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Abstract. Let f be an endomorphism of the projective line. There is a nat-
ural conjugation action on the space of such morphisms by elements of the
projective linear group. The group of automorphisms, or stabilizer group, of
a given f for this action is known to be a �nite group. We determine explicit
families that parameterize all endomorphisms de�ned overℚ of degree 3 and
degree 4 that have a nontrivial automorphism, the automorphism locus of the
moduli space of dynamical systems. We analyze the geometry of these loci in
the appropriate moduli space of dynamical systems. Further, for each fam-
ily of maps, we study the possible structures ofℚ-rational preperiodic points
which occur under specialization.
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1. Introduction
Let K be a �eld and ℙ1 the projective line. Throughout, K is a �nite exten-

sion of ℚ. An endomorphism of ℙ1 of degree d can be represented as a pair of
homogeneous polynomials of degree d with no common factors. The space of
all such maps is denoted as Ratd. There is a natural conjugation action on Ratd
by PGL2, the automorphisms of ℙ1, given as

f� ∶= �−1◦f◦� for f ∈ Ratd and � ∈ PGL2 .

The quotient by this action is a geometric quotient in terms of geometric invari-
ant theory and forms the moduli space of degree d dynamical systems on ℙ1,
ℳd ∶= Ratd ∕ PGL2 [Sil98]. We denote a conjugacy class as [f] ∈ ℳd and a
representation of a conjugacy class as f ∈ Ratd. Our primary objects of study
are those conjugacy classes [f] ∈ ℳd for which there is a nontrivial � ∈ PGL2
so that f� = f. Such an � is called an automorphism of f, and the set of all
such automorphisms forms a group

Aut(f) ∶= {� ∈ PGL2 ∶ f� = f}.

In additional to being special from the existence of these extra symmetries, con-
jugacy classes with nontrivial automorphisms are exactly the singular points of
the moduli spaceℳd for d ≥ 3 [MSW14].

Since every automorphism must leave certain sets of points invariant (such
as the set of periodic points of a given period), the automorphism group of a
given f must be a �nite subgroup of PGL2. Sharper bounds than this permuta-
tion bound on the size of an automorphism group in terms of d can be obtained
but do not concern us here [Lev11]. Key to this work is the (classical) classi�-
cation in characteristic zero of the �nite subgroups of PGL2 restated in modern
notation by Silverman [Sil95].

It is important to note that Aut(f) is well de�ned on conjugacy classes. In
particular, given � ∈ PGL2, the action onAut(f) de�ned by � ↦ �−1◦�◦� pro-
vides a group isomorphism Aut(f) ≅ Aut(f�). The conjugacy class of Aut(f)
in PGL2 is, thus, an invariant of [f] rather than just f. Denote by Ad ⊂ ℳd
the set of all conjugacy classes with a nontrivial automorphism. Let Γ ⊂ PGL2
be a �nite subgroup with representation � ∶ Γ → SL2. Denote the set of con-
jugacy classes whose automorphism group contains a subgroup isomorphic to
Γ by Ad(Γ). Similarly denote Ad ⊂ Ratd as the set of rational maps with non-
trivial automorphism group with �(Γ) as a subgroup, i.e., Ad(Γ) = {f ∈ Ad ∶
Aut(f) ⊇ �(Γ)}. It is important to note that while every �nite subgroup of PGL2
has only one inequivalent representation, the choice of group representation af-
fects the representation in homogeneous coordinates of the map. In particular,
questions about the �eld of de�nition for elements of Ad(Γ) are heavily depen-
dent on the choice of representation of Γ, e.g., [dFH15, Sil95].

The goals of this work are two-fold. The �rst is to give explicit parameteri-
zations for all maps inAd for 3 ≤ d ≤ 4. The case d = 2 is well known [FN07].
The case d = 3 can be derived from the unpublished work of West [Wes14],
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but he focuses on the parameterizations of ℳ3 as a whole and a side result is
the ability to determine which elements lie in A3. However, it is nontrivial to
move between West’s parameterization of ℳ3 and elements of Rat3. Further,
his methods are not easily applicable in degree d > 3. The methods here can
be used for any degree, and we produce explicit families in Rat3 and Rat4, (ℳ3
andℳ4). The second goal is to study other arithmetical dynamical properties of
these families with nontrivial automorphisms focusing on the structure of the
set of rational preperiodic points. Themotivation for this portion is the uniform
boundedness conjecture of Morton and Silverman.

Conjecture 1.1 ([MS94]). Fix integers d ≥ 2, N ≥ 1, and D ≥ 1. There is a
constant C(d,N,D) such that for all number �elds K∕ℚ of degree at most D
and all morphisms f ∶ ℙN → ℙN of degree d de�ned over K,

#PrePer(f, K) ≤ C(d,N,D),
where PrePer(f, K) is the set of preperiodic points for f de�ned over K.

This conjecture is equivalent to a uniformboundon thenumber ofK-rational
preperiodic graph structures, where the vertices areK-rational preperiodic points
and edges connect a point Q to its forward image f(Q) [DS18]. While an un-
conditional bound remains out of reach, we use Poonen [Pon98] and Manes
[Man08] as our model and classify graph structures assuming an upper bound
on the period of a rational periodic point.

We now give a summary of the main results and an outline of the article.
Section 2 gives parameterizations of the automorphism locus A3 ⊂ ℳ3. The
classi�cation of �nite subgroups of PGL2 is given in modern notation in Silver-
man [Sil95]:

∙ Cyclic group of order n, denoted as Cn.
∙ Dihedral group of order 2n, denoted as Dn.
∙ Tetrahedral groupA4 (or alternating group on 4 elements).
∙ Octahedral group S4 (or symmetric group on 4 elements).
∙ Icosahedral groupA5 (or alternating group on 5 elements).

Combining this classi�cationwith the already knowndimensions ofA3(Γ) from
Miasnikov-Stout-Williams [MSW14], we �nd families in the parameter space
Rat3 that map �nite-to-one onto families inℳ3 of the appropriate dimension.

Theorem 1.2.
(1) The locus A3(C4) = A3(D4) is a single conjugacy class inℳ3 given by

f(z) = 1
z3
. (Corollary 2.3).

(2) The locus A3(A4) is a single conjugacy class in ℳ3 given by f(z) =
z3−3
−3z2

. This single conjugacy class is exactly the intersection of A3(C2)
and A3(C3) (Proposition 2.9).

(3) The locus A3(C3) is an irreducible curve inℳ3 given by fa(z) =
z3+a
az2

,
a ≠ 0 (Proposition 2.5).
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(4) The locusA3(D2) consists of two irreducible curves given by

fa(z) =
az2 + 1
z3 + az , a ≠ ±1 and ga(z) =

az2 − 1
z3 − az , a ≠ ±1,

which intersect at the single point A3(D4) = A3(C4) (Proposition 2.6).
(5) The locusA3(C2) is the union of two irreducible surfaces given by

fa,b(z) =
z3 + az
bz2 + 1 , ab ≠ 1 and ga,b(z) =

az2 + 1
z3 + bz , ab ≠ 1

which intersect in a curve that is the fa component of A3(D2) (Propo-
sition 2.7).

The methods are a combination of invariant theory as utilized in deFaria-
Hutz [dFH15], explicit forms for maps with cyclic or dihedral automorphism
groups from Silverman [Sil95], and explicit calculation using the generators of
the �nite subgroups.

In the process of studyingA3, we were able to complete the rational realiza-
tion problem over ℚ started in [dFH18].

Theorem 1.3. Every �nite subgroup of PGL2 can be realized as the automor-
phism group of a rational map de�ned over ℚ.

Section 3 studies these parameterizations as families in moduli space giving
explicit maps to sets of periodic point multiplier invariants that are �nite-to-
one. To construct the multiplier invariants, recall that to each �xed point Q we
can compute an algebraic number called the multiplier �Q = f̃′(Q), where f̃
is a dehomogenization and ′ represents the derivative. The multiplier is con-
jugation invariant and the set of �xed points is invariant (as a set) under con-
jugation. So, taking the elementary symmetric polynomials evaluated on the
set of multipliers produces invariants of the moduli space [Sil98]. We can sim-
ilarly construct invariants from the set of periodic points (or formal periodic
points) of any period. We denote these invariants �(n)i , where n denotes the pe-
riod of the points used and 1 ≤ i ≤ (deg(f))n + 1. These invariants were �rst
studied byMilnor [Mil93] to construct an isomorphismℳ2 ≅ A2. In higher de-
grees, we no longer get an isomorphism to an a�ne space, but utilizing enough
multiplier invariants does produce a �nite-to-one map producing a mapping of
ℳ3 into a�ne space [Mcm87]. We can then examine the image of A3(Γ) as a
variety in this a�ne space. In all families but one component of A3(D2), us-
ing the �xed points multipliers is su�cient; in that component, the multiplier
invariants of the 2-periodic points are needed. Theorem 1.4 summarizes the
embeddings of the familes A3(Γ) into the moduli spaceℳ3 and the geometric
results onA3(Γ). The details of the embeddings into a�ne space via the multi-
plier invariants that are used to analyze the geometry can be found within the
referenced propositions.
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Theorem 1.4.
(1) The map

A1 ⧵ {0} → ℳ3, a ↦ [z
3 + a
az2 ]

is one-to-one. The locus A3(C3) is an irreducible curve of genus zero
with one singular point corresponding to A3(A4). (Proposition 3.1)

(2) The map

A1 ⧵ {±1} → ℳ3, a ↦ [az
2 + 1

z3 + az]

is two-to-one. This component ofA3(D2) is a smooth irreducible curve
of genus zero. (Proposition 3.2)

(3) The map

A1 ⧵ {±1} → ℳ3, a ↦ [az
2 − 1

z3 − az]

is six-to-one. This component of A3(D2) described by the image is a
smooth irreducible curve of genus zero. (Lemma 3.3, Proposition 3.4)

(4) The map

A2 ⧵ {ab = 1} → ℳ3, (a, b) ↦ [z
3 + az
bz2 + 1]

is two-to-one. This component of A3(C2) is an irreducible rational sin-
gular surface. (Proposition 3.6)

(5) The map

A2 ⧵ {ab = 1} → ℳ3, (a, b) ↦ [az
2 + 1

z3 + bz]

is four-to-one. This component ofA3(C2) is an irreducible singular sur-
face. (Lemma 3.8, Proposition 3.9)

Section 4 gives parameterizations of the automorphism locusA4 ⊂ ℳ4. The
methods are similar to Section 2.

Theorem 1.5.
(1) The locusA4(C5) = A4(D5) is the single conjugacy class given byf(z) =

1
z4
. (Proposition 4.2)

(2) The locusA4(C4) is an irreducible curve inℳ4 given by the 1-parameter
family fk(z) =

z4+1
kz3

for k ≠ 0. (Proposition 4.3)
(3) The locusA4(D3) is an irredcible curve inℳ4 given by the familyfk(z) =

z4+kz
kz3+1

for k ≠ ±1. (Proposition 4.5)
(4) The locus A4(C3) is an irreducible surface in ℳ4 given by the family

fk1,k2(z) =
z4+k1z
k2z3+1

for k1k2 ≠ 1. (Proposition 4.4)
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(5) The locusA4(C2) is given by the 3-parameter family

fk1,k2,k3(z) =
z4 + k1z2 + 1
k2z3 + k3z

for k22 + k23 ≠ k1k2k3. (Proposition 4.6).

Section 5 studies these parameterizations as families in moduli space giving
explicit maps to sets of periodic point multiplier invariants that are �nite-to-
one. In all families butA4(C2), using the �xed point multipliers is su�cient; in
that family, themultiplier invariants of the formal 2-periodic points are needed.
Theorem 1.6 summarizes the embeddings of the familes A4(Γ) into the moduli
space ℳ4 and the geometric results on A4(Γ). The details of the embeddings
into a�ne space via the multiplier invariants that are used to analyze the ge-
ometry can be found within the referenced propositions.

Theorem 1.6.
(1) The map

A1 ⧵ {0} → ℳ4, k ↦ [z
4 + 1
kz3 ]

is one-to-one. The locus A4(C4) is an irreducible curve of genus zero
with one singular point. (Lemma 5.1, Proposition 5.2)

(2) The map

A1 ⧵ {±1} → ℳ4, k ↦ [z
4 + kz
kz3 + 1]

is one-to-one. The locus A4(D3) is an irreducible curve of genus zero
with one singular point. (Lemma 5.3, Proposition 5.4)

(3) The map

A2 ⧵ {k1k2 = 1} → ℳ4, (k1, k2) ↦ [
z4 + k1z
k2z3 + 1]

is one-to-one. The locusA4(C3) is a singular irreducible surface. (Propo-
sition 5.6)

(4) The map

A3 ⧵ {k22 + k23 = k1k2k3} → ℳ4, (k1, k2, k3) ↦ [
z4 + k1z2 + 1
k2z3 + k3z

]

is generically two-to-one. (Proposition 5.7)

Note that the singular point in the curves in parts (1) and (2) still have the ap-
propriate automorphismgroup, sowe are not seeing the phenomenon of chang-
ing automorphism group we saw in the singular point in Theorem 1.4 (1) (and
in the cuspidal cubic which is A2). However, these two points do correspond
to non-conjugate maps with the same set of �xed point multiplier invariants.
Since the embeddings in a�ne space for these families use only the �xed points
invariants, in some sense this point is the point of intersection of the image of
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these two families inA4. This common point is the only (nondegenerate) such
point of intersection.

Having given parameterizations of A3 and A4, we turn to studying rational
preperiodic structures. From the set of preperiodic points S for f, we create a
directed graph whose vertices are the points in S and for P,Q ∈ S there is an
edge from P to Q if and only if f(P) = Q. An important consideration for ratio-
nality questions on Ad is which representative of the conjugacy class is used.
Studyingℚ-rational preperiodic points, conjugating by an element of PGL2(ℚ)
would not a�ect the rational preperiodic structure. However, conjugating by an
element over a �eld extension would a�ect the rational preperiodic structure.
This e�ect on rationality still occurs evenwhen the newmap is still de�ned over
the original �eld of de�nition, the rational twist case; see [LMT14] for uniform
boundedness for families of twists. Consequently, we study rational preperiodic
structures for the parameter space locus Ad.

Section 6 classi�es theℚ-rational preperiodic structures that occur for maps
in the locus A3 given by these parameterizations with ℚ-rational parameter
values. The graph structures are speci�ed in the theorems of Section 6 and
summarized in the following theorem.

Theorem 1.7.
(1) Single conjugacy classes A3(C4) = A3(D4), and A3(A4): Each has one

possible rational preperiodic graph structure. (Theorem 6.3)
(2) A3(C3): Assuming there are no points of minimal period 4 or higher,

then there are four possibleℚ-rational preperiodic graph structures for
fa(z) =

z3+a
az2

. Each of these graph structures occurs in�nitely often.
(Theorem 6.9).

(3) A3(D2):
(a) Assuming there are no points of minimal period 4 or higher, then

there are four possible ℚ-rational preperiodic graph structures for
fa(z) =

az2+1
z3+az

. Each of these graph structures occurs in�nitely
often. (Theorem 6.12).

(b) Assuming there are no points of minimal period 4 or higher, then
there are four possible ℚ-rational preperiodic graph structures for
fa(z) =

az2−1
z3−az

. Each of these graph structures occurs in�nitely
often. (Theorem 6.15).

(4) A3(C2):
(a) The family fa,b(z) = z3+az

bz2+1
has at least 33 di�erent ℚ-rational

preperiodic graph structures. (Section 6.5).
(b) The family ga,b(z) =

az2+1
z3+bz

has at least 23 di�erentℚ-rational prepe-
riodic graph structures. (Section 6.6).

The methods of this section are to �rst classify the occurrence of ℚ-rational
periodic points up to some bound on the minimal period, then to classify the
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rational preimages of the possible cycle structures. Further, we must classify
when distinct connected components can occur for the same choice of parame-
ter. In all these cases, the problems come down to �nding all the rational points
on a curve. In the case of rational or elliptic curves, this set can be in�nite. In
the case of higher genus curves, there can only be �nitely many rational points
(Faltings’ Theorem). For the two A3(C2) components that are dimension two,
the task moves to �nding all rational points on surfaces. The tools available
for such problems are much more limited, so instead we perform a census of
ℚ-rational preperiodic graph structures with ℚ-rational parameter values.

In Section 7 we study the ℚ-rational preperiodic structures that occur for
maps in the locus A4 given by these parameterizations withℚ-rational param-
eter values. The graph structures are speci�ed in the Theorems of Section 7 and
summarized in the following theorem.

Theorem 1.8.

(1) Single conjugacy classes A4(C5) = A4(D5) have one possible rational
preperiodic graph structure. (Theorem 7.1)

(2) A4(C4): Assuming there are no points of minimal period 3 or higher,
then there are four possibleℚ-rational preperiodic graph structures for
fk(z) =

z4+1
kz3

. Each of these graph structures occurs in�nitely often.
(Theorem 7.4).

(3) A4(D3): Assuming there are no points of minimal period 3 or higher,
then there are �ve possible ℚ-rational preperiodic graph structures for
fk(z) =

z4+kz
kz3+1

with possibly �nitely many exceptional values of the pa-
rameter k. Each of these graph structures occurs in�nitely often. (The-
orem 7.7).

(4) A4(C3): The family fk1,k2(z) =
z4+k1z
k2z3+1

has at least 13 di�erentℚ-rational
preperiodic graph structures. (Section 7.4).

(5) A4(C2): The family fk1,k2,k3(z) =
z4+k1z2+1
k2z3+k3z

has at least 55 di�erent ℚ-
rational preperiodic graph structures. (Section 7.5).

The methods parallel those in Section 6, but the increase in degree causes an
increase in the complexity of the curves. The �nitely many possible exceptions
for A4(D3) correspond to the rational points of several explicitly given curves
with genus at least 4.

Finally, in Section 8 we make some remarks on further problems.
The computations were done primarily in Magma [BCP97] and Sage [SJ05].

Code used for the computations can be found in the arXiv version1 of this arti-
cle.

1https://arxiv.org/abs/2007.15483

https://arxiv.org/abs/2007.15483
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2. Automorphism loci inℳ3

In this section we determineA3, the conjugacy classes of degree 3 endomor-
phisms of ℙ1 that have a nontrivial automorphism. We will always be working
over ℚ.

We know that if Γ ⊂ Aut(f) for some f ∈ Ratd, then Γmust be isomorphic
to Cn, Dn, A4, S4, or A5; see [Sil95]. Also, from the classi�cation of �nite sub-
groups of PGL2, all isomorphic subgroups are in fact conjugate to each other;
see [MSW14, Lemma 2.3]. Thus, given a group, we can simply �x an SL2 rep-
resentation and work only with this representation.

From previous work of Miasnikov, Stout, and Williams [MSW14] (hence-
forth abbreviated as MSW), we are able to determine the dimension of A3(Γ)
for any Γ.
Lemma 2.1. When deg(f) = 3, Aut(f)must be C2, C3, C4, D2, D4 or A4. The
dimensions of A3(Γ) for these groups are given by

(1) dimA3(C2) = 2, dimA3(C3) = 1, and dimA3(C4) = 0.
(2) dimA3(D2) = 1, and dimA3(D4) = 0.
(3) dimA3(A4) = 0.

Moreover,
(4) A3(D4) ⊂ A3(C4) ⊂ A3(C2).
(5) A3(D2) ⊂ A3(C2).
(6) A3(A4) ⊂ A3(C3) and A3(A4) ⊂ A3(D2) ⊂ A3(C2).

Proof. The groups that occur and the dimensions are calculated in Section 2
of MSW [MSW14]. The second half follows from the observation that if G is a
subgroup ofH, then Ad(H) ⊆ Ad(G). �

To determineA3(Γ), we proceed in two steps. First we �nd a family in A3 ⊂
Rat3 which parameterizes all maps that have Γ contained in their automor-
phism group. Then we �nd a normal form for elements in this family. By nor-
mal form, we mean that the projection � ∶ Rat3 → ℳ3 is an isomorphism
on this family, i.e., every member of the family represents a distinct conjugacy
class. However, in practice we typically end up with a �nite-to-one projection
so that the dimension of the family in parameter space is the same as the di-
mension in moduli space. Stated more precisely, given a group Γ, we want to
�nd a k-parameter family in Rat3 such that k = dimA3(Γ) and for all maps
f ∈ A3(Γ), f is conjugate to some member of this k-parameter family.

2.1. A3(C4) and A3(D4). From Silverman’s classi�cation of maps with cyclic
automorphism groups [Sil95, Proposition 7.3], we know that if a degree 3 map
f has a C4 symmetry generated by z ↦ iz, then f must be of the form 1

az3
for

some a ∈ ℚ. This family of maps is actually a family of twists corresponding
to a single conjugacy class inℳ3.

Proposition 2.2. Let f ∈ Rat3. If C4 ⊆ Aut(f), then f is conjugate to 1
z3
.
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Proof. Let '(z) = 1
z3

and fa(z) =
1
az3

for any nonzero a ∈ ℚ. Consider the
Möbius transform �(z) = pz, where p4 = a. We can compute

'�(z) = (�−1◦'◦�)(z) =

1
(pz)3

p = 1
p4z3 =

1
az3 = fa(z). �

Note that the automorphism group of 1
z3

is actually all of D4 with the extra

symmetries coming from z ↦ 1
z
. By the containments from Lemma 2.1, we

have the following corollary.

Corollary 2.3. The automorphism locus A3(C4) = A3(D4) is a single point in
ℳ3 given by the conjugacy class of 1

z3
.

2.2. A3(C3). FromSilverman’s classi�cation ofmapswith cyclic automorphism
groups [Sil95, Proposition 7.3], we know that if f ∈ Rat3 has a C3 symmetry,
then f belongs to one of the following two families:

f1(z) =
az3 + b
cz2 or f2(z) =

az
bz3 + c .

Since all parameters must be nonzero to be a degree 3 map, we can divide
through by a and b, respectively, to get

f1(z) =
z3 + a1
a2z2

or f2(z) =
b1z

z3 + b2
, (1)

where a1, a2, b1, b2 ∈ ℚ∖{0}. These two families in parameter space are exactly
A3(C3), and we next show they project onto the same irreducible curve in mod-
uli space.

Now that we are working with positive dimensional components of A3, we
set some terminology for parameterized families. A k-parameter family of ra-
tional degree d maps is a set of rational maps ℙ1 → ℙ1 of the form

f(x, y) = (F0xd + F1xd−1y + … + Fdyd ∶ Fd+1xd + … + F2d+1yd)
for some polynomials F0, … , F2d+1 in indeterminants u1, … , uk, where we may
require that some of the Fj never vanish and the two de�ning polynomials of
f have no common factors for all (u1, … , uk) considered. In particular, a k-
parameter family is parameterized by an open subset of Ak.

Lemma 2.4. A k-parameter family in Ratd induces a map

F ∶ U → ℳd

for an open subset U ⊆ Ak and this map is a morphism of varieties. In partic-
ular, the image is irreducible and so is its closure.

Proof. A k-parameter family is represented in the form

f(x, y) = (F0xd + F1xd−1y + … + Fdyd ∶ Fd+1xd + … + F2d+1yd)
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where the Fj are polynomials in parameters (u1, … , uk). These Fj determine a
morphism of varieties � ∶ Ak → A2d+2 de�ned as

(u1, … , uk) ↦ (F0(u1, … , uk), … , F2d+1(u1, … , uk)).
The complement of the origin A2d+2 ⧵ {0} is an open subset and, thus,

U′ ∶= �−1(A2d+2 ⧵ {0})
is also open in Ak. So restricting � gives a morphism U′ → A2d+2 ⧵ {0}.

There is a projection morphism A2d+2 ⧵ {0} → ℙ2d+1 de�ned
(a0, … , a2d+1) ↦ (a0 ∶ … ∶ a2d+1).

Composing the restriction of � with this projection yields a morphism U′ →
ℙ2d+1.

By de�nition, Ratd is the complement of a hypersurface inℙ2d+1 and is open
itself. Therefore, its inverse image by the composite map from U′ is also an
open subset U of Ak.

One may further re�ne U as needed by intersecting it with the inverse im-
age of the complement of the hyperplane in ℙ2d+1 de�ned by the vanishing
of a given aj. This amounts to requiring the corresponding coe�cient of the
rational maps in the k-parameter family to be nonzero.

Finally, geometric invariant theory can be used to show the quotient map
Ratd → ℳd [Sil07, Theorem 4.36] is a morphism; thus, altogether we obtain
the desired map F ∶ U → ℳd.

From point set topology, nonempty open subsets of varieties are irreducible,
the closure of an irreducible subset of a larger topological space is irreducible,
and the continuous image of an irreducible set is irreducible. Therefore, the
image of F and its closure are both irreducible. �

For example, with the notation from Lemma 2.4, the 1-parameter family of
rational maps of the form fa(z) =

az
az3+1

written projectively as

(x ∶ y) ↦ (axy2 ∶ ax3 + y3),
where a ≠ 0 corresponds to taking

F0 = F1 = F3 = F5 = F6 = 0
F2 = F4 = a
F7 = 1.

We have re�ned the open subsetU from the proof by intersecting it with the in-
verse image of the complement of the hyperplane de�ned by a2 = 0 (or, equiv-
alently, that de�ned by a4 = 0), if the coordinates for ℙ7 are (a0 ∶ a1 ∶ a2 ∶
… ∶ a7). Lemma 2.4 then shows that the set of all conjugacy classes of maps of
the form fa(z) =

az
az3+1

is an irreducible subset ofℳ3.
Let f ∈ Ratd. To each periodic point z of period n for f, we can compute the

multiplier as �z ∶= (f̃n)′(z) for a dehomogenization f̃ of f. The set of all mul-
tipliers of a given period is invariant under conjugation (but may be permuted)
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so applying the elementary symmetric polynomials to this collection of multi-
pliers produces a set of complex numbers that are invariants of the conjugacy
class—thesemultiplier invariants have also been calledMilnor parameters. See
Silverman [Sil07, §4.5] for more details on dimension 1 and Hutz [Hut19] for
dimension > 1. The key fact we need is that they are invariants of the conju-
gacy class. In particular, if f, g ∈ Ratd have di�erent multiplier invariants for
any �xed n, then they cannot be conjugate. However, the converse is not true;
having the same multiplier invariants for some (or all) n does not make two
functions conjugate.

