three projective rational points but only one corresponds to
an affine point. In particular, we again see that (0, 0) is the only Q-rational
solution in z and ¢, which is invalid. Thus, the extra fixed points never have
non-periodic preimages.

We now investigate the case of points in 2-cycles having Q-rational preperi-
odic tails. The first case is when k = —(1 + t*), in which case the points z = %

and z = —% map to each other. Finding rational preimages of these points re-
sults in the same equations as solving for preimages of fixed points, which we
know do not exist. )

The second caseisk = t?+t7% = tt—jl, which has 2-cycles {t, %} and {—t, —%}.

The cases of f(z) = +t reduce to the curves
zt+ D)z F23+z2+1t)=0.

The first component is the other point in the 2-cycle, so we focus on the second
component which is two genus 3 curves isomorphic under z — —z. These
curves are the same as analyzed earlier in this proof and the only affine point
has t = 0, which is degenerate.

20,4
Next we look at f(z) = t:;;i; =
z

1 . .
i?, which give the curves

)3 +z2—zt+1t?)=0.

The first component is the other point in the 2-cycle, so we focus on the second
component.
This curve is genus 3 and we can quotient by the order 2 automorphism

(z,t,h) — (—z,—t, h)
to obtain a genus 1 curve X defined by equations
— UyUz + ui =0,
uf — UplUz + Uy + UslUy = 0.
A point search of low height gives the two Q-rational points on X

{0:-1/9:-9:1),(0:-1/3:-=3:1)}
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Using the second point, X is birational to the elliptic curve
y=x>+x>+x,

which is rank 0 with torsion subgroup isomorphic to Z/2Z. So every rational
point on the original curve must map to one of these two rational points on
X. Using the equations of the quotient map, we find the rational points in the
inverse image of each point to get

{0:0:1),(0:1:0),(1:0:0)}

The affine point has t = 0, which is the degenerate case. Thus, there are no
non-periodic rational preimages of the points in any 2-cycle for the given pa-
rameterization of k.
The final case is when k = —(¢? + t72), but it reduces to finding rational
points on the same curves as the previous case.
O

7.3. A4(D3). The model for this familyis f;(z) = i:—ﬁ We start by classifying
periodic points.

z*+kz
kz3+1’

Proposition 7.5. For the family f;(z) = we have the following Q-rational
periodic points.
(1) The points 0, 1, and oo are fixed points for every choice of k € Q \ {£1}.
There are no other rational fixed points.
(2) Fork=t>+t+ 1+t + 2 witht € Q)\ {0, 1}, fr(z) has a single

2-cycle with Q-rational points {t, %}

Proof. We start with rational fixed points and see that oo is always fixed. For
additional Q-rational fixed points, we consider the first dynatomic polynomial

O1(fiK) = 1 —k)z(z - 1)(z2+z +1).

Note that k = 1 is degenerate since it would lead us to cancelling a factor of
z® + 1 in the function, resulting in a function that is not degree 4. The roots of
z?> + z + 1 = 0 are cube roots of unity so are not rational; thus, the fixed points
are 0, 1, and oo regardless of k.

Looking for 2-cycles with Q-rational points, we consider the second dynatomic
polynomial

O5(fr)=(k+DE*+22+(1-k)z+2z+1)
(B -z +kz0 +(k+ 122+ (k> -2k —1Dz* +(k+ 1)z> + kz? —z+1). (12)

Looking at the curve ®}(f%) = 0, we do not consider the degenerate component
k = —1. The degree 4 component produces a genus 0 curve since it is linear in
k. Solving for k, we get

k=t>?+t+1+t1+¢t72
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for the 2-cycle consisting of z € {t, %} With this parameterization of k values,

we look for addition 2-cycles with Q-rational points by factoring the second
dynatomic polynomial

O;(fi) = (2 + D+t + 1)(t — 2)(zt — 1)(2% + zt + t2)(2*t* + 2t + 1)
Et+z(P+t+ D)+ )P+ 2B3(-3 -2 —1)
+ 22t 283 + 22 42t + 1) + z(—13 — 2 — 1) + 12).

