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Primitive divisors of sequences associated to
elliptic curves over function �elds

Robert Slob

Abstract. We study the existence of a Zsigmondy bound for a sequence of
divisors associated to points on an elliptic curve over a function �eld. More
precisely, let k be an algebraically closed �eld, let C be a nonsingular pro-
jective curve over k, and let K denote the function �eld of C. Suppose E is
an ordinary elliptic curve over K and suppose there does not exist an elliptic
curve E0 de�ned over k that is isomorphic to E over K. Suppose P ∈ E(K) is
a non-torsion point and Q ∈ E(K) is a torsion point of order r. The sequence
of points {nP+Q} ⊂ E(K) induces a sequence of e�ective divisors {DnP+Q} on
C. We provide conditions on r and the characteristic of k for there to exist a
bound N such that DnP+Q has a primitive divisor for all n ≥ N. This extends
the analogous result of Verzobio in the case where K is a number �eld.
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1. Introduction
LetK be a number �eldwith ring of integersOK . LetE∕K be an elliptic curve

that is given by a Weierstrass equation with integral coe�cients, and suppose
P ∈ E(K) is a non-torsion point. For each positive integer n, we can write
(x(nP)) = An

D2
n
, where An and Dn are coprime ideals in OK . The sequence of

ideals {Dn} forms a divisibility sequence, meaning that if m and n are positive
integers withm dividing n, then Dm divides Dn.

Some famous sequences such as theMersenne sequence and Lucas sequence
are examples of divisibility sequences. The divisibility sequence obtained from
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a non-torsion point on an elliptic curve is an example of an elliptic divisibil-
ity sequence, which were �rst studied by Morgan Ward [War48]. The book
[EvdPSW03, Chapter 10] of Everest et al. gives a gentle introduction into the
subject of elliptic divisibility sequences and provides a great historical account.
For an interesting connection between matrix divisibility sequences and (el-
liptic) divisibility sequences, see [CR12]. Additionally, see the introduction of
[op. cit.] for some recent research and applications of (elliptic) divisibility se-
quences.

Returning to our sequence {Dn}, let n be a positive integer, then we say that
Dn has a primitive divisor if there exists a prime ideal p of OK that divides Dn
and does not divide Dm for any 1 ≤ m < n. If K = ℚ, then Dn is simply an
integer, and in this case, it was proved by Silverman in 1988 that there exists
a bound N such that Dn has a primitive divisor for all n ≥ N [Sil88]. Such a
bound is sometimes called a Zsigmondy bound in the literature, dating back to
Zsigmondy’s study of the divisibility sequence dn = an − bn for a > b > 0
positive coprime integers in the late 19th century. Zsigmondy showed that if
n ∉ {1, 2, 6}, then dn has a primitive divisor [Zsi92]. This generalises an earlier
result of Bang with b equal to 1, see [Ban86]. An immediate application of the
existence of a Zsigmondy bound would be to try and use this result to search
for large prime numbers. For this to be computationally feasible, one wants the
values Dn to be prime themselves. In this direction, the Chudnovsky brothers
found some promising results in 1986 in their experiments for certain values
of Dn coming from elliptic divisibility sequences as above [ChC86]. However,
later research indicated that these sequences may not be very suitable for this
application [EEW01, EMS04]. Nevertheless, there are other applications. Ellip-
tic nets are a generalisation of elliptic divisibility sequences, which have been
used by Stange for applications in cryptography [Sta07]. Additionally, there
have been applications to a generalisation of Hilbert’s tenth problem for large
subrings of the rational numbers [Poo03, CZ07, EG09].

A natural question is whether it is possible to extend Silverman’s result to
other �elds. In 1999, Cheon and Hahn proved the result when K is a number
�eld [CH99]. The fact that the sequence {Dn} is a divisibility sequence plays a
major role in both this and Silverman’s proof. E�ective versions of these theo-
rems have been proved as well [IS12, Ver20b]. In a di�erent direction, one can
also consider other sequences of points in E(K) and raise similar questions.
Suppose Q ∈ E(K) is a point with Q ≠ −nP for any positive integer n. For
each positive integer n, we can then similarly write (x(nP + Q)) = A′

n

D′
n
2 with

A′
n and D′

n ideals in OK that are relatively prime. In general, the sequence of
ideals {D′

n} will no longer be a divisibility sequence, but one can still pose the
question whether there exists a bound N such that D′

n has a primitive divisor
for all n ≥ N. For a number �eld as base �eld, questions related to this are con-
sidered in [ES05], and Verzobio proves in [Ver20a] that for Q a torsion point
of prime order r, such a bound exists. In a later note, Verzobio extended this
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result to the case where Q is an arbitrary torsion point [Ver21]. Actually, much
more is proved in [op. cit.]. Namely, for R ⊂ End(E) a Dedekind domain, the
author proves results concerning primitive divisors for the sequence of points
{�(P) + Q}�∈R, including a result when Q is not assumed to be a torsion point.
This is an extension of the work by Streng in [Str08], where for R ⊂ End(E)
an arbitrary subring, results concerning primitive divisors for the sequence of
points {�(P)}�∈R are proved.

In this paper, we extend one of the aforementioned results of Verzobio to the
setting whereK is the function �eld of a nonsingular projective curve C over an
algebraically closed �eld k of characteristic p. Suppose E∕K is an elliptic curve
with point at in�nity O ∈ E(K). We next state some results concerning elliptic
surfaces, see for example [Sil94, Chapters III & IV] for details. We can associate
an elliptic surface to E, and among those there exists a minimal proper regular
model, unique up toK-isomorphism. Fix such aminimal proper regular model
for E and denote it by ℰ. Suppose R ∈ E(K) is a point, then we obtain an
associated section �R ∶ C → ℰ. Let O denote the image of �O. If R is non-zero,
it can be shown that �∗R(O) is an e�ective divisor on C. Given a non-zero point
R ∈ E(K), we denote DR ∶= �∗R(O) ∈ Div(C).