Proposition 2.5. A3(C3) is an irreducible curve in ℳ3 given by either one-
parameter family,

fa(z) =
z3 + a
az2 or gb(z) =

bz
bz3 + 1.

Proof. We�rst show thatwe can conjugate the two-parameter families in equa-
tion (1) to the one-parameter families given in the statement. We �rst con-
sider f1. Let �3 =

a2
a1
, and consider the Möbius transform �(z) = 1

�
z so that

�−1(z) = �z. We can compute

f�1 (z) =

⎛
⎜
⎜
⎜
⎝

( 1
�
z)

3
+ a1

a2 (
1
�
z)

2

⎞
⎟
⎟
⎟
⎠

� =
⎛
⎜
⎜
⎝

z3

�3
+ a1

a2
z2

�2

⎞
⎟
⎟
⎠

�

= �z3 + a1�4
a2�z2

= z3 + a1�3
a2z2

= z3 + a2
a2z2

.

Thus, the two-parameter family z3+a1
a2z2

is conjugate to the one-parameter family

fa2 . Similarly for f2, we can set 
3 = b1, and consider the Möbius transform
�(z) = 
z and its inverse �−1(z) = 1



z. We can compute

f�2 (z) = ( b1
z

3z3 + b2

) 1
 =
b1z


3z3 + b2
=

b1
b2
z

b1
b2
z3 + 1

= bz
bz3 + 1,

where b = b1
b2
. Thus, the two-parameter family b1z

z3+b2
is conjugate to the one-

parameter family gb.
Next, consider the Möbius transform �(z) = 1

z
. We can compute

f�b (z) =
1

1
z3
+b

b 1
z2

= 1
bz3+1
bz

= bz
bz3 + 1 = gb(z).



AUTOMORPHISM LOCI FOR DEGREE 3 AND DEGREE 4 ENDOMORPHISMS 1625

Thus, the two one-parameter families fa and gb are conjugate and we can con-
sider either one. In particular, every f with a C3 symmetry is conjugate to some
member of the family fa(z) =

z3+a
az2

. �

2.3. A3(D2). The representation of D2 we will be working with is

{[1 0
0 1] , [−i 0

0 i ] , [0 i
i 0] , [0 −1

1 0 ]} ,

where [−i 0
0 i ] and [0 i

i 0] are the two generators. They correspond to Möbius

transforms �1 = −z and �2 =
1
z
.

Proposition 2.6. A3(D2) consists of two irreducible curves which intersect at
the single point A3(D4) = A3(C4).

Proof. Let f(z) = a1z3+a2z2+a3z+a4
b1z3+b2z2+b3z+b4

be a degree 3map. If f has a D2 symmetry,
we can obtain restrictions on the coe�cients from the equations f = f�1 and
f = f�2 .

We get 14 equations and compute the irreducible components of the variety
generated by these equations as a subvariety ofℙ7. There are 8 irreducible com-
ponents, but only 4 of them correspond to degree 3maps. Thus, f ∈ Rat3 has a
D2 symmetry (with this representation) if and only if it has one of the following
four forms:

f1(z) =
k1z2 − 1
z3 − k1z

f2(z) =
k2z2 + 1
z3 + k2z

f3(z) =
z3 + k3z
k3z2 + 1 f4(z) =

z3 − k4z
k4z2 − 1,

where none of the parameters k1, k2, k3, or k4 can be ±1. We will show that f2,
f3, and f4 are all conjugate to each other, whereas f1 is not in general conjugate
to the rest. First, consider the familiesf3 andf2. Conjugatingf2 by the element

� = [ 1 −i
−i 1 ], we get

f�2 (z) =
z3 + k2+3

k2−1
z

k2+3
k2−1

z2 + 1
.

Thus, f2 is conjugate to the map f3(z) =
z3+k3z
k3z2+1

, where k3 =
k2+3
k2−1

. Now we

show that f4 is conjugate to f2. For every k4 ≠ 1, set k2 = k4+3
k4−1

and work

with f2(z) =
k4+3
k4−1

z2+1

z3+ k4+3
k4−1

. Conjugating this map by � = [ i i
−1 1], we get f

�
2 (z) =

z3−k4z
k4z2−1

= f4(z). Thus, f2, f3, and f4 are all conjugate to each other.



1626 GONTMACHER, HUTZ, JORGENSON, SRIMANI AND XU

To see that f1 is not conjugate to the rest, we compute the multiplier in-
variants for the �xed points of f1. Interestingly, they are independent of the
parameter k1:

�1 = −12 �2 = 54 �3 = −108 �4 = 81.
However, the multiplier invariants for the �xed points of f4 are dependent on
the parameter k4:

�1(k4) =
2k24 + 6
k4 + 1

�2(k4) =
k44 − 2k34 + 10k24 + 6k4 + 9

k24 + 2k4 + 1

�3(k4) =
−2k44 + 6k34 − 6k24 + 18k4

k24 + 2k4 + 1

�4(k4) =
k44 − 6k34 + 9k24
k24 + 2k4 + 1

.

Solving the equations

�1(k4) = −12, �2(k4) = 54, �3(k4) = −108, �4(k4) = 81,
we see that the only possible conjugacy occurs for k4 = −3. Setting k4 = −3,
we compute the multiplier invariants for the periodic points of period 2 for f1
and f4, denoted �

(2)
i for 1 ≤ i ≤ 10. For f1 the invariants depend on k1, and for

f4 at k4 = −3 they are constants. Solving the equations �(2)i (f1) = �(2)i (f4), we
see that the three values k1 ∈ {3, 0, −3} are all conjugate to f4 with k4 = −3.
Further, note that the three elements of the f1 family with k1 ∈ {3, 0, −3} are all
in the same conjugacy class as 1

z3
. These are the only conjugacies in the families

f1 and f4.
In summary, every degree 3 map f with D2 symmetry is conjugate to some

member of the family f1(z) =
k1z2−1
z3−k1z

or the family f2(z) =
k2z2+1
z3+k2z

, and we can
conclude that A3(D2) has two irreducible components which intersect at the
calculated conjugacy class. �

2.4. A3(C2).

Proposition 2.7. The locus A3(C2) is the union of two irreducible surfaces
which intersect in the fa(z) component of A3(D2).

Proof. FromSilverman’s classi�cation ofmapswith cyclic automorphismgroups
[Sil95, Proposition 7.3], we know that if f is degree 3with a C2 symmetry; then
f is conjugate to one of the forms

f(z) = k1z3 + k2z
k3z2 + k4

or f(z) = l1z2 + l2
l3z3 + l4z

,
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where k1k4 ≠ 0 and l2l3 ≠ 0. Thus, we can divide through by k1 and l3, respec-
tively, to obtain:

f(z) = z3 + a1z
a2z2 + a3

or f(z) = b1z2 + b2
z3 + b3z

.

We �rst reduce these two three-parameter families to two-parameter families.
Consider the �rst family f1(z) =

z3+a1z
a2z2+a3

. Conjugating it by the Möbius trans-

form �(z) =
√
a3z, we get

f�1 (z) =
1

√
a3

(
(
√
a3z)3 + a1

√
a3z

a2a3z2 + a3
) =

a3z3 + a1z
a2a3z2 + a3

=
z3 + a1

a3
z

a2z2 + 1.

Thus, for every choice of a1, a2, a3, we can set k1 =
a1
a3

and k2 = a2; note that

a3 ≠ 0 since k4 ≠ 0. Thus, the family f1(z) =
z3+a1z
a2z2+a3

is conjugate to the family

'(z) = z3+k1z
k2z2+1

.

Similarly, given f2(z) =
b1z2+b2
z3+b3z

, we can set �4 = 1
b2
and consider the Möbius

transform �(z) = 1
�
z. We can compute

f�2 (z) = �
⎛
⎜
⎜
⎝

b1
z2

�2
+ b2

z3

�3
+ b3

z
�

⎞
⎟
⎟
⎠

= b1�2z2 + b2�4
z3 + b3�2z

= b1�2z2 + 1
z3 + b3�2z

.

Thus, for any choice of b1, b2, b3, we can set l1 = b1�2 and l2 = b3�2. So the
family f2(z) =

b1z2+b2
z3+b3z

is conjugate to the family �(z) = l1z2+1
z3+l2z

.
Finally, we need to determine if these two-parameter families are ever conju-

gate to each other. Taking a genericPGL2 element� = (a b
c d) and conjugating,

we can setup a system of equations for '� to be of the form � by equating the
known coe�cients (up to scalar multiple). This produces a variety with three
irreducible components:

X1 = V(l2 + 3, l1 + 3, k1 + k2, k22 + 9),
X2 = V(l1 − l2, k1 − k2, k2l2 − k2 − l2 − 3),
X3 = V(l1 − l2, k1 − k2, k2l2 − k2 + l − 2 + 3).

The component X1 is dimension 0 containing the three pairs of maps with

(l1, l2, k1, k2) ∈ {(−3, −3, 0, 0), (−3, −3, 3i, −3i), (−3, −3, −3i, 3i)}.

All such maps are conjugate to 1
z3
. The components X2 and X3 we now show

are the component fa(z) of A3(D2). Note that when l1 = l2, this is exactly the
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family fa(z). The last de�ning equation for each variety solves as

k1 = k2 =
l2 + 3
l2 − 1 and k1 = k2 =

l2 − 3
l2 + 1,

respectively. Recall that l2 = ±1 is degenerate, so every (nondegenerate) map
with pair (k1, k2) is conjugate to a corresponding map with pair (l1, l2) and vice
versa. In otherwords, the two forms represent the same familyfa(z) as families
in moduli space. Since 1

z3
is in the fa(z) component ofA3(D2), we have proven

the intersection statement. �

This completes the proof of Theorem 1.2.

Remark2.8. It isworthnoting that for each of the cyclic automorphismgroups,
the same procedure was able to produce a family in moduli space. Fix an in-
teger m ≥ 2. The following algorithm will produce a k-parameter family in
Ad(Cm) where k = dim(Ad(Cm)).

(1) Start with the normal form z (zm) from Silverman [Sil95, Proposition
7.3]. The number of parameters of this normal form is
dimA(Cm) + 2. Moreover, there are at least two parameters that are
nonzero.

(2) Divide through by one of the nonzero parameters.

(3) Apply a matrix of the form [∗ 0
0 1] to eliminate another parameter.

2.5. A3(A4). We know that C2 and C3 are subgroups ofA4 so that
A3(A4) ⊆ A3(C2)∩A3(C3). This intersection turns out to be a single conjugacy
class giving A3(A4).

Proposition 2.9. The locus A3(A4) is a single point in moduli space repre-

sented by f(z) =
√
−3z2+1

z3−
√
−3z

. This point is exactly the intersection of A3(C2) and
A3(C3) inℳ3.

Proof. We start by computing the intersectionA3(C2) ∩A3(C3). To determine
this intersection, we use a Groebner basis calculation similar to the end of the
proof of Proposition 2.7. Recall thatA3(C3) is given by the family ga(z) =

z3+a
az2

.

Consider the component of A3(C2) given by fk1,k2(z) =
z3+k1z
k2z2+1

. Taking a

generic element of PGL2, � = (a b
c d), we consider the system of equations

obtained from the coe�cients of

f�k1,k2 = tga
for some nonzero constant t. Note that f�k1,k2 is degree 3, so that if f

�
k1,k2

= ga,
then its numerator and denominator di�er from those of ga only by a constant
multiple. The resulting equations have no solutions.



AUTOMORPHISM LOCI FOR DEGREE 3 AND DEGREE 4 ENDOMORPHISMS 1629

Now consider the component given by fk1,k2 =
k1z2+1
z3+k2z

. Again we set f�k1,k2 =
tga and solve the resulting system of equations. In this case, there are two so-
lutions

a = −3, (k1, k2) = (±
√
3,∓

√
3).

These two choices of (k1, k2) are in fact conjugate to each other. Furthermore,
the automorphism group of fk1,k2 has order 12 at these values. The only group
with order 12 in our list of possible automorphism groups is A4. Thus, A3(C2)
and A3(C3) intersect at a single point in the moduli space, and the point of
intersection isA3(A4). �

As mentioned in the introduction, the choice of representation a�ects the
�eld of de�nition and it is natural to ask whether a map de�ned over ℚ has
A4 as automorphism group. Hutz-deFaria [dFH15] proved that the “standard”
representation of A4 given by Silverman [Sil95] does not have a map de�ned
over ℚ with tetrahedral automorphism group. However, when computing the
intersection ofA(C2) andA(C3) in Proposition 2.9, we discovered that the map

f(z) = z3 − 3
−3z2

has tetrahedral automorphism group (and is conjugate to the maps in Propo-
sition 2.9), which can be veri�ed with direct computation by the algorithm of
Faber-Manes-Viray [FMV14] as implemented in Sage. This example completes
the construction started in Hutz-deFaria to show that every �nite subgroup of
PGL2 can be realized as the automorphism group of a map de�ned over ℚ.
Theorem 2.10. Every conjugacy class of a �nite subgroup of PGL2 can be re-
alized as the automorphism group of a rational map de�ned over ℚ.

3. Geometry of certain automorphism loci inℳ3

In this section, we examine the geometry of automorphism lociA3(Γ) ⊂ ℳ3,
such as smoothness and genus. The method in general is to embedℳ3 into an
a�ne space with a collection of multiplier invariants, i.e.,

�n ∶ ℳ3 → A3n+1

[f] ↦ (�(n)1 , … , �(n)3n+1).
Wecan then examine the image �n(A3(Γ)) ⊆ A3n+1 and talk about the geometry
of the resulting variety.

3.1. A3(C3). Recall that every map with a C3 symmetry is conjugate to some
map of the form fa(z) =

z3+a
az2

Proposition 3.1. De�ne fa(z) =
z3+a
az2

. The map

A1 ⧵ {0} → ℳ3

a ↦ [fa]
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is one-to-one.The locus A3(C3) is an irreducible curve of genus zero with one
singular point corresponding to A3(A4).

Proof. We compute the multiplier invariants associated to the �xed points for
the family fa(z) as functions of a as

�1(a) =
a2 − 6a + 9

a

�2(a) =
−6a3 + 21a2 − 36a + 27

a2

�3(a) =
12a4 − 44a3 + 63a2 − 54a + 27

a3

�4(a) =
−8a3 + 36a2 − 54a + 27

a2 .

Then, to see which choices of parameters a and b have fa and fb with the same
invariants, we solve the system of equations

�i(a) = �i(b) 1 ≤ i ≤ 4.

The only solutions occur with a = b. In particular, since for each choice of a,
fa has distinct multiplier invariants, each choice of a corresponds to a distinct
conjugacy class.

Because every choice of a provides a distinct set of �xed point multiplier
invariants and, hence, a distinct conjugacy class in ℳ3, we can use the �xed
point multiplier invariants to parameterize this curve inℳ3. In particular, we
have a map �1 ∶ A3(C3) → A3 de�ned by [fa] ↦ (�1, �2, �3).We can omit �4
because it is dependent on (�1, �2, �3) through the standard index relation (see
Hutz-Tepper [HT13] or Fujimura-Nishizawa [FN07, Theorem 1]). Thenwe can
consider the ideal generated by

a2 − 6a + 9 − a�1,
− 6a3 + 21a2 − 36a + 27 − a2�2,
(12a4 − 44a3 + 63a2 − 54a + 27) − a3�3.

We compute the saturation with the ideal (a) to avoid the vanishing of a and
compute theGröbner basis of the resulting ideal using lexicographic ordering to
eliminate a. We obtain the following relations among themultiplier invariants:

0 = 6�21 + �1�2 + 15�1 − 18�2 − 9�3 − 36
0 = �22 − 3�1�3 − 24�1 + 12�2 + 36.

These relations de�ne a curve in A3. This curve is irreducible over ℚ and has
genus 0. It is not smooth, and the only singular point is (−12, 54, −108). This
singular point corresponds to a = −3 and, thus, to the rational map f−3(z) =
z3−3
−3z2

. This rational map has a tetrahedral automorphism group. �
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3.2. A3(D2). There are two components in the locusA3(D2). We examine each
separately.

Proposition 3.2. De�ne fa(z) =
az2+1
z3+az

. The map

A1 ⧵ {±1} → M3

a ↦ [fa]
is two-to-one. The component of the locus A3(D2) described by the image in
ℳ3 of the family fa is a smooth irreducible curve of genus zero.

Proof. We �rst compute the �xed point multiplier invariants for this family as
functions of a as

�1(a) =
4a2 + 12
a2 − 1

�2(a) =
6a4 + 4a2 + 54
a4 − 2a2 + 1

�3(a) =
4a4 − 24a2 − 108
a4 − 2a2 + 1 .

To show the map is two-to-one, we �x a and determine how many b satisfy
(�1(a), �2(a), �3(a)) = (�1(b), �2(b), �3(b)) (2)

and then show that both solutions are conjugate. We startwith the ideal de�ned
by equation (2) and exclude the cases a2 = 1 and b2 = 1 through saturation.
The resulting ideal is (a2−b2). We conclude that fa and fb have the same �xed
point multiplier invariants if and only if a = ±b. We know that fa(z) =

az2+1
z3+az

and f−a(z) =
−az2+1
z3−az

are conjugate to each other via the Möbius transform
�(z) = −iz:

f�a (z) = −1i ⋅
a(−iz)2 + 1

(−iz)3 + a(−iz)
= −1i ⋅

−az2 + 1
iz3 − aiz = −az2 + 1

z3 − az = f−a(z).

Furthermore, this shows we can parameterize the image of the family fa in
ℳ3 by the �xed point multiplier invariants. To study its geometry, consider the
ideal generated by

(4a2 + 12) − (a2 − 1)�1,
(6a4 + 4a2 + 54) − (a4 − 2a2 + 1)�2,
(4a4 − 24a2 − 108) − (a4 − 2a2 + 1)�3.

After saturation by (a2 − 1), we eliminate a to obtain the relations
0 = �1 − 2�2 − �3 + 12
0 = 4�22 + 4�2�3 − 60�2 + �23 − 28�3 + 216.

These de�ne a curve in A3. The curve is smooth, irreducible, and has genus
0. �
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The other component of A3(D2) is given by the family ga(z) =
az2−1
z3−az

. Recall
that this family has �xed point multiplier invariants that are independent of
the parameter a. We consider the multiplier invariants of the periodic points of
period 2:

�(2)1 = 2a6 + 36a4 + 18a2 + 72
a4 − 2a2 + 1

�(2)2 = a12 + 76a10 + 514a8 + 1228a6 + 9a4 + 2268
a8 − 4a6 + 6a4 − 4a2 + 1

�(2)3 = 40a12 + 1208a10 + 7304a8 + 32528a6 + 30744a4 + 51192a2 + 40824
a8 − 4a6 + 6a4 − 4a2 + 1

�(2)4 = 636a12 + 11232a10 + 85806a8 + 335448a6 + 785376a4 + 927288a2 + 459270
a8 − 4a6 + 6a4 − 4a2 + 1

�(2)5 = 5080a12 + 74700a10 + 624024a8 + 2354184a6 + 6805944a4 + 7637004a2 + 3306744
a8 − 4a6 + 6a4 − 4a2 + 1

�(2)6 = 21286a12 + 365112a10 + 2597184a8 + 11914776a6 + 25286094a4 + 32122656a2 + 14880348
a8 − 4a6 + 6a4 − 4a2 + 1

�(2)7 = 45720a12 + 1030968a10 + 6945912a8 + 29498256a6 + 47711592a4 + 63772920a2 + 38263752
a8 − 4a6 + 6a4 − 4a2 + 1

�(2)8 = 51516a12 + 979776a10 + 11396457a8 + 12045996a6 + 86093442a4 + 57395628a2 + 43046721
a8 − 4a6 + 6a4 − 4a2 + 1

�(2)9 = 29160a12 + 13122a10 − 7085880a8 + 40389516a6 + 86093442a2
a8 − 4a6 + 6a4 − 4a2 + 1

�(2)10 =
6561a12 − 236196a10 + 3188646a8 − 19131876a6 + 43046721a4

a8 − 4a6 + 6a4 − 4a2 + 1 .

Lemma 3.3. De�ne ga(z) =
az2−1
z3−az

. The map

' ∶ A1 ⧵ {±1} → ℳ3

a ↦ [ga]
is six-to-one. The map

�̃2 ∶ '(A1) → A3

[ga] ↦ (�(2)1 , �(2)2 , �(2)3 )
is injective.

Proof. Note that the ideal generated by (�(2)1 , … , �(2)10 ) is in fact generated by
(�(2)1 , �(2)2 , �(2)3 ). So we just need to focus on these three invariants. Thinking of
the invariants as functions of a, we need to �nd all b so that

(
�(2)1 (a), �(2)2 (a), �(2)3 (a)

)
=

(
�(2)1 (b), �(2)2 (b), �(2)3 (b)

)
.

Taking the ideal generated by these equations and saturating by the ideals (a2−
1) and (b2 − 1), we have the principal ideal generated by the polynomial

(−a+b)(a+b)(ab−a−b−3)(ab−a+b+3)(ab+a−b+3)(ab+a+b−3).
We check that the six parameter values

b ∈ {±a,±a + 3
a − 1, ±

a − 3
a + 1}

produce functions that are all conjugate.
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If b = −a, ga is, in fact, conjugate to gb via the Möbius transform �(z) = iz

g�a (z) =
1
i ⋅

a(iz)2 − 1
(iz)3 − a(iz)

= 1
i ⋅

−az2 − 1
−iz3 − aiz =

−az2 − 1
z3 + az = g−a(z).

If b = a+3
a−1

, then ga is conjugate to gb via the Möbius transform � = (−1 1
1 1).

This calculation is straightforward, but omitted.
If b = a−3

a+1
= −−a+3

−a−1
, then g−a is conjugate to gb since

−a+3
−a−1

= (−a)+3
(−a)−1

. Thus,
this choice of b is also conjugate to a.

If b = −a−3
a−1

= −a+3
a−1

, then gb is conjugate to g a+3
a−1

and ga.

If b = −a+3
a+1

= a−3
−a−1

= −a−3
a+1

, gb is conjugate to g a−3
a+1

and ga as well.

The six parameter values that produce the same triple (�(2)1 , �(2)2 , �(2)3 ) are all
conjugate, so ' is six-to-one and �̃2 is injective on the image '(A1). �

Proposition 3.4. The curve given by the component ga(z) =
az2−1
z3−az

of A3(D2)
is a smooth irreducible curve of genus 0.

Proof. By Lemma 3.3 we can parameterize the curve with the coordinates

(�(2)1 , �(2)2 , �(2)3 )
in A3. In terms of the parameter a, this gives the equations
0 =(2a6 + 36a4 + 18a2 + 72) − (a4 − 2a2 + 1)�1,
0 =(a12 + 76a10 + 514a8 + 1228a6 + 9a4 + 2268)

− (a8 − 4a6 + 6a4 − 4a2 + 1)�2,
0 =(40a12 + 1208a10 + 7304a8 + 32528a6 + 30744a4 + 51192a2 + 40824)

− (a8 − 4a6 + 6a4 − 4a2 + 1)�3.

Saturating with respect to (a2 − 1) and eliminating a yields the relations

0 = 916�1 − 40�2 + �3 − 16056
0 = 1600�22 − 80�2�3 + �23 + 859456�2 − 105392�3 − 136334016.

These relations de�ne a smooth, irreducible curve of genus 0 in A3. �

3.3. A3(C2). We start with the family fa,b(z) =
z3+az
bz2+1

.

Lemma 3.5. The map

' ∶ A2 ⧵ {ab = 1} → ℳ3

(a, b) ↦ [fa,b]
is two-to-one. The map

�1 ∶ '(A2 ⧵ {ab = 1}) → A3
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[fa,b] ↦ (�1, �2, �3)
is injective.

Proof. We calculate the �xed point multiplier invariants as functions of (a, b)
as

�1(a, b) =
a2b + ab2 − 2ab + 3a + 3b − 6

ab − 1
�2(a, b) =

1
(ab − 1)2

(
a3b3 − 2a3b2 − 2a2b3 + 4a3b + 7a2b2 + 4ab3 − 8a2b

− 8ab2 + 7ab − 6a − 6b + 9
)

�3(a, b) =
1

(ab − 1)2
(
− 2a3b3 + 5a3b2 + 5a2b3 − 4a3b − 12a2b2 − 4ab3 + 4a3

+ 14a2b + 14ab2 + 4b3 − 12a2 − 18ab − 12b2 + 9a + 9b
)
,

where we have omitted �4 as usual due to its dependence from the standard
index relation. To determine the degree of ', we consider the equations

(�3(a, b), �2(a, b), �3(a, b)) = (�1(c, d), �2(c, d), �3(c, d)).
We saturate the resulting ideal with respect to (ab−1) and (cd−1), the parame-
ter values where the family is degenerate, and �nd the irreducible components
of the resulting variety in A3 as

(c, d) = (a, b) or (c, d) = (b, a).

The maps fa,b and fb,a are conjugate by �(z) =
1
z
.

In no other situation are the �xed point multiplier invariants equal, so �1 is
injective on the image of '. �

Proposition 3.6. The component of A3(C2) given by fa,b =
z3+az
bz2+1

is an irre-
ducible rational surface de�ned by

0 = 36�51 − 12�41�2 + �31�
2
2 − 2�21�

3
2 − 12�41�3 + 8�31�2�3 − �21�

2
2�3 + 4�31�

2
3

− 60�41 − 194�31�2 + 64�21�
2
2 − 4�1�32 + 8�42 + 4�31�3 + 60�21�2�3

− 36�1�22�3 + 4�32�3 − 18�1�2�23 + �31 + 318�21�2 + 180�1�22 − 56�32
+ 261�21�3 − 108�1�2�3 − 36�22�3 − 81�1�23 + 54�2�23 + 27�33 + 684�21
− 576�1�2 − 144�22 − 648�1�3 + 108�23 − 2160�1 + 864�2 + 432�3 + 1728

whose projective closure is parameterized by the map

� ∶ ℙ2 → S ⊂ ℙ3

(x ∶ y ∶ z) ↦ (�1 ∶ �2 ∶ �3 ∶ �4)
for

�1 =
1
12x

5y + 6x5z + 2x4yz + 24x4z2 + 18x3yz2 + 72x2yz3 + 288x2z4
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+ 108xyz4 − 864xz5

�2 =
13
24x

5y + 9x5z + 37
4 x

4yz − 27x4z2 + 51x3yz2 + 216x3z3 + 90x2yz3

− 504x2z4 + 54xyz4 − 432xz5 + 324yz5 + 1296z6

�3 = x5y + 23
2 x

4yz + 36x3yz2 + 36x2yz3 − 648yz5

�4 = x5z + 23
2 x

4z2 + 36x3z3 + 36x2z4 − 648z6.