It remains to be seen that no choice of t € Q produces an additional 2-cycle
with Q-rational points. We examine each component in turn. We apply the
quadratic equation to the component

Z24zt+t2=0

L, —t+1V/=-3
- 2

which is never rational. Similarly for the component

to have

Z2t24+zt+1=0

we get

~1+4/-3
21

which is not rational for t € Q. For the third quadratic component we also
apply the quadratic formula to have

(P +t+ D)V 4231242t +1
zZ = .
2t2
For z to be rational we need the discriminant to be a square, so we examine the
curve

X:tr+283 -2 42t +1=1¢2
This is a genus 1 curve birational to an elliptic curve with Weierstrass model

E :y?+2xy+8y =x>+4x2
via the map

x = 2t?h + 2th? + 2¢€h* — 2h3

y = 4t3 + 4t%h + 4t h — 4th?

z = h?,
where h and z are the homogenizing variables of X and E, respectively. The

curve E has rank 0 and torsion subgroup isomorphic to Z/4Z. A rational point
search on the projective closure of X yields the three points

{0:=-1:1),0:1:0),0:1:1}

The point (0 : 1 : 0) is singular and blows up to two rational points, so these
are all of the rational points on X. These all have t = 0 which is k = 1, which
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is degenerate. The last component (degree four in z) is irreducible over Q but
is reducible over Q(w) where w is a cube root of unity. We can factor it as

P+ BB -2 -+ 22 283 4202 42t + D z(—3 -2 =)+ 2 =
Pz+wtz? +tz+ (—w — Dt + 2)(t%z + (—w — 1)tz> + tz + wt + 2).

Since the curve factors over an extension of Q, rational points on it must be
singular (Lemma 6.4). The Q-rational singular points are
(t,z) € {(—-1,-1),(0,0)} but t € {0, —1} are degenerate cases. Therefore, there
is only one 2-cycle with Q-rational points. Note that ¢ = 1 has the 2-cycle
collapsing to the fixed point z = 1.

Now the degree 8 component of @7(f}) in (12) is irreducible over Q but is
reducible over Q(w) where w is a cube root of unity. We can factor it as

Bz +k2+(k+1D)22 + (k> =2k-1)z* +(k+ D22 +kz> —z+1=
(kz?—wz* +(w+1)Z3 -2 —wz+w+1)(kz> +(w+1)z* —wz3 —2° +(w+1)z—w).

Since the curve factors over an extension of Q, rational points on it must be sin-
gular (Lemma 6.4). The Q-rational singular points are just (k, x) € {(—1,1), (1, —-1)}
but k = +1 are degenerate cases, so there are no valid Q-rational points on this
component.

O

Turning to periodic points of period 3, we look at the vanishing of the third
dynatomic polynomial ®3(f}). It has a degree 6 and a degree 54 component.
The degree 6 component is given by

K+k+1D)z24+ K> +4k+ 123+ K2 +k+1=0.

This is irreducible over Q, but reducible over Q(w), where w is a cube root
of unity. Since the curve factors over an extension of Q, rational points on it
must be singular (Lemma 6.4). The Q-rational singular points are (k,x) €
{(-=1,1),(1,—-1)} but k = +1 are degenerate cases, so there are no (valid) ra-
tional points on this component. The degree 54 component can be simplified
by replacing z* with z to have a degree 18 equation in z. This gives a genus
23 curve which is still problematic computationally. The only points of small
height on it corresponded to k = =+1, so are degenerate; however, we are not
able to fully analyze this curve.

A search for rational preperiodic structures with the parameter up to height
10, 000 using the algorithm from [Hut15] as implemented in Sage yields no pa-
rameters k € Q where f has a Q-rational periodic point with minimal period
at least 3.
z4+kz
kz3+1

Conjecture 7.6. There is no k € Q such that f;(z) = has a Q-rational

periodic point of minimal period at least 3.

