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Schiffer operators and calculation of a
determinant line in conformal field theory

David Radnell, Eric Schippers,
Mohammad Shirazi and Wolfgang Staubach

Abstract. We consider an operator associated to compact Riemann
surfaces endowed with a conformal map, f , from the unit disk into the
surface, which arises in conformal field theory. This operator projects
holomorphic functions on the surface minus the image of the conformal
map onto the set of functions h so that the Fourier series h ◦ f has
only negative powers. We give an explicit characterization of the cok-
ernel, kernel, and determinant line of this operator in terms of natural
operators in function theory.
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1. Introduction

In conformal field theory the central charge, or conformal anomaly, plays
an important role and is encoded geometrically by the determinant line
bundle of a certain family of operators π(R,f) over the rigged moduli space,
see Y.-Z. Huang [3] or G. Segal [15]. Here R is a Riemann surface and f is a
conformal map into that surface (see below). In this paper, we give a simple
and explicit description of the cokernel of π(R,f), in the case of surfaces with
one boundary curve. Furthermore, we explicitly relate the operator π(R,f)

to classical operators of function theory: the Faber, Grunsky, and Schiffer
operators. In particular, we give an explicit formula for its inverse in terms of
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an integral operator involving a Green’s function. We use this to show that
the cokernel of π(R,f) can be identified with the space of anti-holomorphic
one-forms on R.

We now give a heuristic description of the rigged moduli space and the
determinant line, postponing analytic considerations for the main text of

the paper. The rigged moduli space M̃(g, 1) is a moduli space of Riemann
surfaces R with one puncture, together with a “rigging”. This rigging is a
conformal map f from the disk into R taking the unit disk D in the complex
plane into the surface R, which takes 0 to the puncture. Let Σ = R\ cl f(D)
where “cl” denotes closure. Fourier expansions can be obtained for boundary
values h of holomorphic functions on Σ by considering the functions h ◦ f
on the circle. Let P− denote the projection onto those h such that the
Fourier series of h ◦ f has only negative powers of eiθ. We define π(R,f)to
be the restriction of P− to the holomorphic functions on Σ, that is, π(R,f) =
P−|Hol(Σ) . Its determinant line is the one-dimensional vector space

Det(π(R,f)) = Hom
(
∧dimKer(π(R,f)) Ker(π(R,f)),∧dimCoker(π(R,f)) Coker(π(R,f))

)
.

This determinant line is canonically isomorphic to that of the operator
∂ ⊕ P− (see Y.-Z. Huang [3, Proposition D.3.3]). These lines come with a
Z2-grading, but this plays no role in the current article and so will not be
discussed.

We show that the cokernel of π(R,f) can be identified with the space of the
anti-holomorphic one-forms on R. We achieve this using an explicit inverse
to π(R,f), in terms of natural operators in function theory constructed from
the Green’s function that were studied by M. Schiffer and others. Since
the kernel is trivial the determinant line is isomorphic to the top exterior
power of this space of one-forms. Finally, we outline the surprising direct
relation between π(R,f) and natural generalizations of the Faber operator
and the Grunsky operator of classical function theory and approximation
theory. This relation follows naturally from the fact that the Faber and
Grunsky operators and their generalizations are closely related to the jump
formula on Riemann surface, as in the genus-zero case; see Y.-Z. Huang [3]
and D. Radnell [5]. We show that the pull-back of the space of holomorphic
functions under the rigging is the graph of the Grunsky operator. We also
generalize the Grunsky inequalities, which state that the norm of the Grun-
sky operator is strictly less than one, to the case of general genus surfaces
with one conformal map.

The usual regularity requirement on the rigging f is that it has an analytic
or smooth extension to the boundary of the disk. In the analytic rigging
setting, the determinant lines and corresponding holomorphic bundle struc-
ture were rigorously constructed for genus-zero surfaces in Y.-Z. Huang [3]
and in higher-genus in D. Radnell [5]. However the higher-genus result was
achieved without a direct description of the cokernel of π(R,f), nor the rela-
tion to the classical infinite-dimensional Teichmüller space and the function
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theoretic objects mentioned above. These new connections open the path
to future progress.

Throughout the paper, we use a considerably weaker analytic condition,
namely that the function has a quasiconformal extension. As a consequence,
the analysis is more difficult. However, the technical difficulties were resolved
in publications of E. Schippers and W. Staubach [13, 14]. We also use the
Dirichlet space on Σ, which is a natural conformally invariant completion
of the set of harmonic functions which extend smoothly to the boundary.
Aside from their naturality from an analytic perspective, these choices pave
the way for the later construction of the holomorphic bundle structure over
the infinite-dimensional rigged moduli space. This construction will use the
correspondence between the Teichmüller space and the rigged moduli space
discovered by Radnell and Schippers [6]. We will pursue this in later publi-
cations. A discussion of the reasons for these analytic choices, and related
results of the authors, can be found in Radnell, Schippers and Staubach [7].

Acknowledgments: The authors are grateful to the referee, whose com-
ments have improved the presentation of the paper.

2. Preliminaries

2.1. Riemann surfaces and quasicircles. This section gives the basic
notation and set-up for Riemann surfaces used throughout the article.