This surface is singular with singular locus given by the conjugacy classes de-
scribed by

{(a, b) ∶ a = b} ∪ {(a, b) ∶ a + b = −6} ∪ {(a, b) ∶ b = 3
a + 2}.

Proof. To obtain the surface equations, take the �xed point multiplier invari-
ants and consider the ideal generated by

(a2b + ab2 − 2ab + 3a + 3b − 6) − (ab − 1)�1,
(a3b3 − 2a3b2 − 2a2b3 + 4a3b + 7a2b2 + 4ab3 − 8a2b − 8ab2 + 7ab
− 6a − 6b + 9) − (ab − 1)2�2,
(−2a3b3 + 5a3b2 + 5a2b3 − 4a3b − 12a2b2 − 4ab3 + 4a3 + 14a2b + 14ab2

+ 4b3 − 12a2 − 18ab − 12b2 + 9a + 9b) − (ab − 1)2�3.

We saturate by the ideal (ab − 1) to avoid the parameters where the family is
degenerate and compute the elimination ideal to eliminate the variables a and
b. This results in the single equation in (�1, �2, �3) in the statement.

The parameterizationwas computed inMagma and is easily checked by sub-
stituting (�1, �2, �3) = (�1∕�4, �2∕�4, �3∕�4) into the surface equation.

The singular locus is also computed in Magma and its irreducible compo-
nents computed in Sage are given by

S1 ∶
⎧

⎨
⎩

�3 = 4
�2 = 6
�1 = 4

S2 ∶ {�1 − 2�2 − �3 + 12 = 0
4�22 + 4�2�3 + �23 − 60�2 − 28�3 + 216 = 0

S3 ∶ {�
2
2 − 3�1�3 − 24�1 + 12�2 + 36 = 0
6�21 + �1�2 + 15�1 − 18�2 − 9�3 − 36 = 0.

To analyze the components, we proceed similarly through elimination of
variables. Starting with the ideal de�ned by the equations of the component
along with the de�ning equations of the �xed point multiplier invariants we
eliminate (�1, �2, �3) to get an ideal in a and b. Then we saturate by (ab − 1) to
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avoid the degenerate elements. The component S1 corresponds to the degener-
ate case a = b = 1.

The component S2 results in the components

(a + b + 6)(b − a)2 = 0.
When a = b, this is the component of A3(D2) from Proposition 3.2.

The component S3 results in the components

(ab + 2b − 3)2(ab + 2a − 3)2 = 0.

These correspond to a = 3
b+2

and b = 3
a+2

. Since fa,b and fb,a are conjugate by
�(z) = 1

z
, this is a single component in the moduli space. �

Now we move to the next family with a C2 symmetry, ga,b(z) =
az2+1
z3+bz

.

Lemma 3.7. For the family ga,b(z) =
az2+1
z3+bz

, the image of themap �1 ∶ [ga,b] ↦
(�1, �2, �3) is a curve given by

0 = �3 − 2�2 − �1 + 12
0 = 4�22 + 4�2�1 + �21 − 60�2 − 28�1 + 216.

Proof. The �xed point multiplier invariants give the equations

0 = (4a2 − 4ab + 4b2 + 12) − �1(ab − 1)
0 = (4a4 − 12a3b + 22a2b2 − 12ab3 + 4b4 + 28a2 − 52ab + 28b2 + 54)
− �2(a2b2 − 2ab + 1)

0 = (−8a4 + 28a3b − 36a2b2 + 28ab3 − 8b4 − 60a2 + 96ab − 60b2 − 108)
− �3(a2b2 − 2ab + 1).

Saturating with respect to (ab − 1) to avoid degeneracy and eliminating a and
b give the stated equations. �

To study the geometry of this family, we need to use themultiplier invariants
of the periodic points of period 2.

Lemma 3.8. De�ne ga,b(z) =
az2+1
z3+bz

. The map

' ∶ A2 ⧵ {ab = 1} → ℳ3

(a, b) ↦ [ga,b]
is four-to-one. The map

�1 ∶ '(A2 ⧵ {ab = 1}) → A5

[ga,b] ↦ (�(1)1 , �(1)2 , �(1)3 , �(2)1 , �(2)2 )
is injective.
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Proof. To compute the degree of ', we consider the ideal generated by
(
�1(a, b), �2(a, b), �3(a, b), �

(2)
1 (a, b), �(2)2 (a, b)

)

=
(
�1(c, d), �2(c, d), �3(c, d), �

(2)
1 (c, d), �(2)2 (c, d)

)

as an ideal inK[a, b]whereK is the function �eldℚ(c, d). This forms a zero di-
mensional variety and Singular (via Sage) computes the degree of its projective
closure as 4. For (almost) every choice of (c, d), we have the four pairs (a, b) ∈
{(c, d), (d, c), (−c, −d), (−d,−c)}. The functions ga,b(z) and gb,a(z) are conju-
gate via �1(z) =

1
z
, and ga,b(z) and g−a,−b(z) are conjugate via �2(−z) = iz. So

the four points with the same A5 coordinates all are from the same conjugacy
class. �

Proposition 3.9. The component ofA3(C2) given by ga,b(z) =
az2+1
z3+bz

is an irre-
ducible surface de�ned by

0 = �1 − 2�2 − �3 + 12

0 = 4�22 + 4�2�3 + �23 − 60�2 − 28�3 + 216

0 = 1632�2�53 + 792�63 + 3648�2�43�
(2)
1 + 1760�53�

(2)
1 + 1248�2�33(�

(2)
1 )2 + 596�43(�

(2)
1 )2

− 1152�2�23(�
(2)
1 )3 − 544�33(�

(2)
1 )3 − 216�2�3(�

(2)
1 )4 − 98�23(�

(2)
1 )4 + 96�2(�

(2)
1 )5 + 40�3(�

(2)
1 )5

+ (�(2)1 )6 − 414816�2�43 − 195424�53 − 602880�2�33�
(2)
1 − 284512�43�

(2)
1 − 111648�2�23(�

(2)
1 )2

− 53760�33(�
(2)
1 )2 + 54720�2�3(�

(2)
1 )3 + 28048�23(�

(2)
1 )3 + 1176�2(�

(2)
1 )4 + 1480�3(�

(2)
1 )4

− 624(�(2)1 )5 + 5248�2�33�
(2)
2 + 2512�43�

(2)
2 + 6784�2�23�

(2)
1 �(2)2 + 3200�33�

(2)
1 �(2)2

− 128�2�3(�
(2)
1 )2�(2)2 − 64�23(�

(2)
1 )2�(2)2 − 768�2(�

(2)
1 )3�(2)2 − 320�3(�

(2)
1 )3�(2)2 − 12(�(2)1 )4�(2)2

+ 18436608�2�33 + 9945984�43 + 16035200�2�23�
(2)
1 + 9804928�33�

(2)
1 + 1465472�2�3(�

(2)
1 )2

+ 1204512�23(�
(2)
1 )2 − 313536�2(�

(2)
1 )3 − 434624�3(�

(2)
1 )3 − 6720(�(2)1 )4 − 515968�2�23�

(2)
2

− 247040�33�
(2)
2 − 306944�2�3�

(2)
1 �(2)2 − 158400�23�

(2)
1 �(2)2 + 9984�2(�

(2)
1 )2�(2)2

+ 4736�3(�
(2)
1 )2�(2)2 + 4992(�(2)1 )3�(2)2 + 3968�2�3(�

(2)
2 )2 + 1824�23(�

(2)
2 )2 + 1536�2�

(2)
1 (�(2)2 )2

+ 640�3�
(2)
1 (�(2)2 )2 + 48(�(2)1 )2(�(2)2 )2 − 244431360�2�23 − 201129984�33 − 120701952�2�3�

(2)
1

− 138880512�23�
(2)
1 − 5380992�2(�

(2)
1 )2 − 10551168�3(�

(2)
1 )2 + 1890944(�(2)1 )3

+ 7087104�2�3�
(2)
2 + 5656320�23�

(2)
2 + 1651968�2�

(2)
1 �(2)2 + 2407680�3�

(2)
1 �(2)2

− 59520(�(2)1 )2�(2)2 − 58752�2(�
(2)
2 )2 − 42624�3(�

(2)
2 )2 − 9984�(2)1 (�(2)2 )2 − 64(�(2)2 )3

+ 1187592192�2�3 + 1880381952�23 + 265006080�2�
(2)
1 + 812934144�3�

(2)
1 + 32237568(�(2)1 )2

− 20653056�2�
(2)
2 − 49351680�3�

(2)
2 − 9967104�(2)1 �(2)2 + 345600(�(2)2 )2 − 1903564800�2

− 7759079424�3 − 1591031808�(2)1 + 123669504�(2)2 + 11418402816

0 = 1224�73 + 3792�63�
(2)
1 − 46800�2�43(�

(2)
1 )2 − 20564�53(�

(2)
1 )2 − 79680�2�33(�

(2)
1 )3 − 40856�43(�

(2)
1 )3

+ 1680�2�23(�
(2)
1 )4 − 374�33(�

(2)
1 )4 + 27600�2�3(�

(2)
1 )5 + 13988�23(�

(2)
1 )5 − 5580�2(�

(2)
1 )6

− 2665�3(�
(2)
1 )6 − 22(�(2)1 )7 + 670152�63 + 26777472�2�43�

(2)
1 + 14457920�53�

(2)
1

+ 27403200�2�33(�
(2)
1 )2 + 13581308�43(�

(2)
1 )2 − 17123904�2�23(�

(2)
1 )3 − 8575280�33(�

(2)
1 )3

− 7057920�2�3(�
(2)
1 )4 − 3318902�23(�

(2)
1 )4 + 3338448�2(�

(2)
1 )5 + 1331704�3(�

(2)
1 )5 + 78251(�(2)1 )6

+ 120768�2�43�
(2)
2 + 66096�53�

(2)
2 + 204416�2�33�

(2)
1 �(2)2 + 114464�43�

(2)
1 �(2)2

− 142720�2�23(�
(2)
1 )2�(2)2 − 67136�33(�

(2)
1 )2�(2)2 − 179968�2�3(�

(2)
1 )3�(2)2 − 93248�23(�

(2)
1 )3�(2)2
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+ 58512�2(�
(2)
1 )4�(2)2 + 28460�3(�

(2)
1 )4�(2)2 + 264(�(2)1 )5�(2)2 − 8650305696�2�43 − 4002683936�53

− 14959662720�2�33�
(2)
1 − 6856974368�43�

(2)
1 − 3459567584�2�23(�

(2)
1 )2 − 1619872288�33(�

(2)
1 )2

+ 1631518720�2�3(�
(2)
1 )3 + 743089904�23(�

(2)
1 )3 + 44906280�2(�

(2)
1 )4 + 48051640�3(�

(2)
1 )4

− 22136400(�(2)1 )5 + 53976320�2�33�
(2)
2 + 28303472�43�

(2)
2 + 128916096�2�23�

(2)
1 �(2)2

+ 63843648�33�
(2)
1 �(2)2 + 5531008�2�3(�

(2)
1 )2�(2)2 + 2665024�23(�

(2)
1 )2�(2)2 − 27134208�2(�

(2)
1 )3�(2)2

− 11018304�3(�
(2)
1 )3�(2)2 − 884100(�(2)1 )4�(2)2 + 352512�2�23(�

(2)
2 )2 + 184416�33(�

(2)
2 )2

+ 278272�2�3�
(2)
1 (�(2)2 )2 + 149184�23�

(2)
1 (�(2)2 )2 − 200256�2(�

(2)
1 )2(�(2)2 )2 − 99760�3(�

(2)
1 )2(�(2)2 )2

− 1056(�(2)1 )3(�(2)2 )2 + 516653715456�2�33 + 263589240192�43 + 484361825920�2�23�
(2)
1

+ 278148291968�33�
(2)
1 + 48513480448�2�3(�

(2)
1 )2 + 38458271328�23(�

(2)
1 )2 − 10359552576�2(�

(2)
1 )3

− 13327529920�3(�
(2)
1 )3 − 254963456(�(2)1 )4 − 14139669632�2�23�

(2)
2 − 6383331328�33�

(2)
2

− 9563209216�2�3�
(2)
1 �(2)2 − 4488508992�23�

(2)
1 �(2)2 + 294902016�2(�

(2)
1 )2�(2)2

+ 92512768�3(�
(2)
1 )2�(2)2 + 179583360(�(2)1 )3�(2)2 + 98552320�2�3(�

(2)
2 )2

+ 46508640�23(�
(2)
2 )2 + 55121664�2�

(2)
1 (�(2)2 )2 + 22765952�3�

(2)
1 (�(2)2 )2 + 3316752(�(2)1 )2(�(2)2 )2

+ 221952�2(�
(2)
2 )3 + 114240�3(�

(2)
2 )3 + 1408�(2)1 (�(2)2 )3 − 7578572244480�2�23 − 5917873162752�33

− 3908513912832�2�3�
(2)
1 − 4290578293248�23�

(2)
1 − 184908562560�2(�

(2)
1 )2

− 351150788736�3(�
(2)
1 )2 + 62583639424(�(2)1 )3 + 225002594304�2�3�

(2)
2 + 166476388608�23�

(2)
2

+ 55674839808�2�
(2)
1 �(2)2 + 76642562304�3�

(2)
1 �(2)2 − 1751409024(�(2)1 )2�(2)2 − 1933117056�2(�

(2)
2 )2

− 1197765504�3(�
(2)
2 )2 − 364151040�(2)1 (�(2)2 )2 − 4129472(�(2)2 )3 + 38553253060608�2�3

+ 58922313076224�23 + 8872947753984�2�
(2)
1 + 26426257744896�3�

(2)
1 + 1107358166016(�(2)1 )2

− 687110999040�2�
(2)
2 − 1576478785536�3�

(2)
2 − 336460829184�(2)1 �(2)2 + 11296544256(�(2)2 )2

− 63399291660288�2 − 252407226636288�3 − 53281131595776�(2)1 + 4111788303360�(2)2
+ 380265217671168.

This surface is singular with singular locus given by the conjugacy classes de-
scribed by

{(a, b) ∶ a2 − ab + b2 + 3 = 0} ∪ {(a, b) ∶ a = −b}.

Proof. We compute the �xed point multiplier invariants and the �rst twomul-
tiplier invariants for the points of period 2:

�1 =
4a2 − 4ab + 4b2 + 12

ab − 1

�2 =
4a4 − 12a3b + 22a2b2 − 12ab3 + 4b4 + 28a2 − 52ab + 28b2 + 54

a2b2 − 2ab + 1

�3 =
−8a4 + 28a3b − 36a2b2 + 28ab3 − 8b4 − 60a2 + 96ab − 60b2 − 108

a2b2 − 2ab + 1

�(2)1 = 2a3b3 + 16a4 + 4a2b2 + 16b4 + 18ab + 72
a2b2 − 2ab + 1

�(2)2 = 1
(ab − 1)4

(a6b6 + 32a7b3 + 12a5b5 + 32a3b7 + 96a8 + 16a6b2

+ 290a4b4 + 16a2b6 + 96b8 + 512a5b + 204a3b3 + 512ab5 + 80a4

− 151a2b2 + 80b4 + 2268).
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We clear denominators to create the associated ideal. We saturate by the ideal
(ab − 1) to avoid degeneracy and eliminate the variables a and b. This results
in the surface de�ned by the four equations in the statement.

The irreducible components of the singular locus are calculated in Magma.
For each component, we eliminate variables to have equations in (�1, �2, �3) to
get

S1 ∶

⎧
⎪
⎨
⎪
⎩

0 = �22 − 24�2 − 4�3 + 108
0 = �2�3 + 36�2 + 6�3 − 216
0 = �23 − 108�2 − 36�3 + 648
0 = �1 − 2�2 − �3 + 12

S2 ∶

⎧
⎪
⎨
⎪
⎩

0 = �22 − 3048�2 − 1372�3 + 13500
0 = �2�3 + 6408�2 + 2886�3 − 28512
0 = �23 − 13500�2 − 6084�3 + 60264
0 = �1 − 2�2 − �3 + 12

S3 ∶

⎧
⎪
⎨
⎪
⎩

0 = �33 + 549�23 − 3037500�2 − 1333908�3 + 14819112
0 = �22 − 7∕30�23 + 102�2 + 238∕5�3 − 2808∕5
0 = �2�3 + 29∕60�23 − 117�2 − 273∕5�3 + 3078∕5
0 = �1 − 2�2 − �3 + 12.

To determine the pairs (a, b) for each of these components, we add in the equa-
tions de�ning the invariants in terms of a and b and eliminate �1, �2, �3. This
results in the de�ning equations

S1 ∶ (a2 − ab + b2 + 3)3 = 0
S2 ∶ (a + b)6 = 0
S3 ∶ (a + b)8 = 0.

Note that the component(s) with a = −b is the component of A3(D2) from
Proposition 3.4. �

4. Automorphism loci inℳ4

As for A3 we utilize Miasnikov, Stout, and Williams [MSW14] to determine
the possible components ofA4 and their dimensions. Unlike inℳ3, inℳ4 there
are no automorphism groups other than cyclic and dihedral ones.

Lemma 4.1. When deg(f) = 4, Aut(f) must either be C2, C3, C4, C5, D3, or
D5. The dimensions of A4(Γ) for these groups are given by

(1) dimA4(C2) = 3, dimA4(C3) = 2, dimA4(C4) = 1, and
dimA4(C5) = 0.

(2) dimA4(D3) = 1, and dimA4(D5) = 0.
Moreover,

(4) A4(C4) ⊂ A4(C2).
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(5) A4(D3) ⊂ A4(C3).
(6) A4(D5) ⊂ A4(C5).

Proof. Which groups occur and their dimensions are calculated in Section 2
of MSW [MSW14]. The second half follows from the observation that if G is a
subgroup ofH, then Ad(H) ⊆ Ad(G). �

The analysis inℳ4 for functions whose automorphism group contains cyclic
and dihedral groups is more or less the same as inℳ3 – in particular, we made
use of the fact that for a function f, if Aut(f) ⊇ Cn then the equivalence class
of f inℳ4 can be written as f = z ⋅ (zn), where  is a rational function [Sil95,
Proposition 7.3].

4.1. A4(C5) and A4(D5).

Proposition 4.2. The loci A4(C5) and A4(D5) both are the single conjugacy
class given by f(z) = 1

z4
.

Proof. The only form  can take such that z ⋅  (z5) is degree four is when
 (z5) = a

bz5
, where ab ≠ 0. We can divide through by a to write z ⋅ (z5) = 1

cz4
;

and since this is conjugate to f(z) = 1
z4
, we know that A4(C5) is just a point in

ℳ4. Furthermore, Aut(f) = D5 so that A4(C5) = A4(D5). �

4.2. A4(C4).

Proposition 4.3. The locus A4(C4) is an irreducible curve inℳ4 given by the
1-parameter family fk(z) =

z4+1
kz3

for k ≠ 0.

Proof. Functions of the form f(z) = z ⋅  (z4) have degree 4 only when

f1(z) =
az4 + b
cz3 or f2(z) =

bz
cz4 + d ,

where all the coe�cients must be nonzero (or else we have a drop in degree
due to cancellation). Thus, in both cases we can divide through by the coe�-
cient of z4 to have two-parameter families. Then in the �rst case, we can conju-

gate f1(z) =
z4+k1
k2z3

via the matrix � = [
4
√
k1 0
0 1] to get a one-parameter family

f′1(z) =
z4+1
kz3

, which is what we should expect since the dimension of this locus

is 1 by Lemma 4.1. In the second case, we can conjugate f2(z) =
k1z
z4+k2

by the

matrix � = [
4
√
k2 0
0 1] to get a one-parameter family f′2(z) =

kz
z4+1

. These two

one-parameter families are conjugate via [0 1
1 0], so they are the same family in

the moduli space. �
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4.3. A4(C3) and A4(D3).

Proposition 4.4. The locus A4(C3) is given by the family fk1,k2(z) =
z4+k1z
k2z3+1

.

Proof. By Lemma 4.1 the locus A4(C3) is dimension 2 and functions of the
form f(z) = z ⋅  (z3) have degree 4 only when

f(z) = az4 + bz
cz3 + d ,

where a ≠ 0 and d ≠ 0. Thus, dividing through by a, we get the 3-parameter
family

f(z) = z4 + k1z
k2z3 + k3

,

where k3 ≠ 0. Conjugating via the matrix � = [
3
√
k3 0
0 1], we get

f�(z) =
( 3
√
k3z)4 + k1 3

√
k3z

k2( 3
√
k3z)3 + k3

⋅ 1
3
√
k3

= k3z4 + k1z
k2k3z3 + k3

=
z4 + k1∕k3z
k2z3 + 1 .

Renaming k1 = k1∕k3 and k2 = k2, we see that f�(z) =
z4+k1z
k2z3+1

. Thus, every
degree 4 rational map with a C3 automorphism is conjugate to a map of the
form

fk1,k2(z) =
z4 + k1z
k2z3 + 1.

�

Recall that D3 is generated by �1(z) = �3z and �2(z) = 1∕z, where �3 is a
primitive third root of unity. Maps with automorphism group containing �3z
are described in Proposition 4.4, so we can start with that family and see which
members additionally have �2 as automorphism.

Proposition 4.5. The locus A4(D3) is an irreducible curve inℳ4 given by the
family fk(z) =

z4+kz
kz3+1

.

Proof. Let fk1,k2(z) =
z4+k1z
k2z3+1

. We compute

f�2k1,k2(z) =
z4 + k2z
k1z3 + 1.

So for fk1,k2(z) = f�2k1,k2(z) we must have k1 = k2. �
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4.4. A4(C2).
Proposition 4.6. The locus A4(C2) is given by the 3-parameter family

fk1,k2,k3(z) =
z4 + k1z2 + 1
k2z3 + k3z

.

Proof. By Lemma 4.1 we know the automorphism loci of C2 in the moduli
space has dimension 3. Furthermore, we know that a degree 4map f has a C2
automorphism if and only if it is of the form

f1(z) =
az4 + bz2 + c
dz3 + ez or f2(z) =

az3 + bz
cz4 + dz2 + e .

First observe that for the family f2(z), we can conjugate by the matrix � =
[0 1
1 0] to obtain

f�2 (z) =
c + dz2 + ez4
az + bz3 .

Thus, the families f1 and f2 are the same in moduli space, so we consider only
f1(z). For f1(z) to be degree 4, we need a ≠ 0 and c ≠ 0. Dividing through by
a, we get

f1(z) =
z4 + k1z2 + k2
k3z3 + k4z

,

where k2 ≠ 0. Conjugating via the matrix � = [
4
√
k2 0
0 1], we get

f�1 (z) =
( 4
√
k2)4z4 + k1( 4

√
k2)2z2 + k2

k3( 4
√
k2)3z3 + k4 4

√
k2z

⋅ 1
4
√
k2

=
z4 + k1

4√k2
2 z2 + 1

k3z3 +
k4
4√k2

2 z
.

Renaming k1 =
k1
4√k2

2 , and k2 = k3, and k3 =
k4
4√k2

2 , we see that every f1 map is

conjugate to a map of the form

fk1,k2,k3(z) =
z4 + k1z2 + 1
k2z3 + k3z

.

�

5. Geometry of certain automorphism loci inℳ4

In this section, we examine the geometry of automorphism lociA4(Γ) ⊂ ℳ4.
Similar to the methods in Section 3, we study the embedding via multiplier
invariants

�n ∶ ℳ4 → Ak

[f] ↦ (�(n)1 , … , �(n)4n+1)
and the geometry of the image of this embedding.
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5.1. A4(C4). We start with the family fk(z) =
z4+1
kz3

for k ≠ 0.

Lemma 5.1. The maps

' ∶ A1 ⧵ {0} → ℳ4

k ↦ [fk]
and

�1 ∶ '(A1 ⧵ {0}) → A4

[fk] ↦ (�(1)1 , �(1)2 , �(1)3 , �(1)4 )
are injective.

Proof. We show the composition �1◦' is injective, and thus, both maps are
injective.

Consider the ideal generated by

(�1(k1), �2(k1), �3(k1), �4(k1)) = (�1(k2), �2(k2), �3(k2), �4(k2)).
Computing its lexicographic Groebner basis, we get two generators:

k21 + 8k1 − k22 − 8k2,
k1k22 + 8k1k2 + 16k1 − k32 − 8k22 − 16k2.

These factor as

(k1 − k2)(k1 + k2 + 8),
(k1 − k2)(k2 + 4)2.

The �rst says that for fk1 and fk2 to have the same �xed point multiplier invari-
ants, we must have k1 = k2 or k2 = −4. However, if k2 = −4, then the second
generator tells us that k1 = −4 and we are still in the case k1 = k2. Thus, the
map ' and the map �1 are one-to-one. �

Proposition 5.2. The curve inA4 given by the image of �1 on the familyfk(z) =
z4+1
kz3

of A4(C4) is given by the system of equations

0 = 36�31 + 3�21�2 + 222�21 − 96�1�2 − 8�22 + 240�1 − 560�2 − 800
0 = −12�21 − �1�2 − 14�1 + 32�2 + 6�3 + 40
0 = 144�21 − �22 + 288�1 − 448�2 + 36�4 − 640.

It is a singular irreducible curve of genus 0 and the singularity corresponds to
the rational map

f(z) = z4 + 1
−4z3 .

Proof. The �xed point multiplier invariants give the equations

0 = (k2 − 12k + 16) − k�1
0 = (−12k3 + 70k2 − 144k + 96) − k2�2
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0 = (54k4 − 252k3 + 528k2 − 576k + 256) − k3�3
0 = (−108k5 + 513k4 − 1008k3 + 1120k2 − 768k + 256) − k4�4.