Then, given a sequence of non-zero points {Pn} ⊂ E(K), we obtain a sequence
of e�ective divisors {DPn } ⊂ Div(C). Extending the earlier de�nitions, we say
that a sequence of e�ective divisors {Dn} ⊂ Div(C) is a divisibility sequence if for
all positive integersm, n withm dividing n, we have thatDn −Dm is e�ective.
Similarly, given a positive integer n, we say that Dn has a primitive divisor if
there exists 
 in the support ofDn such that 
 does not lie in the support ofDm
for any 1 ≤ m < n. We next state some results from [IMSSS12] and [Nas16],
where the former concerns char(k) = p = 0 and the latter p > 0. Suppose P ∈
E(K) is a non-torsion point, then the sequence of divisors {DnP} is a divisibility
sequence. Suppose that E is ordinary and that E is not isomorphic over K to
some elliptic curve E0∕k. Additionally, suppose p ≠ 2, 3, then there exists a
bound N such that for all n ≥ N, DnP has a primitive divisor. Given these
results, it is natural to pose the question whether the aforementioned results
of Verzobio over number �elds also hold in the setting of K a function �eld
as above. In this paper, we study one of these results. That is, we study the
following question: let Q ∈ E(K) be a torsion point of order r and consider
the sequence of divisors {DnP+Q}, does there then exist a bound N such that
DnP+Q has a primitive divisor for all n ≥ N? We prove that this is indeed true
if we assume some minor conditions on p and r. More precisely, we prove the
following theorem.

Theorem 1.1. Let k be an algebraically closed �eld of characteristic p, let C be a
nonsingular projective curve over k and let K be the function �eld of C. Suppose
E∕K is an ordinary elliptic curve that is not isomorphic over K to some elliptic
curve E0∕k. Suppose P ∈ E(K) is a non-torsion point and Q ∈ E(K) is a torsion
point of order r. If either r = 1 and p ≠ 2, 3 or the values of p and r are entries
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in Table 1, then there exists a constant N such that for all n ≥ N, DnP+Q has a
primitive divisor.

p 0 5 7 11, 13 ≥ 17
r ≥ 2 5 or ≥ 10 ≥ 4 ≥ 3 ≥ 2

Table 1. Pairs (p, r)with r > 1 forwhichDnP+Q has a primitive
divisor for all n su�ciently large.

Remark 1.2. In an earlier version of this paper, we assumed in Theorem 1.1
that Q had prime order unequal to p. We required this assumption to prove
the corresponding versions of Proposition 3.1 and Corollary 3.2. It was pointed
out to the author that we could get around this assumption by Verzobio. Addi-
tionally, Ulmer has pointed out to the author that the paper [UU20] of Ulmer
and Ursúa could be used to lift this restriction in the p = 0 case, see especially
[Remark 2.4, op. cit.].

Remark 1.3. Our proof of Theorem 1.1 follows the same ideas as the proof of
Verzobio in the number �eld case [Ver20a]. However, there are some di�cul-
ties in generalising this approach to the function �eld case when the character-
istic of the ground �eld is positive. Foremost, Proposition 2.7 ismore di�cult to
work with in positive characteristic than its analogue in the number �eld case.
This leads to several challenges in the approximations done in the proof of The-
orem 1.1, which do not appear in the number �eld case. Additionally, one can
use Siegel’s theorem [Sil09, Theorem IX.3.1] to deal with problematic valua-
tions in the number �eld case. We do not have Siegel’s theorem in the function
�eld case, so we have to resort to Corollary 2.9 to deal with problematic points
in C(k).

This paper is organised as follows. In Section 2, we recall some preliminaries
on height functions and properties of the divisor associated to a point on an
elliptic curve over a function�eld. Afterwards, we present the proof of Theorem
1.1 in Section 3. Lastly, we discuss the necessity of some of the assumptions of
Theorem 1.1 in Section 4. In particular, we provide counterexamples if E is not
ordinary and we discuss the case where k is not algebraically closed.

Notation. Throughout Sections 2 and 3 of this paper, we �x the following nota-
tion. For k a �eld, a curve over k is a schemeX over k that is integral, separated,
of �nite type, and of dimension 1. We let k be an algebraically closed �eld of
characteristic p ≠ 2, 3. We let C be a nonsingular projective curve over k and
we let K be the function �eld of C. We let E∕K be an elliptic curve with point
at in�nity O ∈ E(K). We assume that E(K) has non-zero rank and is given by a
Weierstrass equation in short form. Additionally, we assume that E is not iso-
morphic over K to some elliptic curve E0∕k, and if p > 0, we assume that E is
ordinary. We let ℰ be an elliptic surface associated to E that is a minimal proper
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regular model. We let P ∈ E(K) be a non-torsion point and we let Q ∈ E(K)
be a torsion point of order r. For a non-zero point R ∈ E(K) and �R ∶ C → ℰ
the associated section, we denote DR ∶= �∗R(O) ∈ Div(C), where O equals the
image of the section �O. In Section 4, we will use above notation as well, but we
will relax some of the assumptions, which will be indicated clearly. Lastly, we
will frequently use the big O and little o notation. The subscripts in the O in-
dicate that the chosen constant depends on these subscripts, e.g. for �, � ∈ ℝ,
� = � + OE,P(1)means that |� − �| ≤ C for some constant C depending on E
and P.

2. Preliminaries
We�rst provide amore explicit description of the divisor associated to a non-

zero point in E(K).

Lemma 2.1. Suppose R is a non-zero point in E(K) and 
 ∈ C(k). Let E′∕K
be an elliptic curve given by a Weierstrass equation that is minimal at ord
 and
isomorphic to E over K via the isomorphism ' ∶ E → E′, then

ord
 DR = max {0, −12 ord
(x('(R)))} .

Proof. This is proved in [IMSSS12, Lemma 5.2], where we note that although
the lemma stated there only concernsDnP, the proof holds in this more general
setting as well. �

2.1. Heights. Wenext recall some properties of the (canonical) heightmap on
E. We de�ne the height ℎ ∶ E(K) → ℤ≥0 by

ℎ(R) = {
0, if R = O,
deg(x(R)), otherwise.

Theheight of a non-zero point and the degree of its associated divisor are closely
related. To show this, we require the following lemma.

Lemma 2.2. Let 
 ∈ C(k), then there exists u ∈ K× such that the change of
coordinates (x, y) ↦ (u2x, u3y) is minimal at ord
.

