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On convergent Poincaré-Moser reduction
for Levi degenerate embedded
5-dimensional CRmanifolds

Wei-Guo Foo, Joël Merker and The-Anh Ta

Abstract. Firstly, applying Lie’s elementary theory for appropriate prolon-
gations to jet spaces of orders 1 and 2, we show that any real-analytic 2-
nondegenerate constant Levi rank 1 hypersurfaceM5 ⊂ ℂ3 carries two sorts
of Cartan-Moser chains, that are of orders 1 and 2.

Secondly, integrating and straightening any given order 2 chain 
 passing
through any point p ∈ M to be the v-axis in coordinates (z, �, w = u + i v)
centered at p, without setting up the formal theory in advance, we show
that there exists a convergent change of complex coordinates (z, �, w) ⟼
(z′, �′, w′)�xing the origin inwhich 
 is the v-axis and inwhichM hasPoincaré-
Moser reduced equation of a speci�c shape.

Thirdly, starting from anM having preliminary normalized equation

u = zz + 1

2
z
2
� + 1

2
z2� + zz�� + Oz,�,z,�,v(5),

assigning weights [z] ∶= 1, [�] ∶= 0, [w] ∶= 2, we show that a normalizing
biholomorphism exists and is unique when assumed of the form
z′ ∶= z + f⩾2(z, �, w), �′ ∶= � + g⩾1(z, �, w), w′ ∶= w + ℎ⩾3(z, �, w),
0 = fw(0), 0 = Imℎww(0).

The values at the origin of Pocchiola’s two primary Cartan-type relative
di�erential invariants are

W0 = 4F3,0,0,2(0) and J0 = 20F5,0,0,1(0).

Theproofs are detailed, accessible to non-experts. The computer-generated
aspects (forthcoming) have been reduced to a minimum here.
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1. Introduction
As explained in the survey introduction of [8], the appropriate local graphed

model for 2-nondegenerate constant Levi rank 1 real analytic (C!) hypersur-
facesM5 ⊂ ℂ3, generally graphed, in coordinates

(
z, �, w = u + i v

)
as

u = F
(
z, �, z, �, v

)
,

is the so-called Gaussier-Merker model

u =
zz + 1

2
z
2
� + 1

2
z2�

1 − ��
=∶ m

(
z, �, z, �

)
.
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Fels-Kaup [14] showed that its (connected) intersectionwith {|�| < 1} is biholo-
morphic to a Zariski-open subset of the complex tube S2LC × i ℝ

3 over the real
light cone (Re z2)2 − (Re z3)2 = (Re z1)2. The light cone S2LC ⊂ ℝ3 is themaxi-
mally symmetric non-�at parabolic surface, characterized, according to [9], by
the vanishing of certain two di�erential invariants.

By applying either Cartan’s method of equivalence, or Tanaka’s approach,
several recent works ([22, 28, 29, 42, 35, 16]) have been devoted to construct
absolute parallelisms, namely 10-dimensional {e}-structure bundles P10 ⟶
M5 for such M5 ⊂ ℂ3, invariantly related to biholomorphic equivalences of
such hypersurfaces.

By performing advanced electronic computations, Merker-Pocchiola [42, 35]
found that only two primary curvature invariants exist, denotedW and I. These
intensive computations have been redonemanually by Foo-Merker in [16]. One
obtains certain ‘horizontal’ (semi-basic) 1-forms

{
�, �, �, �, �

}
with � = � to-

gether with four ‘vertical’ 1-forms �1, �2, �
1
, �

2
which satisfy ‘compact’ struc-

ture equations of the form

d� =
(
�1 + �

1)
∧ � + i � ∧ �,

d� = �2 ∧ � + �1 ∧ � + � ∧ �,

d� =
(
�1 − �

1)
∧ � + i �2 ∧ �+

+R � ∧ � + i 1

c
3 J0 � ∧ � +

1
c W0 � ∧ �,

conjugate structure equations for d�, d� being easily deduced.
In Sections 20 and 24, we copy the expressions of the two primary relative

di�erential invariants W0∶ M ⟶ ℂ and J0∶ M ⟶ ℂ, while R is a certain
(useless) secondary invariant.

Theorem 1.1. [42, 35, 16] Only two primary invariants, W0 and J0, occur for
biholomorphic equivalences of 2-nondegenerate constant Levi rank 1 real analytic
hypersurfacesM5 ⊂ ℂ3, and

0 ≡ W0 ≡ J0 ⟺ M is equivalent to the Gaussier-Merker model.

Furthermore, when eitherW0 ≠ 0 or J0 ≠ 0, the equivalence problem reduces to a
5-dimensional {e}-structure onM5, and every non-�atM5 hasCRautomorphisms
group of dimension ⩽ 5.

In this article, our motivation is to view again these relative CR di�erential
invariants by putting the equation of such M5 ⊂ ℂ3 into normal form, like
Chern-Moser did in [12]. Generally, the Poincaré-Moser normal form [12] pro-
vides a distinguished choice of local holomorphic coordinates for a hypersur-
face, in which its de�ning equation is approximated as far as possible by that
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of the local model, for instance in ℂn+1 ∋ (z1, … , zn, w = u + i v), a real hyper-
quadric

u = |z1|2 +⋯+ |zp|2 − |zp+1|2 −⋯− |zn|2.
Usually, a biholomorphic transformation bringing a hypersurface to a normal
form at the origin is de�ned up to composition with the automorphisms group
of the model.

In [8], joint with Chen, we studied rigid C! hypersurfacesM5 ⊂ ℂ3

u = F
(
z, �, z, �

)
=

∑

a,b,c,d⩾0
za�bz

c
�
d
Fa,b,c,d, Fa,b,c,d ∈ ℂ, Fc,d,a,b = Fa,b,c,d,

with graphing function F independent of v, which are everywhere 2-nondege-
nerate and of constant Levi rank 1, under the rigid biholomorphisms group, a
group which consists of transformations of the form

(z, �, w) ⟼
(
f(z, �), g(z, �), � w + ℎ(z, �)

)
=∶

(
z′, �′, w′),

having nonzero holomorphic Jacobian fzg� − f�gz ≠ 0, with � ∈ ℝ∗. We
established that every such rigidM5 ⊂ ℂ3 is rigidly equivalent to a ‘perturbation’
of the Gaussier-Merker model

u =
zz + 1

2
z
2
� + 1

2
z2�

1 − ��
+ 2Re

{
F4,0,0,1 z4� + ReF3,0,1,1 z3z� + F3,0,0,2 z3�

2}

+ z3z
3
Oz,z(0) + 2Re z3� Oz,z,�(2) + �� Oz,z(3)Oz,�,z,�(1).

Here, by writing ReF3,0,1,1, we mean that the (complex) coe�cient F3,0,1,1 ∈ ℂ
has been normalized to be real.

Furthermore, writing

u = F
(
z, �, z, �

)
= m

(
z, �, z, �

)
+ G

(
z, �, z, �

)

= m
(
z, �, z, �

)
+

∑

a,b,c,d∈ℕ
a+c⩾3

Ga,b,c,d za�bz
c
�
d
,

two such rigid C! hypersurfaces M5 ⊂ ℂ3 and M′5 ⊂ ℂ′3, both brought into
such anormal form, are rigidly biholomorphically equivalent if and only if there
exist two constants � ∈ ℝ∗

+, ' ∈ ℝ, such that for all a, b, c, d

Ga,b,c,d = G′a,b,c,d �
a+c−2
2 ei'(a+2b−c−2d).

Thismeans that the normal form is de�ned only up to the 2-dimensional action
of the rigid isotropy group of the origin

(z, �, w) ⟼
(
�1∕2 ei' z, e2i' �, � w

)
(� ∈ ℝ∗

+, ' ∈ ℝ).

Before making public this normal form, in [19], we produced Cartan-type
reduction to an {e}-structure for the equivalence problem, under rigid (local)
biholomorphic transformations, of such rigid M5 that are 2-nondegenerate of
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constant Levi rank 1. We constructed an invariant 7-dimensional bundleP7 ⟶
M5 equipped with coordinates

(
z1, z2, z1, z2, v, c, c

)
,

with c ∈ ℂ, together with of seven 1-forms generating T∗P7, denoted
{
�, �, �, �, �, �, �

}
(� = �),

which satisfy invariant structure equations of the form

d� =
(
� + �

)
∧ � + i � ∧ �,

d� = � ∧ � + � ∧ �,

d� =
(
� − �

)
∧ � + 1

c I0 � ∧ � +
1
cc

V0 � ∧ �,

d� = � ∧ � − 1
c I0 � ∧ � +

1
cc

Q0 � ∧ � +
1
c

I0 � ∧ �.

We refer to [8] for explicit expressions of the two primary invariants

I0,V0∶ M ⟶ ℂ,

and of the secondary invariantQ0∶ M ⟶ℝ, which is real. OnceM is put into
normal form as above, their values at the origin are

I0 = 4F3,0,0,2 , V0 = −8F4,0,0,1 , Q0 = 4ReF3,0,1,1.

The goal of this article is to set up a rigorous convergent Poincaré-Moser nor-
mal form for any everywhere 2-nondegenerate constant Levi rank 1 general
(nonrigid) C! hypersurface M5 ⊂ ℂ3 under the full (not necessarily rigid) bi-
holomorphisms group

(z, �, w) ⟼
(
f(z, �, w), g(z, �, w), ℎ(z, �, w)

)
.

Given such anM5 ⊂ ℂ3 with 0 ∈ M, by examining terms of F up to order 4, it
is elementary to �nd a holomorphic system of coordinates in which it is

u = F = zz + 1
2
z
2
� + 1

2
z2� + zz�� + Oz,�,z,�,v(5).

Since the Gaussier-Merker model is invariant under the complex scalings

(z, �, w) ⟼
(
� z, �

�
�, �� w

)
(� ∈ ℂ∗),

it is natural to assign the weights

[z] ∶= 1 =∶ [z], [�] ∶= 0 =∶ [�], [w] ∶= 2 =∶ [w].

Then by e⩾�(z, �, w), we will mean a holomorphic function near the origin all
of whose monomials za�bwe are of weight a + 2 e ⩾ �.
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Theorem 1.2. [Main] There exists a biholomorphism (z, �, w) ⟼ (z′, �′, w′)
�xing 0whichmaps (M, 0) into (M′, 0) of normalized equation (suppressing primes)

u =
zz + 1

2
z2� + 1

2
z2�

1 − ��

+ 2Re
{
z3�

2
F3,0,0,2(v) + ��

(
3 z2z� F3,0,0,2(v)

)}

+ 2Re
{
z5� F5,0,0,1(v) + z4�

2
F4,0,0,2(v) + z3z2� F3,0,2,1(v)

+ z3z�
2
F3,0,1,2(v) + z3�

3
F3,0,0,3(v)

}

+ z3z3Oz,z(1) + z3� Oz,�,z(3) + z3� Oz,z,�(3) + �� Oz,z(3)Oz,�,z,�(2).

Furthermore, the map exists and is unique if it is assumed to be of the form

z′ ∶= z + f⩾2(z, �, w) �′ ∶= � + g⩾1(z, �, w), w′ ∶= w + ℎ⩾3(z, �, w),
0 = fw(0), 0 = Imℎww(0).

Equivalently, writing

u = F =
∑

a,b,c,d⩾0
za�bz

c
�
d
Fa,b,c,d(v),

the normal form is de�ned by the general prenormalization conditions

0 ≡Fa,b,0,0(v) ≡ F0,0,c,d(v),
0 ≡Fa,b,1,0(v) ≡ F1,0,c,d(v),
0 ≡Fa,b,2,0(v) ≡ F2,0,c,d(v),

with the obvious two exceptions F1,0,1,0(v) ≡ 1 and F0,1,2,0(v) ≡
1
2
≡ F2,0,0,1(v),

together with the sporadic normalization conditions, listed by increasing order
4, 5, 6

0 ≡ F3,0,0,1(v) ≡ F0,1,3,0(v),
0 ≡ F4,0,0,1(v) ≡ F0,1,4,0(v), 0 ≡ F3,0,1,1(v) ≡ F1,1,3,0(v),
0 ≡ F4,0,1,1(v) ≡ F1,1,4,0(v), 0 ≡ F3,0,3,0(v).