Saturating by the ideal (k) and looking at the generators gives the stated equa-
tions. Using Sage, we can determine that these relations de�ne a singular, irre-
ducible curve of genus 0 in A4. The only point of singularity is

(−20, 160, −640, 1280)
and it corresponds to the rational map in the statement. �

5.2. A4(D3). We now move on to the family fk(z) =
z4+kz
kz3+1

with k ≠ ±1.

Lemma 5.3. The maps

' ∶ A1 ⧵ {±1} → ℳ4

k ↦ [fk]
and

�1 ∶ '(A1 ⧵ {±1}) → A4

[fk] ↦ (�(1)1 , �(1)2 , �(1)3 , �(1)4 )
are injective.

Proof. We show the composition �1◦' is injective, and thus, both maps are
injective.

We want to compute the ideal generated by

(�1(k1), �2(k2), �3(k1), �4(k1)) = (�1(k2), �2(k2), �3(k2), �4(k2)).
This gives the ideal generated by

k21 + 8k1 − k22 − 8k2,
k1k22 + 8k1k2 + 16k1 − k32 − 8k22 − 16k2.

This ideal is the same as the ideal considered in the proof of Lemma 5.1, so the
result follows at once. �

Proposition 5.4. The curve given by the image of �1 on the family fk(z) =
z4+kz
kz3+1

of A4(D3) is de�ned by

0 = �41 − 14�31 − 7�21�2 + 67�21 + 44�1�2 + 12�22 − 360�1 − 160�2 + 1200
0 = �31 + 2�21 − 4�1�2 − 21�1 − 2�2 + 9�3 + 60
0 = −2�31 + 5�21 + 8�1�2 − 48�1 − 32�2 + 9�4 + 240.

It is a singular irreducible curve of genus 0, and the singularity
(−20, 160, −640, 1280) corresponds to the rational map

f(z) = z4 − 4z
−4z3 + 1.
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Proof. The �xed point multiplier invariants give the equations

0 = (2k2 − 4k + 12) − (k + 1)�1
0 = (k4 − 10k3 + 25k2 − 24k + 48) − (k2 + 2k + 1)�2
0 = (−6k5 + 24k4 − 62k3 + 60k2 + 64) − (k3 + 3k2 + 3k + 1)�3
0 = (12k5 − 52k4 + 96k3 − 144k2 + 128k) − (k3 + 3k2 + 3k + 1)�4.

Eliminating k gives the stated equations involving only the �xed point multi-
plier invariants. Choosing an appropriate monomial ordering, we arrive at the
stated relations. These relations de�ne a singular, irreducible curve of genus
0 in A4. The only point of singularity is (−20, 160, −640, 1280). This choice of
�xed point multiplier invariants corresponds to the rational map in the state-
ment.

�

5.3. A4(C3). Now we move on to study the family fk1,k2(z) = z4+k1z
k2z3+1

, with
k1k2 ≠ 1.

Lemma 5.5. The map

' ∶ A2 ⧵ {k1k2 = 1} → ℳ4

(k1, k2) ↦ [fk1,k2]

is two-to-one. The map

�1 ∶ '(A2 ⧵ {k1k2 = 1}) → A3

[fk] ↦ (�(1)1 , �(1)2 , �(1)3 )

is injective.

Proof. To compute the degree of ', we consider the ideal generated by

(�1(k1, k2), �2(k1, k2), �3(k1, k2)) = (�1(t1, t2), �2(t1, t2), �3(t1, t2))

as an ideal in K[k1, k2], where K is the function �eld ℚ(t1, t2). This forms a
zero dimensional variety, and Singular (via Sage) computes the degree of its
projective closure as 2. For (almost) every choice of (t1, t2) we have two pairs
(k1, k2) ∈ {(t1, t2), (t2, t1)} and one can easily verify that fk1,k2 and fk2,k1 are
conjugate via �(z) = 1

z
.

�

It is interesting to note that �(1)4 is determined uniquely by
(�(1)1 , �(1)2 , �(1)3 ). This is not typical for elements ofℳ4. We do have the standard
linear relationship between (�(1)1 , �(1)2 , �(1)3 ) and �(1)5 for all maps inℳ4, but the
dependence of �(1)4 is special to this family.
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Proposition 5.6. The image of the family fk1,k2(z) =
z4+k1z
k2z3+1

of A4(C3) under
�1 is the surface given by

0 = 972�51 − 324�41�2 − 135�31�
2
2 − 54�21�

3
2 + 324�41�3 + 162�31�2�3

− 9�21�
2
2�3 + 27�31�

2
3 + 648�41 − 5724�31�2 + 1404�21�

2
2 + 480�1�32 + 192�42

+ 540�31�3 − 1224�21�2�3 − 648�1�22�3 + 32�32�3 − 108�1�2�23 + 1188�31
− 3672�21�2 + 7776�1�22 − 896�32 + 5364�21�3 − 3024�1�2�3 − 384�22�3
+ 1404�1�23 + 648�2�23 + 108�33 + 2160�21 − 5760�1�2 + 3840�22
+ 4320�1�3 − 10560�2�3 + 2160�23 − 33600�1 + 28800�2 − 17600�3
+ 32000.

This surface is reduced, irreducible, and singular with singular locus given by
the conjugacy classes described by

(k1, k2) ∈{(0, 4∕3)} ∪ {(−4, −4)} ∪ {(9∕4, −4)}
⋃

{( 3888t + 46656
9t3 + 216t2 + 1944t ,

t3 + 18t2
9t2 + 216t + 1944) ∶ t ≠ 0 ∈ ℚ} (3)

⋃
{( 9t − 36
−3t + 24, −

8 − t
3 ) ∶ t ∈ ℚ ⧵ {8}} (4)

⋃
{( −16
2t − 6,

−t − 3
2 ) ∶ t ∈ ℚ ⧵ {3}} (5)

Proof. As usual, we �rst compute the �xed point multiplier invariants using
only the �rst three:

�1 =
1

k1k2 − 1(k
2
1k2 + k1k22 − 6k1k2 + 8k1 + 8k2 − 12)

�2 =
1

(k1k2 − 1)2
(k31k

3
2 − 6k31k

2
2 − 6k21k

3
2 + 9k31k2 + 28k21k

2
2 + 9k1k32 − 42k21k2

− 42k1k22 + 18k21 + 85k1k2 + 18k22 − 60k1 − 60k2 + 48)

�3 =
1

(k1k2 − 1)3
(−6k41k

4
2 + 21k41k

3
2 + 21k31k

4
2 − 36k41k

2
2 − 80k31k

3
2 − 36k21k

4
2

+ 27k41k2 + 135k31k
2
2 + 135k21k

3
2 + 27k1k42 − 90k31k2 − 210k21k

2
2 − 90k1k32

+ 153k21k2 + 153k1k22 − 36k21 − 180k1k2 − 36k22 + 96k1 + 96k2 − 64).

We look at the ideal inℚ[k1, k2, �1, �2, �3] generated by the de�ning equations
of the invariants. We saturate by the ideal (k1k2 − 1) to avoid degeneracy and
eliminate the variables k1 and k2. This results in the surface de�ned by the
equation in the statement.

Using Magma, we see that the surface is reduced, irreducible, and singular.
Since this is a hypersurface, we compute the singular locus as the points on the
surface that also vanish on the partial derivatives of the de�ning equation. This
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variety has irreducible components

S1 ∶ {0 = �3 = �2
0 = 3�1 − 4

S2 ∶ {0 = 15�1 + 6�2 + �3 − 20
0 = 36�22 + 12�2�3 + �23 − 320�+80�3

S3 ∶

⎧
⎪
⎨
⎪
⎩

0 = 15�1�2 + 8�22 − 18�1�3 − 150�1 + 80�2 − 90�3 + 200
0 = 90�21 − 4�22 + 9�1�3 + 180�1 − 280�2 − 400
0 = 90�32 + 128�22�3 − 288�1�23 + 1800�22 − 4950�1�3 + 1280�2�3

− 1215�23 − 45000�1 + 30000�2 − 14800�3 + 60000.
The general procedure of analyzing the components is similar to the one used

in Section 3: we start with the ideal de�ned by the equations of the component
along with the de�ning equations of the �xed point multiplier invariants, elim-
inate (�1, �2, �3), and �nally saturate by (k1k2 − 1). The �rst component S1
corresponds to the case k1 = 0 and k2 = 4∕3.

The component S2 results in a rational curve given by

0 = (k1 + k2 + 8)(9k31k2 − 14k21k
2
2 + 9k1k32 + 12k21k2

+ 12k1k22 + 4k1k2 − 48k1 − 48k2 + 64)
0 = (k2 + 4)2(9k31k2 − 14k21k

2
2 + 9k1k32 + 12k21k2 + 12k1k22 + 4k1k2

− 48k1 − 48k2 + 64).
The common factor gives the rational curve (3) parameterized in the statement.
If k2 = −4, then either k1 = −4 or k1 = 4∕9 give the other two singular points.

The component S3 results in a variety with the two irreducible components

0 = k1k2 + 3k2 − 4 and k1k2 + 3k1 − 4 = 0.

These are conjugate by swapping (k1, k2) → (k2, k1) via z ↦
1
z
. This gives the

two curves (4) and (5) and �nishes the parameterization given in the statement.
�

5.4. A4(C2). We now move on to the family fk1,k2,k3(z) =
z4+k1z2+1
k2z3+k3z

.
This family has in�nitely many conjugacy classes that have the same �xed

point multiplier invariants. Computing the multiplier invariants for points of
period two was computationally infeasible, but computing the multiplier in-
variants for the points of formal period two was possible. We recall the de�ni-
tion of dynatomic polynomials and formal periodic points. For a rational map
f(z) = F(z)

G(z)
de�ne Φ1(f) = F(z) − zG(z) and Φn(f) = Φ1(fn) for n > 1. The

roots of Φn(f) are the points with period n. We de�ne the nth dynatomic poly-
nomial as Φ∗n =

∏
d∣n Φd(f)

�(n∕d) where � is the Möbius function. Its roots are
the points of formal period n and contain among them the points of minimal
period n. Similarly, for strictly preperiodic points, we de�ne the generalized
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(m, n)-dynatomic polynomial as Φ∗m,n(f) =
Φ∗n(fm)
Φ∗n(fm−1)

form ≥ 1. Its roots are the
points of formal period (m, n) and contain among them the points of minimal
period (m, n). See Silverman [Sil07, §4.1] for dynatomic polynomials and Hutz
[Hut15] for generalized dynatomic polynomials. We can also construct invari-
ants from the multipliers of the formal periodic points of period n and notate
them as �(n)∗i .

Utilizing just the�(2)∗1 did result in a �nite-to-onemap, but therewere a num-
ber of spurious values appearing. Additionally including �(2)∗2 resulted in the
correct mapping. As the computation is quite time and memory consuming,
we record the two higher multiplier invariants here.

�(2)∗1 = −1
(k22 + k23 − k1k2k3)2

(
(8k23 − 12)k42 + (−8k1k33 + 40k23 − 24k1k3 + (40k21 − 96))k32

+ (−8k1k33 + (−4k21 + 120)k23 + (−8k31 − 64k1)k3 + (−8k41 + 80k21 − 192))k22 + (−24k43
+ (−8k31 + 24k1)k33 + (8k21 + 160)k23 + (−16k31 + 64k1)k3)k2 + ((8k21 − 60)k43 − 32k1k33
+ (16k21 − 64)k23)

)

�(2)∗2 = 1
(k22 + k23 − k1k2k3)4

(
(24k43 − 136k23 − 126)k82 + (−48k1k53 + 320k43 − 56k1k33

+ (320k21 − 600)k23 − 440k1k3 + (168k21 + 288))k72 + ((24k21 − 16)k63 − 384k1k53 + (200k21
+ 1216)k43 + (−384k31 − 408k1)k33 + (−64k41 + 2452k21 − 2120)k23 + (−664k31 − 960k1)k3
+ (360k41 − 2704k21 + 5568))k62 + (16k1k73 + (64k21 − 32)k63 + (−72k31 − 1120k1)k53
+ (64k41 + 664k21 + 2712)k43 + (64k51 − 1168k31 − 2680k1)k33 + (−232k41 + 8312k21 − 9120)k23
+ (−16k51 − 528k31 + 832k1)k3 + (−160k61 + 2656k41 − 12288k21 + 16896))k52 + (−24k83
+ 160k1k73 + (64k41 + 32k21 − 296)k63 + (−360k31 − 112k1)k53 + (242k41 − 1120k21 + 6652)k43
+ (−232k51 − 624k31 − 7392k1)k33 + (40k61 − 976k41 + 10512k21 − 21312)k23 + (32k71 − 1216k51
+ 4992k31 − 2560k1)k3 + (16k81 − 448k61 + 3872k41 − 13568k21 + 16896))k42 + (−96k83 + (−64k31
+ 280k1)k73 + (64k41 + 312k21 − 2632)k63 + (72k51 − 920k31 + 6008k1)k53 + (64k61 + 952k41
− 4200k21 + 13152)k43 + (64k71 − 544k51 − 608k31 + 1920k1)k33 + (192k61 + 832k41
− 3072k21 − 13312)k23 + (192k71 − 2368k51 + 9728k31 − 13312k1)k3)k32 + (144k83
+ (128k31 − 600k1)k73 + (24k61 − 280k41 + 532k21 − 7720)k63 + (−128k51 − 952k31 + 6016k1)k53
+ (16k61 + 152k41 − 240k21 + 5184)k43 + (−192k51 − 4864k31 + 22528k1)k33 + (−160k61 + 2112k41
− 9216k21 + 13312)k23)k

2
2 + ((−192k21 + 1224)k83 + (−48k51 + 680k31 − 712k1)k73 + (320k41

− 824k21 − 6112)k63 + (−160k51 + 1776k31 − 6080k1)k53 + (736k41 + 512k21 − 13824)k43 + (−64k51
+ 512k31 − 1024k1)k33)k2 + ((24k41 − 472k21 + 1554)k83 + (−256k31 + 1696k1)k73
+ (80k41 − 1040k21 + 3392)k63 + (−640k31 + 2560k1)k53 + (32k41 − 256k21 + 512)k43)

)
.

The �rst two �xed point multiplier invariants are given by

�(1)1 = 1
k22 + k23 − k1k2k3

(
− k1k22k3 − 4k21k2 + k32 + 4k1k2k3 − 3k2k23 − 12k22

+ 4k23 + 16k2
)

�(1)2 = 1
(k22 + k23 − k1k2k3)2

(
4k31k

3
2k3 − 4k21k

3
2k

2
3 + 4k1k32k

3
3 + 4k41k

2
2 − 4k21k

4
2
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− 12k31k
2
2k3 + 16k1k42k3 + 18k21k

2
2k

2
3 − 4k42k

2
3 − 12k1k22k

3
3 + 28k21k

3
2

− 12k52 + 8k31k2k3 − 68k1k32k3 − 20k21k2k
2
3 + 20k32k

2
3 + 4k1k2k33 − 40k21k

2
2

+ 70k42 + 96k1k22k3 − 8k21k
2
3 − 28k22k

2
3 + 16k1k33 − 2k43 − 144k32

− 32k1k2k3 − 16k2k23 + 96k22 + 32k23
)
.

Proposition 5.7. The map

' ∶ A3 ⧵ {k22 + k23 = k1k2k3} → ℳ4

(k1, k2, k3) ↦ [fk1,k2,k3]

is generically two-to-one. The map

� ∶ '(A2 ⧵ {k22 + k23 = k1k2k3}) → A4

[fk] ↦ (�(1)1 , �(1)2 , �(2)∗1 , �(2)∗2 )

is injective.

Proof. Trying to compute the degree generically as in the previous familieswas
not feasiblewith our hardware resources, sowe instead specialize to a particular
choice of invariants and show that the degree is invariant under perturbation.

First note that the domain of ' is irreducible and the composition �◦' is a
morphism, so the image is also irreducible. From Milne [Mil17, Section 10]
the dimension of �bers in this situation can only go up in a closed set, and the
number of points in a speci�c �ber is at most the degree of themorphism and is
equal to the degree for nonsingular �bers. We choose a nonsingular �berwhere
the �ber dimension is zero and has two points in it showing that the degree is
two.

Choosing

(�(1)1 , �(1)2 , �(2)∗1 , �(2)∗2 ) = (−227 , −8249,
2164
49 , 7694422401 )

generates a system of equations in (k1, k2, k3). We take the associated ideal and
saturate with respect to (−k1k2k3+k22+k

2
3) to remove any degenerate solutions

from the system. The resulting ideal is given by

I = (k2 − 2, 3k1 − k3, k23 − 9).

This has the two solution (1, 2, 3) and (−1, 2, −3), which are conjugate via z ↦
iz. Call X the variety associated to I. The projective closure of X is dimension
0 and degree 2, so there should be two points when counted with multiplicity.
The two given solutions are both solutions of multiplicity 1, so they are all the
solutions to the system.

In general, we always get the two conjugate solutions

(k1, k2, k3), (−k1, k2, −k3),

so ' is two-to-one. Since these two solutions are conjugate, � is injective. �
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Computing the equation of the dimension three hypersurface for this family
via elimination was beyond the capabilities of our hardware.

6. Rational Preperiodic Structures inℳ3

Having completed the description of the loci A3 and A4 and some of their
geometric properties, we now turn to arithmetic dynamical properties of the
families that make up the automorphism loci. Speci�cally, we look at the pos-
sible structures of ℚ-rational preperiodic points. The main motivation is the
far-reaching and open conjecture of Morton and Silverman that the number of
rational preperiodic points should be bounded independently of the particular
map chosen.

Conjecture 6.1 (Morton-Silverman [MS94]). Letf ∶ ℙN → ℙN be amorphism
of degree d ≥ 2 de�ned over a number �eldK of degreeD. Then the number of
K-rational preperiodic points for f is bounded by a constant C depending only
on N, d, and D.

The best known results typically make some kind of restriction on f, such
as good reduction at certain primes. We are more interested in results such
as Poonen [Pon98] or Manes [Man08] that restrict to special families. There
are a number of results in this area, but we focus primarily on these two as
they are closest in type to our results for the families in A3 and A4. Poonen
completely classi�ed all possible ℚ-rational preperiodic graph structures for
the family fc(z) = z2 + c assuming that there are no rational periodic points
with minimal period at least 4. This has been generalized to quadratic �elds in
[DFK14]. Manes did the same for a family of quadratic rational maps with C2
automorphisms assuming there were no ℚ-rational periodic points with mini-
mal period at least 5. In particular, her family was the automorphism locusA2.
We proceed along the same lines as follows:

(1) Provide computational evidence of an upper bound on the minimal pe-
riod of a ℚ-rational preperiodic point.

(2) Analyze all possible rational preperiodic structures assuming that bound
on the minimal period.

In the case of the families with dimension in moduli space at most 1, we are
able to complete the classi�cation of rational preperiodic graph structures, with
the exception ofA4(D3), where the classi�cation has possibly �nitely many ex-
ceptional parameters. These results make heavy use of techniques for �nding
rational points on curves. For the families of dimension 2 and 3, the di�culty
in �nding all rational points on surfaces and dimension 3 varieties is the im-
pediment to completing those classi�cations. In lieu of a full classi�cation, we
examine the existence of periodic points and take a computational census of
the possible rational preperiodic graph structures. As techniques in these areas
improve, it would be good to return to this topic and complete those classi�ca-
tions.
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Weend this introductionwith a helpful lemma for points on curves and some
helpful references.

Lemma 6.2. LetC be a projective curve de�ned overℚ. Suppose that there is a
birational map de�ned overℚ between C and a smooth projective hyperelliptic
curve X over ℚ. Then the nonsingular rational points on C is bounded above
by |X(ℚ)|.

Proof. Since both C and X are curves, and C is birationally equivalent to X,
we know that there is aℚ-rational isomorphism between X and C, the smooth
projectivemodel ofC [Ful08, Theorem 3 in Section 7.5]. In particular, |C(ℚ)| =
|X(ℚ)|. Furthermore, we have a surjective map from C to C, so the number of
non-singular rational points on C is bounded above by |C(ℚ)| = |X(ℚ)|. The
only other rational points on C are the singular points that could come from
non-rational points on X. �

For references on curve quotienting and blow-ups, see Lorenzini [Lor96] and
Liu [Liu06].

6.1. The Single Conjugacy Classes. The cases A3(C4), A3(D4), and A3(A4)
consist of single conjugacy classes. Using the algorithm fromHutz [Hut15], we
compute each such structure.

Theorem 6.3. We have the following rational preperiodic structures.

∙ For A3(C4) = A3(D4), we represent the conjugacy class as f(z) = 1
z3
.

This function has rational periodic structure given by

∙
0

∙
∞
##

bb
∙
1
zz ∙

−1
ww

∙ ForA3(A4), we represent the conjugacy class as f(z) =
z3−3
−3z2

. This func-
tion has rational periodic structure given by

∙
0

∙
∞//
xx

Proof. Direct computation via the algorithm of Hutz [Hut15] as implemented
in Sage. �

6.2. A3(C3). We saw in Proposition 2.5 that the familyfa(z) =
z3+a
az2

with a ≠ 0
gives A3(C3).

We �rst examine an upper bound on the minimal period of a ℚ-rational pe-
riodic point. We make use of Lemma 6.4.

Lemma 6.4. If F ∈ ℚ[x, y] is irreducible over ℚ but is reducible over some
extension �eld K of ℚ, and all the components are de�ned over K, then every
rational point on the curve de�ned by F = 0 is singular.
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Proof. SupposeF factors intoF = g1g2…gn overK. Consider the set S = {g�1 ∶
� ∈ Gal(K∕ℚ)}. Observe �rst that g�1 has to be another component of F, since
F� = g�1g

�
2 …g

�
n = F. Then the polynomial g = ∏

ℎ∈S ℎ must be invariant
under the Galois action and is, therefore, de�ned over ℚ. Since g ∣ F and F is
irreducible, we know that g = F (up to scaling). In particular, for every gi and
gj, we can �nd a � ∈ Gal(K∕ℚ) such that g�i = gj. If P is a rational solution
to F = 0, it is a rational solution to some gi = 0. But gj(P) = g�i (�(P)) =
�(gi(P)) = 0, so P is in fact a root of all the components of F and, thus, must be
in the intersection. It then follows that Pmust be a singular point on the curve
de�ned by F = 0. �

Proposition 6.5. Let fa(z) =
z3+a
az2

.

(1) The point ∞ is �xed for all choices of parameter a. There is a second
ℚ-rational �xed point for the parameters a = 1

1−t3
for t ∈ ℚ ⧵ {0, 1}.

These are the only occurring ℚ-rational �xed points.
(2) There are no rational parameters a where fa(z) has a ℚ-rational peri-

odic point with minimal period 2 or 3.

Proof. Clearly∞ is �xed, so to look for additional �xed points, we examine the
�rst dynatomic polynomial

Φ∗1(fa) = (1 − a)z3 + a,
and the associated dynatomic curve Φ∗1(fa) = 0. We want values of a where
this curve admits rational points. Linearity in a allows us to quickly solve when
z = 1

t
∈ ℚ,

a = z3
z3 − 1 =

1
1 − t3 .

Each �nite �xed point z ∈ ℚ determines a unique a, so we can never havemore
than two rational �xed points.

To determine rational 2-cycles, we compute the second dynatomic polyno-
mial

Φ∗2(fa) = (a + 1)z6 + (−a3 + a2 + 2a)z3 + a2.
The curve de�ned byΦ∗2(fa) = 0, called the second dynatomic curve, has genus
3; so by Faltings’ theorem, it only has �nitely many rational points. Computing
with Magma we see that its projective closure has an order two automorphism
group and the quotient curve C in ℙ4 has de�ning equations

− 16x0x1 + 65x1x2 − 49x23 = 0
− 588800x20 − 108160x0x2 + 12675x22 + 129654x1x3 = 0

with projection map � ∶ V(Φ∗2(fa)) → C. The curve C is genus one and has
rational point (0 ∶ 1 ∶ 0 ∶ 0). We compute a Weierstrass model as

E ∶ y2 − 134217728
28588707 y = x3 − 40462027902156800

7355827511386641 .



AUTOMORPHISM LOCI FOR DEGREE 3 AND DEGREE 4 ENDOMORPHISMS 1653

The curve E is rank 0 with torsion subgroup isomorphic ℤ∕3ℤ. In particular,
C has at most 3 rational points. We �nd them through a point search as

{( 13160 ∶ 0 ∶ 1 ∶ 0) , (−
195
736 ∶ 0 ∶ 1 ∶ 0) , (0 ∶ 1 ∶ 0 ∶ 0)} .

Every rational point of the second dynatomic curvemust project to one of these
three points under �, so we compute all possible inverse images using Sage.

�−1 ( 13160 ∶ 0 ∶ 1 ∶ 0) = {(0 ∶ 0 ∶ 1), (0 ∶ 1 ∶ 0)}

�−1 (−195736 ∶ 0 ∶ 1 ∶ 0) = {(0 ∶ 0 ∶ 1), (0 ∶ 1 ∶ 0)}

�−1 (0 ∶ 1 ∶ 0 ∶ 0) = {(0 ∶ 0 ∶ 1), (0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0)}.
Note that these inverse images are not disjoint due to the highly singular nature
of the points (0 ∶ 0 ∶ 1), (0 ∶ 1 ∶ 0), and (1 ∶ 0 ∶ 0). Taking the union of these
inverse image sets gives the ℚ-rational points on the second dynatomic curve
as

{(0 ∶ 0 ∶ 1), (0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0)}.
Only one of these points is a�ne and it corresponds to a = 0 which is degen-
erate. Hence, there is no ℚ-rational value of a where fa has a 2-cycle with
ℚ-rational points.