Let S be an arbitrary Riemann surface and R a compact Riemann surface
of genus g. We say that a Jordan curve Γ ⊆ C is a quasicircle if there is a
quasiconformal map ψ : C → C such that Γ = ψ(S1) [4]. Given a Riemann
surface S, we say that a curve Γ ⊆ S is a quasicircle if there is an open
neighbourhood U of Γ and a holomorphic bijection φ : U → A where A is a
doubly-connected open set in C and φ(Γ) is a quasicircle in C according to
the above criterion.

Throughout the paper, we consider the situation that R is compact and
Γ separates R into two connected components Σ1 and Σ2. The surfaces Σ1

and Σ2 are bordered Riemann surfaces and we can identify the borders ∂Σ1

and ∂Σ2 with Γ pointwise. In particular we will exclusively use the setting
where Σ2 is simply-connected. In this case we use the notation Σ = Σ1 and
Ω = Σ2. Note that an equivalent way to view this is that Ω is the image in
R of a conformal map from D into R and the border of Σ (and Ω ) is the
image of the unit circle S1 under the conformal map.

Note also that the boundary ∂Σ is a border [1] and that furthermore it
is homeomorphic to S1. If desired, we can also identify ∂Σ with a simple
closed analytic curve in the Riemann surface Σd obtained by adjoining Σ to
its double.

2.2. Operators on the Dirichlet and Bergman space associated to
Green’s function. Let S be a Riemann surface. We define a pairing on
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one-forms on S by

(ω1, ω2) =
1

2

∫∫
S
ω1 ∧ ∗ω2 (2.1)

provided that this is finite. Here ∗ is the dual of the almost complex struc-
ture: that is, if z = x+ iy is a local holomorphic parameter then

∗(a dx+ b dy) = a dy − b dx.
In particular, ∗ω = −iω for holomorphic one-forms and ∗ω = iω for anti-
holomorphic one-forms.

Denote by Aharm(S) those one-forms which are harmonic on S and which
are L2 with respect to the pairing (2.1). Let A(S) denote the Bergman

space of L2 holomorphic one-forms and A(S) the set of L2 anti-holomorphic

one-forms on S. Of course, A(S) consists precisely of complex conjugates of
elements of A(S). We have the direct sum decomposition

Aharm(S) = A(S)⊕A(S) (2.2)

and it follows directly from (2.1) that the decomposition is orthogonal. Fi-
nally, the subsets of exact forms will be denoted with a subscript ‘e’, that is
by A(S)e, Aharm(S)e and A(S)e.

We will also consider the Dirichlet spaces of complex harmonic functions,
that is

Dharm(S) = {h : S → C : h is harmonic and dh ∈ Aharm(S)}
D(S) = {h ∈ Dharm(S) : dh ∈ A(S)}

D(S) = {h ∈ Dharm(S) : dh ∈ A(S)}.
If we define the indefinite inner-product

(f, g) = (df, dg)

then up to constants d : Dharm(S)→ Aharm(R)e is an isometry, and similarly

D(S) and D(S) are isometric to A(S)e and A(S)e under ∂ and ∂. We
will thus not notationally distinguish the norm and semi-norm, and it is
understood that one is applied to functions and the other to one-forms.

For a fixed point q ∈ S, we let

Dharm(S)q = {h ∈ Dharm(S) : h(q) = 0}

and similarly for D(S)q and D(S)q. The restriction of d, ∂ and ∂ become
honest isometries.

Finally, observe that although D(S) and D(S) are orthogonal, there is no
decomposition of Dharm(S) similar to (2.2) because given h ∈ Dharm(S), ∂h
and ∂h are not in general exact.

As in section 2.1 let R be a compact Riemann surface and Γ a quasicircle
which separates R into two connected components Σ and Ω, where Ω is
simply connected. In this case, there are orthogonal projection maps

P (Ω) : Dharm(Ω) −→ D(Ω)
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and

P (Ω) : Dharm(Ω) −→ D(Ω).

These are obviously bounded with respect to the Dirichlet semi-norm. We
also define, for q ∈ Ω,

P (Ω)qh = P (Ω)h− (P (Ω)h)(q) ∈ D(Ω)q

and similarly

P (Ω)qh = P (Ω)h− (P (Ω)h)(q) ∈ D(Ω)q.

We also consider an operator which is given by integration against a
Cauchy-type kernel obtained from the Green’s function. When restricted
to a certain subspace, this can also be thought of as a projection, in a way
which is explained ahead.

We define Green’s function ofR [12] to be the unique function g(w,w0; z, q)
such that

(1) g is harmonic in w on R\{z, q};
(2) for a local coordinate φ on an open set U containing z, g(w,w0; z, q)+

log |φ(w)− φ(z)| is harmonic for w ∈ U ;

(3) for a local coordinate φ on an open set U containing q, g(w,w0; z, q)−
log |φ(w)− φ(q)| is harmonic for w ∈ U ;

(4) g(w0, w0; z, q) = 0 for all z, q, w0.