Without the above conditions z′ = z + f⩾2, �′ = � + g⩾1, w′ = w +
ℎ⩾3 guaranteeing uniqueness, one can verify that a normalizing transforma-
tion is unique up to the right action of the 5-dimensional stability group of the
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Gaussier-Merker model having the �nite equations

z′ ∶= �
z + i � z2 +

(
i � � − i �

)
w

1 + 2i � z − �2z2 −
(
�2� − �� + i r

)
w
,

�′ ∶= �

�

� + 2i � z −
(
�� + i r

)
z2 +

(
�
2
− i r � − �� �

)
w

1 + 2i � z − �2z2 −
(
�2� − �� + i r

)
w

,

w′ ∶= �� w
1 + 2i � z − �2z2 −

(
�2� − �� + i r

)
w
,

where � ∈ ℂ∗, � ∈ ℂ, r ∈ ℝ are arbitrary.
Lastly, the values at the origin of Pocchiola’s two primaryCartan-type relative

di�erential invariants are

W0 = 4F3,0,0,2(0) and J0 = 20F5,0,0,1(0).

However, Poincaré-Moser normal forms or Cartan-Tanaka reductions to {e}-
structures are only a preliminary towards the understanding of the biholomor-
phic equivalence problem for embedded C! CR submanifolds M ⊂ ℂn, quite
far from any resolution, not even to be termed ‘complete resolution’.

Indeed, focusing on CR geometry, we would like to indicate two ‘defects’ of
Poincaré-Moser normal forms in comparison to Cartan-Tanaka principal bun-
dles.

∙ Moser-type CR normal forms are in fact incomplete in the sense that their
invariants are only relative, yet de�ned up to the action of a certain ambiguity
(isotropy) group.

∙ Moser-type CR normal forms hold only at one point, hence are incapable to
fully characterize �atness as Cartan’s method does.

The main reason why Cartan’s method is more powerful is that it embraces
computations at every point of a given manifold. Objects manipulated by Car-
tan’s thought are (often very complicated) rational di�erential expressions in
partial derivatives of fundamental (graphing) functions. In comparison, ob-
jects manipulated by Moser’s method are only plain Taylor coe�cients, hence
computations aremuch more elementary.

Fortunately, it is known that symmetries of a hypersurface can be read o�
from subsequently constructed deepernormal forms, not touched in the present
paper, but forthcoming.

These comments conduct us to at least formulate and raise a certain number
of questions showing that several mysteries remain.

QÀ How to get rid of ambiguity in Moser CR-normal forms? What are the true
(absolute) di�erential invariants? Can one retrieve Pocchiola’s dimension drop
10 ↓ 5? Can one link Moser’s punctual invariants with Cartan’s invariants at
every point?
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QÁ In all possibly existing branches, how to �nd aminimal set of generators for
the di�erential algebra of absolute di�erential invariants? Using eitherMoser’s
or Cartan’s method?

QÂ In each branch, what are the di�erential relations (syzygies) between dif-
ferential invariants?

QÃ How to implement the determination of CR-homogeneous models beyond
naive Taylor series manipulations at only one point? How to employ the the-
ory of Lie? How to view Cartan’s invariants in a Taylor series? (Recent results
appear in [17].)

QÄ How to implement, from Moser’s side of the bridge, any sub-branch as-
sumption that requires that an ideal of di�erential invariants, or a collection of
Taylor coe�cients, vanish (identically)?

Acknowledgments. Zhangchi Chen provided the Maple �gures of Sections 8
and 9.

This article provides an alternative approach to a result announced in the
preprint [26], which appeared before on arxiv.org, andwhichwas quite inspiring.
But in contrast:

AÀ Analogs of Cartan-Moser chains will be ‘discovered from scratch’ by apply-
ing a method due to Lie, similarly as in [32].

AÁ Complete, rigorous, detailed technical arguments for the (most delicate)
convergence part will be patiently provided.

AÂ The standard order of [26]: ‘1 formal’, ‘2 convergent’, will be inverted, the
main body of the paper building a convergent normal form, while leaving (eas-
ier) formal considerations to a uniqueness statement at the end.

2. C2,1 hypersurfacesM5 ⊂ ℂ3

Our object of study is the collection of all real C! hypersurfaces M5 ⊂ ℂ3

whose Levi form is of constant rank 1 at every point and that are everywhere
2-nondegenerate (see below), a class that we will denote as ℭ2,1.

Pick any point p ∈ M and adapt a�ne holomorphic coordinates
(
z, �, w =

u+i v
)
∈ ℂ3 in which p is the origin, so that T0M⊕ℝu = ℂ3. From anyC! real

de�ning equation forM near p, the analytic implicit function theorem enables
to solve for u as

u = F
(
z, �, z, �, v

)
,

for some C! graphing function F, the core object of our study. This F is expand-
able in converging power series as

F
(
z, �, z, �, v

)
=

∑

a+b+c+d+e⩾1
Fa,b,c,d,e za�bz

c
�
d
ve,
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for some in�nite collection of complex coe�cients Fa,b,c,d,e ∈ ℂ. Then by con-
jugating only complex coe�cients, de�ne

F
(
z, �, z, �, v

)
∶=

∑

a+b+c+d+e⩾1
Fa,b,c,d,e za�bz

c
�
d
ve.

The reality u = u forces F(z, �, z, �, v) = F(z, �, z, �, v), that is

F
(
z, �, z, �, v

)
≡ F

(
z, �, z, �, v

)
. (2.1)

Applying 1
a!
)az

1
b!
)b�

1
c!
)c
z
1
d!
)d
�

1
e!
)ev at the origin (0, 0, 0, 0, 0), we obtain the (known)

condition on theFa,b,c,d,e ∈ ℂwhich guarantees reality of the graphing function

Fc,d,a,b,e = Fa,b,c,d,e.

Later, we will expand F in powers of (z, �, z, �) only, by introducing

F
(
z, �, z, �, v

)
=

∑

a,b,c,d
za�bz

c
�
d ∑

e
Fa,b,c,d,e ve =∶

∑

a,b,c,d
za�bz

c
�
d
Fa,b,c,d(v).

The reality of F is then equivalent to

Fc,d,a,b(v) = Fa,b,c,d(v). (2.2)

In the literature [20, 21, 30, 15, 37, 22, 28, 29, 35, 34, 33, 16, 19], several equiva-
lent de�nitions of the classℭ2,1 exist. We propose a computational formulation
of the two concepts of constant Levi rank 1 and of 2-nondegeneracy, already
shown in [8] whenM is rigid, namely when F is independent of v.

For this, we need the complex graphed representation of any C! hypersurface
M5 ⊂ ℂ3

w = Q
(
z, �, z, �, w

)
,

with aℂ-valued analytic functionQwhich is obtained by solving forw in w+w
2

=

F
(
z, �, z, �, w−w

2i

)
, so that

1
2
Q
(
z, �, z, �, w

)
+ 1

2
w ≡ F

(
z, �, z, �, 1

2i
Q
(
z, �, z, �, w

)
− 1

2i
w
)
.

Such an analytic function Q cannot be arbitrary, it must satisfy a compatibility
condition obtained by replacing w ∶= Q in its last argument

w ≡ Q
(
z, �, z, �, Q

(
z, �, z, �, w

))
.

3. Two invariant determinants
A local biholomorphism

(z, �, w) ⟼
(
f(z, �, w), g(z, �, w), ℎ(z, �, w)

)
=∶

(
z′, �′, w′),
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has nowhere vanishing holomorphic Jacobian determinant

0 ≠
|||||||||||

fz gz ℎz
f� g� ℎ�
fw gw ℎw

|||||||||||
.

Suppose that it makes a biholomorphism between two C! hypersurfaces both
represented by complex graphing functions

w = Q
(
z, �, z, �, w

)
and w′ = Q′

(
z′, �′, z

′
, �

′
, w

′)
.

Plugging the three components of the biholomorphism in the target equation,
we get the so-called fundamental identity

ℎ(z, �, w) = Q′
(
f(z, �, w), g(z, �, w), f(z, �, w), g(z, �, w), ℎ(z, �, w)

)|||||||w=Q(z,�,z,�,w)
,

which holds identically in the ring of converging power series ℂ{z, �, z, �, w}.
By di�erentiating this identity (exercise!), one may express the invariancy of

the Levi form as a relation between the two Levi determinants de�ned as

|||||||||||||

Qz Q� Qw
Qzz Qz� Qzw
Q�z Q�� Q�w

|||||||||||||

and

|||||||||||||||||

Q′
z′

Q′
�
′ Q′

w′

Q′
z′z′

Q′
z′�

′ Q′
z′w′

Q′
�′z′

Q′
�′�

′ Q′
�′w′

|||||||||||||||||

.

Indeed, abbreviate

ℒz ∶=
)
)z

+Qz(z, �, z, �, w)
)
)w

and ℒ� ∶=
)
)�

+Q�(z, �, z, �, w)
)
)w

.

Proposition 3.1. Throughany biholomorphismbetween real hypersurfaces {w =
Q} ⊂ ℂ3 and {w′ = Q′} ⊂ ℂ′3, one has

||||||||||||||||

Q′
z′

Q′

�
′ Q′

w′

Q′
z′z′

Q′

z′�
′ Q′

z′w′

Q′
�′z′

Q′

�′�
′ Q′

�′w′

||||||||||||||||

=

|||||||||||

fz f� fw
gz g� gw
ℎz ℎ� ℎw

|||||||||||

3

|||||||||||||

fz f� fw
gz g� gw
ℎz ℎ� ℎw

|||||||||||||

1
1

||||||||

ℒz(f) ℒ�(f)
ℒz(g) ℒ�(g)

||||||||

4

||||||||||||

Qz Q� Qw

Qzz Qz� Qzw

Q�z Q�� Q�w

||||||||||||

.

Consequently, the property that the Levi form is of constant rank 1 is biholo-
morphically invariant. The 2-nondegeneracy property [34] then expresses as
the nonvanishing of

|||||||||||||

Qz Q� Qw
Qzz Qz� Qzw
Qzzz Qzz� Qzzw

|||||||||||||

and

|||||||||||||||||

Q′
z′

Q′
�
′ Q′

w′

Q′
z′z′

Q′
z�

′ Q′
z′w′

Q′
z′z′z′

Q′
z′z′�

′ Q′
z′z′w′

|||||||||||||||||

.



260 WEI-GUO FOO, JOËL MERKER AND THE-ANH TA

Proposition 3.2. When the Levi form is of constant rank 1, through any biholo-
morphism between real hypersurfaces {w = Q} ⊂ ℂ3 and {w′ = Q′} ⊂ ℂ′3, one
has

||||||||||||||||

Q′
z′

Q′

�
′ Q′

w′

Q′
z′z′

Q′

z′�
′ Q′

z′w′

Q′
z′z′z′

Q′

z′z′�
′ Q′

z′z′w′

||||||||||||||||
||||||||||||

Qz Q� Qw

Qzz Qz� Qzw

Qzzz Qzz� Qzzw

||||||||||||

=

|||||||||||

fz f� fw
gz g� gw
ℎz ℎ� ℎw

|||||||||||

3

|||||||||||||

fz f� fw
gz g� gw
ℎz ℎ� ℎw

|||||||||||||

1 ⋅

⋅

(ℒ�(g)
||||||||

Qz Qw
Qzz Qzw

||||||||
− ℒz(g)

||||||||

Qz Qw
Q�z Q�w

||||||||
)
3

||||||||

ℒz(f) ℒ�(f)
ℒz(g) ℒ�(g)

||||||||

6 ||||||||

Qz Qw
Qzz Qzw

||||||||

3 .