Now we look at the rational 3-cycles. We want to determine if there are any
rational points on the third dynatomic curve de�ned by the vanishing of

Φ∗3,fa(a, z) =(a
2 + a + 1)z24 + (a6 + a5 + a4 + 6a3 + 7a2 + 8a)z21

+ (a10 + a9 + a8 + 2a7 + 3a6 + 4a5 + 15a4 + 21a3 + 28a2)z18

+ (a11 + 2a10 + 3a9 + 2a7 + 5a6 + 20a5 + 35a4 + 56a3)z15

+ (a12 + 2a11 + 4a10 − 2a9 − 2a8 + 15a6 + 35a5 + 70a4)z12

+ (a12 + 3a11 − a10 − 3a9 − 5a8 + 6a7 + 21a6 + 56a5)z9

+ (a12 − a10 − 4a9 + a8 + 7a7 + 28a6)z6

+ (−a10 + a8 + 8a7)z3 + a8.
This curve is reducible over ℚ, and it has the following components:

X1 ∶a2z6 + az6 + z6 + a2z3 + 2az3 + a2 = 0
X2 ∶a8z12 + a4z15 + a9z9 + z18 + 2a5z12 + a10z6 + 6az15

+ 15a2z12 − 2a7z6 + 20a3z9 − a8z3 + 15a4z6 + 6a5z3 + a6 = 0.
Both components are irreducible overℚ but reducible over some extension�eld
of ℚ. For curves satisfying this condition, we have Lemma 6.4. Thus, any ℚ-
rational points on the curve X1 must be in the intersection of the two compo-
nents. In particular, any ℚ-rational points must be singular. The only singular
point on X1 is (0, 0). We can similarly look at the other component X2. It turns
out that X2 is reducible over the extension �eldℚ(

√
−3) and both components
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are de�ned over this extension. Thus, we can use the same argument and com-
pute the singular points for X2. The only singular point is (0, 0). Thus, the only
ℚ-rational point on the dynatomic curve is (0, 0), but we cannot have a = 0
since a = 0 gives us a zero in the denominator for the rational map fa(z).
Therefore, no member of the family has rational 3-cycles. �

Remark 6.6. The two componentsX1 andX2 appear to be the values ofawhere
there is one 3-cycle with points de�ned over the �eld of de�nition and where
all nine periodic points of period three are de�ned over the �eld of de�nition,
respectively.

A search for rational preperiodic structures with the parameter up to height
10, 000 using the algorithm from [Hut15] as implemented in Sage yields no pa-
rameters where fa has aℚ-rational periodic point with minimal period at least
4. So we make the following conjecture.

Conjecture 6.7. There is no a ∈ ℚ so that fa(z) =
z3+a
az2

has a ℚ-rational
periodic point with minimal period at least 4.

Assuming this conjecture, we are able to classify all possibleℚ-rational prepe-
riodic structures.

One of the curves appearing in the proof of Theorem 6.9 is a
non-hyperelliptic genus 3 curve with trivial automorphism group. The stan-
dard implementations do not yield a sharp point estimate, so we treat comput-
ing its rational points in Lemma 6.8.2

Lemma6.8. Assuming the (weak)Birch-Swinnerton-Dyer conjecture, the curve
C ⊆ ℙ2 de�ned by

C ∶ x2y2 + xy3 − x3z − x2yz − xy2z + yz3 = 0
has exactly the following six points as ℚ-rational points.
{(1 ∶ 1 ∶ 1), (1 ∶ 1 ∶ −2), (0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 1), (1 ∶ 0 ∶ 0), (−1 ∶ 1 ∶ 0)}.

Proof. We �rst show that the di�erences of the six known points form a rank
1 subgroup of the Mordell-Weil group of the Jacobian of C, denoted J. This is
adapted directly fromMichael Stoll’s Magma code for computingℚ-rational 6-
cycles [Sto08]. We know that prime-to-p torsion in J(ℚ) injects into J(Fp) for
primes of good reduction. Magma computes

#J(F5) = 3 ⋅ 79 #J(F7) = 7 ⋅ 83.
We conclude J(ℚ) has trivial torsion. To show the rank assertion, we use the
homomorphism

ΦS ∶
5⨁

i=0
ℤPi → PicC →

∏

p∈S
PicC∕Fp ,

2Thanks to Michael Stoll for detailed help with the computation and Andrew Sutherland for
access to preliminary data on the analytic rank for Lemma 6.8.
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where S is the set of primes of good reduction. We take S = {2, 5, 7, 11, 13}
and compute that the kernel of ΦS is a subgroup of rank 5 in ℤ6 = ⊕ℤPi. We
apply LLL and �nd that there are (at least) four relations among the points; this
gives an upper bound of the rank as 1. However, looking at the image ofΦS, we
see that the degree 0 subgroup of ℤ6 surjects onto ℤ∕5ℤ; and since there is no
torsion, the rank must be at least 1. Hence, the rank is exactly 1.

This is just the rank of the subgroup supported on the known points, so is not
a conclusive rank calculation. However, AndrewSutherland in private commu-
nication has calculated the analytic rank as 1 assuming that the L-function lies
in the (polynomial) Selberg class, which is implied by the Hasse-Weil conjec-
ture. Assuming BSD (and Hasse-Weil), this is a conclusive rank calculation.

The curve C is genus 3 and we assume that the rank of J(ℚ) is 1, so we can
applymethods of Chabauty to show that these six points are the onlyℚ-rational
points on C [BPS16].3 Recall that there is a pairing

Ω1
J(ℚp) × J(ℚP) → ℚp

(!, Q) ↦ ∫
Q

0
!

that induces a perfect ℚp-bilinear pairing

Ω1
J(ℚp) × J(ℚp)1 ⊗ℤp ℚp → ℚp,

where J(ℚp)1 denotes the kernel of reduction. If G ⊂ J(ℚp) is a subgroup
of rank less than dim(J) = 3, then there is a nonzero di�erential ! that kills G
under this pairing. We apply thiswithp = 2 andwithG the subgroup generated
by the known rational points. Fix a basis of regular di�erentials

w0 =
x(zdx − xdz)

Fy
w1 =

y(zdx − xdz)
Fy

w2 =
z(zdx − xdz)

Fy
,

where F(x, y, z) is the de�ning polynomial of C and Fy the partial derivative
with respect to y; see, for example, [BK86, Corollary to Theorem 1 p. 634]. For a
given point P, �nd a uniformizing parameter ofC at P that is also a uniformizer
at P modulo 2. We �nd a basis of di�erentials in terms of the uniformizer that
annihilates the known rational points. Looking at the degree of vanishing, we
can determine whether one or two rational points lie above each of the points
modulo 2.

The points (−1 ∶ 1 ∶ 0) and (1 ∶ 1 ∶ −2) are in the same residue class. We
calculate the basis of annihilating di�erentials as

1 + t + t2 + t4 + t5 + t8 + t10 + t11 + t13 + t15 + t16 + O(t20)
1 + t + t3 + t4 + t5 + t8 + t9 + t11 + t12 + t16 + t17 + O(t20)

Since there is a non-vanishing constant term, there are at most two rational
points in this residue class modulo 2 [Sto06, Proposition 6.3].

3Thanks to Michael Stoll for sharing the details of this computation.
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For the remaining four points, we get the following four bases of annihilating
di�erentials.

{1 + t + t3 + t4 + t5 + t6 + t13 + t14 + t17 + t19 + O(t20)
t + t3 + t6 + t7 + t8 + t9 + t10 + t11 + t12 + t13 + t18 + O(t20)

{t
3 + t5 + t6 + t9 + t10 + t12 + t15 + t18 + O(t20)
1 + t7 + t8 + t11 + t12 + t13 + t16 + t19 + O(t20)

{t + t3 + t5 + t7 + t8 + t9 + t11 + t13 + t18 + t19 + O(t20)
1 + t2 + t3 + t4 + t6 + t7 + t10 + t11 + t12 + t15 + t17 + t19 + O(t20)

{1 + t2 + t3 + t6 + t7 + t9 + t10 + t12 + t15 + t16 + t17 + t18 + O(t20)
t + t2 + t5 + t7 + t8 + t13 + t14 + t15 + t18 + t19 + O(t20)

For each point there is an element such that the constant term is nonzero and
the linear term is zero. By a standard Newton polygon argument; see [Kob84,
IV.4], this implies that the corresponding logarithm has at most one zero on
the residue disk of the point, so there is at most one rational point in the disk.
Consequently, there are at most six rational points on the curve. �

Theorem 6.9. Let f ∈ A3(C3). Assuming the (weak) Birch-Swinnerton-Dyer
conjecture, if fa(z) =

z3+a
az2

does not have a ℚ-rational periodic point of period
at least 4, then the ℚ-rational preperiodic structure for a ∈ ℚ is one of the
following;

G1 ∶= ∙
0

∙
∞ ∙∙

∙

//
xx zz//

��
, a = 1

1 − t3 , t =
1

xy − x for (x, y) a ra-

tional point on the curve y2−y = x3−1
with x ≠ 1

G2 ∶= ∙
0

∙
∞ ∙//
xx zz , a = 1

1 − t3 , t ∈ ℚ ⧵ {0, 1} and not G1

G3 ∶= ∙ ∙
0

∙
∞// //
xx

, a = t3, t ∈ ℚ ⧵ {0}

G4 ∶= ∙
0

∙
∞//
xx

, all other parameters a.

Proof. Proposition 6.5 describes the periodic points, so we need only consider
the strictly preperiodic points.

The point at in�nity denoted ∞ is �xed for fa for every a. Its only non-
periodic preimage is 0. So we always have at least the preperiodic structure

∙
0

∙
∞//
xx

We can also look for preimages of 0. Solutions to z3 + a = 0 for rational a
must look like a = l3 for some l ∈ ℚ. Of the three possible preimages of 0, only
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one can ever be rational. This describes parameter values whose preperiodic
structures contain graph G3.

To have both a second �xed point and a second non-periodic preimage of
∞ (i.e., the union of G2 and G3), we need a = 1

1−t3
and a = l3 for t, l ∈ ℚ.

Setting these two equal, the problem comes down to �nding rational points on
the (a�ne) curve

l3(1 − t3) − 1 = 0. (6)
This curve has genus 1 and a rational point at (t, l) = (0, 1), which allows us to
�nd an isomorphism to an elliptic curve using Magma. We get the Weierstrass
model y2 − 9y = x3 − 27, which has rank 0 and whose torsion subgroup is
isomorphic to ℤ∕3ℤ. The rational points of the projective closure are (t ∶ l ∶
r) = (0 ∶ 1 ∶ 0), (0 ∶ 1 ∶ 1), (1 ∶ 0 ∶ 0). The two points (0 ∶ 1 ∶ 0) and
(1 ∶ 0 ∶ 0) are singular. When we blow them up they both correspond to one
rational point. Since we only have three rational points on the elliptic curve,
there are only three on our original curve. Only one of these three rational
points is not at in�nity. This point corresponds to a = 1 and givesΦ∗1(f)(z) = 1
which is never 0. Thus, we can never have both a second �xed point and a
preimage of 0. Note that this eliminates the union of G1 and G3 as well.

We can also look at when the preimage of 0 itself has a preimage. We already
know a = t3 for some t ∈ ℚ, so we need z3+t3

t3z2
= −t. This determines the curve

z3 + z2t4 + t3 = 0,
which is a singular genus 3 non-hyperelliptic curve. It has a C3 automorphism
given by (z, t) ↦ (!z, !t), where ! is a cube root of unity. Quotienting out
by this action in Magma gives us all of ℙ1, so a di�erent analysis is necessary.
We can also perform the change of coordinates (z, t) ↦ (u, v) = ( z

t
, z2t) to get

v3 + u + 1 = 0 - this is exactly ℙ1 as expected.
The �rst birational transformation we perform is sending the coordinates

(z, t) to (x, y) = ( t
z
, t

2

z
), which gives us y3 = −x5 − x2. The simple change

y ↦ −y allows us to write the nicer version
y3 = x5 + x2.

We see that this is now a superelliptic curve, but in a singular model so still not
desirable to work with. Another birational transformation (x, y) ↦ (u, v) =
( 1
x
, y
x2
) gives

v3 = u4 + u,
a nonsingular Picard curve. Magma computes that this curve has rank 0, and
since this number is strictly less than 3 (its genus), we can use the Chabauty-
Coleman [Cha41, Col85] method to �nd all its rational points. We can check
that p = 2 is a prime of good reduction (de�ne the curve inMagma over F2 and
check if it is singular). Code written by Jan Tuitman and Jennifer Balakrishnan
[BT18] veri�es that, in fact, there can be at most three rational points on the
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curve. Thus, there are only three points on our original curve, which Magma
�nds to be (0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 1), (1 ∶ 0 ∶ 0). The only a�ne point is (0, 0),
so z = 0, t = 0 is the only solution. However, these values send the expression
z3+t3

t3z2
to in�nity, not 0, so it is not a valid solution. Thus, the rational preimage

of 0 cannot have a rational preimage.
We next see if the second �xed point can have non-periodic rational preim-

ages. To simplify the equations, instead of the parameterization a = 1
1−t3

,

t ≠ 0, 1 for the existence of a second �xed point, we replace t with 1
t
to have

a = t3

t3−1
, t ≠ 0, 1 with (a�ne) �xed point t. We know that

fa(z) = t,
which produces the equation

1
t3 − 1(z

3(t3 − 1) + −t4z2 + t3) = 0. (7)

The variety de�ned by equation (7) has two irreducible components: the case
where the preimage is the �xed point itself, z = t, and the genus 1 curve de�ned
by

C ∶ z2t3 − z2 − zt − t2 = 0.
Using the point (0 ∶ 1 ∶ 0) as the point at in�nity, we get the model

y2 − y = x3 − 1. (8)
It is rank 1 with generator (1 ∶ 0 ∶ 1) with trivial torsion. We have a mapping

 ∶ E → C
 (x, y, z) = (xz, xy − xz, yz − z2).

So every rational point on the elliptic curve corresponds to a rational point on
the curve C. The image of (1 ∶ 0 ∶ 1) gives t = 1, which is the degenerate case,
but the other rational points with x ≠ 1 correspond to parameters a where
the additional �xed point has a non-periodic rational preimage. Furthermore,
since the curve C de�ning the pair (z, t) is degree 2 in z, if there is one rational
preimage of the �xed point, then there is typically two rational preimages of
the �xed point. The exceptions are obtained by taking the discriminant of the
de�ning equation of C in ℚ[t][z]. This discriminant is

t2(4t3 − 3).
So the only rational t value where there could be a single preimage is t = 0,
which is degenerate. So we have structure G1.

Nowwe check if structureG1 can be extended by the �nite �xed point having
a second rational preimage. We continue to utilize the parameterization a =
t3

t3−1
, so we are looking for a rational point on a component of the curve de�ned

by f2a(z) = t
(t12 − 4t9 + 6t6 − 4t3 + 1)z9 + (4t12 − 9t9 + 9t6 − 3t3)z6
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+ (3t12 − 6t9 + 3t6)z3 + t12 − t9

= t((t12 − 2t9 + t6)z8 + (2t12 − 2t9)z5 + t12z2).

After saturation by the ideal (t, z), the degenerate case, this curve has three
irreducible components. Two of these components correspond to �xed points
and preperiodic points with period (1,1), respectively,

z = t
t3z2 − z2 − tz − t2 = 0.

The third component represents the preperiodic points with period (2, 1) and
is an irreducible genus 13 curve de�ned by

z6t9 − 3z6t6 − z5t7 − z4t8 + 2z3t9 + 3z6t3 + z5t4 − 4z3t6

− z2t7 + t9 − z6 + 2z3t3 − t6 = 0.

Utilizing Magma, we quotient by the automorphism (z, t) ↦ (�3z, �3t), where
�3 is a primitive third root of unity. This results in the genus 3 curve de�ned by

−x3y+y4+5x3−2x2y+xy2−19y3+11x2−9xy+136y2+23x−433y+517 = 0.
Simplifying the (projective closure) equationwith a change of variables de�ned

by the SL3(ℤ) elementm =
⎛
⎜
⎝

1 −1 1
0 5 −4
0 1 −1

⎞
⎟
⎠
, we get the reduced equation

x2y2 + xy3 − x3 − x2y − xy2 + y = 0.
Lemma 6.8 calculates the ℚ-rational points of the projective closure of this
curve as

{(1 ∶ 1 ∶ 1), (−1∕2 ∶ −1∕2 ∶ 1), (0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 1), (1 ∶ 0 ∶ 0), (−1 ∶ 1 ∶ 0)}.
These give the six points on the nonreduced curve

{(1 ∶ 1 ∶ 0), (1 ∶ −13∕2 ∶ −3∕2), (1 ∶ −4 ∶ −1), (−1 ∶ 5 ∶ 1),
(1 ∶ 0 ∶ 0), (−2 ∶ 5 ∶ 1)}.

On the original curve, we �nd the four points

{(0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 1), (0 ∶ 1 ∶ 1), (1 ∶ 0 ∶ 0)}.
Computing the inverse image of the quotientmap of the six points on the nonre-
duced curve, we �nd only the four rational points on the original curve already
known. So these are the only four rational points on the original curve. These
are all either points at in�nity or degenerate cases, so there are no non-periodic
second rational preimages of the �nite �xed point.

There are no possible ways to extend the structuresG1, G2, andG3 rationally,
so these are the only possible structures of ℚ-rational preperiodic points for
fa(z) for a ∈ ℚ. �
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6.3. A3(D2) First Component. There are two families with a D2 symmetry.
We �rst look at the family fa(z) =

az2+1
z3+az

. Note that a = ±1 are degenerate
cases.

Proposition 6.10. The following describesℚ-rational periodic points forfa(z) =
az2+1
z3+az

for a ∈ ℚ.
(1) For every a, fa(z) has the rational periodic points

∙
0

∙
∞

∙
1

∙
−1

##
bb

zz ww

(2) The points ±1 are the only ℚ-rational �xed points for all a ∈ ℚ ⧵ {±1}.
(3) If there are any additional rational periodic points with period 2, then

all six points of period 2 are ℚ-rational.
(4) There is no a ∈ ℚ ⧵ {±1} so that fa(z) has a ℚ-rational 3-cycle.

Proof. The�rst dynatomic polynomial isΦ∗1(fa) = −z4+1. In particular, every
member of the family has two rational �xed points 1 and −1 and two complex
�xed points ±i. The second dynatomic polynomial is given by

Φ∗2(fa) = (a2 − 1)z5 + (2a3 − 2a)z3 + (a2 − 1)z.
The associated curve is reducible over ℚ and the irreducible components are

z = 0
a − 1 = 0
a + 1 = 0
z4 + 2az2 + 1 = 0. (9)

Note that a = ±1 are degenerate cases. The points 0 and ∞ form a 2-cycle.
From the last component (9), for every z, we can �nd a = −z4−1

2z2
such that z is

periodic with period 2. Furthermore, we know if z is a rational point of period
2, then 1∕z, −z, and −1∕z are all points of period 2 since the maps z ↦ ±1∕z
and z ↦ −z are automorphisms of fa(z). Since fa is a degree 3map, we know
that there are at most three rational 2-cycles and six points of period 2. Thus,
for every member of the family, either we have only 1 rational 2-cycle (0 and
∞) or all 2-cycles are rational.

Now we look at rational 3-cycles. The third dynatomic polynomial is calcu-
lated as

Φ∗3(fa) =z
24 + (a5 + 2a3 + 9a)z22 + (a8 + 9a6 + 14a4 + 41a2 + 1)z20

+ (7a9 + 28a7 + 55a5 + 118a3 + 12a)z18

+ (15a10 + 54a8 + 118a6 + 248a4 + 59a2 + 1)z16

+ (12a11 + 73a9 + 140a7 + 376a5 + 180a3 + 11a)z14

+ (3a12 + 52a10 + 115a8 + 334a6 + 361a4 + 58a2 + 1)z12

+ (12a11 + 73a9 + 140a7 + 376a5 + 180a3 + 11a)z10



AUTOMORPHISM LOCI FOR DEGREE 3 AND DEGREE 4 ENDOMORPHISMS 1661

+ (15a10 + 54a8 + 118a6 + 248a4 + 59a2 + 1)z8

+ (7a9 + 28a7 + 55a5 + 118a3 + 12a)z6

+ (a8 + 9a6 + 14a4 + 41a2 + 1)z4 + (a5 + 2a3 + 9a)z2 + 1.

The associated dynatomic curve has genus 27 and is di�cult to work with di-
rectly. First observe that if (a, z) is a point on Φ∗3(fa) = 0, then (a, fa(z)) and
(a, f2a(z)) are also on the curve. Thus, we can quotient this curve by a C3 sym-
metry by setting t = z + fa(z) + f2a(z). We need to �nd the curve X obtained
through this quotient. We know that �nding this curve X is equivalent to �nd-
ing the minimal polynomial of t = z + fa(z) + f2a(z) ∈ K, where K is the
extension �eld of ℚ(a) de�ned by the third dynatomic polynomial.

The curve X de�ned by this minimal polynomial is given by

X ∶ z8 + (a5 + 4a3 − a)z6 + (a8 + 2a6 − 4a4 + 8a2 − 1)z4

+ (3a7 + 4a5 − 23a3 + 20a)z2 + 9a4 − 24a2 + 16 = 0.

Observe that we can quotient out by another C2 action by identifying x = z2.
This gives us the curve

Y ∶ x4 + (a5 + 4a3 − a)x3 + (a8 + 2a6 − 4a4 + 8a2 − 1)x2

+ (3a7 + 4a5 − 23a3 + 20a)x + 9a4 − 24a2 + 16 = 0.

This curve has genus 3 and is hyperelliptic with simpli�ed model

Y′ ∶ y2 = x8 − 6x6 + 19x4 − 30x2 + 9.

Observe, that this curve covers a genus 1 curve by setting x = x2,

E ∶ y2 = x4 − 6x3 + 19x2 − 30x + 9.

This curve E has smooth model as an elliptic curve

E′ ∶ y2 − 10
3 xy −

32
9 y = x3 + 4

3x
2.

The curve E′ has rank 0 and the torsion subgroup has order 6. Therefore, there
are at most six rational points on E. A search using height bound 1000 on the
projective closure of E �nds �ve rational points:

(3 ∶ 3 ∶ 1), (3 ∶ −3 ∶ 1), (0 ∶ 1 ∶ 0), (0 ∶ −3 ∶ 1), (0 ∶ 3 ∶ 1).

This list is complete since (0 ∶ 1 ∶ 0) is a singular point and blows up to 2
rational points. Observe that a�ne rational points on E can be lifted to a�ne
rational points on Y′ only if the x-coordinate is a square. Thus, the only a�ne
rational points on Y′ are (0, −3) and (0, 3). We also know that since Y′ is of the
form y2 = f(x), where f(x) has even degree with leading coe�cient a square,
Y′ has two points at in�nity, both of which are rational. Thus, on Y′, there
are only four rational points. Then Y has at most four non-singular rational
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points. Searching using a height bound 1000 on the projective closure of Y, we
�nd four rational points:

(0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0), (−1 ∶ 1 ∶ 1), (1 ∶ −1 ∶ 1),
where the �rst coordinate is a, the second x, and the third a homogenizing
variable. All these points are singular points. When we blow them up, (0 ∶ 1 ∶
0) blows up to be two rational points, (1 ∶ 0 ∶ 0) blows up to be two rational
points, (−1 ∶ 1 ∶ 1) becomes a single point that is not rational, and (1 ∶ −1 ∶ 1)
also becomes a point that is not rational. Thus, we have found all four rational
points in the smooth projectivemodel ofY. We only lift the a�ne rational point
(−1, 1) since (1, −1) has x = −1 and we replaced x2 with x to get from X to Y.
This point has a = 1, which is degenerate. Thus, there is no choice of a ∈ ℚ
for which fa(z) has a ℚ-rational 3-cycle. �

A search for rational preperiodic structures with the parameter up to height
10, 000 using the algorithm from [Hut15] as implemented in Sage yields no pa-
rameters when fa(z) has a ℚ-rational periodic point with minimal period at
least 4.

Conjecture 6.11. There are no a ∈ ℚ such that fa(z) =
az2+1
z3+az

has aℚ-rational
periodic point of minimal period at least 4.
Theorem 6.12. Assuming Conjecture 6.11, the possible rational preperiodic
structures for fa(z) =

az2+1
z3+az

for a ∈ ℚ are the following.

G1 ∶ ∙1 ∙
−1

∙
0

∙
∞

zz ww ##
bb , a not in one of the families G2, G3, or G4

G2 ∶ ∙
1

∙

∙ ∙
−1

∙

∙ ∙
0

∙
∞

��
// zz

��
//
ww ##

bb , a = t2 + t + 1
t , t ∈ ℚ ⧵ {±1, 0}

G3 ∶ ∙1 ∙
−1

∙
0

∙
∞ ∙ ∙ ∙ ∙zz ww ##

bb
""

bb
""

bb , a = −t4 − 1
2t2 ,

t ∈ ℚ ⧵ {±1, 0}

G4 ∶ ∙1 ∙
−1

∙
0

∙
∞

∙

∙ ∙

∙
zz ww ##

bb
''
77 gg

ww , a = −t2, t ∈ ℚ ⧵ {±1, 0}.

Proof. Proposition 6.10 combinedwithConjecture 6.11 classi�es theℚ-rational
periodic structures. For preperiodic structures, we start by looking for non-
periodic rational preimages of the �xed points. Recall from Proposition 6.10
that for every a ∈ ℚ, fa(z) has exactly twoℚ-rational �xed points ±1. Observe
that if fa(z) = 1, then fa(−z) = −1, so it su�ces to consider the preimages of
1. To have fa(z) = 1, we must have (az2 + 1) − (z3 + az) = 0. This de�nes a
reducible curve over ℚ, and the irreducible components are

z − 1 = 0 and az − z2 − z − 1 = 0.
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We only need to consider the second component. This component is linear in
a so we solve as

a = t2 + t + 1
t t ∉ {0, ±1}.

We exclude t ∈ {0, −1} for degenerate a values and t = 1 is the �xed point
as its own preimage. Thus, for every t ∈ ℚ ⧵ {±1, 0}, we can �nd an a such
that 1 has a non-periodic ℚ-rational preimage under fa(z). Since z ↦ 1

z
is

an automorphism of fa(z), if fa(z) = 1, then fa(1∕z) = 1. Furthermore, since
this irreducible component is quadratic, it can have at most two rational points.
Thus, the two rational points must be z and 1∕z.

Now we look for a second non-periodic rational preimage of 1, i.e., a z ∈ ℚ
with f2a(z) = 1. We need to �nd (rational) solutions to

a3z7 + a4z5 + z9 + 3az7 + 5a2z5 + 3a3z3 + az3 + a2z
− (a2z8 + 3a3z6 + a4z4 + az6 + 5a2z4 + a3z2 + 3az2 + 1) = 0.