Proof. By [Sil09, Proposition VII.1.3], we know that there exists a change of
variables with values in K such that we obtain a minimal equation at ord
 for
E, say

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.
Let R ⊂ K be the valuation ring corresponding to ord
, then we also obtain
from [loc. cit.] that a change of variables (x, y) ↦ (x + r, y + sx + t) with
r, s, t ∈ R again results in a minimal equation at ord
. Since char(K) ≠ 2 and
a1, a3, −

1
2
∈ R, the change of coordinates (x, y) ↦ (x, y − 1

2
(a1x + a3)) then

results in a Weierstrass equation for E that is minimal at ord
 of the form

y2 = x3 + a′2x
2 + a′4x + a′6.
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Similarly, since char(K) ≠ 3, we canmake the substitution (x, y) ↦ (x, y− 1
3
a′2)

to obtain a Weierstrass equation in short form that is minimal at ord
. It can
be shown that if the initial equation is in short form, then the only change of
variables such that the resulting equation is again in short form is of the form
(x, y) ↦ (u2x, u3y) for some u ∈ K×. Since both our original equation and
the equation obtained from the composition of these changes of variables are
in short form, this composition of changes of variables is of the required form,
thus proving the lemma. �

Lemma 2.3. Let R be a non-zero point in E(K), then

ℎ(R) = 2 degDR + OE(1).

Proof. There exist only �nitelymany points 
 ∈ C(k) forwhich theWeierstrass
equation of E is not minimal at ord
, say at all but 
1, 
2, … , 
n ∈ C(k) for some
positive integer n. Using Lemma 2.1, we have

ℎ(R) = deg(x(R)) =
∑


∈C(k)
max{0, − ord
(x(R))}

= 2
∑


∈C(k)
max{0, −1∕2 ord
(x(R))}

= 2 degDR + 2
n∑

i=1

(
max{0, −1∕2 ord
i (x(R))} − ord
i DR

)
.

By Lemmas 2.1 and 2.2, there exists for each 1 ≤ i ≤ n some ui ∈ K× such
that ord
i DR = max{0, ord
i (ui) − 1∕2 ord
i (x(R))}, so above summands are
bounded by ord
i (ui). Since ord
i (ui) depends only onE, this proves the lemma.

�

Given points R, S ∈ E(K), we let (RS) denote the intersection number of the
curves (R) ∶= �R(C) and (S) ∶= �S(C) on the surface ℰ. If R is non-zero, then
(RO) is simply equal to degDR. We next recall some properties of the canonical
height ℎ̂ on E∕K.

Proposition 2.4. There exists amap ℎ̂ ∶ E(K) → ℝ≥0 such that for allR ∈ E(K)
we have

(i) ℎ̂(R) = 1
2
ℎ(R)+OE(1), and ifR is non-zero, then ℎ̂(R) = degDR+OE(1);

(ii) ℎ̂(jR) = j2ℎ̂(R) for all j ∈ ℤ;
(iii) ℎ̂(R) = 0 if and only if R is a torsion point.

We call ℎ̂ the canonical height on E(K). Additionally, the pairing ⟨⋅, ⋅⟩ ∶ E(K) ×
E(K) → ℝ de�ned by ⟨R, S⟩ = ℎ̂(R + S) − ℎ̂(R) − ℎ̂(S) is symmetric and bilinear.

Proof. In the p = 0 case, this is [Sil94, Theorem III.4.3] and Lemma 2.3. Sup-
pose p > 3 and let �(ℰ) denote the arithmetic genus of ℰ. In [Shi90, p. 228], a
function C(R, S) is de�ned for all R, S ∈ E(K) and this function is used there to
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prove that the pairing ⟨⋅, ⋅⟩1 ∶ E(K) × E(K) → ℝ de�ned by

⟨R, S⟩1 = �(ℰ) + (RO) + (SO) − (RS) − C(R, S)

for all R, S ∈ E(K), is symmetric and bilinear. If R and S are non-zero points in
E(K), then

⟨R, S⟩1 = �(ℰ) + degDR + degDS − (RS) − C(R, S).

We de�ne ℎ̂(R) = 1
2
⟨R, R⟩1 for all R ∈ E(K). A calculation then shows that the

pairings ⟨⋅, ⋅⟩ and ⟨⋅, ⋅⟩1 are equal, so ⟨⋅, ⋅⟩ is symmetric and bilinear.
Since ⟨⋅, ⋅⟩ = ⟨⋅, ⋅⟩1 is bilinear, assertion (ii) follows. Suppose R and S are

arbitrary points in E(K). In [Nas16, Lemma 7.3], it is proved that the function
C(R, S) can be bounded by a constant depending only on E. Combining this
with [Shi90, Lemma 2.7] and using that �(ℰ) depends only on E, we obtain
ℎ̂(R) = (RO) + OE(1). Since ℎ̂(O) = 0, we may assume that R is non-zero for
assertion (i). Then ℎ̂(R) = degDR+OE(1) and assertion (i) follows fromLemma
2.3. By [Shi90, Theorem 8.4], we obtain assertion (iii) and ℎ̂(R) ≥ 0. �

We end this section with a lemma on height functions.

Lemma 2.5. Let R, S be points in E(K), then
(i) there exists a positive constant CR,S,E that depends only on R, S and E

such that ℎ̂(nR + S) ≥ ℎ̂(nR) − nCR,S,E ;
(ii) ℎ(R + S) ≤ 2ℎ(R) + 2ℎ(S) + OE(1).

Proof. Let ⟨⋅, ⋅⟩ denote the pairing of Proposition 2.4. We have

0 = ⟨nR, S⟩ − n⟨R, S⟩

= ℎ̂(nR + S) − ℎ̂(nR) − ℎ̂(S) − n
(
ℎ̂(R + S) − ℎ̂(R) − ℎ̂(S)

)
.

Since ℎ̂(T) ≥ 0 for all T ∈ E(K), we then obtain

ℎ̂(nR + S) = ℎ̂(nR) + ℎ̂(S) + n
(
ℎ̂(R + S) − ℎ̂(R) − ℎ̂(S)

)

≥ ℎ̂(nR) − n
(
ℎ̂(R) + ℎ̂(S)

)
.

The �rst assertion then follows by putting ℎ̂(R) + ℎ̂(S) = CR,S,E .
For the second assertion, the statement is trivial if either R or S is zero, so

assume that both are non-zero. We have in the p = 0 case by [Sil94, Theorem
III.4.2] that

ℎ(R + S) = 2ℎ(R) + 2ℎ(S) − ℎ(R − S) + OE(1),

and the result follows since ℎ(R − S) ≥ 0. If p > 3, we have by (the proof of)
Proposition 2.4 that

ℎ(R + S) = 2ℎ̂(R + S) + OE(1) = 2
(
ℎ̂(R) + ℎ̂(S) + ⟨R, S⟩

)
+ OE(1)

= ℎ(R) + ℎ(S) + 2 (degDR + degDS − (RS) − C(R, S)) + OE(1).