The identities of these two propositions can be veri�ed e.g. on a computer.
Recall that we denote the class of (local) hypersurfaces M5 ⊂ ℂ3 passing

through the origin 0 ∈ M that are 2-nondegenerate and whose Levi form has
constant rank 1 as ℭ2,1.

Repeatedly, we shall use the real expression of the Levi determinant

Levi(F) ∶=

|||||||||||||||||||||||

0 Fz F� − 1
2
+ 1

2i
Fv

Fz Fzz F�z
1
2i
Fzv

F� Fz� F��
1
2i
F�v

− 1
2
− 1

2i
Fv − 1

2i
Fzv − 1

2i
F�v

1
4
Fvv

|||||||||||||||||||||||

. (3.1)

The next (known) statement applies to � ∶= −u + F.

Lemma 3.3. [18] IfM5 ⊂ ℂ3 is implicitly de�ned by �
(
z, �, w, z, �, w

)
= 0 with

a C! real function � = � satisfying �w ≠ 0, and if w = Q
(
z, �, z, �, w

)
is its

associated complex graphing function, then

|||||||||||||||

0 �z �� �w
�z �zz ��z �wz
�� �z� ��� �w�
�w �zw ��w �ww

|||||||||||||||

= �4w

|||||||||||||

Qz Q� Qw
Qzz Qz� Qzw
Q�z Q�� Q�w

|||||||||||||

.

We leave as an exercise to �nd some invariant determinant expressed in terms
of F which corresponds to the 2-nondegeneracy determinant of Proposition 3.2
in terms of Q.
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4. In�nitesimal CR automorphisms
In the class ℭ2,1, the appropriate homogeneous model, namedMLC, was set

up by Gaussier-Merker in [21] and Fels-Kaup in [14], see also [8]

MLC∶ u =
zz + 1

2
z2� + 1

2
z
2
�

1 − ��
=∶ m

(
z, �, z, �

)
.

The letter m here stands for model.
The 10-dimensional simple Lie algebra of its in�nitesimalCRautomorphisms

g ∶= autCR
(
MLC

)
≅ so2,3(ℝ),

has 10 natural generators X1, … , X10, which are (1, 0) vector �elds in ℂ3 having
holomorphic coe�cients with X� + X� tangent toMLC.

It is natural to assign the following weights to variables and to vector �elds

[z] ∶= 1 [�] ∶= 0, [w] ∶= 2, (4.1)
[
)z

]
∶= −1,

[
)�

]
∶= 0,

[
)w

]
∶= −2.

The Lie algebra g = autCR(MLC) can be graded as

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where, as shown in [21, 19]

g−2 ∶= Span
{
i )w

}
,

g−1 ∶= Span
{
(� − 1) )z − 2z )w, (i + i�) )z − 2iz )w

}
,

where g0 = gtrans0 ⊕ giso0

gtrans0 ∶= Span
{
z� )z + (�2 − 1) )� − z2 )w, iz� )z + (i + i�2) )� − iz2 )w

}
,

giso0 ∶= Span
{
z )z + 2w )w, iz )z + 2i� )�

}
,

while

g1 ∶= Span
{(
z2 − �w − w) )z +

(
2z� + 2z

)
)� + 2zw )w,

(
− iz2 + i�w − iw

)
)z +

(
− 2iz� + 2iz

)
)� − 2izw )w

}
,

g2 ∶= Span
{
izw )z − iz2 )� + iw2 )w

}
.

Calling these X1, … , X10 in order of appearance, the �ve X� + X� for � =
1, 2, 3, 4, 5 span TM5 while those for � = 6, 7, 8, 9, 10 generate the isotropy sub-
group of the origin.
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In fact, we will use the alternative names for the 5 generators of the isotropy
subroup

D ∶= z )z + 2w )w,
R ∶= iz )z + 2i � )� ,

I1 ∶=
(
z2 − �w − w

)
)z +

(
2 z� + 2 z

)
)� + 2 zw )w,

I2 ∶=
(
− i z2 + i �w − i w

)
)z +

(
− 2i z� + 2i z

)
)� − 2i zw )w,

J ∶= i zw )z − i z2 )� + i w2 )w,

having commutator table
D R I1 I2 J

D 0 0 I1 I2 2 J
R ∗ 0 −I2 I1 0
I1 ∗ ∗ 0 4 J 0
I2 ∗ ∗ ∗ 0 0
J ∗ ∗ ∗ ∗ 0

5. Fractional representation of the isotropy group
By integrating iterated �ows of D, R, I1, I2, J, it can be shown (exercise) that

the isotropy subgroup of the origin 0 ∈ MLC in the Gaussier-Merker model has
the �nite equations

z′ ∶= �
z + i � z2 +

(
i � � − i �

)
w

1 + 2i � z − �2z2 −
(
�2� − �� + i r

)
w
,

�′ ∶= �

�

� + 2i � z −
(
�� + i r

)
z2 +

(
�
2
− i r � − �� �

)
w

1 + 2i � z − �2z2 −
(
�2� − �� + i r

)
w

,

w′ ∶= �� w
1 + 2i � z − �2z2 −

(
�2� − �� + i r

)
w
,

where � ∈ ℂ∗, � ∈ ℂ, r ∈ ℝ are arbitrary.
With the alternative weights

[z] ∶= 1, [y] ∶= 1, [w] ∶= 2,

the Taylor expansions up to respective weighted orders 5, 4, 6, will soon be
useful

z′ = � z

− i �� z2 − i � � w

− ��2 z3 +
(
− 3 ��� + i �r

)
zw + i �� �w

+ i ��3 z4 +
(
6i ��2� + 3 ��r

)
z2w +

(
��r + i ��

2
�
)
w2 + 3��2 z�w

+ ��4 z5 +
(
− 6i �2�r + 10 ��3�

)
z3w − 6i ��3 z2�w

+
(
5 ��2�

2
− 6i ���r − �r2

)
zw2 +

(
− 2i ��2� − ��r

)
�w2,
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�′ = 2i �

�
� z + �

�
�

+
(
− i �

�
r + 3 �

�
��

)
z2 − 2i �

�
� z� + �

�
�
2
w

+
(
− 4i �

�
�2� − 2 �

�
�r

)
z3 − 3 �

�
�2 z2� +

(
− 4i �

�
��

2
− 2 �

�
�r

)
zw − 2 �

�
�� �w

+
(
− 5 �

�
�3� + 3i �

�
�2r

)
z4 + 4i �

�
�3 z3� +

(
− 10 �

�
�2�

2
+ 8i �

�
��r + �

�
r2
)
z2w

+
(
8i �

�
�2� + 2 �

�
�r

)
z�w + �

�
�2 �2w +

(
i �

�
�
2
r − �

�
��

3)
w2,

w′ = 0

+ ��w

− 2i �� � zw

− 3 ���2 z2w +
(
i ��r − ����

)
w2

+ 4i ���3 z3 +
(
4i ���2� + 4 �� �r

)
zw2 + ���2 �w2

+ 5���4 z4w +
(
10 ���3� − 10i �� �2r

)
z2w2 − 4i ���3 z�w2

+
(
− ��r2 − 2i ����r + ���2�

2)
w3.

6. Lie jet theory
To apply Lie’s theory similarly as in [32], wemustworkwith the �ve intrinsic,

real, coordinates (x, y, s, t, v) onM5, where

z = x + i y, � = s + i t, w = u + i v.

As in [32], we consider parametrized local real C! curves passing by the ori-
gin

� ⟼
(
x(�), y(�), s(�), t(�), �

)
.

with v(�) ≡ � guaranteeing that the curve is not CR-tangential. We then use
the parameter-letter v instead of �.

The eight independent coordinates corresponding to ẋ(v), ẏ(v), ṡ(v), ṫ(v),
ẍ(v), ÿ(v), s̈(v), ẗ(v) will be denoted

(
v, x, y, s, t, x1, y1, s1, t1, x2, y2, s2, t2

)
.

The �rst jet space is J11,4 ≡ ℝ1+4+4, and the second jet space is J21,4 ≡ ℝ1+4+4+4.
Any di�eomorphism (v, x, y, s, t) ⟼ (v′, x′, y′, s′, t′) lifts to jet spaces of

any order. Because the formulas rapidly become complicated [40, 30, 9], Lie
linearized the action of di�eomorphisms.

As in [32], we will apply Lie’s formulas. Start from a general vector �eld

v⃗ ∶= �(v, x, y, s, t) )
)v

+ '(v, x, y, s, t) )
)x

+  (v, x, y, s, t) )
)y

+ �(v, x, y, s, t) )
)s

+ �(v, x, y, s, t) )
)t
.
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Introduce the total di�erentiation operator

Dv ∶=
)
)v

+ x1
)
)x

+ y1
)
)y

+ s1
)
)s

+ t1
)
)t

+ x2
)
)x1

+ y2
)
)y1

+ s2
)
)s1

+ t2
)
)t1

+ x3
)
)x2

+ y3
)
)y2

+ s3
)
)s2

+ t3
)
)t2

.

Then the second prolongation of v⃗

v⃗(2) = v⃗ + '1
)
)x1

+  1
)
)y1

+ �1
)
)s1

+ �1
)
)t1

+ '2
)
)x2

+  2
)
)y2

+ �2
)
)s2

+ �2
)
)t2

,

has coe�cients ([31, 27, 40, 30, 41, 9])

'1 ∶= Dv
(
' − � x1

)
+ � x2,  1 ∶= Dv

(
 − � y1

)
+ � y2,

�1 ∶= Dv
(
� − � s1

)
+ � s2, �1 ∶= Dv

(
� − � t1

)
+ � t2,

'2 ∶= DvDv
(
' − � x1

)
+ � x3,  2 ∶= DvDv

(
 − � y1

)
+ � y3,

�2 ∶= DvDv
(
� − � s1

)
+ � s3, �2 ∶= DvDv

(
� − � t1

)
+ � t3.

7. Intrinsic isotropy automorphisms of the Gaussier-Merker
model
We want to apply Lie’s prolongation formulas within the �rst jet space to

our 5 vector �elds X = D, R, I1, I2, J. But these holomorphic (1, 0) �elds were
extrinsic, de�ned in ℂ3. We must therefore write up the �ve �elds X + X in the
intrinsic coordinates (x, y, s, t, v) ∈ M5

LC. By slight abuse, we keep the notation
X instead of X + X

D = x )x + y )y + 2v )v,
R = −y )x + x )y − 2t )s + 2s )t,

I1 =
[(
2 x2s2 − 2y2s2 + 2y2 + 2xyt + x2t2 − y2t2

+ 2xyst − tv + s2tv + t3v + 2x2s
)/(

− 1 + s2 + t2
)] )
)x

+
[(
− y2t − x2st − v + s2v + t2v − sv + s3v + st2v

− x2t − 4 xyt2 + y2st + 2 xy − 2xys2
)/(

1 − s2 + t2
)] )
)y

+
[
2 x − 2 yt + 2 xs

] )
)s

+
[
2 y + 2 ys + 2 xt

] )
)t

+
[(
− 4 xy2t − 2 x2ys − 2 x2y + 2 y3s − 2 xv

+ 2xs2v + 2 xt2v − 2 y3
)/(

− 1 + s2 + t2
)] )
)v
,
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I2 =
[(
− y2t − x2st − 4 xyt2 + y2st − sv + s3v

+ st2v + 2 xy − 2xys2 + v − s2v − t2v − x2t
)/(

− 1 + s2 + t2
)] )
)x

+
[(
− 2 x2 + 2x2s2 + x2t2 − 2xyt − 2 y2s2 − y2t2

+ 2xyst − tv + s2tv + t3v + 2 y2s
)/(

1 − s2 + t2
)] )
)y

+
[
2 xt − 2 y + 2 ys

] )
)s

+
[
− 2 xs + 2 x + 2 yt

] )
)t

+
[(
− 2 xy2s + 2 xy2 + 4x2yt + 2 x3s

+ 2 x3 − 2yv + 2 ys2v + 2 yt2v
)/(

− 1 + s2 + t2
)] )
)v
,

J =
[(
− 2 xy2t − x2ys − x2y + y3s

− xv + xs2v + xt2v − y3
)/(

− 1 + s2 + t2
)] )
)x

+
[(
− xy2s + xy2 + 2x2yt + x3s

+ x3 − yv + ys2v + yt2v
)/(

1 − s2 + t2
)] )
)y

+
[
2 xy

] )
)s

+
[
− x2 + y2

] )
)t

+
[((

v − s2v − t2v − x2s − x2 − 2xyt + y2s − y2
)
⋅

⋅
(
− v + s2v + t2v − x2 − x2s − 2 xyt + y2s − y2

))/((
1 − s2 − t2

)2)] )
)v
.