This de�nes a reducible curve over ℚ with irreducible components

0 =z − 1 (�xed points),

0 =az − z2 − z − 1 (points satisfying fa(z) = 1), and
0 =a2z5 + a3z3 − a2z4 − az5 − z6 − a2z3 − 2az4 − a2z2 + az3 + a2z

− 2az2 − z3 − az − 1.
We need only consider the third component. It de�nes a genus 3 curve, but
we can quotient by a C2 symmetry by identifying (a, z) with (a, 1∕z). If we set
t = z + 1∕z, we get the curve after this quotienting as

X ∶ t3 + (−a2 + a)t2 + (a2 + 2a − 3)t − a3 + 3a2 − 3a + 1 = 0.
This is a genus 1 curve and is birationally equivalent to the elliptic curve

X′ ∶ y2 − 2xy + 2y = x3 − 3x2 + 2x
via the map on projective closures

x =2at4 + 2a2t2ℎ − 8at3ℎ − 8a2tℎ2 + 4at2ℎ2 − 8t3ℎ2 + 16atℎ3

+ 26t2ℎ3 − 8tℎ4

y =2at4 + 4t4ℎ − 2a3ℎ2 + 2a2tℎ2 − 26at2ℎ2

− 14t3ℎ2 − 26a2ℎ3 + 36atℎ3 − 6t2ℎ3 + 58aℎ4 + 90tℎ4 − 30ℎ5

z = − t5 + 2t4ℎ.
We compute that X′ has rank 0 and its torsion subgroup has order 6. Thus,
there are at most six non-singular rational points on X. Searching using height
bound 1000 on the projective closure produces

(a, t, ℎ) ∈ {(−1 ∶ −2 ∶ 1), (3 ∶ 2 ∶ 1), (0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0),
(1 ∶ 0 ∶ 1), (−1 ∶ 2 ∶ 1)},
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where ℎ is a homogenizing variable. The curveX has singular points (1 ∶ 0 ∶ 1)
and (−1 ∶ 2 ∶ 1). We blow up the singular points and in the blow up, (1 ∶ 0 ∶ 1)
becomes two points, both ofwhich are rational points and (−1 ∶ 2 ∶ 1) becomes
one closed point which is not rational. Thus, the above list is complete since
we have found six rational points. Now we need to lift these rational points
back to the original curve. Recall that t = z + 1∕z, so we can solve for z. Only
t = ±2 produces rational points, but t = ±2 lifts back to z = ±1, which are
�xed points. Thus, there is no a ∈ ℚ such that f2a(z) = 1 and fa(z) ≠ 1 for
some z ∈ ℚ.

Nowwe look at non-periodic preimages of the 2-cycle comprised of 0 and∞.
First consider if there is an a such that fa(z) = 0. It su�ces to look at fa(z) = 0
since if fa(z) = ∞, we have fa(1∕z) = 0 due to the automorphism z ↦ 1∕z.
Solving az2 + 1 = 0, we get z = ±

√
−1
a
. Thus, as long as a = −k2 for some

k ∈ ℚ, we have fa(z) = 0 for two ℚ-rational z values.
Nowwe consider non-periodic second preimages: f2a(z) = 0 for some z such

that fa(z) ≠ 0. We need to �nd rational solutions to the equation

a3z7 + a4z5 + z9 + 3az7 + 5a2z5 + 3a3z3 + az3 + a2z = 0.

This equation de�nes a reducible curve over ℚ. The irreducible components
are

z = 0
z2 + a = 0
a3z4 + z6 + 2az4 + 3a2z2 + a = 0. (10)

The �rst two components correspond to fa(z) being the point at in�nity, so
we only need to study the third component. It has genus 3, but observe that it
covers a genus 1 curve:

X ∶ a3x2 + x3 + 2ax2 + 3a2x + a = 0.

This curve is birationally equivalent to the elliptic curve

E ∶ y2 + 8xy + 2y = x3 − 12x2 − 4x

via the map (of projective closures)

x = 2a2x4 − 4a2x3ℎ + 4ax4ℎ − 6a2x2ℎ2 + 8ax3ℎ2 + 8x4ℎ2 − 12ax2ℎ3

+ 4x3ℎ3 − 16axℎ4 − 10x2ℎ4 − 8xℎ5 − 2ℎ6

y = −4a2x4 − 8ax4ℎ + 36a2x2ℎ2 − 32ax3ℎ2 − 12x4ℎ2 + 8ax2ℎ3 − 32x3ℎ3

+ 96axℎ4 + 36x2ℎ4 + 32xℎ5 + 8ℎ6

z = −x5ℎ − 3x4ℎ2 − 2x3ℎ3 + 2x2ℎ4 + 3xℎ5 + ℎ6,

where ℎ and z are the homogenizing variables of X and E, respectively. The
curveE has rank 0 and its torsion subgroup has order 6. Searchingwith a height
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bound 1000 on the projective closure, we �nd �ve rational points on X:
(a, x, ℎ) ∈ {(0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 1), (1 ∶ 0 ∶ 0), (−1 ∶ 1 ∶ 1), (1 ∶ −1 ∶ 1)}.

Among these �ve points, four of them are singular points:

(1 ∶ −1 ∶ 1), (−1 ∶ 1 ∶ 1), (0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0).
The �rst point blows up to be two rational points, the second blows up to be
two rational points, and the third blows up to be one rational point. The last
one blows up to a closed point, but that point is not rational. Thus, we have
found all six points on the projective smooth model of X, and the list must be
complete. Recall that we cannot have a = 1 or −1, and we only look at a�ne
rational points. Thus, the only rational point on the projective closure ofX that
we care about is (0 ∶ 0 ∶ 1). It lifts to (0 ∶ 0 ∶ 1) on the third irreducible
component in equation (10), but z = 0 is a periodic point. Therefore, we can
conclude that there is no a ∈ ℚ such that f2a(z) = 0 and fa(z) ≠ 0.

Now we look for non-periodic preimages of one of the other possible ratio-
nal 2-cycles. In particular, if we can �nd an a ∈ ℚ such that fa(z) enters
into a 2-cycle that is not the 0–∞ cycle. Recall from component (9) of the sec-
ond dynatomic curve in the proof of Proposition 6.10 that we need a = −t4−1

2t2
for t ∈ ℚ ⧵ {±1, 0} to have extra 2-cycles. Furthermore, we can compute the
(1, 2) generalized dynatomic polynomial characterizing points with formal pe-
riod (1,2), (see Hutz [Hut15, Section 3]) as

Φ∗(1,2)(fa) = (z2 + a)(az2 + 1)(z8 + (2a3 + 2a)z6 + (a4 + 6a2 − 1)z4

+ (2a3 + 2a)z2 + 1).

When we set a = −t4−1
2t2

, the irreducible components of Φ∗(1,2)(fa) become

zt4 − 2z2t + 2t3 − z = 0
zt4 + 2z2t − 2t3 − z = 0
2z2t3 − zt4 + z − 2t = 0
2z2t3 + zt4 − z − 2t = 0
2z2t2 − t4 − 1 = 0
z2t4 + z2 − 2t2 = 0.

The �rst four are quadratic in z and all have discriminant t8 + 14t4 + 1. So
rational points occur when there are rational points on the curve

C ∶ k2 = t8 + 14t4 + 1.
This covers the curve

E ∶ y2 = x4 + 14x2 + 1,
via the substitution y = k, x = t2. The curve E is birational via

(x, y, z) ↦ (2x2z + 2yz2 + 14z3, 4x3 + 4xyz + 28xz2, z3)
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to the rank 0 elliptic curve y2 = x3 − 28x2 + 192x with torsion subgroup iso-
morphic to ℤ∕2ℤ × ℤ∕4ℤ. A point search gives the eight points

(0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 1), (8 ∶ 16 ∶ 1), (8 ∶ −16 ∶ 1), (12 ∶ 0 ∶ 1), (16 ∶ 0 ∶ 1),
(24 ∶ 48 ∶ 1), (24 ∶ −48 ∶ 1).

The curve E has the seven rational points

(−1 ∶ 4 ∶ 1), (0 ∶ −1 ∶ 1), (0 ∶ 1 ∶ 0), (1 ∶ −4 ∶ 1), (−1 ∶ −4 ∶ 1),
(1 ∶ 4 ∶ 1), (0 ∶ 1 ∶ 1),

where (0 ∶ 1 ∶ 0) is singular and blows up to two rational points. On the
original curve C, we �nd the same seven rational points

(−1 ∶ 4 ∶ 1), (0 ∶ −1 ∶ 1), (0 ∶ 1 ∶ 0), (1 ∶ −4 ∶ 1), (−1 ∶ −4 ∶ 1),
(1 ∶ 4 ∶ 1), (0 ∶ 1 ∶ 1).

These all have t ∈ {±1, 0} so correspond to degenerate cases. The last two
components are both birational to the same rank 0 elliptic curve, y2 + 2xy =
x3 − 4x2 + 2x, with torsion subgroup isomorphic to ℤ∕2ℤ × ℤ∕2ℤ, so they
have at most four rational points. In both cases, we have the rational points
(x, t) = (±1, ±1). Since t = ±1 are degenerate cases, these components do not
have any rational points. Thus, we cannot have fa(z) entering a 2-cycle that is
not the 0–∞ cycle.

Now that we have identi�ed each of the separate possible components of the
rational preperiodic structure, we need to consider which of these components
can occur simultaneously. First we ask if 0 can have a non-periodic rational
preimage at the same time there are the additional 2-cycles. Recall that we
need a = −k2 for some k ∈ ℚ to have fa(z) = 0 and we need a = −t4−1

2t2
to have

extra 2-cycles. Thus, we are looking for rational points on the curve

X ∶ t4 + 1 − 2k2t2 = 0.
This is a genus 1 curve that is birationally equivalent to the elliptic curve

E ∶ y2 + 2xy = x3 − 4x2 + 2x
via the map (of projective closures with ℎ and z the homogenizing variables of
X and E, respectively,)

x = 2kt2 + 2t3 − 2ktℎ − 4t2ℎ + 4tℎ2 − 2ℎ3

y = −4kt2 − 4t3 + 4t2ℎ − 4tℎ2

z = t3 − 3t2ℎ + 3tℎ2 − ℎ3.
This elliptic curve E has rank 0 with torsion subgroup of order 4. Searching
with a height bound 1000 on the projective closure, we �nd �ve rational points
on X:
(k ∶ z ∶ ℎ) ∈ {(1 ∶ 1 ∶ 1), (1 ∶ 0 ∶ 0), (−1 ∶ 1 ∶ 1), (1 ∶ −1 ∶ 1), (−1 ∶ −1 ∶ 1)},
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where ℎ is a homogenizing variable. Only one of these points is singular, so we
know this is a complete list of rational points. The a�ne rational points force
z = ±1, which are �xed points. Thus, we cannot have fa(z) = 0 and extra
2-cycles at the same time.

Now we check if both the �xed points and the 0 − ∞ 2-cycle can have non-
periodic rational preimages at the same time. Recall that we need a = −k2 for
some k ∈ ℚ to have fa(z1) = 0 and we need a = t2+t+1

t
for some t ≠ 0, ±1 ∈ ℚ

to have fa(z2) = 1. Thus, we are interested in the following curve

X ∶ t2 + t + 1 + k2t = 0.

This is a nonsingular curve of genus 1 that is birational to the elliptic curve

E ∶ y2 = x3 − 4x2 + 16x,

via the map

x = 4kt
y = 8t2 + 8tℎ + 8ℎ2

z = −kℎ,

where k and z are the homogenizing variables of X and E, respectively. This
curve E has rank 0 and a torsion subgroup of order 4. Searching using height
bound 1000 on the projective closure, we �nd four rational points on X:

(k, t, ℎ) ∈ {(0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0), (1 ∶ −1 ∶ 1), (−1 ∶ −1 ∶ 1)}.

The a�ne points all have t in the excluded set {0, ±1}. Thus, we can conclude
that there is no a such that fa(z1) = 0 and fa(z2) = 1.

Next we check if we can have additional 2-cycles as well as non-periodic
preimages of the �xed points. Recall that we need a = t2+t+1

t
to have fa(z) = 1

and we need a = −k4+1
2k2

to have extra 2-cycles. Thus, we need to �nd rational
points on the curve

X ∶ (t2 + t + 1)(2k2) = (k4 + 1)(−t).

This is a genus 1 curve that is birationally equivalent to the elliptic curve

E ∶ y2 = x3 + 3x2 + 2x

via the map

x = 2tkℎ + 2kℎ2

y = −2k2ℎ − 2tℎ2

z = k3 − kℎ2,

where ℎ and z are the homogenizing variables of X and E, respectively. This
curveE has rank 0 and the torsion subgrouphas order 4. Searching using height
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bound 1000 on the projective closure, we �nd �ve rational points on the curve
X:

(t, k, ℎ) ∈ {(0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 1), (1 ∶ 0 ∶ 0), (−1 ∶ 1 ∶ 1), (−1 ∶ −1 ∶ 1)}.

Among these �ve points, three of them are singular

{(−1 ∶ −1 ∶ 1), (−1 ∶ 1 ∶ 1), (1 ∶ 0 ∶ 0)}.

The points (−1 ∶ −1 ∶ 1) and (−1 ∶ 1 ∶ 1) blow up to be closed points that
are not rational. The point (1 ∶ 0 ∶ 0) blows up to two rational points. Thus,
this search produces all the rational points on X. Considering only the a�ne
points, we have either k = 0 or a = −1. Thus, there is no (valid) a such that we
can have extra 2-cycles and fa(z) = 1.

We have exhausted all possibilities for rational preperiodic structures, leav-
ing only those enumerated in the statement. �

6.4. A3(D2) SecondComponent. Nowwe look at the family withD2 symme-
try ga(z) =

az2−1
z3−az

. We �rst consider the possible rational periodic points.

Proposition 6.13. Let ga(z) =
az2−1
z3−az

for a ≠ ±1.

(1) For every t ∈ ℚ ⧵ {0, ±1}, the value a = t4+1
2t2

satis�es ga(z) has the four
�xed points

{
±t, ± 1

t

}
. For no other values of a ∈ ℚ does ga(z) have a

ℚ-rational �xed point.
(2) For every a ∈ ℚ⧵{±1}, the function ga(z) has exactly two 2-cycles with

ℚ-rational points: swapping 0 and∞ and swapping 1 and −1.
(3) There is no a ∈ ℚ so that ga(z) has a 3-cycle with ℚ-rational points.

Proof. The �rst dynatomic polynomial is

Φ∗1(ga) = −z4 + 2az2 − 1.

This polynomial is linear in a, so it has a zero when a = z4+1
2z2

. Thus, for every
z ∈ ℚ, we can �nd an a such that z is a �xed point. Once z is a �xed point,
we know from the automorphism group that −z, 1

z
and − 1

z
are all �xed points.

Furthermore, for everya, the �rst dynatomic polynomial has atmost four zeros,
so z, −z, 1

z
and − 1

z
are all the �xed points.

Now we look for 2-cycles with ℚ-rational points. The second dynatomic
polynomial is given by

Φ∗2(ga) = (−a2 + 1)z5 + (a2 − 1)z = (1 − a2)z(z − 1)(z + 1)(z2 + 1).

Sincea = ±1 are degenerate cases, we see that the roots ofΦ∗2(ga)donot depend
on a and everymember of the family ga has exactly two 2-cycleswithℚ-rational
points: swapping 0 and∞ and swapping 1 and −1.
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Now we look for 3-cycles with ℚ-rational points. The third dynatomic poly-
nomial is

Φ∗3(ga) = − z24 + (a5 + 4a3 + 7a)z22 + (−a8 − 13a6 − 24a4 − 29a2 + 1)z20

+ (7a9 + 48a7 + 91a5 + 76a3 − 2a)z18

+ (−11a10 − 102a8 − 214a6 − 168a4 + a2 − 1)z16

+ (6a11 + 103a9 + 348a7 + 304a5 + 30a3 + a)z14

+ (−a12 − 44a10 − 289a8 − 470a6 − 111a4 − 10a2 + 1)z12

+ (6a11 + 103a9 + 348a7 + 304a5 + 30a3 + a)z10

+ (−11a10 − 102a8 − 214a6 − 168a4 + a2 − 1)z8

+ (7a9 + 48a7 + 91a5 + 76a3 − 2a)z6

+ (−a8 − 13a6 − 24a4 − 29a2 + 1)z4

+ (a5 + 4a3 + 7a)z2 − 1.
The dynatomic curve Φ∗3(ga) = 0 has genus 31. We can quotient by a C3 sym-
metry by identifying (a, z)with (a, ga(z)) and (a, g2a(z)). Setting t = z+ga(z)+
g2a(z), this quotienting produces the following curve:

X ∶ t8 + (−a5 − 6a3 − 13a)t6 + (a8 + 14a6 + 46a4 + 56a2 + 1)t4

+ (−4a9 − 33a7 − 78a5 − 69a3 + 4a)t2

+ 4a8 + 12a6 + 25a4 + 24a2 + 16 = 0.
This curve has genus 11. We should be able to quotient by anotherC2 symmetry
by identifying (a, z) with (a, 1

z
). However, in this curve we have used t = z +

ga(z)+g2a(z) so we need to identify (a, t)with (a, t′), where t′ =
1
z
+ 1

ga(z)
+ 1

g2a(z)
.

We can �nd the minimal polynomial of t + t′, which de�nes the curve

Y′ ∶ u4 + (−a5 − 2a4 − 6a3 − 10a2 − 13a − 8)u2 + 4a6 + 12a5 + 25a4 + 36a3

+ 34a2 + 24a + 9 = 0.
This curve has genus 5, but we can identify u2 = x and get

Y ∶ x2 + (−a5 + 2a4 − 6a3 + 10a2 − 13a + 8)x + 4a6 − 12a5 + 25a4 − 36a3

+ 34a2 − 24a + 9 = 0.
The new curve Y has genus 2 so is hyperelliptic. It is birational to the curve

H ∶ y2 = 4x6 − 12x5 + 25x4 − 30x3 + 25x2 − 12x + 4
via the map

x = 1∕2a3 + 3∕2a2 + 3∕2a + 1∕2
y = 1∕2xa4 + 2xa3 + 3xa2 + 2xa + 1∕2x − 1∕4a9 − 3∕2a8 − 5a7 − 25∕2a6

− 49∕2a5 − 73∕2a4 − 39a3 − 55∕2a2 − 45∕4a − 2
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z = a2 + 2a + 1,
where z is the homogenizing variable of H. The curve H has genus 2 and its
Jacobian has rank 0 with torsion subgroup isomorphic toℤ∕6ℤ×ℤ∕6ℤ. Using
Chabauty’s method for rank 0 Jacobians as implemented in Magma yields the
six rational points on (the weighted projective closure of)H as

(1 ∶ −2 ∶ 0), (1 ∶ 2 ∶ 0), (1 ∶ 2 ∶ 1), (1 ∶ −2 ∶ 1), (0 ∶ 2 ∶ 1), (0 ∶ −2 ∶ 1).
A point search up to height bound 1000 yields the points on (the projective
closure of) Y:

(z, a, ℎ) ∈ {(4 ∶ 1 ∶ 0), (0 ∶ −1 ∶ 1), (4 ∶ 1 ∶ 1), (1 ∶ 0 ∶ 0), (36 ∶ 1 ∶ 1)}.
The point (0 ∶ −1 ∶ 1) is a singular point which blows up to two rational
points, so these are all the rational points on Y. The a�ne points all have a =
±1, which is the degenerate case for this family. So there are no points that
corresponds to a rational 3-cycle. �

A search for rational preperiodic structures with the parameter up to height
10, 000 using the algorithm from [Hut15] as implemented in Sage yields no pa-
rameters where ga has aℚ-rational periodic point with minimal period at least
4.

Conjecture 6.14. There are no a ∈ ℚ such that ga(z) =
az2−1
z3−az

has aℚ-rational
periodic point of minimal period at least 4.

Assuming Conjecture 6.14, we classify all rational preperiodic structures.

Theorem 6.15. Assuming Conjecture 6.14, the possible rational preperiodic
structures for ga(z) =

az2−1
z3−az

for a ∈ ℚ are the following.

G1 = ∙
1

∙
−1

∙
0

∙
∞

$$
bb

##
bb , for t not in the following cases

G2 = ∙
1

∙
−1

∙
0

∙
∞

∙
t

∙
−t

∙
1∕t

∙
−1∕t

$$
bb

##
bb

zz ww vv qq
, a = t4 + 1

2t2 ,
t ∈ ℚ ⧵ {±1, 0}

G3a = ∙
1

∙
−1

∙
0

∙
∞

∙

∙

∙

∙$$
bb

##
bb77

''
gg
ww , a = t2, for t ∈ ℚ ⧵ {±1, 0}

G3b = ∙
1

∙
−1

∙
0

∙
∞

∙

∙

∙

∙$$
bb

##
bb77

''
gg
ww , a = 3t2 + 3t + 3

2t2 + 5t + 2 ,
t ∈ ℚ ⧵ {1, −2, −1∕2}

.

Proof. Westartwithnon-periodic preimages of �xed points. Recall fromPropo-
sition 6.13 that we have the four �xed points {±t, ±1∕t}when a = t4+1

2t2
for some

t ∈ ℚ ⧵ {±1, 0}. We want to know if these points can have rational preimages.
Because of the automorphisms z ↦ 1∕z and z ↦ −z, it su�ces to consider
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the preimages of any of the �xed points. Consider the equation ga(z) = t and
substitute a = t4+1

2t2
. The resulting equation factors as

−(z − t)(2t3z2 + (t4 − 1)z − 2t).
Since t is the �xed point we need only consider the second factor component.
Its vanishing de�nes a genus 3 curve but is quadratic in z, so we have rational
solutions when the discriminant, with respect to x, is a square. This gives the
curve

t8 + 14t4 + 1 = k2.
Replacing u = t2, this becomes

u4 + 14u2 + 1 = k2.
Using the point (k ∶ u ∶ ℎ) = (1 ∶ 0 ∶ 0) as the point at in�nity, this is an
elliptic curve with model y2 = x3 − 28x2 + 192x. This curve has rank 0 and
torsion subgroup isomorphic to ℤ∕2ℤ × ℤ∕4ℤ. So the original curve has at
most eight rational points. A point search up to height 1000 yields the seven
points (on the projective closure)

(x ∶ t ∶ ℎ) ∈ {(±4 ∶ ±1 ∶ 1), (±1 ∶ 0 ∶ 1), (1 ∶ 0 ∶ 0)},
where ℎ is the homogenizing variable. The point (1 ∶ 0 ∶ 0) is singular and
blows up to two rational points, so we have found all eight ℚ-rational points.
The a�ne points all have t values that are degenerate, so there are no a ∈ ℚ
such that ga(z) has a rational �xed point with a non-periodic rational preimage.

Now we look for non-periodic rational preimages of the points of period
2. Recall that every member of the family has exactly two 2-cycles {0,∞} and
{1, −1}. Wewant to know ifwe canhave ga(z1) = 0 or ga(z2) = 1witha, z1, z2 ∈
ℚ. It su�ces to look for non-periodic rational preimages of 0 and 1 since preim-
ages of−1 and∞ are then obtained from the same automorphisms that produce
four rational �xed points when there is one. We �rst look at ga(z1) = 0. We
need to �nd rational solutions to the equation az2−1 = 0.This equation de�nes
a genus 0 curve with rational parameterization

t ↦ (t2, 1∕t) = (a, z).
Thus, for every t ∈ ℚ ⧵ {0}, ga(1∕t) = 0, where a = t2.

Nowwe look at ga(z2) = 1. We need to �nd rational solutions to the equation
(az2 − 1) − (z3 − az) = 0. This equation de�nes a reducible curve over ℚ and
the irreducible components are

z + 1 = 0
az − z2 + z − 1 = 0.

This �rst component corresponds to a periodic point, so we only look at the
second component. It de�nes a genus 0 curve with rational parameterization:

t ↦ (3t
2 + 3t + 3

2t2 + 5t + 2,
t + 2
2t + 1) .
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Thus, for every t ∈ ℚ, we can �nd a = 3t2+3t+3
2t2+5t+2

such that 1 has a non-periodic
rational preimage under ga.

Nowwe look for non-periodic rational second preimages of 0; i.e., determine
if we can have g2a(z1) = 0 and ga(z1) ≠ 0 or∞ with a, z1 ∈ ℚ. We need to �nd
rational solutions to the equation

a3z7 − a4z5 − z9 + 3az7 − 5a2z5 + 3a3z3 + az3 − a2z = 0.

This equation de�nes a reducible curve and the irreducible components are

z = 0
z2 − a = 0
a3z4 − z6 + 2az4 − 3a2z2 + a = 0.

The �rst component corresponds to periodic points. The second component
corresponds to z such that ga(z) = ∞. Thus, we can just look at the third
component. Via the replacement z2 ↦ z, it covers an elliptic curve:

X ∶ a3z2 − z3 + 2az2 − 3a2z + a = 0.