Since (R) and (S) are irreducible, it follows from [Har77, Proposition 1.4] that
if (R) ≠ (S), then (RS) ≥ 0. If (R) = (S), we have by [Shi90, Lemma 2.7] that
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(RS) = OE(1). Since C(R, S) can be bounded by a constant depending only on
E (see the proof of Proposition 2.4), it then follows by Lemma 2.3 that

ℎ(R + S) ≤ ℎ(R) + ℎ(S) + 2 (degDR + degDS) + OE(1)
= 2ℎ(R) + 2ℎ(S) + OE(1),

as desired. �

2.2. Values ofDR for speci�c pointsR ∈ E(K). Suppose 
 ∈ C(k) is a point.
We let K
 denote the completion of K at ord
, and we let R
 denote the corre-
sponding valuation ring with maximal ideal ℳ
. For n a positive integer, we
denote

E(K)
,n ∶=
{
R ∈ E(K) ⧵ {O} ∶ ord
 DR ≥ n

}
∪ {O}. (1)

SinceK can be embedded inK
, we can viewK as a sub�eld ofK
. In particular,
we can viewE as an elliptic curve overK
. We next de�ne a similar subset as (1)
for E(K
). Let E
∕K be an elliptic curve that is minimal at ord
 and isomorphic
to E over K with isomorphism '
 ∶ E → E
. One can show that E
 is then
also minimal at ord
 when considered as an elliptic curve over K
. Since K is
a sub�eld of K
, we may view '
 as an isomorphism over K
 between curves
over K
. For all positive integers n, we then de�ne

E(K
)n ∶= {R ∈ E(K
) ⧵ {O} ∶ −
1
2 ord
(x('
(R))) ≥ n} ∪ {O}.

We can view any point R in E(K) as a point in E(K
), and it then follows that
E(K)
,n ⊂ E(K
)n under this identi�cation. Using Lemma 2.1 and the formal
group associated to an elliptic curve, one can show that E(K)
,n and E(K
)n are
groups. Additionally, for n a positive integer, there exists a group isomorphism
E(K
)n∕E(K
)n+1 ≅ ℳn


 ∕ℳ
n+1

 . See [Sil09, Chapter IV & Proposition VII.2.2]

for details.

Lemma 2.6. Suppose R is an s-torsion point in E(K) for some integer s > 1 that
is not divisible by p. Then DR = 0.

Proof. Suppose 
 ∈ SuppDR and view R as a point of E(K
). Denote d ∶=
ord
 DR > 0, then it follows from the discussion preceding this lemma that
R ∈ E(K
)d. Let [R] denote the image of R in the quotient E(K
)d∕E(K
)d+1.
Then [R] is non-zero. By the discussion preceding this lemma, we have

E(K
)d∕E(K
)d+1 ≅ ℳd

 ∕ℳ

d+1

 ≅ k.

Since p does not divide s, it then follows that s[R] ≠ [O], but this contradicts
s[R] = [sR] = [O]. �

Suppose R is a non-torsion point of E(K) and let n be a positive integer. If

 ∈ SuppDR, it is possible to relate the values ord
 DnR and ord
 DR through
the formal group associated to an elliptic curve. This relation is much simpler
in the p = 0 case, so we will focus on the p > 0 case.



238 ROBERT SLOB

Suppose p > 0. We �rst require some notation. For each point 
 ∈ C(k), let
E
 denote an elliptic curve given by a Weierstrass equation that is minimal at
ord
 and isomorphic to E overK. The following is from [Sil09, Chapter IV]. Fix
some 
 ∈ C(k), and let Ê
 denote the formal group associated to E
. Then the
multiplication-by-p map [p] ∶ Ê
 → Ê
 is de�ned by the formal power series
T ↦ HE
T

p + a2T2p + …. Since E is ordinary, we have HE
 ≠ 0, and since E

is minimal at ord
, we have ord
HE
 ≥ 0. The value ord
HE
 does not depend
on the chosen E
. For each point 
 ∈ C(k), we de�ne

ℎE,
 ∶= ord
HE
 .

We have ℎE,
 = ord
HE for 
 ∈ C(k) outside the �nite set of 
′ ∈ C(k) for
which E is not minimal at ord
′ . Since HE has only �nitely many zeroes, it
follows that there are only �nitely many points 
 ∈ C(k) for which ℎE,
 ≠ 0.

We next provide the proposition that relates ord
 DnR to ord
 DR. The p = 0
part is due to Ingram et al. [IMSSS12] and the p > 0 part is due to Naskręcki
[Nas16].

Proposition 2.7 ([IMSSS12, Lemma 5.6] & [Nas16, Lemma 8.2]). Suppose R
is a non-torsion point of E(K) and 
 ∈ SuppDmR for some positive integer m.
Denotem(
) ∶= min{n ≥ 1 ∶ 
 ∈ SuppDnR} and let n be a positive integer, then,

(i) ifm(
) ∤ n, ord
 DnR = 0;
(ii) ifm(
) ∣ n and p = 0, ord
 DnR = ord
 Dm(
)R;

(iii) ifm(
) ∣ n and p > 0, denote e ∶= ordp ( n
m(
)

). Then,

(a) if ℎE,
 ≤ p − 1, ord
 DnP = pe ord
 Dm(
)P +
pe−1
p−1

ℎE,
;
(b) if ℎE,
 ≥ p, there exists a non-negative integer j and a map

�
,m(
)R ∶ {0, 1, … , j} → ℤ≥0

with �
,m(
)R(0) = 0 such that

ord
 DnR = pe ord
 Dm(
)R +
⎧

⎨
⎩

�
,m(
)R(e), if e ≤ j,
pe−j−1
p−1

ℎE,
 + pe−j�
,m(
)R(j), otherwise.

The integer j is independent of 
 and depends only on E. The func-
tion �
,m(
)R depends only on 
, R and E.