Assuming Conjecture 7.6, we classify the Q-rational preperiodic structures.
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Theorem 7.7. Assuming Conjecture 7.6, the possible Q-rational preperiodic
4

structures for f(z) = i :Iz for k € Q, with possibly finitely many exceptional
Z

values of the parameter k, are the following.

G, : —.1—>ID 63 0'03 , allknotin G,, G3, G4, or Gs

N

|
G, : _'1—>{3 53 ;3 , k=t+tfort €Q\{0,+1}
Gyi 1) 0 ) +—27). k=rfort€Q\{0,+1}

L] L] L] L] /\
G43—1—>13 03003‘ o, k=tP+t+1+t7 14172
~— fort € Q\ {0, %1}

_'1—>ID 53 0'03, fork=_1_t4forte@\{0,il}.

13+t

Gs :

~
.

Proof. We start with non-periodic rational preimages of the fixed points. We
begin with 0, which amounts to solving z* + kz = 0, giving us the point z = —t
as the preimage of 0 when k = t3. The other non-periodic preimages of 0 are
not rational. Similarly, preimages of co come from solutions to az®> + 1 = 0,

which are parameterized by k = t* as well, but the preimage is z = —%. The
other non-periodic preimages of oo are not rational. Thus, the parameter k = ¢3

gives two additional rational points in the preperiodic structure.
Preimages of 1 come from solutions to f(z) = 1, which gives the curve

2 —kZ+kz-1=CZ-1D(z+1)(Z>-kz+1)=0.

The factor of z — 1 is expected since 1 is its own preimage. The second factor
has z = —1 as a rational preimage of 1 for all k. Finally, the last factor is genus
0, so when k = t + t™! the point z = ¢ maps to 1. Furthermore, this image
is invariant when we replace ¢ by %, so in fact there will be two rational points
that map to 1 for these values of k. Note that t = +1 has the three rational
preimages collapsing to a single preimage of the fixed point.

Now we check if we can have additional non-periodic preimages of 1 at the
same time as non-periodic preimages of 0 and co. We need values of k such that
k=t+t"t=¢3fort,¢ € Q. The curve

X:t?2—t3+1=0
is a genus 2 hyperelliptic curve with model

C:y*’+x’y+1=0,
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obtained by setting x = € and y = —t. The curve C has a (isomorphic) simpli-
fied model
C':y*=x%-4

whose Jacobian has rank 1 and torsion subgroup isomorphic to Z/3Z.

Magma’s Chabauty method tells us that there are only two rational points
on this hyperelliptic curve. However, since the map from the original curve
was not an isomorphism, we still have some work to do: we need to investigate
the behavior at the singular points. Fortunately, the only singular point on the
projective model is (1 : 0 : 0), and an initial search on the projective closure
of X finds the rational points (0 : 1 : 0)and (1 : 0 : 0), which are all we
expect to have. We need to look at the places of the divisor associated to this
singular point. There is only one; because it is of degree 1, we have not missed
any rational points. Thus, the only rational points are at infinity, so the affine
model has none and we cannot have additional Q-rational preimages of 1 at the
same time as non-periodic Q-rational preimages of the fixed points 0 and co.

Now we look at non-periodic second preimages of the fixed point 1. First we
consider preimages of —1. We are looking for rational points on the curve

z*+ k3 +kz+1=0.
—1-t*
13+t

This equation is linear in k, so we can solve as k = fort € Q\ {0, +1}.

With this expression for k the preimages of —1 satisfy

(z—-1/t)(z—1t)(z* + z+1)=0.

2+1
Then there are at least the two rational preimages {t, %}. Checking the last fac-
tor, we need to find rational points on the (genus 1) curve

C:(2+D2+2z+t>+1=0.