It can be shown that g exists, is uniquely determined by these properties,
and that ∂wg is independent of w0, so we will henceforth drop the point w0

in the notation for g. It also follows from symmetry properties of g that it
is also harmonic in z away from the poles.

Let gΩ be the Green’s function of Ω, in the usual sense (gΩ(z, p) has a
logarithmic singularity at p and has a continuous extension to ∂Ω which
vanishes there). For fixed p ∈ Ω let Γε(Ω, p) denote the level curves of the
Green’s function gΩ(·, p), for ε sufficiently close to 0. For fixed q /∈ Γ, we
define the integral operator

Jq(Γ) : Dharm(Ω) −→ Dharm(Ω ∪ Σ)q

h 7−→ − lim
ε↘0

1

πi

∫
Γε(Ω,p)

∂wg(w; z, q)h(w) (2.3)

where by Dharm(Ω ∪ Σ)q we mean the set of harmonic functions on the
(disjoint) union of Ω and Σ, which have bounded Dirichlet norm, and vanish
at q. The operator appears to be dependent on p, but below we see that it
is in fact independent.

We then have the following results.

Theorem 2.1 ([14]). Let R be a compact Riemann surface with Green’s
function g, and let Γ be a quasicircle separating R into connected components
Ω and Σ, with Ω simply-connected. Fix q /∈ Γ and p ∈ Ω. Let Jq(Γ) be
defined by (2.3), where Γε(Ω, p) are the level curves {w : gΩ(w, p) = ε} of
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the Green’s function gΩ. Then Jq(Γ) is independent of the choice of p ∈ Ω,
and bounded with respect to the Dirichlet semi-norm.

Finally, we define the Schiffer operators, which are closely related to Jq(Γ):

T (Ω,Σ) : A(Ω) −→ A(Σ)

α 7−→ − 1

πi

∫∫
Ω
∂z∂wg(w; z, q) ∧w α(w); z ∈ Σ

and

T (Ω,Ω) : A(Ω) −→ A(Ω)

α 7−→ − 1

πi

∫∫
Ω
∂z∂wg(w; z, q) ∧w α(w); z ∈ Ω

where in both cases ∧w denotes wedge product in the variable of integration
w. These are bounded operators [14].

2.3. Boundary values and transmission of harmonic functions. We
will use a conformally invariant notion of non-tangential boundary values
which is well-adapted to the Dirichlet spaces. In the remainder of this
section, we define this notion and summarize the necessary results. Proofs
and details can be found in [13].

We say that U is a collar neighbourhood of ∂Σ if it is an open set bounded
by ∂Σ and a Jordan curve Γ′ ⊆ Σ which is isotopic to ∂Σ from within the
closure of U .

Let gΣ denote the Green’s function of Σ, and for p ∈ Σ, let Γε(Σ, p) denote
the level set {z : gΣ(z, p) = ε} for ε > 0. For ε sufficiently small Γε(Σ, p) is
an analytic curve.

For r sufficiently close to 0, the Green’s function induces a biholomorphic
chart φ : Ar → A from a collar neighbourhood Ar of ∂Σ onto an annulus

A = {r < |z| < 1}
for some r < 1, in such a way that the level curves Γε(Σ, p) map to circles of
radius less than one. If we consider ∂Σ as an analytic curve in Σd, then this
chart has an analytic extension to an open neighbourhood of the closure of
Ar, which takes ∂Σ to |z| = 1. In any case, one can speak without ambiguity
of the continuous extension of φ to ∂Σ which takes it homeomorphically to
|z| = 1. For p fixed, this chart is unique up to multiplication by a unit
modulus constant and the choice of r. We call this chart the canonical
collar chart with respect to (Σ, p).

We say that a closed subset I of ∂Σ is null with respect to Σ if φ(I) ⊆ S1

has logarithmic capacity zero where φ is a canonical chart with respect to
(Σ, p). This is independent of p, so the terminology “null with respect to
Σ” is well-defined.

Any function h ∈ Dharm(Σ) has boundary values in a certain non-tangential
sense which we now describe. Let

D = {z ∈ C : |z| < 1}
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denote the unit disk in the complex plane C, and let W (q,M) be a non-
tangential wedge in D with terminal point at q. That is,

W (q,M) = {z ∈ D : |q − z| < M(1− |z|)}

where the angular width of the wedge is determined by M ∈ (1,∞). Fix
p ∈ Σ and let φ : U → A be a canonical chart with respect to (Σ, p). For all
M , the limit

lim
z→q

z∈W (q,M)∩A

h ◦ φ−1

exists for all q ∈ S1 except possibly on a set of logarithmic capacity zero.
Since φ−1 extends continuously to S1, the limit

lim
z→φ−1(q)

z∈φ−1(W (q,M)∩A)

h(z)

exists except possibly on a null set in ∂Σ with respect to Σ. The existence
of the limit at q is independent of the choice of p. In this case, we say that
the limit exists conformally non-tangentially quasi-everywhere on ∂Σ. We
will usually drop the term “quasi-everywhere”, and abbreviate “conformally
non-tangentially” by “CNT”.

Remark 2.2. It follows immediately from the definition that conformally
non-tangential and non-tangential limits are the same in the case of the
unit disk D. From this it is not hard to deduce that they are the same for
analytic curves.