Lemma 2.8. Suppose p > 0. Suppose R ∈ E(K) is a non-torsion point and let n
be a positive integer. Suppose 
 ∈ SuppDnR withℎE,
 ≥ p and let j be as in Propo-
sition 2.7. Letm(
) be the smallest positive integer such that 
 ∈ SuppDm(
)R and
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denote e = ordp(n∕m(
)). Then for any non-negative integer s ≤ j, we have

�
,nR(s) =

⎧
⎪

⎨
⎪
⎩

�
,m(
)R(e + s) − ps�
,m(
)R(e), if e + s ≤ j,
ps−1
p−1

ℎE,
, if e > j,
pe+s−j−1
p−1

ℎE,
 + pe+s−j�
,m(
)R(j) − ps�
,m(
)R(e), otherwise,

= OE,R(n).

Proof. Fix some non-negative integer s ≤ j. The �rst equality follows by ap-
plying Proposition 2.7 on npsR for both m(
)R and nR as initial point. There
are only �nitely many 
′ ∈ C(k) for which ℎE,
′ ≠ 0, so

C1 ∶= max
{
ℎE,
′ ∶ 
′ ∈ C(k)

}

exists and depends only on E. By the hypotheses of the lemma, we haveC1 ≥ p.
Since s ≤ j and j depends only on E, we then have that

ps − 1
p − 1 ℎE,
 ≤ pjC1 ≤ Cj+11 = OE(1)

and so we may assume that e ≤ j for the second equality. Let S denote the
�nite set of 
′ ∈ C(k) for which ℎE,
′ ≥ p and for which 
′ ∈ SuppDmR for
some positive integerm. Given 
′ ∈ S, we letm(
′) denote the smallest positive
integer for which 
′ ∈ SuppDm(
′)R. The constant

C2 ∶= max
{
�
′,m(
′)R(t) ∶ 0 ≤ t ≤ j, 
′ ∈ S

}

then exists and only depends on E and R. So C ∶= 2max{C1, C2} depends only
on E and R. Since �
,nR(s) and ps�
,m(
)R(e) are non-negative, it su�ces for the
second equality to show that �
,nR(s) + ps�
,m(
)R(e) = OE,R(n) and by the �rst
equality we have

�
,nR(s) + ps�
,m(
)R(e) ≤ peC ≤ nC = OE,R(n). �

Corollary 2.9. Suppose R ∈ E(K) is a non-torsion point and let 
 ∈ C(k). For
each positive integer n, we have ord
 DnR = OE,R,
(n).

Proof. Let n be a positive integer. We may assume that ord
 DnR > 0. Let
m(
) be the smallest positive integer such that 
 ∈ SuppDm(
)R. Denote e =
ordp(n∕m(
)) if p > 0 and e = 0 if p = 0. By Proposition 2.7 and (the proof of)
Lemma 2.8, we obtain that

ord
 DnR − pe ord
 Dm(
)R = peOE,R(m(
)) ≤ nOE,R(m(
)) = OE,R,
(n).

Since ord
 Dm(
)R depends only on E, R and 
, we have

pe ord
 Dm(
)R = OE,R,
(n),

from which the result then follows. �
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3. Proof of Theorem 1.1
If r = 1, then the proof is due to Ingram et al. if p = 0 [IMSSS12, Theorem

1.7] and due to Naskręcki if p > 3 [Nas16, Theorem 8.11]. So we may assume
r > 1. We denote S ∶=

⋃
b∣r,b<r SuppDbQ, then S is �nite. Moreover, if p

does not divide r, then S is empty by Lemma 2.6. The next proposition and
corollary are key ingredients of the proof. This propostion and corollary, and
their proofs, are adaptations of the analogous results that Verzobio obtains in
the number �eld case [Ver20a, pp. 384-386]. One important di�erence is that
we do not assume that Q is of prime order (cf. Remark 1.2).

Proposition 3.1. Let n be a positive integer and suppose DnP+Q does not have
a primitive divisor. Suppose 
 lies in the support of DnP+Q and does not lie in S.
Then there exists a positive integer d > r that divides n and is coprime with r such
that 
 lies in the support of D rn

d
P as well.

Proof. Since DnP+Q does not have a primitive divisor, there exists an integer
1 ≤ j < n such that 
 ∈ SuppD(n−j)P+Q. So both nP + Q and (n − j)P + Q
are elements of E(K)
,1. Since E(K)
,1 is a group, we then have jP ∈ E(K)
,1.
Similarly, we have that r(nP + Q) = rnP ∈ E(K)
,1, so for s = gcd(rn, j),
we have sP ∈ E(K)
,1. Write s = rn

d
for some positive integer d and denote

c = gcd(r, d). Now write r = r1c and d = d1c, then s =
r1n
d1
. Now if c > 1, then

r1Q = r1(nP + Q) − d1sP ∈ E(K)
,1, which contradicts that 
 ∉ S since r1 ∣ r
and r1 < r. So c = 1 and d is coprime with r. Since d divides rn, it then follows
that d divides n. Since s divides j and j < n, we have d > r. Since 
 ∈ SuppDsP
and s = rn

d
, the proposition is proved. �

To improve readability, we write ℎ
(R) ∶= ord
 DR for a non-zero point R ∈
E(K) and 
 ∈ C(k).

Corollary 3.2. Assume the same hypotheses as in the preceding proposition. Let
d be the positive integer obtained from that proposition. If p = 0, put e = 0 and
if p > 0, put e = ordp(d). There then exist non-negative integers b < r and �d,
,
where b depends only on d and r, such that

ℎ
(nP + Q) ≤ peℎ
 (
n
d
P + bQ) + �d,
.

Moreover, let j and �
, rn
d
P be as in Proposition 2.7(iii), then

�d,
 =

⎧
⎪

⎨
⎪
⎩

pe−1
p−1

ℎE,
, if ℎE,
 < p,

�
, rn
d
P(e), if ℎE,
 ≥ p and e ≤ j,

pe−j−1
p−1

ℎE,
 + pe−j�
, rn
d
P(j), otherwise.
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Proof. We denote P1 =
rn
d
P and P2 = nP+Q. Since gcd(r, d) = gcd(r, d−r) =

1, there exists a, c ∈ ℤ such that ar + c(d − r) = 1 and so
n
d
P + cQ = arn

d
P + c(d − r)n

d
P + cQ = (a − c)rn

d
P + c(nP + Q)

= (a − c)P1 + cP2.