8. Prolongation to the jet space of order 1
As said, we work above the origin 0 ∈ MLC.
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By Lie’s theory, any vector �eld v⃗ on the baseM lifts as a vector �eld v⃗(1) on
the �rst jet space J11,4 = ℝ1+4+4.

Because our �ve intrinsic vector �elds D, R, I1, I2, J vanish at v = x =
y = s = t = 0, their prolongations will automatically be tangent to the �ber{
(0, 0, 0, 0, 0, x1, y1, s1, t1)

}
above (0, 0, 0, 0, 0) in the �rst jet space.

Lie’s formulas yield the very simple values of these �rst prolongations above
the origin v = x = y = s = t = 0

)x1 )y1 )s1 )t1
D(1) −x1 −y1 −2s1 −2t1
R(1) −y1 x1 −2t1 2s1
I(1)1 0 −1 2x1 2y1
I(1)2 1 0 −2y1 2y1
J(1) 0 0 0 0

Observation 8.1. On ℝ4 = ℝ4
x1,y1,s1,t1 , there exists a unique 2-dimensional sub-

manifold Σ10 ⊂ ℝ4, invariant under
{
D(1), R(1), I(1)1 , I(1)2 , J(1)

}
, algebraic, graphed

as

[
s1 = −2x1y1,

t1 = x21 − y21 .

Moreover, the complement ℝ4∖Σ10 is a unique (transitive) orbit under D(1), R(1),
I(1)1 , I(1)2 , J(1).

Proof. We can drop the �fth line of J(1) containing only zeros. With a1 and b1
being parameters, any point of ℝ4 can be written as (x1, y1, s1, t1) with

s1 ∶= −2x1y1 + a1, t1 ∶= x21 − y21 + b1.
Then replacing s1 and t1

⎛
⎜
⎜
⎝

−x1 −y1 −2s1 −2t1
−y1 x1 −2t1 2s1
0 −1 2x1 2y1
1 0 −2y1 2x1

⎞
⎟
⎟
⎠

Gauss-pivot
,,,,,,,,,,,,→

⎛
⎜
⎜
⎝

0 0 −2a1 −2b1
0 0 −2b1 2a1
0 −1 2x1 2y1
1 0 −2y1 2x1

⎞
⎟
⎟
⎠

.

This matrix has determinant −4a21 − 4b21, hence is of rank 4 when (a1, b1) ≠
(0, 0). In the corresponding locus, namely in ℝ4\Σ10, the �ve prolonged vector
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�elds D(1), R(1), I(1)1 , I(1)2 , J(1) have everywhere rank 4, hence generate locally
open orbits, so that ℝ4\Σ10 is a single orbit under their action.

When a1 = b1 = 0, the above matrix has rank 2. In this 2-dimensional
graphed locus, the rank of D(1), R(1), I(1)1 , I(1)2 , J(1) is everywhere equal to 2,
whence Σ10 is a single orbit under their action. �

Thus, the modelMLC has an invariant cone

s1 + i t1 = i
(
x1 + i y1

)2
,

namely a cone invariant under the action of D(1), R(1), I(1)1 , I(1)2 , J(1). Soon, we
will see that everyM5 ⊂ ℂ3 in the class ℭ2,1 also possesses an invariant cone at
any of its points p ∈ M5.

9. Prolongation to the jet space of order 2
Next, we increment the jet order by one unit. The second order Lie prolon-

gations D(2), R(2), I(2)1 , I(2)2 , J(2) have the following coe�cients above the origin,
v = x = y = s = t = 0

)x1 )y1 )s1 )t1 )x2 )y2 )s2 )t2
D(2) −x1 −y1 −2s1 −2t1 −3x2 −3y2 −4s2 −4t2
R(2) −y1 x1 −2t1 2s1 −y2 x2 −2t2 2s2
I(2)1 0 −1 2x1 2y1 2t1 − 4x21 − 4y21 −2s1 2x2 − 4y1t1 2y2 + 4x1s1
I(2)2 1 0 −2y1 2y1 −2s1 −2t1 − 4x21 − 4y21 −2y2 + 4x1t1 2x2 − 4x1s1
J(2) 0 0 0 0 0 0 2s1 + 4x1y1 2t1 − 2x21 + 2y21

Of course, we pull this matrix back to Σ10, hence the last line becomes null.
Keeping only the �rst 4 lines, and performing a Gauss pivot, we get

⎛
⎜
⎜
⎜
⎝

0 0 0 0 6x21y1 + 6y31 − 3x2 −6x1y21 − 6x31 − 3y2 −2x2y1−4y41
−2x1y2+4x41−4s2

−2y1y2+8x1y31
+2x1x2+8x31y1−4t2

0 0 0 0 −2x31 − 2x1y21 − y2 −2x21y1 − 2y31 + x2 2x1x2 − 2y1y2 − 2t2 2x1y2 + 2y1x2 + 2s2
0 −1 2x1 2y1 −2x21 − 6y21 4x1y1 2x2 − 4x21y1 + 4y31 2y2 − 8x1y21
1 0 −2y1 2x1 4x1y1 −6x21 − 2y21 −2y2 + 4x31 − 4x1y21 2x2 + 8x21y1

⎞
⎟
⎟
⎟
⎠

.

The upper 2 × 4 block, having 8 entries, then shows that x2, y2, s2, t2 can be
uniquely and consistently de�ned in terms of x1, y1, so that they de�ne an in-
variant surface under the action of D(2), R(2), I(2)1 , I(2)2 , J(2).
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Observation 9.1. On

ℝ8 = ℝ4
x1,y1,s1,t1 × ℝ

4
x2,y2,s2,t2 ,

there exists a unique
{
D(2), R(2), I(2)1 , I(2)2 , J(2)

}
-invariant 2-dimensional submani-

fold Σ20 ⊂ ℝ8, algebraic, graphed as

[
s1 = −2x1y1,

t1 = x21 − y21 ,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x2 = 2x21y1 + 2y31 ,

y2 = −2x31 − 2x1y21 ,

s2 = −2y41 + 2x41 ,

t2 = 4x31y1 + 4x1y31 .

Moreover, the complement ℝ8∖Σ20 is a unique orbit under the transitive action of
D(2), R(2), I(2)1 , I(2)2 , J(2).

J21,4

��

⊃ Σ20

��
J11,4

��

⊃ Σ10

��
M ∋ 0.

Proof. As said, we pull everything back to Σ10 having equations s1 = −2x1y1,
t1 = x21 − y21 . With a2, b2, c2, d2 being parameters, any point of ℝ4

x2,y2,s2,t2 can
be written as

[
x2 = 2x21y1 + 2y31 + a2,

y2 = −2x31 − 2x1y21 + b2,
[
s2 = −2y41 + 2x41 + c2,

t2 = 4x31y1 + 4x1y31 + d2.
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Replacing x2, y2 without replacing s2, t2, the upper right 2×4 block becomes

( −3a2 −3b2 −8y41 + 8x41 − 4s2 − 2y1a2 − 2x1b2 16x31y1 + 16x1y31 − 4t2 − 2y1b2 + 2x1a2
−b2 a2 8x31y1 + 8x1y31 − 2t2 + 2x1a2 − 2y1b2 −4x41 + 4y41 + 2s2 + 2x1b2 + 2y1a2

) .

Visibly, it is of rank 2 whenever (a2, b2) ≠ (0, 0).
Thus, put in it a2 ∶= 0 and b2 ∶= 0

( 0 0 −8y41 + 8x41 − 4s2 16x31y1 + 16x1y31 − 4t2
0 0 8x31y1 + 8x1y31 − 2t2 −4x41 + 4y41 + 2s2

) ,

and now replace s2, t2, to get

( 0 0 −4c2 −4d2
0 0 −2c2 2d2

) ,

a submatrix which has maximal rank 2 if and only if (c2, d2) ≠ (0, 0). This
concludes. �

We have therefore shown that, to every (�xed) 1-jet at the origin 0 ∈ MLC of
the form

j10 =
(
x1, y1, −2x1y1, x21 − y21

)

is associated a unique second order jet at the origin

j20 =
(
x1, y1, −2x1y1, x21 − y21 , 2x

2
1y1 + 2y31 , −2x

3
1 − 2x1y21 , −2y

4
1 + 2x41 , 4x

3
1y1 + 4x1y31

)
,

and since Σ20 is invariant under the action of the stability group of the Gaussier-
Merker model, this association is invariant.

Our next goal will be to transfer this invariancy property to anyM5 ∈ ℭ2,1.
But subtleties will spice up our job.
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10. Road map to convergent normal form
A certain Lie-theoretic construction of Cartan-Moser chains for Levi nonde-

generate hypersurfacesM3 ⊂ ℂ2 was set up in [32] in order to be imitated when
studying hypersurfacesM5 ⊂ ℂ3 in the classℭ2,1, in the present memoir. How-
ever, we will encounter not only analogies, but also di�erences.

Recall that any Levi nondegenerateM3 ⊂ ℂ2, taken at any point p ∈ M, can
be brought, in local coordinates (z, w = u + iv) vanishing at p, to the prelimi-
nary normal form [32, Prp. 2.2]

v = zz + O(6),

where the remainder isweighted according to [z] ∶= 1, [w] ∶= 2. Furthermore,
the ambiguity of such a punctual preliminary normalization, namely anymap

z′ = f1+f2+f3+f4+O(5), w′ = g1+g2+g3+g4+g5+O(6),

which preserves this normalization, i.e. which sends v = zz + O(6) to v′ =
z′z

′
+ O(6), can be shown to be necessarily of the form [32, Prp. 2.4]

z′ ∶= � z + 2i�� z2 +
(
− 4��

2)
z3 +

(
− 8i��

3)
z4

+ ��w +
(
3i��� + �r

)
zw +

(
− 8���

2
+ 4i��r

)
z2w

+
(
��r + i��2�

)
w2 + O(5),

w′ = ��w + 2i��� zw +
(
− 4���

2)
z2w +

(
− 8i���

3)
z3w

+
(
i���� + ��r

)
w2 +

(
4i���r − 4���

2
�
)
zw2 + O(6),

and this form coincides exactly with the Taylor expansion, up to weighted or-
ders 4, 5, of the general stability group of the model {v = zz} ⟶ {v′ = z′z

′
},

which is well know to be

z′ =
� (z + �w)

1 − 2i� z − (r + i��)w
, w′ = ��w

1 − 2i� z − (r + i��)w
,

with arbitrary � ∈ ℂ∗, � ∈ ℂ, r ∈ ℝ.
One could then �gure out that precisely similar statements hold for M5 ∈

ℭ2,1. However, some ‘discrepancies’, which we will overcome, will occur. In-
deed, let us brie�y describe some di�erences, as a preliminary view on the tech-
nical road we will drive into the forest.

Taking the weights

[z] ∶= 1, [�] ∶= 1, [w] ∶= 2,

starting with u = F(z, �, z, �, v) passing through the origin, by progressively
normalizing the power series expansion of F, it is not di�cult to show that any
M5 ∈ ℭ2,1 can be brought to the form

u = zz + 1
2
z
2
� + 1

2
z2� + Oz,�,z,�,v(4).
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Aswe know from Section 5, the isotropy group of the Gaussier-Merkermodel is
also parametrized by 5 real constants � ∈ ℂ∗, � ∈ ℂ, r ∈ ℝ, and an expansion
of the concerned fractional formulas was provided there.