The elliptic curve X is birationally equivalent to

E ∶ y2 − 8xy − 2y = x3 − 12x2 − 4x,

via the map

x = 2a2z4 + 4a2z3ℎ + 4az4ℎ − 6a2z2ℎ2 − 8az3ℎ2 + 8z4ℎ2 − 12az2ℎ3

− 4z3ℎ3 + 16azℎ4 − 10z2ℎ4 + 8zℎ5 − 2ℎ6

y = 4a2z4 + 8az4ℎ − 36a2z2ℎ2 − 32az3ℎ2 + 12z4ℎ2 − 8az2ℎ3 − 32z3ℎ3

+ 96azℎ4 − 36z2ℎ4 + 32zℎ5 − 8ℎ6

z = z5ℎ − 3z4ℎ2 + 2z3ℎ3 + 2z2ℎ4 − 3zℎ5 + ℎ6,

where ℎ and z are the homogenizing variables of X and E, respectively. This
elliptic curveE has rank 0 and its torsion subgroup has order 6. Searching using
height bound 1000, we �nd �ve rational points on the projective closure of X:

(a, z, ℎ) ∈ {(1 ∶ 1 ∶ 1), (0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 1), (1 ∶ 0 ∶ 0), (−1 ∶ −1 ∶ 1)},

where ℎ is a homogenizing variable. Among these �ve points, (−1 ∶ −1 ∶ 1),
(1 ∶ 1 ∶ 1), (0 ∶ 1 ∶ 0), and (1 ∶ 0 ∶ 0) are singular points. The point
(−1 ∶ −1 ∶ 1) blows up to be two rational points, point (1 ∶ 1 ∶ 1) blows up
to be two rational points, point (0 ∶ 1 ∶ 0) blows up to be one rational point,
and point (1 ∶ 0 ∶ 0) blows up to be a closed point that is not rational. Thus,
our search has found all the rational points onX. The only a�ne rational point
such that a ≠ ±1 is (0 ∶ 0 ∶ 1). But this corresponds to z = 0, which is the
periodic point. Thus, there is no a ∈ ℚ such that g2a(z1) = 0 and ga(z1) ≠ 0 or
∞ for rational z1.
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Now we look for non-periodic rational second preimages of 1; i.e., rational
z2 so that g2a(z2) = 1 and ga(z2) ≠ 1 or −1. We need to �nd rational solutions
to the equation

a3z7 − a4z5 − z9 + 3az7 − 5a2z5 + 3a3z3 + az3 − a2z
− (−a2z8 + 3a3z6 − a4z4 + az6 − 5a2z4 + a3z2 + 3az2 − 1) = 0.

This equation de�nes a reducible curve overℚ and the irreducible components
are

0 = z − 1
0 = az + z2 + z + 1
0 = a2z5 − a3z3 − a2z4 + az5 − z6 − a2z3 + 2az4 − a2z2 − az3 + a2z
+ 2az2 − z3 + az − 1.

The�rst component corresponds to z = 1 and the second component to ga(z) =
−1. Thus, we focus on the third component. It de�nes a genus 3 curve. We can
quotient by a C2 action by identifying (a, z) with (a, 1∕z). This gives curve

X ∶ t3 + (−a2 − a)t2 + (a2 − 2a − 3)t + a3 + 3a2 + 3a + 1 = 0,

where t = z + 1
z
. This is a genus 1 curve birational to the elliptic curve

E ∶ y2 − 2xy + 2y = x3 − 3x2 + 2x,
via the map

x = 2at4 − 2a2t2ℎ − 8at3ℎ + 8a2tℎ2 + 4at2ℎ2 + 8t3ℎ2 + 16atℎ3

− 26t2ℎ3 + 8tℎ4

y = 2at4 − 4t4ℎ − 2a3ℎ2 − 2a2tℎ2 − 26at2ℎ2 + 14t3ℎ2 + 26a2ℎ3 + 36atℎ3

+ 6t2ℎ3 + 58aℎ4 − 90tℎ4 + 30ℎ5

z = t5 − 2t4ℎ,
where ℎ and z are the homogenizing variables of X and E, respectively. The
curve E has rank 0 and its torsion subgroup has six elements. A search for
rational points on the projective closure of X using height bound 1000 �nds

(a, t, ℎ) ∈ {(1 ∶ −2 ∶ 1), (1 ∶ 2 ∶ 1), (0 ∶ 1 ∶ 0), (−1 ∶ 0 ∶ 1),
(1 ∶ 0 ∶ 0), (−3 ∶ 2 ∶ 1)},

where ℎ is the homogenizing variable. Among these points, (−1 ∶ 0 ∶ 1) and
(1 ∶ 2 ∶ 1) are singular points. The �rst one blows up to be two rational points,
and the second one blows up to be a closed point that is not rational. Therefore,
we have found all the rational points onX. Observe that the only a�ne rational
point where a ≠ ±1 is (−3 ∶ 2 ∶ 1). Thus, we need to solve t = z+1∕z = 2. The
only solution is z = 1. Thus, there is no a such that g2a(z2) = 1 and ga(z2) ≠ 1
or −1 for rational z2.
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Next we check if both pairs of 2-cycles can have preperiodic tails at the same
time; i.e., if we can have ga(z1) = 0 and ga(z2) = 1 with a, z1, z2 ∈ ℚ. Recall
that we need a = t21 to have ga(z1) = 0 and a = 3t22+3t2+3

2t22+5t2+2
to have ga(z2) = 1.

Thus, we need to �nd rational solutions to

C ∶ (3t22 + 3t2 + 3) − t21(2t
2
2 + 5t2 + 2) = 0.

This de�nes a genus 1 curve that is birationally equivalent to the elliptic curve
E ∶ y2 = x3 + 180x2 + 11664x + 279936

via the map

x = 54t2ℎ
y = 108t1t2 + 216t1ℎ
z = −t2ℎ − 1∕2ℎ2,

where ℎ and z are the homogenizing variables of C and E, respectively. The
curve E has rank 0 and its torsion subgroup has order 4. Searching for rational
points on the projective closure of X using height bound 1000 produces

(t1, t2, ℎ) ∈ {(0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0), (1 ∶ 1 ∶ 1), (−1 ∶ 1 ∶ 1)},
where ℎ is the homogenizing variable. Among these points, (0 ∶ 1 ∶ 0) and
(1 ∶ 0 ∶ 0) are singular points. The �rst one blows up to be two rational points,
whereas the second one blows up to be only one closed point that is not rational.
Thus, we have found all rational points on X. Checking whether these points
produce valid members of the family, we see that t2 = 1 so that a = t22 = 1,
which produces degeneracy. Thus, we cannot have ga(z1) = 0 and ga(z2) = 1
at the same time for rational z1 and z2.

Now we need to ask if we can have rational �xed points at the same time
as preperiodic tails for a 2-cycle. Recall that we have rational �xed points if
a = t4+1

2t2
andwe have ga(z) = 0 if a = u2 andwe have ga(z) = 1 if a = 3v2+3v+3

2v2+5v+2
.

We �rst study the curve

X ∶ t4 + 1 − 2u2t2 = 0.
This de�nes a genus 1 curve birational to the elliptic curve

E ∶ y2 + 2xy = x3 − 4x2 + 2x
via the map

x = 2t3 + 2t2u − 4t2ℎ − 2tuℎ + 4tℎ2 − 2ℎ3

y = −4t3 − 4t2u + 4t2ℎ − 4tℎ2

z = t3 − 3t2ℎ + 3tℎ2 − ℎ3,

where ℎ and z are the homogenizing variables of X and E, respectively. The
curve E has rank 0 and four rational torsion points. Searching up to height
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1000 on the projective closure of X, we �nd
(t, u, ℎ) ∈ {(1 ∶ 1 ∶ 1), (0 ∶ 1 ∶ 0), (−1 ∶ 1 ∶ 1), (1 ∶ −1 ∶ 1), (−1 ∶ −1 ∶ 1)}.

The point (0 ∶ 1 ∶ 0) is a singular point and does not blow up to a rational
point. Thus, we have found all rational points on X. Note that all the a�ne
points have t ∈ {0, ±1} so correspond to either periodic t = 0 or to degenerate
t = ±1. Thus, we cannot have a rational preperiodic tail for 0 and rational �xed
points at the same time. Now we study the curve

X ∶(t4 + 1)(2v2 + 5v + 2) − (3v2 + 3v + 3)(2t2) = 0
corresponding to a rational preperiodic tail for 1 and rational �xed points at the
same time. This curve is genus 1 and is birational to the elliptic curve

E ∶ y2 = x3 + 9x2 − 54x − 216
via the map

x = 9t2vℎ + 18t2ℎ2 − 15vℎ3 − 12ℎ4

y = 27t3v + 54t3ℎ − 81tvℎ2

z = −vℎ3 + ℎ4,
where ℎ and z are the homogenizing variables of X and E, respectively. The
curve E has rank 0, and 4 rational torsion points. Searching using height bound
1000 on the projective closure of X′ produces:

(t, z, ℎ) ∈ {(1 ∶ 1 ∶ 1), (0 ∶ 1 ∶ 0), (0 ∶ −2 ∶ 1), (0 ∶ −1∕2 ∶ 1),
(1 ∶ 0 ∶ 0), (−1 ∶ 1 ∶ 1)}.

The singular points are

{(−1 ∶ 1 ∶ 1), (1 ∶ 1 ∶ 1), (0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0)}.
The points {(−1 ∶ 1 ∶ 1), (1 ∶ 1 ∶ 1), (0 ∶ 1 ∶ 0)} blow up to closed points that
are not rational. The point (1 ∶ 0 ∶ 0) blows up to two rational points. Thus,
we have found all the rational points onX. The only a�ne rational points have
t ∈ {0, ±1}which are excluded in this case. Therefore, we cannot have a rational
preperiodic tail for 1 and rational �xed points at the same time. �

6.5. C2 First Component. We consider the two-parameter family
fa,b(z) =

z3+az
bz2+1

.
We start by examining the �xed points and 2-periodic points.

Proposition 6.16. For fa,b(z) =
z3+az
bz2+1

, we have the following periodic points.

(1) The points 0 and∞ are always �xed. There are two additionalℚ-rational
�xed points for pairs (a, b) parameterized by

(a, b) = (a, 1 + a − 1
t2 ) t ≠ 0, t2 ≠ −a.

The two additional ℚ rational �xed points are given by z = ±t.
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(2) The pairs (a, b) for which fa,b has a 2-cycle with ℚ-rational points is
parameterized by the union of two surfaces.

S1 ∶ (a, b) = (a,−1 + −1 − a
t2 ) t ≠ 0, t2 ≠ −a

S2 ∶ (a, b) = (a,− 1
t2 − a − t2) t ≠ 0, t2 ≠ −a, t2 ≠ −1a .

For S1 there is one 2-cycle with points z = ±t. For S2 there are two
2-cycles with points given by the pairs

z ∈ {t, −1t } z ∈ {−t, 1t } .

These two surfaces intersect on the line a + b = −2 and on this line
there is one 2-cycle with multiplicity 3 and points z = ±1.

Proof. We �rst look at the �xed points. We compute the �rst dynatomic poly-
nomial as

Φ∗1(fa,b) = −bz3 + z3 + az − z.
After removing the component z = 0, we set z = t and solve for b in terms of
a. This is a rational surface with parameterization given in the statement. To
see that there are exactly two �xed points, we substitute the parameterizations
of a and b into Φ∗1(fa,b) to get

Φ∗1(fa,b) = z(a − 1)(t − z)(t + z).

From this we see the two new ℚ-rational �xed points are z = ±t.
Now we consider the second periodic points via the second dynatomic poly-

nomial
Φ∗2(fa,b) = (bz2 + z2 + a + 1)(z4 + az2 + bz2 + 1).

Each component gives the rational surface parameterized by the given parame-
terization obtained by setting z = t and solving for b in terms of a. The points of
period two are obtained by factoring the dynatomic polynomial after substitut-
ing in the parameterization of a and b. Their intersection contains two curves:
a + b = −2 and ab = 1, but the second curve is the degenerate pairs (a, b).

�

Periodic points with higher periods and strictly preperiodic points are dif-
�cult to study for this family mainly because computational tools for rational
points on surfaces is much less well developed than for curves. Consequently,
we content ourselves with a census ofℚ-rational preperiodic structures for pa-
rameters a and b inℚ with small height. By no means do we think this census
is exhaustive; rather, it gives a sense of the diversity of possibilities when there
are only C2 symmetries.

Table: Preperiodic Graphs for fa,b(z) =
z3+az
bz2+1

, Labelled by the Pair (a, b)
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(0, 1) (0, −1) (0, 0)

∙ ∙zz zz

∙

∙
∙ ∙77
'' zz zz

∙ ∙

∙ ∙

zz zz

zz zz

(0, −2) (0, −3)

∙ ∙

∙ ∙

""
bb

zz zz

∙ ∙ ∙ ∙

∙ ∙

// zz // zz

zz zz

(0, −5∕4) (0, −9∕16)

∙ ∙
∙ ∙

∙ ∙
""

aa zz zz

zz zz

∙

∙
∙

∙ ∙

∙
77
'' zz

zz zz

zz

(1, −9) (−1, −1∕4)

∙

∙
∙ ∙ ∙ ∙77
'' zz ""

aa
zz

∙

∙
∙

∙

∙
∙77

'' zz
77
'' zz

(−1, −5∕2) (−1∕2, −15∕4)

∙

∙

∙

∙
∙ ∙

//

//

77
'' zz zz

∙ ∙ ∙ ∙
∙

∙
""

aa
""

aa zz

zz

(2, −7∕4) (−7∕4, −11∕8)

∙ ∙ ∙ ∙
∙

∙
//

""
aa

oo
zz

zz

∙ ∙

∙ ∙
∙ ∙

//

OO
//

OO zz zz

(0, −14∕3) (−1, −13∕4)

∙
0

∙
∞

∙

∙

∙

∙

∙

∙
77
'' ##
bb gg

ww
zz

zz

∙

∙
∙

∙ ∙

∙ ∙
∙77

'' zz

""
bb

""
aa zz

(1∕2, −7) (−3, −5∕4)

∙ ∙
∙ ∙

∙ ∙

∙

∙

// zz

""
aa

// zz

zz

zz

∙ ∙

∙ ∙

∙ ∙

∙ ∙

""
bb

""
aa

zz zz

zz zz
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(−2∕3, −11∕4) (−3∕2, −1∕9)

∙
∙

∙

∙
∙

∙

∙

∙
77
zz''

77
zz''

zz

zz

∙
∙

∙ ∙ ∙

∙ ∙ ∙
77
zz''

""
aa

zz zz zz

(−1∕4, −11∕5) (11∕4, −16)

∙
∙

∙

∙ ∙

∙ ∙
∙77

zz''

// zz

// zz

zz

∙

∙

∙

∙
∙

∙ ∙

∙//

//

77
'' zz

""
aa

zz

(−1, −25∕9) (−16∕9, −21∕4)

∙

∙

∙

∙
∙

∙

∙
∙

//

//

77
'' zz

77
'' zz

∙
∙

∙

∙

∙

∙ ∙

∙
zz

77
''

//

//

zz zz

zz

(−17∕5, −17∕20) (−9∕25, −25∕16)

∙ ∙

∙ ∙

∙ ∙

∙ ∙

""
bb

""
aa

""
bb

zz zz

∙

∙
∙

∙

∙
∙

∙

∙

<<

||

zz
77
'' zz''

77

(−2, −13∕12)

∙ ∙
∙

∙

∙ ∙
∙

∙

∙

∙

//
77
zz''

//
77
zz''

zz

zz

(−3, −9∕16)

∙
∙

∙

∙
∙

∙

∙
∙

∙
∙77

zz''
77
zz''

77
zz'' zz

(−5∕2, −7∕4)

∙

∙
∙ ∙

∙

∙
∙ ∙

∙

∙
77
'' ""
aa 77

'' ""
aa zz

zz

(4∕5, −9∕4)

∙

∙
∙ ∙

∙

∙

∙

∙
∙ ∙77

'' ""
aa gg

ww
77
'' zz zz
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(−5∕4, −16∕9)

∙ ∙

∙
∙

∙ ∙

∙
∙

∙

∙
∙ ∙

//
77
'' zz

//
77
'' zz

77
'' zz zz

(7∕8, −17∕2)

∙ ∙
∙

∙

∙ ∙

∙

∙ ∙

∙
""

aa77
''

//
gg
ww

oo zz

zz

(−19∕3, −25∕9)

∙ ∙
∙

∙
∙ ∙

∙

∙
∙

∙

∙
∙""

aa77
'' ""

aa77
'' zz''

77
zz

6.6. C2 Second Component. We move to the two-parameter family
ga,b(z) =

az2+1
z3+bz

.
We start by examining the �xed points and 2-periodic points.

Proposition 6.17. For ga,b(z) =
az2+1
z3+bz

, we have the following periodic points.

(1) The pairs (a, b) for which ga,b has a ℚ-rational �xed point are parame-
terized by

(a, b) = (a,−t2 + a + 1
t2 ) ,

for t ≠ 0, t2 ≠ a, and t2 ≠ − 1
a
. There are exactly two ℚ-rational �xed

points given by
z = ±t

(2) For every (non-degenerate) pair (a, b), ga,b has the 2-cycle 0–∞. The
pairs (a, b) forwhich there are additional 2-cycleswithℚ-rational points
are parameterized by

(a, b) = (a,−t2 − a − 1
t2 ) ,

for t ≠ 0, t2 ≠ −a, and t2 ≠ − 1
a
. There are exactly two 2-cycles with

ℚ-rational points given by

{±t} and {±1t } .

Proof. We �rst look at the �xed points. The �xed points are given by the equa-
tion

az2 + 1 = z4 + bz2.
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Let z = t be a �xed point, we can solve for b in terms of a and t as

b = −t2 + a + 1
t2 .

This gives the stated parameterization. The omitted t values are thosewhere the
map is degenerate. With this parameterization, the �rst dynatomic polynomial
factors as

Φ∗1(ga,b) = (z − t)(z + t)(z2t2 + 1)
so there are two ℚ-rational �xed points ±t.

Now we consider the second periodic points via the second dynatomic poly-
nomial

Φ∗2(ga,b) = z(ab − 1)(z4 + (a + b)z2 + 1).
We see the periodic 2-cycle 0–∞ occurs for every choice of (a, b). Taking the
last factor and setting z = t as a periodic point, we solve for b in terms of t to
get

b = −t2 − a − 1
t2 .

Then additional 2-cycles with ℚ-rational points are given by the stated param-
eterization. The omitted t values are those where the map is degenerate. With
this parameterization the second dynatomic polynomial factors as

z(t − z)(t + z)(−tz + 1)(tz + 1)(t2 + a)(at2 + 1).

So the additional ℚ-rational points of period 2 are ±t and ± 1
t
.

�

Similar to the �rst 2-parameter family, periodic points with higher periods
and (strictly) preperiodic points are di�cult to study for this family. Again, we
content ourselves with a census ofℚ-rational preperiodic structures for param-
eters a and b with small height. One representative from each isomorphism
class as directed graphs is exhibited. The labeling of the points {0,∞} are not
part of the graph data. Including those points in the data would add addi-
tional possible graph structures, such as having the strictly preperiodic points
in (a, b) = (0, −1) occur as preimages of 0 rather than∞.

Table: Preperiodic Graphs for ga,b(z) =
az2+1
z3+bz

, Labelled by the Pair (a, b)

(0, 0) (0, −1)
∙
0

∙
∞ ∙ ∙
##

bb
zz zz ∙

0
∙
∞

∙

∙

##
bb

ww
gg
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0

∙
∞ ∙ ∙
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""
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∙
∞
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∙

∙

∙
77
'' ##
bb gg

ww
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(−1, −5∕2) (−1, 11∕4)
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7. Rational Preperiodic Structures inℳ4

In this section, we examine theℚ-rational preperiodic point structures of the
families covering A4 given in Section 4.

We start with the dimension 0 family.

7.1. The zero dimension loci A4(C5) and A4(D5). Recall from
Proposition 4.2 that A4(D5) = A4(C5) are given by the single conjugacy class
f(z) = 1

z4
.

Theorem 7.1. For A4(D5) = A4(C5) the single conjugacy class f(z) =
1
z4

has
ℚ-rational preperiodic structure given by

∙
0

∙
∞

∙
−1

∙
1

##
bb

// zz

Proof. Direct computationwith the algorithmofHutz [Hut15] as implemented
in Sage. �

7.2. The dimension one familyA4(C4). The automorphism locus ofA4(C4)
is covered by the family fk(z) =

z4+1
kz3

. We start with the periodic points.

Proposition 7.2. We have the following periodic points for fk(z) =
z4+1
kz3

.

(1) The point∞ is a �xed point for every k. When k = 1+t4 for t ∈ ℚ⧵{0},
we have exactly two additional ℚ-rational �xed points, ± 1

t
.

(2) There are two 2-cycles with ℚ-rational points for each of the following
two families of parameters

k = t2 + t−2 for t ∈ ℚ ⧵ {0, ±1}
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k = −(t2 + t−2) for t ∈ ℚ ⧵ {0, ±1}
and one 2-cycle for the family

k = −(1 + t4) for t ∈ ℚ ⧵ {0}.
Furthermore, noℚ-rational value of k appears in more than one of the
given parameterizations. In particular, there are at most two 2-cycles
with ℚ-rational points.

(3) The only ℚ-rational �xed point that occurs in conjunction with a 2-
cycle withℚ-rational points is the �xed point∞, which occurs for every
parameter value.

Proof. Starting with rational �xed points, we can immediately see that ∞ is
always a �xed point. The �rst dynatomic polynomial isΦ∗1(fk) = (1−k)z4+1.
Since this is linear in k, there are additional rational �xed points when

k = z4 + 1
z4 .

In particular, only two of the four �xed points ±z,±iz are ℚ-rational with z ∈
ℚ. Substituting z = 1

t
, we get k = 1 + t4.

Next we look for 2-cycles with ℚ-rational points. The second dynatomic
polynomial is

Φ∗2(fk) = (z4 − kz2 + 1)(z4 + kz2 + 1)((1 + k)z4 + 1).
All three components are linear in k, so we get one-parameter families each of
which has two 2-cycles with ℚ-rational points.

(1) The �rst factor vanishes when k = z4+1
z2

, which for z = ±t or z = ± 1
t

becomes k = t2+t−2. In this case, there are two 2-cycleswithℚ-rational
points {t, 1

t
} and {−t, − 1

t
} for t ∈ ℚ ⧵ {0} except when t = ±1 where the

two 2-cycles collapse to �xed points.
(2) The second factor vanishes when k = z4+1

−z2
, which for z = ±t or z = ± 1

t
becomes k = −(t2 + t−2). In this case there are two 2-cycles with ℚ-
rational points {t, − 1

t
} and {−t, 1

t
} for t ∈ ℚ ⧵ {0} excpet when t = ±1

where the two 2-cycles collapse to a single 2-cycle.
(3) The third factor vanishes when k = 1+z4

−z4
, which for z = ± 1

t
becomes

k = −(1 + t4). In this case there is one 2-cycle with ℚ-rational points
{ 1
t
, − 1

t
} for t ∈ ℚ ⧵ {0}.

We must also check if any of these three sets of 2-cycles can occur at the same
time. We must �nd points on the pairwise intersections of the three curves.

(1) For k = t21 + t−21 = −(t22 + t−22 ) there are two components:

t21 + t22 = 0
t21t

2
2 = −1
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neither of which has a (valid) ℚ-rational point.
(2) For k = t21 + t−21 and k = −(1 + t43), we get the genus 5 curve

t21t
4
3 + t41 + t21 + 1 = 0.

Substituting u = t21 and v = t23 , this covers the elliptic curve

X ∶ uv2 + u2 + u + 1 = 0.
The curve X is birational to the elliptic curve

E ∶ y2 = x3 − x2 + x,
via the map

(u, v, w) ↦ (z, y, −x),
wherew and z are the homogenizing variables ofX and E, respectively.
The curve E is rank 0 with torsion subgroup isomorphic to ℤ∕4ℤ. The
four torsion points are

{(0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0), (−1 ∶ 1 ∶ 1), (−1 ∶ −1 ∶ 1)}.
Only the two points {(0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0)} correspond to rational
points on the original curve, and these points do not correspond to valid
parameters.

(3) For k = −(t21 + t−21 ) and k = −(1 + t42), we get the genus 5 curve

t21t
4
2 − t41 + t21 − 1 = 0.

Substituting u = t21 and v = t22 , this covers the elliptic curve
X ∶ uv2 − u2 + u − 1 = 0.

The curve X is birational to the elliptic curve

E ∶ y2 = x3 − x2 + x,
via the map

(u, v, w) ↦ (z, −y, x),
wherew and z are the homogenizing variables ofX and E, respectively.
The curve E is rank 0 with torsion subgroup isomorphic to ℤ∕4ℤ. The
four torsion points are

{(0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0), (−1 ∶ 1 ∶ 1), (−1 ∶ −1 ∶ 1)}.
Only the two points {(0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0)} correspond to rational
points on the original curve, and these points do not correspond to valid
parameters.

Now we investigate whether we can get rational �xed points other than the
point at in�nity if we have rational 2-cycles. The �rst case is when the third
factor of Φ∗2(fk) = 0 has a solution, so we want to see if k = −(1 + t4) = 1 + l4
is possible for some rational t and l. This gives the curve

2 + l4 + t4 = 0,
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which clearly has no solutions over ℚ. Doing the same thing for the second
component of Φ∗2(fk) = 0 yields

t4 + (1 + l4)t2 + 1 = 0.

The substitution x = t2, y = l2 reduces this curve to
X ∶ x2 + (1 + y2)x + 1 = 0,

which is a genus 1 curve with the rational point (x, y) = (−1,−1). We �nd that
this curve is birational to the elliptic curve

E ∶ y2 = x3 − 16x2 + 96x − 192 (11)

via the map

x = 8xy − 8y2

y = −8xy − 8y2 − 8xz + 8yz − 16z2

z = xy − y2 + xz − yz,
where z is the homogenizing variable for both curves. The curve E is a rank
0 elliptic curve with torsion subgroup isomorphic to ℤ∕4ℤ. Thus, the curve
X has four rational (projective) points, which we �nd to be {(0 ∶ 1 ∶ 0), (1 ∶
0 ∶ 0), (−1 ∶ 1 ∶ 1), (−1 ∶ −1 ∶ 1)}. These points are all nonsingular. The
only a�ne points are (−1, ±1). Both of these points have at least one negative
coordinate so cannot lift to any points in ℚ since we covered by the squaring
map. Because there are no rational points on the original curve, there cannot
be any rational values of k for which fk has rational �xed points and rational
2-cycles in this case.

The �rst factor of Φ∗2(fk) = 0 is similar. The curve we get this time is

X′ ∶ t4 − (1 + l4)t2 + 1 = 0,
which di�ers from the previous case by a minus sign. We can use the same
cover by x and y to get that this curve is birational to the same elliptic curve E
in equation (11). Again there are only four rational points on the curve X′:

{(1 ∶ 1 ∶ 1), (0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0), (1 ∶ −1 ∶ 1)}.
This time we see that one point has two positive coordinates, so the original
curve has rational (a�ne) solutions {(1, 1), (1, −1), (−1, 1), (−1, −1)}. They all
correspond to the value k = 2 (t = ±1), which is the case where the 2-cycles
collapse to �xed points. �

A search for rational preperiodic structures with the parameter up to height
10, 000 using the algorithm from [Hut15] as implemented in Sage yields no pa-
rameters where fk has aℚ-rational periodic point with minimal period at least
3.