First suppose p ∣ r, then p ∤ d. Since ℎ
(P1), ℎ
(P2) ≥ 1, we then have by
Proposition 2.7 that ℎ
(P1) = ℎ
(dP1) = ℎ
(rP2) ≥ ℎ
(P2).Denote s ∶= ℎ
(P2),
then P1, P2 ∈ E(K)
,s and so

n
d
P+cQ = (a−c)P1+cP2 ∈ E(K)
,s. Since

n
d
P+cQ

is non-zero, we then have

ℎ
(nP + Q) = ℎ
(P2) = s ≤ ℎ
 (
n
d
P + cQ) .

Now suppose p ∤ r. Again, by Proposition 2.7, we then have ℎ
(P2) =
ℎ
(rP2) = ℎ
(dP1) = peℎ
(P1) + �d,
. Denote t ∶= ℎ
(P1) ≥ 1, then P1, P2 ∈
E(K)
,t and so n

d
P + cQ ∈ E(K)
,t. We obtain ℎ


(n
d
P + cQ

)
≥ t and so

ℎ
(nP + Q) = ℎ
(P2) = peℎ
(P1) + �d,
 ≤ peℎ
 (
n
d
P + cQ) + �d,
.

In both cases, the corollary follows by using that Q is an r-torsion point and
putting 0 ≤ b < r with b ≡ c (mod r). �

We are now able to prove Theorem 1.1. Suppose n is a positive integer such
that DnP+Q does not have a primitive divisor. Combining Proposition 2.4 with
Lemma 2.5, we have for some positive constant CP,Q,E , depending only on P,Q
and E, that

n2ℎ̂(P) = ℎ̂(nP) ≤ ℎ̂(nP + Q) + nCP,Q,E = degDnP+Q + OE,P,Q(n)

=
∑


∈SuppDnP+Q

ℎ
(nP + Q) + OE,P,Q(n). (2)

We will apply Corollary 3.2 to bound the latter sum. However, we cannot apply
Corollary 3.2 to the 
 ∈ SuppDnP+Q that also lie in S. For those, we use the
next lemma.

Lemma 3.3.
∑


∈S ℎ
(nP + Q) = OE,P,Q(n).

Proof. By Proposition 2.7, we have for each 
 ∈ C(k) that ℎ
(nP + Q) ≤
ℎ
(r(nP + Q)) = ℎ
(rnP), since Q has order r. By Corollary 2.9, we have
ℎ
(rnP) = OE,P,
(rn). Combining, we obtain

∑


∈S
ℎ
(nP + Q) ≤

∑


∈S
ℎ
(rnP) =

∑


∈S
OE,P,
(rn) = OE,P,Q(n),

where the last step follows since both r and S depend only on E and Q. �
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Denote T ∶= SuppDnP+Q ⧵ S. By Proposition 3.1, we �nd for each 
 ∈ T an
associated positive integer d
 dividing n, coprime with r, and larger than r. We
de�ne

Dn ∶= {d ∈ ℕ ∶ d ∣ n, d > r and gcd(d, r) = 1}.

Given d ∈ Dn, we obtain from the proof of Corollary 3.2 an associated non-
negative integer bd < r. Given a positive integer d, we denote ed = 0 if p = 0
and ed = ordp(d) if p > 0. Suppose 
 ∈ T, then we have by Proposition 3.1 and
Corollary 3.2 that

ℎ
(nP + Q) ≤ ped
ℎ
 (
n
d

P + bd
Q) + �d
 ,
.

Since bd
 only depends on d
 and r, we obtain for any divisor d ∈ Dn an asso-
ciated non-negative integer bd < r, such that above inequality holds if d = d

for some 
 ∈ T. We can thus make the approximation

∑


∈T
ℎ
(nP + Q) ≤

∑


∈T
ped
ℎ
 (

n
d

P + bd
Q) + �d
 ,


≤
∑

d∈Dn

∑


∈T
pedℎ
 (

n
d
P + bdQ) +

∑


∈T
�d
 ,


⏟⎴⏟⎴⏟
W(n,P,Q)

≤
∑

d∈Dn

ped deg (D n
d
P+bdQ) +W(n, P, Q)

=
∑

d∈Dn

ped (12ℎ (n
d
P + bdQ) + OE(1)) +W(n, P, Q), (3)

where the last equality follows from Lemma 2.3.

Lemma 3.4. W(n, P, Q) = OE,P,Q(n).

Proof. Fix some 
 ∈ T for which �d
 ,
 > 0. Since r < d
 ≤ n, it follows from
(the proof of) Lemma 2.8 and the de�nition of �d
 ,
 that �d
 ,
 = OE,P(rn) =
OE,P,Q(n). If 
′ ∈ T such that ℎE,
′ = 0, then �d
′ ,
′ = 0. The lemma then
follows since there are only �nitely many 
 ∈ C(k) such that ℎE,
 ≠ 0 and
#{
 ∈ C(k) ∶ ℎE,
 ≠ 0} depends only on E. �

By Lemma 2.5, we �nd a constant C ∶= max0≤b<r CbQ, depending only on
Q and E, such that for each d ∈ Dn, we have ℎ

(n
d
P + bdQ

)
≤ 2ℎ

(n
d
P
)
+ C.
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Combining this with Proposition 2.4 and the de�nition ofDn, we obtain
∑

d∈Dn

ped (12ℎ (n
d
P + bdQ) + OE(1)) ≤

∑

d∈Dn

ped (ℎ (n
d
P) + OE,Q(1))

=
∑

d∈Dn

ped (2ℎ̂ (n
d
P) + OE,Q(1)) (4)

≤ 2n2ℎ̂(P)
∑

d∈Dn

ped 1
d2

+
∑

d∣n
pedOE,Q(1).

For the last term, we apply the following lemma.

Lemma 3.5. For any positive constant � ∈ ℝ, we have
∑

d∣n p
ed = o(n1+�).

Proof. The statement is immediate if p = 0, so suppose p > 0 and denote
e ∶= ordp(n). We let � ∶ ℕ → ℕ,m ↦

∑
d∣m 1 denote the divisor function,

then one can show that
∑

d∣n
pordp(d) =

pe+1 − 1
(e + 1)(p − 1)

�(n) ≤ 2pe�(n) ≤ 2n�(n).