However, one can verify (exercise) that the stability group of the above punc-
tual normalization up to order 3 happens to be

z′ ∶= � z +
(�

�
− 1

2

�2

�
�
)
z2 − 1

2

�

�
w,

�′ ∶= �

�
� + � z,

w′ ∶= ��w + � zw,

with arbitrary � ∈ ℂ∗, � ∈ ℂ, � ∈ ℂ. This looks di�erent from the stability
group of the model, shown in Section 5 and truncated to orders 2, 1, 3.

Next, it can be shown (and we will do it) that that any M5 ∈ ℭ2,1 can be
brought to the form

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + Oz,�,z,�,v(5).

Lemma 20.1 will show that the stability of this equation reads as

z′ ∶= � z − i �� z2 − i �� w − �2

�
� z3 +

(
i �r − 3

2
��� − 1

4

�2

�
" − 1

4
�"

)
zw

+ i �� �w,

�′ ∶= �

�
� + 2i �

�
� z + " z2 − 2i �

�
� z� + � w,

w′ ∶= ��w − 2i ��� zw −
(
2 ���2 + �2�

)
z2w +

(
− ���� + i �� r

)
w2,

where � ∈ ℂ∗, � ∈ ℂ, r ∈ ℝ, � ∈ ℂ, " ∈ ℂ are arbitrary parameters. Thus, in
comparison with the isotropy of the GM-model, shown in Section 5 and trun-
cated to orders 3, 2, 4, there are two ‘extra’ complex parameters, namely �, ".

Also, in Proposition 20.3 we will normalize, still at the origin only

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ z3�
2
F3,0,0,2,0 + z

3
�2 F3,0,0,2,0 + Oz,�,z,�,v(6),

and in Lemma 20.4, we will see that the stability group of this normal form is

z′ ∶= � z − i �� z2 − i �� w − ��2 z3

+
(
i �r − 3 ��� + 2i �� F3,0,0,2,0 − 2i �� F3,0,0,2,0

)
zw + i �� �w

+
(
8i ��2� + 1

2

�2

�

 + 4 �

�
� + 4 ��2 F3,0,0,2,0 − 8��� F3,0,0,2,0

)
z2w

+ i ��3 z4 + 3��2 z�w + �w2,
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�′ ∶= �

�
� + 2i �

�
� z +

(
3 �

�
�� − i �

�
r − 2i �

�
� F3,0,0,2,0 + 6i �

�
� F3,0,0,2,0

)
z2

− 2i �

�
� z� + �

�
�
2
w

+
(
2 �

�
�r − 4i �

�
�2� − 2 �

2

�
2 
 − 8 �

�
2 � + 12 �

�
�2 F3,0,0,2,0

+ 4 �

�
�� F3,0,0,2,0

)
z3 − 3 �

�
�2 z2� + 
 zw

+
(
− 2 �

�
�� + 4i �

�
� F3,0,0,2,0 − 4i �

�
� F3,0,0,2,0

)
�w,

w′ ∶= ��w − 2i ��� zw − 3 ���2 z2w +
(
− ���� + i �� r

)
w2 + 4i ���3 z3w

+
(
6i ���2� + 2 ���r + 2 �� + 4 ���2 F3,0,0,2,0 − 4���� F3,0,0,2,0

)
zw2

+ ���2 �w2.

where � ∈ ℂ∗, � ∈ ℂ, r ∈ ℝ, 
 ∈ ℂ, � ∈ ℂ are arbitrary. Thus, there are again
two ‘extra’ complex parameters, namely 
, �.

To realize a Moser-like normal form for hypersurfaces M5 ∈ ℭ2,1 and to
de�ne analogs of Cartan-Moser chains, we will therefore have to adapt a bit
our ideas. Let us give a quick summary.

To start with, we will pick any curve 0 ∈ 
 ⊂ M which is CR-transversal in
the sense that 
̇ ∉ TcM. It is well known that one can always straighten it to be

 = {(0, 0, iv)} ⊂ M, the v-axis.

It is also well known that, after an appropriate biholomorphism, one can
make the graphing function F(z, �, z, �, v) to have no pluriharmonic terms, in
the sense that F(z, �, 0, 0, v) ≡ 0.

In Section 11 to 19, we will continue to prenormalize and even start to nor-
malize F further, without touching 
, namely by always stabilizing {(0, 0, iv)} ⊂
M.

However, at some moment of the normalization process, exactly as what oc-
curs [12, 23, 24] for Levi nondegenerate M3 ⊂ ℂ2, one is ‘forced’ to perform
additional normalizations which bend the v-axis, hence destroy what was pre-
served up to this point. This fact con�rms that it was inappropriate to choose
at the beginning any CR-transversal curve 0 ∈ 
 ⊂ M, ‘at random’.

It is at this crucial moment that the Cartan-Moser chains start to appear
to eyes. By appropriately interpreting the algebraic or geometric normaliza-
tion conditions that force to change the v-axis, one realizes that certain CR-
transversal curves are invariant under biholomorphisms of ℂ2. Our goal is to
view something similar and new aboutM5 ∈ ℭ2,1. We will do it.

The Lie-theoretical path taken in [32] consisted in normalizing the equation
of M at only one point, only up to order 5, which is quite elementary, can be
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done by hand or on a computer, and does not employ (at all) the implicit func-
tion theorem. In this memoir, we will conduct essentially the same method as
in [32] but with two di�erences. Firstly, we will prenormalize the equation of
M not only at 0 but all along the v-axis 
 ⊂ M (chosen at random) and reach
Proposition 19.3, until we come to the point where chains start to appear to
eyes. Then we will work only at 0, with power series expansions of orders 5,
6, 7, and ‘discover’ that the chains are the same as stated by Observations 8.1
and 9.1 for the Gaussier-Merker model, notwithstanding the presence of extra
complex parameters.

Once chains are known, we will go back to the starting point, and choose
the CR-transversal 
 ⊂ M to be a chain, then we will plainly apply all what was
done for a random 
, and we will deduce that two normalizations of certain co-
e�cients Fa,b,c,d(v) realize themselves gratuitously thanks to chains, and lastly,
we will obtain a complete Moser-like normal form.

To terminate our mathematical work and get some uniqueness property, we
will work out the formal theory of the normal form only at the end of the paper.

11. Chain straightening and harmonic killing
Start with any ℭ2,1 hypersurface M ⊂ ℂ3, passing by the origin 0 ∈ M.

Since Tc0M ≅ ℂ2, we can assume after a ℂ-linear transformation that Tc0M =
ℂz × ℂ� × {0}, in coordinates (z, �, w) ∈ ℂ3.

The ‘game’ is to transformM progressively into more and more normalized
hypersurfaces. Each (partial) normalization step can represented by means of
a biholomorphism �xing the origin as

ℂ3 ⊃ (M5, 0)
normalize

,,,,,,,,,,,,→ (M′5, 0) ⊂ ℂ′3,
(
z, �, w

)
,,,,,,,,,,,,→

(
f(z, �, w), g(z, �, w), ℎ(z, �, w)

)

=∶
(
z′, �′, w′).

Without loss of generality, both hypersurfaces will be assumed, withw = u+iv
and w′ = u′ + iv′, to be C!-graphed as

u = F
(
z, �, z, �, v

)
and u′ = F′

(
z′, �′, z

′
, �

′
, v′

)
.

Wemay assume thatTc0M = {w = 0} is left untouched, so thatTc0′M
′ = {w′ = 0}

too.
In fact, step by step, all previously achieved normalizations will be conserved

while performing any further normalization. OnceM has been partly normal-
ized to some newM′, we will erase primes to the obtainedM′ =∶ M, normalize
once more, and so on.
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Now, the hypothesis that the biholomorphism establishes a CR-di�eomor-
phismM

∼
⟶M′, expresses as saying that u′ = F′ when u = F, namely

0 = −Reℎ(z, �, w)

+ F′
(
f(z, �, w), g(z, �, w), f(z, �, w), g(z, �, w),

Imℎ(z, �, w)
)|||||||w=F(z,�,z,�,v)+iv

.

Performing the indicated replacement w = F + i v yields

Lemma 11.1. [Fundamental identity] The map (z′, �′, w′) = (f, g, ℎ) sends
M = {u = F} toM′ = {u′ = F′} if and only if

0 ≡ − 1
2
ℎ
(
z, �, F(z, �, z, �, v) + iv

)
− 1

2
ℎ
(
z, �, F(z, �, z, �, v) − iv

)
+

+ F′
(
f
(
z, �, F(z, �, z, �, v) + iv

)
, g

(
z, �, F(z, �, z, �, v) + iv

)
,

f
(
z, �, F(z, �, z, �, v) − iv

)
, g

(
z, �, F(z, �, z, �, v) − iv

)
,

1
2i
ℎ
(
z, �, F(z, �, z, �, v) + iv

)
− 1

2i
ℎ
(
z, �, F(z, �, z, �, v) − iv

))
,

holds identically in ℂ{z, �, z, �, v}.

Although this equation looks complicated, it must be dealt with. Progressive
normalizations will make it more tractable.

One of the �rst tasks is to annihilate all pluriharmonic monomials in (z, �)
of the form Fa,b,0,0,e za�bve, and their conjugates as well. For completeness,
we explain in details how to do this known normalization. We proceed in two
steps.

As already explained in Section 10, a CR-transversal curve with 0 ∈ 
 ⊂ M is
now at �rst chosen ‘at random’, while a better choice will be made later, when
the normalization process will reach a certain deeper point.

Lemma 11.2. Let 
∶ ℝ ⟶ M be any local C! curve with 
(0) = 0 ∈ M
and 
̇(0) ∉ Tc0M = {w = 0}. Then there exists a biholomorphism (z, �, w) ⟼
(z′, w′, �′) sending (stabilizing) Tc0M = {w = 0} to Tc0′M

′ = {w′ = 0}which sends

 to the curve 
(t) = (0, 0, it) straightened along the v-axis.

Notice that the CR-transversal direction 
̇′(0) ∈ T0′M′\Tc0′M
′ together with

Tc0′M
′ = {w′ = 0} implies T0M′ = {u′ = 0}.

Proof. Write the curve as


(t) =
(
'(t),  (t), �(t)

)
,

with some complex-valued analytic functions',  ,�. By assumption, �̇(0) ≠ 0.
This guarantees invertibility of the inverse holomorphic change of coordinates

z ∶= z′+'
(
− iw′), � ∶= �′+ 

(
− iw′), w ∶= �

(
− iw′).
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Similarly, the target (transformed) curve can be written


′(t) =
(
'′(t),  ′(t), i�′(t)

)

— note the i factor —, and the pointwise correspondence between curveswrites
as

'(t) ≡ '′(t) + '
(
− i(i�′(t))

)
,  (t) ≡  ′(t) +  

(
− i(i�′(t))

)
,

�(t) ≡ �
(
− i(i�′(t))

)
.

This last identity yields t ≡ �′(t) thanks to 0 ≠ �̇(0). Replacing then �′(t) ∶= t
inside the �rst two identities concludes that 0 ≡ '′(t) ≡  ′(t). �

Consequently, the graphing function of the transformed hypersurfacewrites,
after erasing primes

M∶ u = F
(
z, �, z, �, v

)
,

with F = O(2) and also F(0, 0, 0, 0, v) ≡ 0. This last condition is technically
needed for the next second elementary normalization.

Lemma 11.3. Starting from F = O(2) with F(0, 0, 0, 0, v) ≡ 0, there exists a
biholomorphism of the form

z′ ∶= z, �′ ∶= �, w′ ∶= w + ℎ(z, �, w),

withℎ = O(2)andℎ(0, 0, w) ≡ 0which transforms {u = F} to {u′ = F′} satisfying

0 ≡ F′
(
z′, �′, 0, 0, v′

)
≡ F′(0, 0, z

′
, �

′
, v′

)
.