If two functions in Dharm(Σ) have the same CNT boundary values except
possibly on a null set, then they are equal. Consider thus the set of func-
tions h : Γ → C defined quasi-everywhere. We say that two such functions
h1 and h2 are equivalent, h1 ∼ h2, if they agree quasi-everywhere. We de-
fine H(Γ,Σ) to be the set of functions which are CNT boundary values of
elements of Dharm(Σ) quasi-everywhere, modulo the equivalence relation ∼.

Now let Σ1 and Σ2 be biholomorphically equivalent bordered Riemann
surfaces each with one border homeomorphic to S1. Let f : Σ1 → Σ2 be
a holomorphic bijection. Then f extends continuously to the closure Σ1 so
that the restriction of f to ∂Σ1 is a homeomorphism between the borders ∂Σ1

and ∂Σ2. It follows immediately from the conformal invariance of Green’s
functions that a closed set I ⊂ Σ1 is null with respect to Σ1 if and only if
f(I) is null with respect to Σ2. The composition operator

Cf : Dharm(Σ2) −→ Dharm(Σ1)

h 7−→ h ◦ f

is a semi-norm preserving bijection. Furthermore, by conformal invariance
of the notion of CNT boundary values, if u are the boundary values of
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h ◦ f quasi-everywhere on ∂Σ1 and v are the boundary values of h quasi-
everywhere on ∂Σ2, then u = v ◦ f . Thus we have the well-defined compo-
sition map

Cf : H(∂Σ2) −→ H(∂Σ1)

h 7−→ h ◦ f.

We summarize some necessary facts in the following theorem, using the
set-up from Section 2.1.

Theorem 2.3 ([13, Theorem 3.29]). Let R be a compact Riemann surface,
and let Γ be a quasicircle which separates R into two connected components
Σ1 and Σ2.

(1) A set I ⊂ Γ is null with respect to Σ1 if and only if it null with
respect to Σ2.

(2) Given h1 ∈ Dharm(Σ1), there is a unique h2 ∈ Dharm(Σ2) whose CNT
boundary values agree with those of h1 quasieverywhere; similarly an
h2 ∈ Dharm(Σ2) uniquely determines an h1 ∈ Dharm(Σ1) with the
same boundary values up to a null set.

(3) The maps

O(Σ1,Σ2) : Dharm(Σ1) −→ Dharm(Σ2)

and

O(Σ2,Σ1) : Dharm(Σ2) −→ Dharm(Σ1)

defined by (2) are bounded with respect to the Dirichlet semi-norms.
We refer to these operators as transmission operators.

Thus, if Γ = ∂Σ1 = ∂Σ2 is a quasicircle, we may unambiguously define
H(Γ) without reference to Σ1 or Σ2.

3. Jump decomposition and the Faber and Grunsky
operators

3.1. Outline of the section. In this Section, we obtain a jump decompo-
sition on quasicircles in Riemann surfaces, and a related isomorphism which
we later show to be inverse to π(R,f). We also show how this isomorphism
relates to natural generalizations of the Faber and Grunsky operators of
classical function theory and approximation theory.

3.2. Jump decomposition on quasicircles in Riemann surfaces. Let
R,Γ,Σ and Ω be as in Section 2.1. In this section we gather theorems on
the jump decomposition on such quasicircles Γ. We show that the jump
decomposition induces an isomorphism between a certain subset of D(Ω)
and D(Σ). This isomorphism plays a central role in the description of the
determinant lines.
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Let H ∈ H(Γ). By a jump decomposition of H, we mean a pair of
functions hΩ ∈ D(Ω) and hΣ ∈ D(Σ) with boundary values uΩ and uΣ

respectively, such that

H = uΣ − uΩ (3.1)

except possibly on a null set. The jump decomposition on Riemann surfaces
is known to exist classically for more regular functions and curves, see for
example [2, 11], providing that H satisfies a certain algebraic condition.
Assuming for the moment that Γ and H are smooth, this algebraic condition
states that H has a decomposition if and only if∫

Γ
Hα = 0 (3.2)

for all holomorphic one-forms α on R.
We must phrase this condition on quasicircles, which of course can be

highly non-smooth, in terms of Dirichlet spaces and H(Γ). We do this now
using results of [14]. For fixed p ∈ Ω, define

W =

{
h ∈ Dharm(Ω) : lim

ε→0

∫
Γε(Ω,p)

hα = 0 ∀α ∈ A(R)

}
.

Note that by Stokes’ theorem, this integral can be expressed as an inte-
gral over Ω of a two form (see equation (3.4) below). In particular it is
independent of p.

Remark 3.1. One might also consider the set

WΣ =

{
h ∈ Dharm(Σ) : lim

ε→0

∫
Γε(Σ,p)

hα = 0 ∀α ∈ A(R)

}
for fixed p ∈ Σ. As expected, we have that O(Σ,Ω)WΣ = W [14].

Since every element of D(Ω) has a jump decomposition (namely, set uΣ

to be zero on Σ), it suffices to focus on D(Ω). Thus we define

W ′ = W ∩ D(Ω).