By [Apo13, p. 296], we have for any positive constant � that �(n) = o(n�), so
the lemma follows. �

For the rest of this section, �x some constant 0 < � < 1, then
∑

d∣n
pedOE,Q(1) = o(n1+�).

Combining this with Lemma 3.4, (3) and (4), we have proved the following
corollary.

Corollary 3.6.
∑


∈T ℎ
(nP + Q) ≤ 2n2ℎ̂ (P)
∑

d∈Dn
ped 1

d2
+ o(n1+�).

Putting everything together, it follows by (2), Lemma 3.3 and Corollary 3.6
that if DnP+Q does not have a primitive divisor, then

n2ℎ̂(P) =
∑


∈SuppDnP+Q

ℎ
(nP + Q) + OE,P,Q(n)

=
∑


∈T
ℎ
(nP + Q) +

∑


∈S
ℎ
(nP + Q) + OE,P,Q(n)

≤ 2n2ℎ̂ (P)
∑

d∈Dn

ped 1
d2

+ o(n1+�).

Since ℎ̂(P) > 0 by Proposition 2.4 and 0 < � < 1, we see that if
∑

d∈Dn

ped 1
d2

< 1∕2

for all n, then above inequality can only hold for bounded n. So the theo-
rem follows if we can prove that when p and r are entries in Table 1, then
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∑
d∈Dn

ped 1
d2

< 1∕2 for all n. If p = 0 or p > 3 and p ∣ r, then ed = 0 for
all d ∈ Dn and so

∑

d∈Dn

ped 1
d2

=
∑

d∈Dn

1
d2

≤
∑

d∣n,d>2

1
d2

≤ �(2) − 1 − 1
4 ≈ .395 < 1∕2. (5)

Now assume p > 3. We are left with the values in Table 1 with p ∤ r. Denote
e = ordp(n) and write n = n0pe. Then

∑

d∈Dn

ped 1
d2

≤
∑

d∣n,d>r
pordp(d) 1

d2
=

∑

d0∣n0,d0>r

1
d20

+
e∑

i=1
p−i

∑

d0∣n0,d0pi>r

1
d20
. (6)

We approximate the last two terms separately. First note that
∑

d0∣n0,d0>r

1
d20

≤ �(2) − 1 − 1∕4 − 1∕9 − … − 1∕r2. (7)

Next, by using that
∑e

i=1 p
−i = 1−p−e

p−1
< 1

p−1
, we have

e∑

i=1
p−i

∑

d0∣n0,d0pi>r

1
d20

≤ 1
p − 1

∑

d0∣n0

1
d20

≤ 1
p − 1�(2). (8)

Combining (6), (7) and (8), we obtain
∑

d∈Dn

ped 1
d2

≤ �(2) (1 + 1
p − 1) − 1 − 1∕4 − 1∕9 − … − 1∕r2.

Acalculation shows that the entries inTable 1withp not dividing r are precisely
those for which

�(2) (1 + 1
p − 1) − 1 − 1∕4 − 1∕9 − … − 1∕r2 < 1∕2,

thus �nishing the proof of Theorem 1.1.

4. Necessity of the conditions in Theorem 1.1
We end this paper by discussing the necessity of some of the hypotheses in

Theorem 1.1.

4.1. Assumption that the elliptic curve is ordinary. Suppose that p is pos-
itive. Suppose all our previous assumptions hold, except that E is no longer
ordinary, and we also allow p = 2, 3. First consider the sequence {DnP}. In
[Nas16, Section 9], it is shown that there then exist examples for which there
does not exist a bound N such that DnP has a primitive divisor for all n ≥ N.
We extend the constructions in [loc. cit.] to obtain counterexamples for the
sequence {DnP+Q} as well.
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Example 4.1. Suppose p > 2 is a prime number. Let �, � ∈ Fp be such that
E0 ∶ y2 = x3+�x+� is a supersingular elliptic curve (this is possible by [Cox13,
Theorem 14.18] for p ≥ 5 and for p = 3 we take the equation y2 = x3 +
x). Following [Nas16, Example 9.3], consider the function �eld K0 ∶= Fp(t)
and put s = t3 + �t + �. The curve E0 is then isomorphic over the algebraic
closure K0 to the elliptic curve E∕K0 given by the equation y2 = x3 + �s2x +
�s3 through the isomorphism (x, y) ↦ (xs, ys3∕2). Since E0 is de�ned over
Fp, we have for [p] ∶ E0 → E0 that x ([p](x, y)) = xp2 , see [Sil09, Exercise
5.16]. Combining with the isomorphism E0 ≅ E, we have for each positive

integer k and pk ∶ E → E that x
(
[pk](x, y)

)
= s

(x
s

)p2k
. From this formula,

we deduce that P = (ts, s2) ∈ E(K0) is non-torsion. Denote K ∶= Fp(t) and
let L∕K be some �nite �eld extension that does not contain s1∕2. Then E is not
L-isomorphic to an elliptic curve de�ned over Fp and L is a function �eld over
an algebraically closed �eld. Suppose Q ∈ E(L) is an r-torsion point for some
integer r > 1. Since E0 is supersingular, p does not divide r and so there exists a
positive integer k such that pk ≡ 1 (mod r). Fix such an integer k and denote
P + Q = (x′, y′). Then, for each positive integer l, we have [plk](P + Q) =

plkP + Q and so x
(
[plk]P + Q

)
= s

(x′
s

)p2lk
. From this expression, it follows

that there are in�nitely many terms in the sequence of divisors {DnP+Q} that
do not have a primitive divisor. To �nish the counterexample, we are left with
proving the existence of a �eld extension L∕K such that E(L)[r] is non-trivial
for some positive integer r > 1 and s1∕2 ∉ L. Consider the 2-torsion on E. The
non-zero 2-torsion points in E(K) are given by the points (
, 0) with 
 a root of
f ∶= X3 + �s2X + �s3 ∈ K[X]. Since f is a degree 3 polynomial over K, either
f contains a root in K, or f is irreducible over K. In the �rst case, E(K) already
contains a non-trivial 2-torsion point and we can take L = K. In the second
case, we let L be the �eld obtained by adjoining a root of f to K, and it follows
by comparing degrees that s1∕2 ∉ L. In both cases, E(L)[2] is not trivial and
s1∕2 ∉ L, so this produces a counterexample.