The second vanishing identity is a consequence of the �rst by conjugation,
thanks to (2.1). Equivalently, F′a,b,0,0,e = 0 = F′0,0,c,d,e for all integer indices.
Notice that F′(0, 0, 0, 0, v′) ≡ 0 still holds.

Proof. If such a biholomorphism exists, the identity of Lemma 11.1 shows that

0 ≡ −F(z, �, z, �, v) − 1
2
ℎ
(
z, �, F(z, �, z, �, v) + iv

)

− 1
2
ℎ
(
z, �, F(z, �, z, �, v) − iv

)
+

+ F′
(
z, �, z, �, v + 1

2i
ℎ
(
z, �, F(z, �, z, �, v) + iv

)
(11.1)

− 1
2i
ℎ
(
z, �, F(z, �, z, �, v) − iv

))
.

Our goal is to make F′(z′, �′, 0, 0, v) ≡ 0.
If this vanishing identity would hold, putting z ∶= 0 =∶ � in (11.1) wewould

deduce

0 ≡ −F(z, �, 0, 0, v) − 1
2
ℎ
(
z, �, F(z, �, 0, 0, v) + i v

)

− 1
2
ℎ
(
0, 0, F(z, �, 0, 0, v) − i v

)
+ 0. (11.2)
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We claim that such an identity can be employed in order to de�ne ℎ(z, �, w)
uniquely, with the supplementary condition that the last term − 1

2
ℎ of (11.2) is

zero.
Indeed, thanks to F = O(2), we may apply the implicit function theorem to

invert

F(z, �, 0, 0, v) + i v =∶ ! ⟺ v = t(z, �, !) = − i ! + O(2).

De�ne therefore ℎ(z, �, w) accordingly

0 ≡ −F
(
z, �, t(z, �, !)

)
− 1

2
ℎ(z, �, !) − 1

2
⋅ 0.

Now, because F(0, 0, 0, 0, v) ≡ 0 by hypothesis, it comes 0 ≡ ℎ(0, 0, !), just by
putting z ∶= 0 =∶ � in (11.2).

Consequently, the identity (11.2) is indeed realized with − 1
2
ℎ = 0. Finally,

coming back to (11.1)||||z=�=0, we get in conclusion what we want

0 ≡ 0 + F′
(
z, �, 0, 0, v + 1

2i
ℎ
(
z, �, F(z, �, 0, 0, v) + i v

)
− 0

)
. �

Thus, erasing primes, we have obtained the preliminary normalization

u = F =
∑

a+b⩾1
c+d⩾1

za�bz
c
�
d
Fa,b,c,d(v) with Fa,b,c,d(v) ∶=

∑

e⩾1
Fa,b,c,d,e ve.

In the sequel, we shall perform normalizing biholomorphisms which stabilize
this form.

12. Prenormalization: step I
To start with, let us expand

u = zz F1,0,1,0(v) + z� F1,0,0,1(v) + z� F0,1,1,0(v) + �� F0,1,0,1(v) + Oz,�,z,�(3).

By assumption, the Levi matrix of F has rank 1 everywhere, hence in particular
at the origin. We compute this matrix

Levi(F) =

⎛
⎜
⎜
⎜
⎝

0 O(1) O(1) − 1
2
+ O(2)

O(1) F1,0,1,0(0) + O(1) F0,1,1,0(0) + O(1) O(1)
O(1) F1,0,0,1(0) + O(1) F0,1,0,1(0) + O(1) O(1)

− 1
2
+ O(2) O(1) O(1) O(1)

⎞
⎟
⎟
⎟
⎠

,

whereO(n) = Oz,�,z,�,v(n) for any integern ∈ ℕ. Hence at the origin (z, �, z, �, v)
= (0, 0, 0, 0, 0) we have

1 = rank ( F1,0,1,0(0) F0,1,1,0(0)
F1,0,0,1(0) F0,1,0,1(0)

) .

After aℂ-linear invertible transformation in the (z, �)-space, we can assume

1 = F1,0,1,0(0) and 0 = F1,0,0,1(0) = F0,1,1,0(0) = F0,1,0,1(0), (12.1)
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so that
u = zz + Oz,�,z,�,v(3).

Lemma 12.1. There exists a biholomorphism of the form

z′ ∶= z '(w), �′ ∶= �, w′ ∶= w,

which transformsM = {u = F} intoM′ of equation

u′ = z′z
′
+

∑

(a,b,c,d)≠(1,0,1,0)
a+b⩾1, c+d⩾1

z′a�′bz
′c
w
′d
F′a,b,c,d(v

′).

Proof. We write the source hypersurface as

u = F = zz F1,0,1,0(v) + �
(
⋯

)
+ �

(
⋯

)
+ Oz,�,z,�(3),

and similarly for the target

u′ = F′ = z′z
′
F′1,0,1,0(v

′) + �′
(
⋯

)
+ �

′ (
⋯

)
+ O

z′,�′,z′,�
′(3).

Through any map of the form being considered, since z′ = z (⋯) and �′ = �, it
is clear that the remainders correspond to one another

�′
(
⋯

)
= �

(
⋯

)
, O

z′,�′,z′,�
′(3) = Oz,�,z,�(3).

Since u = u′, the fundamental identity (11.1) writes

0 ≡ −F
(
z, �, z, �

)

+ F′
(
z '

(
F + iv

)
, �, z '

(
F − iv

)
, �, v

)
,

which implies, after taking account of the fact that remainders are the same
and that v = v′

0 ≡ −zz F1,0,1,0(v)

+ zz '
(
F + iv

)
'
(
F − iv

)
F′1,0,1,0(v) + �

(
⋯

)
+ �

(
⋯

)
+ Oz,�,z,�(3).

Next, by Taylor expanding at i v, we get

'
(
iv + F

)
= '(iv) + F

(
⋯

)
= '(iv) + Oz,�,z,�(2),

and by inserting this above, we obtain

0 ≡ −zz F1,0,1,0(v)

+ zz '(iv) '(−iv) F′1,0,1,0(v) + Oz,�,z,�(4) + �
(
⋯

)
+ �

(
⋯

)
+ Oz,�,z,�(3).

Identifying the coe�cients of zz yields

0 ≡ −F1,0,1,0(v) + '(iv) '(iv) F′1,0,1,0(v).

We can normalize F′1,0,1,0(v) ≡ 1 provided ' satis�es

'(iv) '(−iv) ≡ F1,0,1,0(v).
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Observing that F1,0,1,0(v) = F1,0,1,0(v) by the reality condition (2.2), it su�ces
to set

'(w) ∶=
√
F1,0,1,0

(
− i w

)
,

a function which is holomorphic thanks to F1,0,1,0(0) = 1. �

So, erasing primes, we have obtained

u = zz +
∑

(a,b,c,d)≠(1,0,1,0)
a+b⩾1, c+d⩾1

za�bz
c
�
d
Fa,b,c,d(v). (12.2)

13. Dependent and independent jets
Now, the assumption of Levi degeneracy states as the vanishing identity

0 ≡ Levi(F) ∶=

||||||||||||||||||||

0 Fz F� − 1
2
+ 1

2i
Fv

Fz Fzz F�z
1
2i
Fzv

F� Fz� F��
1
2i
F�v

− 1
2
− 1

2i
Fv − 1

2i
Fzv − 1

2i
F�v

1
4
Fvv

||||||||||||||||||||

.

But the Levi form is not assumed to be identically zero, it is assumed to be con-
stantly of rank 1. With F = zz + O(3) in (12.2), this assumption expresses as
the nonvanishing of the minor

0 ≠ Levi1(F) ∶=

|||||||||||||||

0 Fz − 1
2
+ 1

2i
Fv

Fz Fzz
1
2i
Fzv

− 1
2
− 1

2i
Fv − 1

2i
Fzv

1
4
Fvv

|||||||||||||||

.

Expanding Levi(F) along its third column gives

F�� ⋅ Levi1(F) ≡ −F�

|||||||||||||||

Fz Fzz
1
2i
Fzv

F� Fz�
1
2i
F�v

− 1
2
− 1

2i
Fv − 1

2i
Fzv

1
4
Fvv

|||||||||||||||

+ F�z

|||||||||||||||

0 Fz − 1
2
+ 1

2i
Fv

F� Fz�
1
2i
F�v

− 1
2
− 1

2i
Fv − 1

2i
Fzv

1
4
Fvv

|||||||||||||||

− 1
2i
F�v

|||||||||||||||

0 Fz − 1
2
+ 1

2i
Fv

Fz Fzz
1
2i
Fzv

F� Fz�
1
2i
F�v

|||||||||||||||

.
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Expanding Levi1(F) and dividing, we get a rational expression

F�� ≡
P
(
Fz, F� , Fz, F� , Fv, Fzz, Fz� , F�z, Fzv, F�v, Fzv, F�v, Fvv

)

Fzz + FvFvFzz + i FzFzv − i FzFzv + FzFzFvv − FvFzFzv − FzFvFzv
,

whose numerator P is a certain universal polynomial, not depending on F. By
assumption, the denominator is nonvanishing (locally).

Di�erentiating this identity and successively performing appropriate replace-
ments (exercise), we obtain

Proposition 13.1. For all integers a, b, c, d, e ∈ ℕ with b ⩾ 1 and d ⩾ 1, there
exist a polynomial Pa,b,c,d,e and an exponent na,b,c,d,e ∈ ℕ⩾1 such that

F
za�bzc�

d
ve
≡ 1

Υ Pa,b,c,d,e
({
F
za′zc

′
ve′

}
a′+c′+e′⩽a+b+c+d+e

,

{
F
za′�b′zc

′
ve′

}b′⩾1
a′+b′+c′+e′⩽a+b+c+d+e

,
{
F
za′zc

′
�
d′
ve′

}d′⩾1
a′+c′+d′+e′⩽a+b+c+d+e

)
,

with denominator

Υ ∶=
(
Fzz + FvFvFzz + i FzFzv − i FzFzv + FzFzFvv − FvFzFzv − FzFvFzv

)na,b,c,d,e .

Accordingly, as in [9], we will term

Dependent derivatives ∶=
{
F
za�bzc�

d
ve

}b ⩾ 1, d ⩾ 1
a, b, c, d, e ⩾ 0

,

Independent derivatives ∶=
{
Fzazcve

}
a, c, e ⩾ 0

∪{
Fza�bzcve

}b ⩾ 1
a, c, e ⩾ 0

∪{
F
zazc�

d
ve

}d ⩾1
a, c, e ⩾ 0

.

At the origin when we will progressively normalize the power series F, any
modi�cation of the values of the independent derivatives of F at 0will automat-
ically transfer to the dependent derivatives of F at 0 via the formulas of Propo-
sition 13.1. Thus, freedom of normalization concerns only independent deriva-
tives

1
a!

1
b!

1
c!

1
d!

1
e!
)az )b� )

c
z
)d
�
)ev F

(
0, 0, 0, 0, 0

)
= Fa,b,c,d,e, (b + d ⩽ 1).

For this reason, we will often write
u = F

= zz +
∑

a+c⩾3
a⩾1, c⩾1

zaz
c
Fa,0,c,0(v) +

∑

b⩾1
za�bz

c
Fa,b,c,0(v)

+
∑

d⩾1
zaz

c
�
d
Fa,0,c,d(v) + ��

(
⋯

)
,
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pointing out that all terms behind �� (⋯) are sorts of ‘remainder terms’. How-
ever, some information will be needed about these remainders anyway while
normalizing themain independent derivatives. Indeed, regularly, wewill come
back to the Levi determinant (3.1).

14. Prenormalization: step II
Now, we come back to (12.2), which we rewrite by selecting monomials hav-

ing z
1
as single antiholomorphic component

u = zz +
∑

a+b⩾1
(a,b)≠(1,0)

za�bz
1
Fa,b,1,0(v) +

∑

a+b⩾1
c⩾2

za�bz
c
Fa,b,c,0(v) +

∑

a+b⩾1
d⩾1

za�bz
c
�
d
Fa,b,c,d(v)

= z
(
z +

∑

a+b⩾1
(a,b)≠(1,0)

za�b Fa,b,1,0(v)
)
+ z

2 (
⋯

)
+ �

(
⋯

)
.