Fixing p ∈ Ω, we define in the usual way W ′p = {h ∈ W ′ : h(p) = 0}. The
choice of p is arbitrary. Note that we have the decomposition

W = W ′p ⊕D(Ω)

which is orthogonal with respect to the inner product on Dharm(Ω).
Let B(R) denote the set of primitives in Ω of the restrictions to Ω of

elements of A(R). That is

B(R) = {h ∈ D(Ω) : ∃α ∈ A(R) such that ∂h = α|Ω}

and as above let B(R)p denote the set of h ∈ B(R) which vanish at p. For

a linear space U in Dharm(Ω) let U⊥ denote the set of h ∈ Dharm(Ω) such
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that (h, g) = 0 for all g ∈ U . This is not strictly speaking an orthogonal
complement, since constants are in U⊥ for any U . We claim that

B(R)
⊥

= W. (3.3)

To see this, let h ∈ B(R)
⊥

. Given any α ∈ A(R), let g ∈ D(Ω) be such that
∂g = α on Ω.

lim
ε↘0

∫
Γε(Ω,p)

hα =

∫∫
Ω
dh ∧ ∂g = 0 (3.4)

so h ∈ W . Conversely if h ∈ W , then any g ∈ B(R) is orthogonal to h by
the same computation.

We then have the following orthogonal decomposition in Dharm(Ω):

Dharm(Ω) = B(R)p ⊕W ′p ⊕D(Ω) = B(R)p ⊕W. (3.5)

For later use, denote the orthogonal projection onto B(R)p by

P
B(R)p

: Dharm(Ω) −→ B(R)p

Theorem 3.2. Fix q ∈ Σ. The map

Jq(Γ) : W −→ D(Ω)⊕Dq(Σ)

h 7−→
(
Jq(Γ)h|Ω , Jq(Γ)h|Σ

)
is an isomorphism.

Proof. This is a special case of [14, Theorem 4.29]. �

Furthermore, if we set

hΩ = Jq(Γ)h|Ω
and

hΣ = Jq(Γ)h|Σ
then if H ∈ H(Γ) is the CNT boundary values of h ∈ Dharm(Ω) then hΩ and
hΣ are solutions to the jump problem (3.1). These are the unique solutions
up to a constant [14, Corollary 4.31].

There is another related isomorphism. Let

Kp,q : W ′p −→ D(Σ)q

h 7−→ Jq(Γ)h|Σ . (3.6)

We then have the following theorem.

Theorem 3.3. Fix q ∈ Σ and p ∈ Ω. Then Kp,q is an isomorphism with

inverse −P (Ω)pO(Σ,Ω).
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Proof. Let A(Σ)e ⊆ A(Σ) denote the set of those one-forms in A(Σ) which

are exact. Since Ω is simply connected, A(Ω)e = A(Ω). Let δ : A(Ω) →
D(Ω)p be the unique inverse of ∂ : D(Ω)p → A(Ω). We then have by [14,
Theorem 4.2] that

T (Ω,Σ) = ∂Kp,qδ : A(Ω) −→ A(Σ)e.

Applying [14, Theorem 4.25] with V1 = ∂W1, Σ1 = Ω and Σ2 = Σ, we
see that T (Ω,Σ) is an isomorphism. Since the restriction of δ to V1 is an
isomorphism onto W ′, and ∂ : D(Σ)q → A(Σ)e is an isomorphism, this
shows that Kp,q is an isomorphism.

To prove the second claim, observe by [14, Theorem 4.16] with Σ1 = Ω
and Σ2 = Σ as above, we have for all h ∈ W ′ that (denoting restriction to
Ω and Σ by [·]Ω and [·]Σ)

h =
[
Jq(Γ)h

]
Ω
−O(Σ,Ω)

[
Jq(Γ)h

]
Σ
. (3.7)

Applying P (Ω)p to both sides, using the facts that the output of Jq(Γ)

applied to functions in W ′ is holomorphic and that P (Ω)ph = h we see that

h = −P (Ω)pO(Σ,Ω)
[
Jq(Γ)h

]
Σ

= −P (Ω)pO(Σ,Ω)Kp,qh.

That is, −P (Ω)pO(Σ,Ω) is a left inverse of Kp,q as claimed. Since we have
already shown that Kp,q is invertible, this proves that it is also a right
inverse. �

Equation (3.7) combines the jump decomposition (3.1) with transmission.
By doing so, it allows us to recognize the relation of the decomposition
of Dharm(Ω) into holomorphic and anti-holomorphic functions to the jump
formula. This relation reveals the isomorphism Kp,q.

3.3. Faber isomorphism and Grunsky operator. Define the following
“generalized Faber operator” and “generalized Grunsky operator”. Let f :
D→ Ω be a conformal map. Set f(0) = p. Define

Vf = CfW ′p ⊆ D(D).

Observe that elements of Vf vanish at 0. We now define the operator

If : Vf −→ Dq(Σ)

h 7−→ −Kp,q(Σ)Cf−1h.