Over Q(i) it has the rational point (—i : 0 : 1), which produces the Weierstrass
model
E : y? = x>+ 4x? — 64x — 256
via the map
(x,y,z) = (8it,—32iz, h),

where h and z are the homogenizing variables of C and E, respectively. The
curve E is rank 0 over Q(i) with torsion subgroup isomorphic to Z/2Z x Z /4Z.
Taking the inverse image of the eight rational points on E, we get the Q(i)-
rational points on the curve C are

{0:1:0,3(:0:1),1:0:0),0:—=i:1),0:i:1),(—=i:0:1)}

The only Q-rational value of t is 0, which is not a valid parameter.

There remain a few cases that were unable to be fully resolved resulting in
possibly finitely many exceptional k values with larger graph structures. We go
through those cases now.
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We consider rational preimages of the preimages of —1. We substitute k =
_1_+t4
t1+i and examine f(z) = t and f(z) = % These produce the two genus 11
curves

B+t + P+ +(—t* =Dz —-t*—-12=0
and

2+ B+ 2 -z + 22— -zt -t =0,
respectively. These curves were not amenable to any of the methods we tried.
They have no valid points of small height.

Additional rational preimages of 1 occur for k = t + ¢t and are {t, %}. We

consider Q-rational preimages of those additional preimages by looking for ra-
tional points on the (genus 6) curve defined by f(z) = t with equation

b+ (-2 -2+ {2+ 1Dz -t =0.

This curve is genus 6 and was not amenable to any of the methods we tried. It
has no valid points of small height.

Non-periodic Q-rational preimages of 0 occur for k = ¢ and is the single
point {—t}. Non-periodic Q-rational second preimages of 0 are then given by
fi1(z) = —t which is the curve defined by

b+ '+ z41t=0
This curve is genus 8 and was not amenable to any of the methods we tried. It
has no valid points of small height.
Non-periodic Q-rational second preimages of co are equivalent to non-periodic

Q-rational second preimages of 0 under the automorphism z — 1/z.

The existence of a non-periodic Q-rational preimage of 0 and a Q-rational
—1-13

B+t

second preimage of 1 corresponds k = tf = and to rational points on the

curve
B+ 1) —(-1-15)=0.
This curve is genus 6 and was not amenable to any of the methods we tried. It
has no valid points of small height.
The existence of a Q-rational 2-cycle and a non-periodic Q-rational preimage
of a fixed point corresponds to k = tf = t% +ih+ 1+t 1y t; 2 and to rational
points on the curve

203 _ (44143442 -
50—+ +5+6+1)=0.
This curve is genus 4 and was not amenable to any of the methods we tried. It

has no valid points of small height.
It remains to consider non-periodic preimages of points in the 2-cycle. The

2-cycle {t, %} occurs fork = >+t + 1+t~ + =2 witht € Q \ {0, +1}. By the
automorphism z — 1/z, it is equivalent to look at the preimage of either point

in the cycle. Looking at preimages of ¢, we need to find rational points on the
genus 6 curve given by f(z) = t with equation

22—t + 2+t + D2 - +2+t+1)z+3=0.
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This curve was not amenable to any of the method we tried. It has no valid
points of small height.

All of these unresolved cases are curves of genus at least 4 so can have at
most finitely many Q-rational points, due to Faltings’ Theorem. These possi-
ble rational points corresponds to the possibly finitely many exceptions in the
statement.

O
4
7.4. The locus A4(C3). This family is given by fy 4, (2) = ;:—Ski We first
examine periodic points.
4
Proposition 7.8. For the family fy , (z) = i +3ki, we have the following Q-
2Z

rational periodic points.

(1) The points 0 and oo are fixed for all pairs (k;, k,).
(2) For (u,v) € A%2(Q) and

ki =utv—ud+1
k, = uv,
[k, k,(2) has one additional rational fixed point z = u.