Conjecture 7.3. There is no k ∈ ℚ such that fk(z) =
z4+1
kz3

has a ℚ-rational
periodic point of minimal period at least 3.
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Assuming Conjecture 7.3, we classify the ℚ-rational preperiodic structures.

Theorem 7.4. Assuming Conjecture 7.3, the possible ℚ-rational preperiodic
structures for fk(z) =

z4+1
kz3

for k ∈ ℚ are the following.

G1 ∶ ∙0 ∙
∞//
xx

, all k not in families G2, G3, or G4

G2 ∶ ∙0 ∙
∞ ∙ ∙//
xx zz zz , k = 1 + t4 for t ∈ ℚ ⧵ {0}

G3 ∶ ∙0 ∙
∞ ∙ ∙//
xx ""

bb , k = −(1 + t4) for t ∈ ℚ ⧵ {0}

G4 ∶ ∙0 ∙
∞ ∙ ∙ ∙ ∙//
xx ""

bb
""

bb , k = ±(t2 + t−2)
for t ∈ ℚ ⧵ {0, ±1}.

Proof. Starting with rational �xed points, we can immediately see that ∞ is
always a �xed point and 0 is its only non-periodic rational (�rst) preimage for
all parameters a. Since the numerator of fk(z) is z4 + 1, there are no rational
preimages of 0 inℚ. However, we might have non-periodic rational preimages
of the additional rational �xed points when they do appear. We examine each
of the two rational �xed points z = ± 1

t
when k = 1 + t4 and t ≠ 0.

In the �rst case, we look at z = 1
t
. We know that k = 1 + t4, so �nding the

preimages of this point amounts to solving the equation

z4 + 1
(1 + t4)z3

= 1
t ,

which determines the curve

(1 − zt)(z2t3 − z3 + zt2 + t) = 0.

The �rst factor corresponds to the �xed point itself since z = 1
t
is �xed. The

second factor can be reduced to the form

E ∶ y2 = x3 + x2 + x

using the transformation x = zt, y = z2. The curve E has rank 0 and torsion
subgroup isomorphic toℤ∕2ℤ. Since one of the coordinates of the transforma-
tion was the squaremap, each point of E has one or two preimages. We �nd the
original curve has three rational projective points {(0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 1), (1 ∶
0 ∶ 0)}. The two points (0 ∶ 1 ∶ 0) and (1 ∶ 0 ∶ 0) are singular. The point
(0 ∶ 1 ∶ 0) does not blow-up to a rational point and (1 ∶ 0 ∶ 0) blows up to a
single rational point. Thus, these points give us the two points which are the
preimages of the torsion points of E. The only a�ne one of these is (0, 0), but it
is not valid since t = 0 corresponds to all �xed points being the point at in�nity.
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Now we look at z = − 1
t
. In this case, we want to solve the equation

z4 + 1
(1 + t4)z3

= −1t ,

which is the same as �nding rational points on

(1 + zt)(z2t3 + z3 − zt2 + t) = 0.
The same transformation as above can be used to get

y2 = −x3 + x2 − x,
which is also rank 0 with torsion subgroup isomorphic to ℤ∕2ℤ. For the same
reason, there are three projective rational points but only one corresponds to
an a�ne point. In particular, we again see that (0, 0) is the only ℚ-rational
solution in z and t, which is invalid. Thus, the extra �xed points never have
non-periodic preimages.

We now investigate the case of points in 2-cycles having ℚ-rational preperi-
odic tails. The �rst case is when k = −(1 + t4), in which case the points z = 1

t
and z = − 1

t
map to each other. Finding rational preimages of these points re-

sults in the same equations as solving for preimages of �xed points, which we
know do not exist.

The second case is k = t2+t−2 = t4+1
t2

, which has 2-cycles {t, 1
t
} and {−t, − 1

t
}.

The cases of fk(z) = ±t reduce to the curves
(zt ± 1)(z2t3 ∓ z3 ± zt2 + t) = 0.

The �rst component is the other point in the 2-cycle, so we focus on the second
component which is two genus 3 curves isomorphic under z ↦ −z. These
curves are the same as analyzed earlier in this proof and the only a�ne point
has t = 0, which is degenerate.

Next we look at fk(z) =
t2(z4+1)
z3(t4+1)

= ± 1
t
, which give the curves

(z ± t)(z3t3 ± z2 − zt ± t2) = 0.
The �rst component is the other point in the 2-cycle, so we focus on the second
component.

This curve is genus 3 and we can quotient by the order 2 automorphism

(z, t, ℎ) ↦ (−z,−t, ℎ)
to obtain a genus 1 curve X de�ned by equations

− u2u3 + u24 = 0,
u21 − u2u3 + u2u4 + u3u4 = 0.

A point search of low height gives the two ℚ-rational points on X
{(0 ∶ −1∕9 ∶ −9 ∶ 1), (0 ∶ −1∕3 ∶ −3 ∶ 1)}
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Using the second point, X is birational to the elliptic curve

y2 = x3 + x2 + x,
which is rank 0 with torsion subgroup isomorphic to ℤ∕2ℤ. So every rational
point on the original curve must map to one of these two rational points on
X. Using the equations of the quotient map, we �nd the rational points in the
inverse image of each point to get

{(0 ∶ 0 ∶ 1), (0 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 0)}.
The a�ne point has t = 0, which is the degenerate case. Thus, there are no
non-periodic rational preimages of the points in any 2-cycle for the given pa-
rameterization of k.

The �nal case is when k = −(t2 + t−2), but it reduces to �nding rational
points on the same curves as the previous case.

�

7.3. A4(D3). Themodel for this family isfk(z) =
z4+kz
kz3+1

. We start by classifying
periodic points.

Proposition 7.5. For the familyfk(z) =
z4+kz
kz3+1

, wehave the followingℚ-rational
periodic points.

(1) The points 0, 1, and∞ are �xed points for every choice of k ∈ ℚ⧵ {±1}.
There are no other rational �xed points.

(2) For k = t2 + t + 1 + t−1 + t−2 with t ∈ ℚ ⧵ {0, ±1}, fk(z) has a single
2-cycle with ℚ-rational points

{
t, 1

t

}
.

Proof. We start with rational �xed points and see that∞ is always �xed. For
additionalℚ-rational �xed points, we consider the �rst dynatomic polynomial

Φ∗1(fk) = (1 − k)z(z − 1)(z2 + z + 1).
Note that k = 1 is degenerate since it would lead us to cancelling a factor of
z3 + 1 in the function, resulting in a function that is not degree 4. The roots of
z2 + z + 1 = 0 are cube roots of unity so are not rational; thus, the �xed points
are 0, 1, and∞ regardless of k.

Looking for 2-cycleswithℚ-rational points, we consider the seconddynatomic
polynomial

Φ∗2(fk) = (k + 1)(z4 + z3 + (1 − k)z2 + z + 1)
(z8 − z7 + kz6 + (k + 1)z5 + (k2 − 2k − 1)z4 + (k + 1)z3 + kz2 − z + 1). (12)

Looking at the curveΦ∗2(fk) = 0, we do not consider the degenerate component
k = −1. The degree 4 component produces a genus 0 curve since it is linear in
k. Solving for k, we get

k = t2 + t + 1 + t−1 + t−2
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for the 2-cycle consisting of z ∈
{
t, 1

t

}
. With this parameterization of k values,

we look for addition 2-cycles with ℚ-rational points by factoring the second
dynatomic polynomial

Φ∗2(fk) = (t2 + 1)(t2 + t + 1)(t − z)(zt − 1)(z2 + zt + t2)(z2t2 + zt + 1)
(z2t + z(t2 + t + 1) + t)(z4t2 + z3(−t3 − t2 − t)
+ z2(t4 + 2t3 + 2t2 + 2t + 1) + z(−t3 − t2 − t) + t2).

It remains to be seen that no choice of t ∈ ℚ produces an additional 2-cycle
with ℚ-rational points. We examine each component in turn. We apply the
quadratic equation to the component

z2 + zt + t2 = 0
to have

z = −t ± t
√
−3

2
which is never rational. Similarly for the component

z2t2 + zt + 1 = 0
we get

z = −1 ±
√
−3

2t
which is not rational for t ∈ ℚ. For the third quadratic component we also
apply the quadratic formula to have

z = −(t2 + t + 1) ±
√
t4 + 2t3 − t2 + 2t + 1
2t2 .

For z to be rational we need the discriminant to be a square, so we examine the
curve

X ∶ t4 + 2t3 − t2 + 2t + 1 = l2.
This is a genus 1 curve birational to an elliptic curve with Weierstrass model

E ∶ y2 + 2xy + 8y = x3 + 4x2

via the map

x = 2t2ℎ + 2tℎ2 + 2lℎ2 − 2ℎ3

y = 4t3 + 4t2ℎ + 4tlℎ − 4tℎ2

z = ℎ3,
where ℎ and z are the homogenizing variables of X and E, respectively. The
curve E has rank 0 and torsion subgroup isomorphic toℤ∕4ℤ. A rational point
search on the projective closure of X yields the three points

{(0 ∶ −1 ∶ 1), (0 ∶ 1 ∶ 0), (0 ∶ 1 ∶ 1)}.
The point (0 ∶ 1 ∶ 0) is singular and blows up to two rational points, so these
are all of the rational points on X. These all have t = 0 which is k = 1, which
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is degenerate. The last component (degree four in z) is irreducible over ℚ but
is reducible over ℚ(!) where ! is a cube root of unity. We can factor it as

z4t2 + z3(−t3 − t2 − t) + z2(t4 + 2t3 + 2t2 + 2t + 1) + z(−t3 − t2 − t) + t2 =
(t2z + wtz2 + tz + (−w − 1)t + z)(t2z + (−w − 1)tz2 + tz + wt + z).

Since the curve factors over an extension of ℚ, rational points on it must be
singular (Lemma 6.4). The ℚ-rational singular points are
(t, z) ∈ {(−1, −1), (0, 0)} but t ∈ {0, −1} are degenerate cases. Therefore, there
is only one 2-cycle with ℚ-rational points. Note that t = 1 has the 2-cycle
collapsing to the �xed point z = 1.

Now the degree 8 component of Φ∗2(fk) in (12) is irreducible over ℚ but is
reducible over ℚ(!) where ! is a cube root of unity. We can factor it as

z8 − z7 + kz6 + (k + 1)z5 + (k2 − 2k − 1)z4 + (k + 1)z3 + kz2 − z + 1 =
(kz2−!z4+(!+1)z3−z2−!z+!+1)(kz2+(!+1)z4−!z3−z2+(!+1)z−!).

Since the curve factors over an extension ofℚ, rational points on it must be sin-
gular (Lemma6.4). Theℚ-rational singular points are just (k, x) ∈ {(−1, 1), (1, −1)}
but k = ±1 are degenerate cases, so there are no validℚ-rational points on this
component.

�

Turning to periodic points of period 3, we look at the vanishing of the third
dynatomic polynomial Φ∗3(fk). It has a degree 6 and a degree 54 component.
The degree 6 component is given by

(k2 + k + 1)z6 + (k2 + 4k + 1)z3 + k2 + k + 1 = 0.

This is irreducible over ℚ, but reducible over ℚ(!), where ! is a cube root
of unity. Since the curve factors over an extension of ℚ, rational points on it
must be singular (Lemma 6.4). The ℚ-rational singular points are (k, x) ∈
{(−1, 1), (1, −1)} but k = ±1 are degenerate cases, so there are no (valid) ra-
tional points on this component. The degree 54 component can be simpli�ed
by replacing z3 with z to have a degree 18 equation in z. This gives a genus
23 curve which is still problematic computationally. The only points of small
height on it corresponded to k = ±1, so are degenerate; however, we are not
able to fully analyze this curve.

A search for rational preperiodic structures with the parameter up to height
10, 000 using the algorithm from [Hut15] as implemented in Sage yields no pa-
rameters k ∈ ℚ where fk has a ℚ-rational periodic point with minimal period
at least 3.

Conjecture 7.6. There is no k ∈ ℚ such that fk(z) =
z4+kz
kz3+1

has a ℚ-rational
periodic point of minimal period at least 3.

Assuming Conjecture 7.6, we classify the ℚ-rational preperiodic structures.
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Theorem 7.7. Assuming Conjecture 7.6, the possible ℚ-rational preperiodic
structures for fk(z) =

z4+kz
kz3+1

for k ∈ ℚ, with possibly �nitely many exceptional
values of the parameter k, are the following.

G1 ∶ ∙
−1

∙
1

∙
0

∙
∞// zz zz xx

, all k not in G2, G3, G4, or G5

G2 ∶ ∙
−1

∙ ∙

∙
1

∙
0

∙
∞//

�� �� zz zz xx
, k = t + t−1 for t ∈ ℚ ⧵ {0, ±1}

G3 ∶ ∙
−1

∙
1 ∙ ∙

0 ∙ ∙
∞// zz // zz //
xx

, k = t3 for t ∈ ℚ ⧵ {0, ±1}

G4 ∶ ∙
−1

∙
1

∙
0

∙
∞ ∙ ∙// zz zz xx ""

bb , k = t2 + t + 1+ t−1 + t−2
for t ∈ ℚ ⧵ {0, ±1}

G5 ∶
∙

∙
∙
−1

∙
1

∙
0

∙
∞77

'' // zz zz xx
, for k = −1 − t4

t3 + t for t ∈ ℚ ⧵ {0, ±1}.

Proof. We start with non-periodic rational preimages of the �xed points. We
begin with 0, which amounts to solving z4+kz = 0, giving us the point z = −t
as the preimage of 0 when k = t3. The other non-periodic preimages of 0 are
not rational. Similarly, preimages of ∞ come from solutions to az3 + 1 = 0,
which are parameterized by k = t3 as well, but the preimage is z = − 1

t
. The

other non-periodic preimages of∞ are not rational. Thus, the parameter k = t3
gives two additional rational points in the preperiodic structure.

Preimages of 1 come from solutions to fk(z) = 1, which gives the curve

z4 − kz3 + kz − 1 = (z − 1)(z + 1)(z2 − kz + 1) = 0.

The factor of z − 1 is expected since 1 is its own preimage. The second factor
has z = −1 as a rational preimage of 1 for all k. Finally, the last factor is genus
0, so when k = t + t−1 the point z = t maps to 1. Furthermore, this image
is invariant when we replace t by 1

t
, so in fact there will be two rational points

that map to 1 for these values of k. Note that t = ±1 has the three rational
preimages collapsing to a single preimage of the �xed point.

Now we check if we can have additional non-periodic preimages of 1 at the
same time as non-periodic preimages of 0 and∞. We need values of k such that
k = t + t−1 = l3 for t, l ∈ ℚ. The curve

X ∶ t2 − tl3 + 1 = 0

is a genus 2 hyperelliptic curve with model

C ∶ y2 + x3y + 1 = 0,
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obtained by setting x = l and y = −t. The curve C has a (isomorphic) simpli-
�ed model

C′ ∶ y2 = x6 − 4
whose Jacobian has rank 1 and torsion subgroup isomorphic to ℤ∕3ℤ.

Magma’s Chabauty method tells us that there are only two rational points
on this hyperelliptic curve. However, since the map from the original curve
was not an isomorphism, we still have some work to do: we need to investigate
the behavior at the singular points. Fortunately, the only singular point on the
projective model is (1 ∶ 0 ∶ 0), and an initial search on the projective closure
of X �nds the rational points (0 ∶ 1 ∶ 0) and (1 ∶ 0 ∶ 0), which are all we
expect to have. We need to look at the places of the divisor associated to this
singular point. There is only one; because it is of degree 1, we have not missed
any rational points. Thus, the only rational points are at in�nity, so the a�ne
model has none andwe cannot have additionalℚ-rational preimages of 1 at the
same time as non-periodic ℚ-rational preimages of the �xed points 0 and∞.

Now we look at non-periodic second preimages of the �xed point 1. First we
consider preimages of −1. We are looking for rational points on the curve

z4 + kz3 + kz + 1 = 0.

This equation is linear in k, so we can solve as k = −1−t4

t3+t
for t ∈ ℚ ⧵ {0, ±1}.

With this expression for k the preimages of −1 satisfy

(z − 1∕t)(z − t)(z2 + 2t
t2 + 1z + 1) = 0.

Then there are at least the two rational preimages {t, 1
t
}. Checking the last fac-

tor, we need to �nd rational points on the (genus 1) curve

C ∶ (t2 + 1)z2 + 2tz + t2 + 1 = 0.
Overℚ(i) it has the rational point (−i ∶ 0 ∶ 1), which produces theWeierstrass
model

E ∶ y2 = x3 + 4x2 − 64x − 256
via the map

(x, y, z) = (8it, −32iz, ℎ),
where ℎ and z are the homogenizing variables of C and E, respectively. The
curve E is rank 0 overℚ(i)with torsion subgroup isomorphic toℤ∕2ℤ×ℤ∕4ℤ.
Taking the inverse image of the eight rational points on E, we get the ℚ(i)-
rational points on the curve C are

{(0 ∶ 1 ∶ 0), (i ∶ 0 ∶ 1), (1 ∶ 0 ∶ 0), (0 ∶ −i ∶ 1), (0 ∶ i ∶ 1), (−i ∶ 0 ∶ 1)}.
The only ℚ-rational value of t is 0, which is not a valid parameter.

There remain a few cases that were unable to be fully resolved resulting in
possibly �nitely many exceptional k values with larger graph structures. We go
through those cases now.
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We consider rational preimages of the preimages of −1. We substitute k =
−1−t4

t3+t
and examine f(z) = t and f(z) = 1

t
. These produce the two genus 11

curves
(t3 + t)z4 + (t5 + t)z3 + (−t4 − 1)z − t4 − t2 = 0

and
z4t4 + z3t4 + z4t2 − zt5 + z3 − t3 − zt − t = 0,

respectively. These curves were not amenable to any of the methods we tried.
They have no valid points of small height.

Additional rational preimages of 1 occur for k = t + t−1 and are {t, 1
t
}. We

considerℚ-rational preimages of those additional preimages by looking for ra-
tional points on the (genus 6) curve de�ned by fk(z) = t with equation

tz4 + (−t3 − t)z3 + (t2 + 1)z − t2 = 0.
This curve is genus 6 and was not amenable to any of the methods we tried. It
has no valid points of small height.

Non-periodic ℚ-rational preimages of 0 occur for k = t3 and is the single
point {−t}. Non-periodic ℚ-rational second preimages of 0 are then given by
fk(z) = −t which is the curve de�ned by

z4 + t4z3 + t3z + t = 0
This curve is genus 8 and was not amenable to any of the methods we tried. It
has no valid points of small height.

Non-periodicℚ-rational secondpreimages of∞ are equivalent to non-periodic
ℚ-rational second preimages of 0 under the automorphism z ↦ 1∕z.

The existence of a non-periodic ℚ-rational preimage of 0 and a ℚ-rational
second preimage of 1 corresponds k = t31 =

−1−t42
t32+t2

and to rational points on the
curve

t31(t
3
2 + t2) − (−1 − t42) = 0.

This curve is genus 6 and was not amenable to any of the methods we tried. It
has no valid points of small height.

The existence of aℚ-rational 2-cycle and a non-periodicℚ-rational preimage
of a �xed point corresponds to k = t31 = t22 + t2 + 1 + t−12 + t−22 and to rational
points on the curve

t22t
3
1 − (t42 + t32 + t22 + t2 + 1) = 0.

This curve is genus 4 and was not amenable to any of the methods we tried. It
has no valid points of small height.

It remains to consider non-periodic preimages of points in the 2-cycle. The
2-cycle

{
t, 1

t

}
occurs for k = t2 + t + 1 + t−1 + t−2 with t ∈ ℚ ⧵ {0, ±1}. By the

automorphism z ↦ 1∕z, it is equivalent to look at the preimage of either point
in the cycle. Looking at preimages of t, we need to �nd rational points on the
genus 6 curve given by fk(z) = t with equation

tz3 − t(t3 + t2 + t + 1)z2 − (t3 + t2 + t + 1)z + t3 = 0.
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This curve was not amenable to any of the method we tried. It has no valid
points of small height.

All of these unresolved cases are curves of genus at least 4 so can have at
most �nitely many ℚ-rational points, due to Faltings’ Theorem. These possi-
ble rational points corresponds to the possibly �nitely many exceptions in the
statement.

�

7.4. The locus A4(C3). This family is given by fk1,k2(z) =
z4+k1z
k2z3+1

. We �rst
examine periodic points.

Proposition 7.8. For the family fk1,k2(z) =
z4+k1z
k2z3+1

, we have the following ℚ-
rational periodic points.

(1) The points 0 and∞ are �xed for all pairs (k1, k2).
(2) For (u, v) ∈ A2(ℚ) and

k1 = u4v − u3 + 1
k2 = uv,

fk1,k2(z) has one additional rational �xed point z = u.

Proof. We look at the �rst dynatomic polynomial. The points 0 and ∞ are
factors for all choices of parameters k1 and k2. The other component is given
by

(k2 − 1)z3 − k1 + 1 = 0.
This forms a rational surface that has the given parameterization. Substituting
the parameterization back into Φ∗1(fk1,k2), we see there is one additional �xed
point.

�

As with the degree 3 families with multiple parameters, periodic points with
higher periods and (strictly) preperiodic points were di�cult to study. We con-
tent ourselves with a census ofℚ-rational preperiodic structures for parameters
k1 and k2 with small height. One representative from each isomorphism class
as directed graphs is exhibited. The labeling of the points {0,∞} are not part of
the graph data. Including those points in the datawould add additional possible
graph structures, such as having the rational preimage of∞ in (k1, k2) = (0, 1)
occur as a rational preimage of 0.

Table: Preperiodic Graphs for fk1,k2(z) =
z4+k1z
k2z3+1

, Labeled by the Pair (k1, k2)

(0, 1∕2) (0, 1) (0, 2) (0, 0)

∙
0

∙
∞

zz xx

∙

∙
0

∙
∞

zz

xx
// ∙

∙
0

∙
∞

zz xx

zz ∙ ∙

∙
0

∙
∞

zz xx

zz//



AUTOMORPHISM LOCI FOR DEGREE 3 AND DEGREE 4 ENDOMORPHISMS 1695

(1, −1) (1, −3) (1∕2, −7∕4)

∙ ∙
0

∙ ∙
∞

zz

xx
//

//

∙ ∙ ∙
0

∙
∞

// // zz

xx ∙
0

∙
∞

∙ ∙
zz

xx

""
aa

(4∕3, −8) (−5∕12, −25∕18) (5∕2, 5∕2)
∙ ∙

0

∙ ∙
∞

∙

zz//

xx
//

zz
∙
0

∙
∞

∙ ∙ ∙

zz

xx
//

!!
aa

∙
0

∙
∞ ∙∙

∙ ∙zz

xx zz//
�� ��

(1∕8, 1∕8) (11∕4, 11∕4) (17∕10, 17∕10)
∙ ∙

0

∙ ∙
∞

∙∙zz//

xx
//

// zz

∙
0

∙
∞ ∙ ∙

∙ ∙zz

xx

// zz

""
aa

∙
0

∙
∞ ∙

∙
∙ ∙

zz

xx 88
&& // zz

7.5. The locus A4(C2). This family is given by fk1,k2,k3(z) =
z4+k1z2+1
k2z3+k3z

. The
point at in�nity is always a �xed point with preimage 0. Additional �xed points
are given by the �rst dynatomic polynomial whose vanishing de�nes a rational
hypersurface

Φ∗1(f) = (k2 − 1)z4 − k1z2 + k3z2 − 1.

For this family, we again content ourselveswith a census ofℚ-rational prepe-
riodic structures for parameters k1, k2, and k3 with small height.

Table: Preperiodic Graphs for fk1,k2,k3(z) =
z4+k1z2+1
k2z3+k3z

, Labelled by the Triple
(k1, k2, k3)

(0, 0, 1) (0, 0, 2) (0, 0, −2) (0, 1, −1)

∙
0

∙
∞//
xx

∙
0

∙
∞

∙ ∙

//
xx

zz zz

∙
0

∙
∞

∙ ∙

//
xx

""
aa

∙
0

∙
∞

∙ ∙

//
xx�� ��

(−2, 0, 1) (0, 1∕3, −4∕3) (0, 3, −5)

∙
0

∙
∞

∙

∙
//
xx

77
''

∙
0

∙
∞

∙

∙

∙

∙

OO

xx
77
''

//

//

∙
0

∙
∞ ∙ ∙

∙ ∙

//
xx ""

bb

""
aa

(0, −3, 5) (0, 2∕3, −8∕3) (0, −2∕3, 8∕3)

∙
0

∙
∞ ∙

∙ ∙∙

//
xx zz

zz zzzz

∙
0

∙
∞

∙ ∙ ∙ ∙

//
xx�� ��

""
aa

∙
0

∙
∞

∙ ∙ ∙

∙//
xx�� ��

zz

zz
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(−2, 0, 9∕2) (−2, 1, 2) (−2, 1, −1∕4)

∙
0

∙
∞

∙

∙

∙

∙
//
xx

88
&&

//

//

∙
0

∙
∞

∙

∙ ∙

∙
//
xx

77
''

zz

zz
∙
0

∙
∞

∙

∙
∙

∙

//
xx

77
''

��

OO

(1, 1, 5) (1, −1, −5)

∙
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Notice that there areℚ-rational periodic points of (minimal) period
{1, 2, 3, 4, 6}. Are there ℚ-rational points of (minimal) period 5?

8. Concluding Remarks
There are a number of interesting problems that come both directly and in-

directly from the results in this paper. We list a few of those here.
(1) Resolve the conjectures on the existence of periodic points for the vari-

ous one-dimensional families.
(2) Determine all the rational points on the high genus curves that were

left unresolved in A4(D3).
(3) Do a full analysis of rational preperiodic points for the two- and three-

dimensional families.
(4) ClassifyAd for d ≥ 5.
(5) Use these families for future studies. For example, when looking at

the cycle statistics of these families modulo primes, such as the aver-
age number of periodic points or the average tail length, the number
of rational elements in the automorphism group appears to play a role.
We have preliminary statistics on this topic that can be made available
upon request.
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