We then have

Theorem 3.4. Let R be a compact Riemann surface, and Γ be a quasicircle
separating R into components Ω and Σ. Assume that Ω is simply connected
and f : D → Ω is conformal. Then If is an isomorphism, with inverse
P (D)0CfO(Σ,Ω).
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Proof. First observe that because Cf is an isometry, P (D)Cf = CfP (Ω).

Thus since f(0) = p, P (D)0Cf = CfP (Ω)p. By Theorem 3.3 we have that

P (D)0CfO(Σ,Ω)If = −CfP (Ω)pO(Σ,Ω)Kp,qCf−1 = Id.

�

Define also

Grf : Vf −→ D(D)0

h −→ P (D)0CfO(Σ,Ω)Ifh.

We have a generalization of the Grunsky inequalities.

Theorem 3.5. Let R be a compact surface, and let Γ be a quasicircle sep-
arating R into two components Ω and Σ such that Ω is simply connected.
Let Vf be as above and let f : D → Ω be a conformal bijection and let Grf
be the associated Grunsky operator on Vf . Then∥∥∥Grf |Vf

∥∥∥ < 1.

Proof. Set p = f(0) as above. Let H ∈ Vf , so that Cf−1H ∈ W ′p. By (3.7)
we have that

Cf−1H =
[
Jq(Γ)Cf−1H

]
Ω
−O(Σ,Ω)

([
Jq(Γ)Cf−1H

]
Σ

)
.

Now applying P (D)0Cf to both sides we obtain that (using the fact that H
vanishes at 0)

0 = P (D)0H = P (D)0Cf
([
Jq(Γ)Cf−1H

]
Ω

)
− P (D)0CfO(Σ,Ω)

([
Jq(Γ)Cf−1H

]
Σ

)
.

The projection operator in the first term on the right hand side acts as the
identity since the function in brackets is holomorphic. Thus

Grf H = Cf
([
Jq(Γ)Cf−1H

]
Ω

)
+ constant.

Define the operator Ĉf : Aharm(Ω)→ Aharm(D) to be the unique operator

satisfying Ĉfd = dCf . Now differentiating, by [14, Theorem 4.2] we obtain

∂GrfH = ∂Cf
([
Jq(Γ)Cf−1H

]
Ω

)
= Ĉf∂

([
Jq(Γ)Cf−1H

]
Ω

)
= Ĉf

(
∂Cf−1H + T (Ω,Ω)∂Cf−1H

)
= ĈfT (Ω,Ω)∂Cf−1H.

Since Cf−1H ∈W ′p and Ĉf is norm-preserving,∥∥∥T (Ω,Ω)|W ′p
∥∥∥ < 1

by [14, Theorem 4.23]. This completes the proof. �
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The Grunsky matrix thus can be seen as a generalization of the period
matrix to surfaces with one border. In the case of genus zero surfaces with
n boundary curves this was demonstrated in [9], and holomorphicity as a
function on Teichmüller space was demonstrated in [8].

4. Applications to the determinant line bundle

4.1. Outline of the section. In Section 4.2 we define and briefly discuss
the rigged moduli space. In Section 4.3 we define the projections corre-
sponding to the splitting of Fourier series into positive and negative powers,
induced by the rigging. We also characterize the set of boundary values
of the Dirichlet space of R\cl f(D) as the graph of the Grunsky operator.
In Section 4.4, we define the operator π(R,f) and give an explicit inverse.
Finally we characterize its kernel, cokernel, and determinant line.

4.2. The moduli space of rigged Riemann surfaces. A central object
in conformal field theory is the rigged moduli space, which can be modelled
as the set of compact Riemann surfaces with n punctures (or equivalently,
distinguished points), together with n mappings from the unit disk into the
surface, modulo an equivalence relation which we shortly describe. Typi-
cally, the mappings are assumed to have an analytic or smooth continuation
to the unit circle. Radnell, Schippers, and Staubach in various combinations
have shown that there are good analytic and geometric reasons for extending
this class analytically; a thorough discussion of related results can be found
in [7].

Specialized to the situation at hand, the rigged moduli space of genus g
surfaces with one rigging is

M̃(g, 1) = {(R, f)}/ ∼
where R is a compact surface of genus g with one puncture p say, f : D→ R
is a one-to-one holomorphic map with a quasiconformal extension to an
open neighbourhood of the closure of D, such that f(0) = p. We say that
(R1, f1) ∼ (R2, f2) if there is a biholomorphism g : R1 → R2 such that
g ◦ f1 = f2. The conditions on f guarantee that f(S1) is a special type of
Jordan curve called a quasicircle.

The determinant line bundle is the bundle of determinant lines over the
rigged moduli space of a certain operator π(R,f) (see 4.4 below). For each el-
ement of the moduli space, this operator is defined on spaces of holomorphic
functions determined by a suitable representative (R, f) in the equivalence
class. The bundle structure is analytically non-trivial, because the moduli
space is a Banach manifold. See the introduction for further discussion.