Lemma 14.1. There exists a biholomorphism of the form

z′ ∶= z + Λ(z, �, w) = z + Oz,�,w(2), �′ ∶= �, w′ ∶= w,

which transformsM = {u = F} intoM′ of equation

u′ = z′z
′
+ z

′2 (
⋯

)
+ �

′ (
⋯

)
.

Proof. Set

Λ(z, �, w) ∶=
∑

a+b⩾1
(a,b)≠(1,0)

za�b Fa,b,1,0
(
− i w

)
= z2

(
⋯

)
+ �

(
⋯

)
.

Since F0,1,1,0(0) = 0 by (12.1), we indeed haveΛ = Oz,�,w(2). Thus the equation
ofM writes

u = z
(
z + Λ(z, �, v)

)
+ z

2 (
⋯

)
+ �

(
⋯

)
.

Restricting z′ = z+Λ(z, �, −iw) toM, Taylor expanding at (z, �, v), and using
0 ≡ F(z, �, 0, 0, v) we obtain

z′ = z + Λ
(
z, �, v − iF

)
= z + Λ(z, �, v) + F

(
⋯

)

= z + Λ(z, �, v) + z
(
⋯

)
+ �

(
⋯

)
,

hence replacing z + Λ(z, �, v) = z′ − z(⋯) − �(⋯) and replacing � ∶= �′

u′ = u = z
(
z′ − z

(
⋯

)
− �

(
⋯

))
+ z

2 (
⋯

)
+ �

(
⋯

)

= z z′ + z
2 (
⋯

)
+ �

′ (
⋯

)
.

Now, an inversion gives

z + Λ = z + z2
(
⋯

)
+ �

(
⋯

)
= z′ ⟺ z = z′ + z′2

(
⋯

)
+ �′

(
⋯

)

⟹ z
2
= z

′2 (
⋯

)
+ �

′ (
⋯

)
,
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which concludes
u′ = z′z

′
+ z

′2 (
⋯

)
+ �

′ (
⋯

)
. �

Erasing primes, and using the fact that the graphing function is real, we ob-
tain

Corollary 14.2. Any C! hypersurface 0 ∈ M5 ⊂ ℂ3 whose Levi form is of rank 1
at the origin can be brought to the form

u = zz + z2z
2 (
⋯

)
+ z

2
�
(
⋯

)
+ z2�

(
⋯

)
+ ��

(
⋯

)
.

Next, as said, we need more information about the appearing dependent
derivatives in the remainder ��(⋯). We start to really use the assumption that
the Levi form ofM ∈ ℭ2,1 has constant rank 1.

Lemma 14.3. Any C! hypersurface 0 ∈ M5 ⊂ ℂ3 whose Levi form is of constant
rank 1 around the origin can be brought to the form

u = zz + z2z
2
Oz,z(0) + z

2
� Oz,�,z(0) + z2� Oz,z,�(0) + �� Oz,�,z,�(2).

Proof. Indeed, from the equation of Corollary 14.2, rewritten by emphasizing
the remainder R, which is real, as

u = zz + z2z
2 (
⋯

)
+ z

2
�
(
⋯

)
+ z2�

(
⋯

)
+ �� R,

the Levi determinant (3.1) writes

0 ≡

|||||||||||||||||||

0 z + O(2) O(1) − 1
2
+ O(2)

z + O(2) 1 + O(2) O(1) O(2)
O(1) O(1)

[
��R

]
��

O(1)

− 1
2
+ O(2) O(2) O(1) O(2)

|||||||||||||||||||

,

where, for abbreviation, we denote shortlyO(n) in the places ofOz,�,z,�(n), with
n ∈ ℕ. Expanding the determinant along its �rst column and computing mod-
ulo O(2), we get

0 ≡ −
(
z + O(2)

)
||||||||||||||

z + O(2) O(1) − 1
2
+ O(2)

O(1)
[
��R

]
��

O(1)
O(2) O(1) O(2)

||||||||||||||

+ O(1)

||||||||||||

z + O(2) O(1) − 1
2
+ O(2)

1 + O(2) O(1) O(2)
O(2) O(1) O(2)

||||||||||||

−
(
− 1

2
+ O(2)

)
||||||||||||||

z + O(2) O(1) − 1
2
+ O(2)

1 + O(2) O(1) O(2)
O(1)

[
��R

]
��

O(1)

||||||||||||||
= O(2) + O(2) − 1

4

[
�� R

]
��
+ O(2),
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whence
R + � R� + � R� = O(2).

Then certainly R = Oz,�,z,�(1). Since R = R is real

R = zA(v) + � B(v) + zA(v) + � B(v) + Oz,�,z,�(2),

and replacing R, R� , Rz above yields 0 ≡ A(v) ≡ 2B(v), so R = Oz,�,z,�(2). �

15. Expression of the assumption of 2-nondegeneracy at the
origin

Consequently, abbreviating � ∶= F2,0,0,1,0 ∈ ℂ, we may show cubic terms

u = zz + � z2� + � z
2
� + Oz,�,z,�,v(4).

Writing u = 1
2
w + 1

2
w, and solving for w, we get

w = Q
(
z, �, z, �, w

)
= −w + 2 zz + 2� z2� + 2� z

2
� + Oz,�,z,�,w(4).

Inserting this in the 3×3 invariant determinant of Proposition 3.2, we get, with
O(n) abbreviating Oz,�,z,�,w(n)

0 ≠

|||||||||||||

Qz Q� Qw
Qzz Qz� Qzw
Qzzz Qzz� Qzzw

|||||||||||||

=
|||||||||||

2z + O(2) 2�z2 + O(3) −1 + O(3)
2 + O(2) 4�z + O(2) O(2)
O(1) 4� + O(1) O(1)

|||||||||||
.

Expanding along the last column and computing modulo O(1)

0 ≠ −8� + O(1).

So the assumption of 2-nondegeneracy at the origin means that � ≠ 0. After
the dilation � ⟼ 1

2�
�, we obtain

u = zz + 1
2
z2� + 1

2
z
2
� + Oz,�,z,�,v(4).

16. Prenormalization: step III
Thus, we have obtained the partial normalization

u = zz + z
2
� F0,1,2,0(v) + z2� F2,0,0,1(v) + z2z

2
Oz,z(0)

+ z
2
� Oz,�,z(1) + z2� Oz,z,�(1) + �� Oz,�,z,�(2),

with F0,1,2,0(0) =
1
2
= F2,0,0,1(0).
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Lemma 16.1. There exists a biholomorphism of the form

z′ ∶= z, �′ ∶= �  (w), w′ ∶= w,

with  (0) ≠ 0, which normalizes F′0,1,2,0(v
′) ≡ 1

2
≡ F′2,0,0,1(v

′)

u′ = z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′2z

′2
Oz′,z′(0)

+ z
′2
�′Oz′,�′,z′(1) + z′2�

′
O
z′,z′,�

′(1) + �′�
′
O
z′,�′,z′,�

′(2).

Proof. It is obvious that O
z′,�′,z′,�

′(n) = Oz,�,z,�(n).
From the source equation

u = zz + z
2
� F0,1,2,0(v) + z2� F2,0,0,1(v) + Oz,�,z,�(4),

with F0,1,2,0(0) =
1
2
= F2,0,0,1(0), the target equation will be of a similar form

u′ = z′z
′
+ z

′2
�′ F′0,1,2,0(v

′) + z′2�
′
F′2,0,0,1(v

′) + O
z′,�′,z′,�

′(4).

Since u = F and u = u′ = F′, the fundamental equation writes

0 ≡ −F
(
z, �, z, �, v

)

+ F′
(
z, �  

(
F + iv

)
, z, �  

(
F − iv

)
, v

)
,

that is

0 ≡ −zz − z
2
� F0,1,2,0(v) − z2� F2,0,0,1(v) − Oz,�,z,�(4)

+ zz + z
2
�  

(
F + iv

)
F′0,1,2,0(v) + z2�  

(
F − iv

)
F′2,0,0,1(v)

+ Oz,�,z,�(4).

Next, by Taylor expanding at iv

 
(
F + iv

)
=  (iv) + F

(
⋯

)
=  (iv) + Oz,�,z,�(2),

we get
0 ≡ −z

2
�
(
F0,1,2,0(v) −  (iv) F′0,1,2,0(v)

)

− z2�
(
F2,0,0,1(v) −  

(
− iv

)
F′2,0,0,1(v)

)
+ Oz,�,z,�(4).

Thus, to normalize F′0,1,2,0(v) ≡
1
2
≡ F′2,0,0,1(v), it su�ces to set

 (w) ∶= 2F0,1,2,0
(
− i w

)
. �

So erasing primes, we have normalized

u = zz + 1
2
z
2
� + 1

2
z2� + z2z

2
F2,0,2,0(v) + z2z

2
Oz,z(1)

+ z
2
� Oz,�,�(1) + z2� Oz,z,�(1) + �� Oz,�,z,�(2). (16.1)

Our next goal is to eliminate F2,0,2,0(v).
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Lemma 16.2. There exists a biholomorphism of the form

z′ ∶= z, �′ ∶= � + z2  (w), w′ ∶= w,

which normalizes F′2,0,2,0(v
′) ≡ 0

u′ = z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′2z

′2
Oz′,z′(1)

+ z
′2
�′Oz′,�′,z′(1) + z′2�

′
O
z′,z′,�

′(1) + �′�
′
O
z′,�′,z′,�

′(2).

Proof. In (16.1), extract the real term F2,0,2,0(v) and split it

u = zz + 1
2
z
2 (
� + z2 F2,0,2,0(v)

)
+ 1

2
z2

(
� + z

2
F2,0,2,0(v)

)
+ z2z

2
Oz,z(1)

+ z
2
� Oz,�,z(1) + z2� Oz,z,�(1) + �� Oz,�,z,�(2). (16.2)

We claim that the biholomorphism which works is

z′ ∶= z, �′ ∶= � + z2 F2,0,2,0
(
− i w

)
, w′ ∶= w.

The inverse is

� = �′ − z′2 F2,0,2,0
(
− i w′) = �′ + z′2

(
⋯

)
.

We verify �rst that all remainders correspond to one another

z2z
2
Oz,z(1) = z′2z

′2
Oz′ ,z′ (1),

z
2
� Oz,�,z(1) = z

′2 (
�′ + z′2 (⋯)

)
Oz′ ,�′ ,z′ (1)

= z
′2
�′ Oz′ ,�′ ,z′ (1) + z′2z

′2 [
Oz′ ,z′ (1) + �′ Oz′ ,�′ ,z′ (0)

]

= z
′2
�′ Oz′ ,�,z′ (1) + z′2z

′2
Oz′ ,z′ (1),

�� Oz,�,z,�(2) =
(
�′ + z′2 (⋯)

) (
�
′
+ z

′2
(⋯)

)
O
z′ ,�′ ,z′ ,�

′ (2)

= �′�
′
O
z′ ,�′ ,z′ ,�

′ (2) + �′z
′2 [
Oz′ ,�′ ,z′ (2) + �

′
O
z′ ,�′ ,z′ ,�

′ (1)
]

+ �
′
z′2

[
O
z′ ,z′ ,�

′ (2) + �′ O
z′ ,�′ ,z′ ,�

′ (1)
]

+ z′2z
′2 [
Oz′ ,z′ (2) + �′ Oz′ ,�′ ,z′ (1) + �

′
O
z′ ,z′ ,�

′ (1) + �′�
′
O
z′ ,�′ ,z′ ,�

′ (0)
]

= z′2z
′2
Oz′ ,z′ (1) + z

′2
�′ Oz′ ,�′ ,z′ (1) + z′2�

′
O
z′ ,z′ ,�

′ (1) + �′�
′
O
z′ ,�′ ,z′ ,�

′ (2).