A similar approach works for p = 2. The elliptic curve E0 ∶ y2 + y = x3 is
supersingular over F2. Denote K0 = F2(t), then the curve E∕K0 given by the
equation y2+(t3−1)y = x3 is isomorphic to E0 over an algebraic closure K0 of
K0. Namely, �x some root � ∈ K0 to the equation f ∶= X3 − t3 + 1 in K0[X],
then an isomorphism E → E0 is given by (x, y) ↦ (�−2x, �−3y). A calculation
shows that f is irreducible over K ∶= F2(t), so E is not K-isomorphic to an
elliptic curve de�ned over F2. On E0, we have x ([2](x, y)) = x4, so on E we
have for each positive integer k that x([2k](x, y)) = x4k�2(1−4k). We deduce
that the point P = (t, 1) ∈ E(K) is non-torsion and it again follows, similar
to the p > 2 case, that for L∕F2(t) some �nite �eld extension and Q ∈ E(L) a
torsion point of order r > 1, there are in�nitely many terms in the sequence of
divisors {DnP+Q} that do not have a primitive divisor. The point (0, 0) ∈ E(K) is
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3-torsion, so since f is irreducible over K, we can take L = K and Q = (0, 0) to
produce a counterexample.

Remark 4.2. The point Q in Example 4.1 has small order. Let us explain why
this is necessary in our counterexample. Let p be a prime number and use the
same notation as in Example 4.1. Let Q′ ∈ E(K) be some torsion point of order
l > 1, then we showed that the sequence {DnP+Q′}will contain in�nitely many
terms that do not have a primitive divisor. However, the issue is that if L∕K is
a �eld extension such that Q′ ∈ E(L), then E will be isomorphic to E0 over L
unless l = 2 if p > 2 and l = 3 if p = 2. To see this, let ' ∶ E → E0 denote
the isomorphism, then we have the description E[l] = '−1(E0[l]). Suppose
p > 2, then '−1 maps (x, y) to (xs−1, ys−3∕2). So Q′ = (xs−1, ys−3∕2) for certain
x, y ∈ Fp. It follows that if Q′ ∈ E(L) for some �eld extension L∕K, then
s1∕2 ∈ L unless y = 0, which is the case if and only if l = 2. The p = 2 case
works similarly.

4.2. Assumption that k is algebraically closed. It is possible to relax the
condition of k being algebraically closed if we assume that our elliptic curve is
not isomorphic over kK to an elliptic curve over k. We�x the following notation
for this subsection. Let k be a �eld of characteristic p and let C∕k be a non-
singular, projective and geometrically integral curve. Let k denote an algebraic
closure of k and let Ck denote the base extension of C to k. Let K denote the
function �eld of C and let K′ = kK denote the function �eld of Ck. Let E∕K
be an ordinary elliptic curve. Suppose P ∈ E(K) is a non-torsion point and
suppose Q ∈ E(K) is a torsion point of order r. We let EK′ denote the base
extension of E to K′.

Given a non-zero point R ∈ E(K), we can de�ne an e�ective divisor D′
R ∈

Div(C) similar to what we did in the algebraically closed case. Let |C| ⊂ C
denote the subset of closed points. Given 
 ∈ |C|, we have a corresponding
valuation v
 on K, and an elliptic curve E
∕K that is minimal at v
 and isomor-
phic to E over K. Let '
 ∶ E → E
 denote this isomorphism, then we obtain
for each 
 ∈ |C| a non-negative integer

n
,R ∶= max
{
0, −1∕2v
(x('
(R)))

}
.

There will only be �nitely many 
 ∈ |C| such that n
,R ≠ 0. We de�ne the
e�ective divisor

D′
R ∶=

∑


∈|C|
n
,R
 ∈ Div(C).

Given a sequence of non-zero points {Pn} ⊂ E(K), we again say that Pn has a
primitive divisor if there exists 
 ∈ SuppD′

Pn
such that 
 ∉ SuppD′

Pm
for any

1 ≤ m < n.

Corollary 4.3. Suppose E is not isomorphic over K′ to some elliptic curve E0∕k.
If either r = 1 and p ≠ 2, 3 or the values of p and r are entries in Table 1, then
D′
nP+Q has a primitive divisor for all n su�ciently large.
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Proof. Under the hypotheses, we know by Theorem 1.1 that there exists a
bound N1 such that DnP+Q has a primitive divisor for all n ≥ N1. Let 
1, … , 
m
be the points in Ck(k) such that EK′ is not minimal at ord
i . LetN2 be a positive
integer such that if 
i ∈ SuppDnP+Q for some positive integer n ≥ N2, then

i ∈ SuppDmP+Q as well for some 1 ≤ m < N2. Put N = max{N1, N2} and
let n ≥ N, then there exists 
 ∈ SuppDnP+Q with 
 ∉ SuppDmP+Q for any
1 ≤ m < n. Let 
′ ∈ |C| be such that ord
 |K = v
′ . Then E is minimal at v
′
since EK′ is minimal at ord
. Since x(nP+Q) ∈ K, we have− 1

2
v
′(x(nP+Q)) =

− 1
2
ord
(x(nP+Q)) > 0 and so 
′ ∈ SuppD′

nP+Q. Similarly, if 
′ ∈ SuppD′
mP+Q

for some 1 ≤ m < n, then 
 ∈ SuppDmP+Q, which we assumed not to be the
case. So D′

nP+Q has a primitive divisor for all n ≥ N. �

4.3. Remaining pairs of p and r. The p ≠ 2, 3 assumption is used at several
steps in our proof. Most importantly, if p = 2 or p = 3 and r > 1 any integer,
then

�(2) (1 + 1
p − 1) − 1 − 1∕4 − … − 1∕r2 ≥ �(2) (1 + 1

2) − �(2)

= 1
2�(2) ≈ 0.822 > 1∕2. (9)

For a reason similar to the equality not holding in (9), the proof that DnP has
a primitive divisor for all n su�ciently large does not work if p = 2, 3. To the
author’s knowledge, this is still an open problem. Interestingly enough, we
see from our proof that if p = 2, 3 and p divides the order of Q, then (5) does
hold, however our proof does not work in this case because we already use the
assumption that p ≠ 2, 3 in Section 2. All in all, it would be very interesting to
further investigate the remaining p = 2, 3 case, either forDnP+Q or the classical
DnP case. Additionally, it would be interesting to investigate what happens for
the remaining pairs of p and r, or what happens if Q is a non-torsion point.
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