4.3. Decompositions of boundary values and the Grunsky opera-
tor. Consider H(S1), which by definition consists of the set of conformally
non-tangential boundary values of elements of Dharm(D) up to null sets. De-
fine H+(S1) to be the set of elements of H(S1) which are CNT boundary
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values of elements of D(D), and H−(S1) to be the set of CNT boundary

values of elements of D(D)0. Then the decomposition

Dharm(D) = D(D)⊕D(D)0 (4.1)

induces a direct sum decomposition

H(S1) = H+(S1)⊕H−(S1). (4.2)

An element

h(z) =
∞∑
n=0

hnz
n +

∞∑
n=1

h−nz̄
n ∈ Dharm(D)

has power series satisfying
∞∑

n=−∞
n|hn|2 <∞,

so the Fourier series
∞∑

n=−∞
hne

inθ

converges except on a set I of outer logarithmic capacity zero [17, Chapter
XIII, Theorem 11.3]. Thus

H+(S1) =

{
h(z) =

∞∑
n=0

hne
inθ ∈ H(S1)

}
and

H−(S1) =

{
h(z) =

−1∑
n=−∞

hne
inθ ∈ H(S1)

}
.

Now let (R, f) be a representative of an element of the rigged moduli space

M̃(g, 1). We let f(D) = Ω ⊆ R, Σ = R\clf(D), and Γ = f(S1) = ∂Ω = ∂Σ.
By our assumptions, Γ is a quasicircle. We also denote the puncture of R
by p = f(0).

If we would like to describe the set of possible Fourier series arising as
the boundary values of holomorphic function on Σ, we need to parametrize
Γ. We obtain a parametrization from f : D → Ω. Observe that f has a
homeomorphic extension to S1. Let H(Γ) denote the set of complex-valued
functions which are the boundary values quasi-everywhere of functions in
Dharm(Ω), or equivalently of functions in Dharm(Σ) by Theorem 2.3.

We now define the subspaces

H+(Γ, f) =
{
h ∈ H(Γ) : h ◦ f ∈ H+(S1)

}
and

H−(Γ, f) =
{
h ∈ H(Γ) : h ◦ f ∈ H−(S1)

}
and the corresponding projections

P±(Γ, f) : H(Γ) −→ H±(Γ, f).
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Thus the parametrization induces a notion of Fourier series of (sufficiently
regular) functions on Γ and a decomposition into positive and negative parts.
By conformal invariance of the Dirichlet spaces and the notion of CNT
boundary values, we can also identify H+(Γ) as the set of CNT boundary

values of D(Ω) and H−(Γ) as the set of CNT boundary values of D(Ω)0.
The pull-back of the decomposition

H(Γ) = H+(Γ, f)⊕H−(Γ, f)

is the decomposition (4.2), which can be identified with the holomorphic/anti-
holomorphic decomposition of the harmonic Dirichlet space of the disk (4.1).
Using the characterization of D(Σ) as the image of If given by Theorem 3.4
we can thus interpret the pull-back of D(Σ) under Cf as the graph of the
Grunsky operator.

Theorem 4.1. Assume that Γ be a quasicircle separating R into components
Ω and Σ, and that Ω is simply connected. Let f : D → Ω be a conformal
bijection. Then CfDq(Σ) is the graph of Grf in Vf ⊕D(D)0.

Proof. This follows directly from Theorem 3.4 and the definition of Grf . �

D(Σ) was also shown to be the graph of a generalized Grunsky operator in
the case that Σ is a genus-zero surface bordered by n curves homeomorphic
to S1 [9]. A different approach to the Grunsky matrix for higher-genus
surfaces with one boundary curve, using a formulation of Faber polynomials
due to H. Tietz [16], appears in K. Reimer and E. Schippers [10].

4.4. The operator π(R,f) and its determinant line. Consider the pro-
jection operator

π(R,f) : D(Σ)→ H−(∂Σ, f)

induced by the decomposition

H(∂Σ) = H+(∂Σ, f)⊕H−(∂Σ, f). (4.3)

As explained in the introduction, this is the operator whose determinant
line we are to characterize. We will consider a slight variant which maps
into the isomorphic space of holomorphic functions with bounded Dirichlet
semi-norm, as explained below.

We give π(R,f) a simple description in terms of the decomposition on
Dharm(Ω), which has the advantage that it is orthogonal with respect to the
L2-type norm. Let

b(Ω) : Dharm(Ω) −→ H(Γ)

and

b(Σ) : Dharm(Σ) −→ H(Γ)
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be the vector space isomorphisms obtained by taking the CNT boundary
values. By definition we then have the identities

O(Σ,Ω) = b(Ω)−1b(Σ)

O(Ω,Σ) = b(Σ)−1b(Ω).
(4.4)

Observe also that b(Ω) takes the holomorphic/antiholomorphic (orthogo-
nal) decomposition to the decomposition 2.2. That is,

b(Ω)|D(Ω)p
: D(Ω)p −→ H−(Σ, f)

and

b(Ω)|D(Ω) : D(Ω) −→ H+(Σ, f)

are isomorphisms.
Using (4.4) and the fact that

P−(Γ, f) = b(Ω)P (Ω)pb(Ω)−1

we see that

π(R,f) = P−(Γ, f)b(Σ)|D(Σ)

= b(Ω)P (Ω)pb(Ω)−1b(Σ)
∣∣
D(Σ)

= b(Ω)P (Ω)pO(Σ,Ω)
∣∣
D(Σ)

.