Proof. We look at the first dynatomic polynomial. The points 0 and oo are
factors for all choices of parameters k; and k,. The other component is given
by

(ky—1)z> -k, +1=0.
This forms a rational surface that has the given parameterization. Substituting
the parameterization back into ®}(f%, k,), we see there is one additional fixed

point.
0

As with the degree 3 families with multiple parameters, periodic points with
higher periods and (strictly) preperiodic points were difficult to study. We con-
tent ourselves with a census of Q-rational preperiodic structures for parameters
k, and k, with small height. One representative from each isomorphism class
as directed graphs is exhibited. The labeling of the points {0, oo} are not part of
the graph data. Including those points in the data would add additional possible
graph structures, such as having the rational preimage of oo in (k, k;) = (0,1)
occur as a rational preimage of 0.
z4+k z

L Labeled by the Pair (ky, k;)
(0,1/2) 0,1) 0,2) (0,0)

03003 (.)3 53 °.°3 530.03

Table: Preperiodic Graphs for fy i, (z) =
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1,-1)
—_— )
—: D)

(11 _3)

t— )
3

(1/2,=7/4)
0.03 ./_\.

30 ~__

(4/3’ _8)
—:)
. __>(;:t)

-0

(=5/12, —25/18)
0
M)

VRN

~__“

(5/2,5/2)
O N
i

(1/8,1/8)

=)

) =D

(11/4,11/4)
. 3 ./_\.

0 D

—)

(17/10,17/10)
i

7.5. The locus A4(C5,). This family is given by fi i, . (2) =

z* k2241
kyz3+k3z

. The

point at infinity is always a fixed point with preimage 0. Additional fixed points
are given by the first dynatomic polynomial whose vanishing defines a rational

hypersurface

O(f) = (ky — Dz* —ky2° + kyz® — 1.

For this family, we again content ourselves with a census of Q-rational prepe-
riodic structures for parameters k, k,, and k; with small height.

Table: Preperiodic Graphs for fy i, i,(2) = z;:’;f;j , Labelled by the Triple
(kl’ k2’ k3)
(0,0,1) (0,0,2) (0,0,-2) 0,1,-1)
VRN . .
S oo gDt N
i~ | i——D | =D
(-2,0,1) (0,1/3,—4/3) (0,3,-5)
. ek NG Y
O R A I
0 =30 "~
(0,-3,5) (0,2/3,-8/3) (0,-2/3,8/3)
.f:) .f:) .f:) . Lol . . .f:)
. N N\
i—30-0 | i—D I ONS,
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(=2,0, 9/2) (-2,1,2) (-2,1, —1/4)
T . SO |
/0_>°°3 0_>o.oi> \°—>;3
— / 3 . / 0 T
(1,1,5) (1,-1,-5)
VRN
—_— e 3 —_— \_/ <
e ) —) ——
(—2,1,—5/2) (1/4, 9, —9/2)
. \_/ . ¢ — . .
=D |1 im0
(1/4,9/4,-9/2) 1,7,-7)

;,_>503.C.

VRN

TN * N
.. N
i—&0) i—o)
JOR —
— \_/.<_
a,-7,7) (1,7/2,=7/2)
. . _>3 0
0>i¢3 .S .\._j<_./'
-/ u \.
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o) —0)

e
(-1/2,3/2,3/2) (-1/2,3/2,-9/4)
Y ~ Y S
) P I
: — . §oe—r—2D)
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(7/4,8,-8) (7/4,-8,8)

N =TI

5_>003 et _>D _>3

R S NS

Notice that there are Q-rational periodic points of (minimal) period
{1,2, 3,4, 6}. Are there Q-rational points of (minimal) period 5?

8. Concluding Remarks

There are a number of interesting problems that come both directly and in-
directly from the results in this paper. We list a few of those here.

(1) Resolve the conjectures on the existence of periodic points for the vari-

ous one-dimensional families.

(2) Determine all the rational points on the high genus curves that were

left unresolved in A, (Dj3).

(3) Do a full analysis of rational preperiodic points for the two- and three-

dimensional families.

(4) Classify A4 ford > 5.
(5) Use these families for future studies. For example, when looking at

the cycle statistics of these families modulo primes, such as the aver-
age number of periodic points or the average tail length, the number
of rational elements in the automorphism group appears to play a role.
We have preliminary statistics on this topic that can be made available
upon request.
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