In particular, since as observed above the restriction

b(Ω)|D(Ω)p
−→ H−(∂Σ, f)

is an isomorphism, we will restrict our attention to

Π(R,f) = P (Ω)pO(Σ,Ω)
∣∣
D(Σ)

.

This has the advantage that we are able to make better use of the L2 struc-
ture inherent in the Dirichlet space of functions and Bergman space of one-
forms. This is an advantage both analytically (so that we can make easy
use of certain integral operators), and algebraically, because we can make
use of Corollary 4.2.

This leads to our first result which will give a characterization of the
cokernel.

Corollary 4.2. Let Kp,q be the operator associated to R, Ω, and Σ by (3.6),
and let W ′p be the subspace of D(Ω) defined above. Then − Kp,q|W ′p is inverse

to Π(R,f) = b(Ω)−1 π(R,f)

∣∣
D(Σ)q

.

Proof. This follows directly from Theorem 3.3. �

Remark 4.3. The construction of the operator π(R,f) that is carried out here
agrees with that in the literature [3] in the case that we restrict to analytic
parametrizations. Assume that the boundary Γ of Σ in R is smooth and the
map f : D → R extends to a smooth map of the closure of ∂D taking S1
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analytically onto Γ. In this case the differentiable structure induced on ∂Σ by
Σ agrees with the differentiable structure of Γ as an embedded submanifold
of R. Now let Hs(Σ) denote the Sobolev space of order s on Σ, and similarly
for Hs(Γ). Then one can show that the completion of Hol(Σ) in H1(Σ) can

be identified with the Dirichlet space D(Σ), and H1/2(Γ) can be identified
with H(Γ) which is the set of conformally nontangential boundary values of
the elements of D(Σ). Using these facts one can then realize the operator
π(R,f) defined by Y.-Z. Huang in [3, Appendix D], as a Fredholm operator
from D(Σ)→ H(Γ). Further discussion can be found in [7].

Now we give a canonical characterization of the cokernel of π(R,f), or
equivalently of Π(R,f). That is, we will describe

Coker(Π(R,f)) = D(Ω)p/ Im(Π(R,f)).

Since π(R,f) annihilates constants, one has

Im(π(R,f)) = b(Ω)|D(Ω)p
Im
(
P (Ω)pO(Σ,Ω)

)
.

Moreover, by Corollary 4.2, the restriction of Kp,q to W ′pu is inverse to

−P (Ω)pO(Σ,Ω), and therefore

Im(P (Ω)pO(Σ,Ω)) = − Im(P (Ω)pO(Σ,Ω)Kp,q) = −W ′p = W ′p.

We now define
P
A(R)

: Coker(Π(R,f)) −→ A(R)

to be the map satisfying, for [h] ∈ Coker(Π(R,f)),

P
A(R)

[h]
∣∣∣
Ω

= ∂(P
B(R)p

h).

That is, P
A(R)

[h] is the unique anti-holomorphic one-form on R extending

the derivative of P
B(R)p

h. This map is well defined, since if h1 − h2 ∈

Im(Π(R,f)) = W ′p, then it is orthogonal to B(R)p by definition, and hence

P
B(R)p

(
h1 − h2

)
= 0.

Theorem 4.4. Let (R, f) be a rigged Riemann surface of type (g, 1). Then

(1) Im(Π(R,f)) = W ′p;

(2) P
A(R)

: Coker(Π(R,f))→ A(R) is an isomorphism;

(3) Ker(Π(R,f)) consists of the constant functions and is thus isomorphic
to C.

Proof. The first claim follows from Corollary 4.2 and the paragraph preced-
ing the proof. The second claim follows from the first together with the or-
thogonal decomposition (3.5). To prove the third, assume that Π(R,f)h = 0.

Then P (Ω)pO(Σ,Ω)h = 0, and therefore O(Σ,Ω)h is holomorphic on Ω. By
Theorems 4.13 and 4.16, and Proposition 4.30 in [14] this yields that h is
constant on Σ. However since h(q) = 0, one has that h = 0. �
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We may rephrase this theorem in terms of π(R,f) as follows:

Im(π(R,f)) = b(Ω)W ′p;

Ker(π(R,f)) = Ker(Π(R,f)) = C;

and

P
A(R)

b(Ω)−1 : Coker(π(R,f)) −→ A(R)

is a well-defined isomorphism , which establishes the isomorphism between
the cokernel of π(R,f) with the space of anti-holomorphic one forms.

Remark 4.5. Since the dimension of A(R) is equal to the genus g of the
Riemann surface R, we see that the dimension of Coker(π(R,f)) is g. Ul-
timately this comes from the g-dimensional obstruction (given in equation
3.2) to solving the jump problem. The connection of the cokernel to this
obstruction was observed in D. Radnell [5]. In this paper we have made this
connection explicit.

Corollary 4.6. Let g be the genus of the compact Riemann surface R. Then

Det(π(R,f)) ' ∧gA(R)

where ' means canonically isomorphic and ∧g is the gth exterior power.
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