Next, using 0 ≡ F
(
0, 0, z, �, v

)
, and Taylor expanding at v′, we can write

� = �′ − z′2 F2,0,2,0
(
v′ − iF

)

= �′ − z′2 F2,0,2,0(v′) − z′2 F
(
⋯

)

= �′ − z′2 F2,0,2,0(v′) − z′2
[
z (⋯) + � (⋯)

]

= �′ − z′2 F2,0,2,0(v′) − z′2
[
z′ (⋯) + �′(⋯)

]
.
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Lastly, replacing z, �, z, �, u, v in terms of z′, �′, z
′
, �

′
, u′, v′ in (16.2), we

obtain what was asserted
u′ = z′z

′
+ 1

2
z
′2 (

�′ − z′2 F2,0,2,0(v′)
◦
− z′3

(
⋯

)
− z′2�′

(
⋯

)
+ z′2 F2,0,2,0(v′)

◦

)

+ 1

2
z′2

(
�
′
− z

′2
F2,0,2,0(v′)

◦◦
− z

′3 (
⋯

)
− z

′2
�
′ (
⋯

)
+ z

′2
F2,0,2,0(v′)

◦◦

)

+ z′2z
′2
Oz′ ,z′ (1) + z

′2
�′ Oz′ ,�′ ,z′ (1) + z′2�

′
O
z′ ,z′ ,�

′ (1) + �′�
′
O
z′ ,�′ ,z′ ,�

′ (2)

= z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′

+ z′2z
′2
Oz′ ,z′ (1) + z

′2
�′ Oz′ ,�′ ,z′ (1) + z′2�

′
O
z′ ,z′ ,�

′ (1) + �′�
′
O
z′ ,�′ ,z′ ,�

′ (2). �

Thus, dropping primes, we have reached the following normalization, where
we show all monomials in F which have z

2
as only antiholomorphic part

u = zz + 1
2
z
2
� + 1

2
z2� +

∑

a+c⩾5
a⩾2, c⩾2

zaz
c
Fa,0,c,0(v) +

∑

a+b+c⩾4
b⩾1, c⩾2

za�bz
c
Fa,b,c,0(v)

+
∑

a+c+d⩾4
a⩾2, d⩾1

zaz
c
�
d
Fa,0,c,d(v) +

∑

a+b+c+d⩾4
b⩾1, d⩾1

za�bz
c
�
d
Fa,b,c,d(v).

Now, we will work modulo z
3
(⋯) + � (⋯), so the last two sums above dis-

appear and many terms in the �rst two sums as well, so that it remains

u = zz + 1
2
z
2 [� + 2

∑

a⩾3
za Fa,0,2,0(v) + 2

∑

a+b⩾2
b⩾1

za�b Fa,b,2,0(v)]

+ z
3 (
⋯

)
+ �

(
⋯

)
. (16.3)

Lemma 16.3. The biholomorphism
z′ ∶= z,

�′ ∶= � + 2
∑

a⩾3
za Fa,0,2,0

(
− i w

)
+ 2

∑

a+b⩾2
b⩾1

za�b Fa,b,2,0
(
− i w

)
,

w′ ∶= w,

transformsM intoM′ of equation

u′ = z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z

′3 (
⋯

)
+ �

′ (
⋯

)
.

Proof. As in [19], we write
�′ ∶= � + �(z, w) + � !(z, �, w),

where
� = z3

(
⋯

)
and ! = Oz,�,w(1).

The inverse is certainly of the form � = �′ + Oz′,�′,w′(2), hence

� = �′ + �′(z′, w′) + �′ !′(z′, �′, w′),
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with �′ = Oz′,w′(2) and !′ = Oz′,�′,w′(1). We claim that �′ = z′3 (⋯).
Indeed, replacing �′ = �(z, w)+� [1+!(z, �, !)] into � = �′(z′, w′)+�′ [1+

!′(z′, �′, w′)], the following identity must hold in ℂ{z, �, w}

� ≡ �′(z, w) +
(
�(z, w) + � [1 + !(z, �, w)]

)
⋅

⋅
[
1 + !′

(
z, �(z, w) + � [1 + !(z, �, w)], w

)]
.

Putting � ∶= 0, it comes

0 ≡ �′(z, w) + �(z, w)
[
1 + Oz,w(1)

]
≡ �′(z, w) + z3 (⋯)

[
1 + Oz,w(1)

]
.

Thus � = �′ (⋯) + z′3 (⋯), which enables us to verify that remainders corre-
spond as follows

�
(
⋯

)
= �

′ (
⋯

)
+ z

′3 (
⋯

)
,

z
3 (
⋯

)
= z

′3 (
⋯

)
.

Next, using 0 ≡ F(z, �, 0, 0, 0), so that F = z(⋯) + �(⋯) = z
′
(⋯) + �

′
(⋯),

we have
�′ = � + 2

∑

a⩾3
za Fa,0,2,0

(
v − iF

)
+ 2

∑

a+b⩾2
b⩾1

za�b Fa,b,2,0
(
v − iF

)

= � + 2
∑

a⩾3
za Fa,0,2,0(v) + F

(
⋯

)
+ 2

∑

a+b⩾2
b⩾1

za�b Fa,b,2,0(v) + F
(
⋯

)
.

Lastly, coming back to (16.3), we conclude

u′ = u = z′z
′
+ 1

2
z
′2 [
�′ − � (⋯) − z (⋯)

]
+ z

′3 (
⋯

)
+ �

′ (
⋯

)

= z′z
′
+ 1

2
z
′2
�′ + z

′3 (
⋯

)
+ �

′ (
⋯

)
. �

Erasing primes, and using the fact that the graphing function is real, we ob-
tain

u = zz + 1
2
z
2
� + 1

2
z2� + z3z

3 (
⋯

)
+ z

3
�
(
⋯

)
+ z3�

(
⋯

)
+ ��

(
⋯

)
.

It remains only to analyze the dependent-derivatives remainder ��
(
⋯

)
. For

this, we must extract the single 4th order monomial zz�� in the GM-model
m(z, �, z, �). Then we realize that behind ��(⋯), there must be order 3 terms
only.

Proposition 16.4. [Prenormalization] Any hypersurface M5 ∈ ℭ2,1 can be
brought to the prenormal form

u = zz + 1
2
z
2
� + 1

2
z2� + zz��

+ z3z
3
Oz,z(0) + z

3
� Oz,�,z(0) + z3� Oz,z,�(0) + �� Oz,�,z,�(3).
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Proof. We write

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + z3z

3 (
⋯

)
+ z

3
�
(
⋯

)
+ z3�

(
⋯

)
+ �� R.

From Lemma 14.3, we already know that R = Oz,�,z,�(2).
To get more, we look at the Levi determinant

0 ≡

|||||||||||||||||||

0 z + z� + O(3) 1
2
z
2
+ O(3) − 1

2
+ O(4)

z + z� + O(3) 1 + O(2) z + O(2) O(3)
1
2
z2 + O(3) z + O(2) zz +

[
��R

]
��

O(3)

− 1
2
+ O(4) O(3) O(3) O(4)

|||||||||||||||||||

.

Computing modulo O(3), so that the entries (2, 4), (3, 4), (4, 2), (4, 3), (4, 4) are
‘zero’, we get

0 ≡ −
(
− 1

2

) (
− 1

2

) |||||||||

1 + O(2) z + O(2)
z + O(2) zz +

[
��R

]
��

|||||||||
+ O(3),

that is [
��R

]
��

≡ O(3).

Thanks to the already known R = O(2)

R = A zz + B z� + C zz + D z� + E �� + D �z

+ G �� + A zz + B z� + E�� + Oz,�,z,�(3),

with both C = C and G = G real, hence

O(3) ≡ R + � R� + � R� + �� R��

≡ Azz + 2B z� +
(
A + C

)
zz + 2D z� + 3E �� + 2D �z

+ 4G �� + 2B z� + 3E ��,

and this forces A = B = C = D = E = G = 0, whence R = Oz,�,z,�(3). �

17. Normalization F3,0,0,1(v) = 0

Now, we specify the unique term of order 4 in (z, �, z, �)

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + z3� F3,0,0,1(v) + z

3
� F3,0,0,1(v) + Oz,�,z,�(5).

Abbreviate
'(v) ∶= F3,0,0,1(v).

Lemma 17.1. The biholomorphism
z′ ∶= z + z2 '(−iw) + 2 z3 '(−iw) '(−iw),

�′ ∶= � − 2 z '(−iw) + 4 z� '(−iw) − 5 z2 '(−iw) '(−iw),
w′ ∶= w,
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transformsM intoM′ of equation

u′ = z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′z

′
�′�

′
+ O

z′,�′,z′,�
′(5).

Proof. On restriction toM where −iw = v − iF

z′ ∶= z + z2 '
(
v − iF

)
+ 2 z3 '

(
v − iF

)
'
(
v − iF

)
,

�′ ∶= � − 2 z '
(
v − iF

)
+ 4 z� '

(
v − iF

)
− 5 z2 '

(
v − iF

)
'
(
v − iF

)
,

hence Taylor expanding at v and using F = O(2)

z′ = z + z2 '(v) + 2 z3 '(v) '(v) + Oz,�,z,�(4),

�′ = � − 2 z '(v) + 4 z� '(v) − 5 z2 '(v) '(v) + Oz,�,z,�(3).

An expansion concludes

z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′z

′
�′�

′
+ O

z′,�′,z′,�
′(5) =

=
(
z + z2 '(v) + 2 z3 '(v) '(v)

) (
z + z

2
'(v) + 2 z

3
'(v) '(v)

)
+ Oz,�,z,�(5)

+ 1
2

(
z + z

2
'(v)

)2 (
� − 2 z '(v) + 4 z� '(v) − 5 z2 '(v) '(v)

)
+ Oz,�,z,�(5)

+ 1
2

(
z + z2 '(v)

)2 (
� − 2 z '(v) + 4 z� '(v) − 5 z

2
'(v) '(v)

)
+ Oz,�,z,�(5)

+ zz
(
� − 2 z '(v)

) (
� − 2 z '(v)

)
+ Oz,�,z,�(5)

= zz + 1
2
z
2
� + 1

2
z2� + zz�� + z3� '(v) + z

3
� '(v) + Oz,�,z,�(5). �

After this, although Fa,b,0,0(v) ≡ 0 for all (a, b), it is not necessarily still true
that prenormalization holds

0
?
≡ Fa,b,1,0(v) (∀ (a, b) ≠ (1, 0)),

0
?
≡ Fa,b,2,0(v) (∀ (a, b) ≠ (0, 1)).

18. Repetition of prenormalization
Fortunately, we can repeat the prenormalization. Indeed, let us write

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� +

∑

a+b+c+d⩾5
a+b⩾1, c+d⩾1

za�bz
c
�
d
Fa,b,c,d(v).

We will perform two biholomorphisms of the form

z′ ∶= z + Oz,�(4), �′ ∶= � + Oz,�(3), w′ = w,

so that normalizations of terms up to order 4 included will be stabilized and
preserved.
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Starting from

u = z
(
z +

∑

a+b⩾4
za�b Fa,b,1,0(v)

)
+ z

2 (
⋯

)
+ �

(
⋯

)
,

we perform the following �rst biholomorphism, with z′ ∶= z+Oz,�(4), �′ ∶= �,
w′ ∶= w, which we restrict toM, using F = z(⋯) + �(⋯)

z′ ∶= z +
∑

a+b⩾4
za�b Fa,b,1,0(−iw)

= z +
∑

a+b⩾4
za�b

[
Fa,b,1,0(v) + F

(
⋯

)]

= z +
∑

a+b⩾4
za�b Fa,b,1,0(v) + z

(
⋯

)
+ �

(
⋯

)
,

hence

z′ − z
′ (
⋯

)
− �

′ (
⋯

)
= z +

∑

a+b⩾4
za�b Fa,b,1,0(v),

so we can replace, using z′ = z + z4(⋯) + �(⋯) which gives by inversion
z = z′ + z′4(⋯) + �′(⋯)

u′ = u =
(
z
′
+ z

′4
(⋯) + �

′
(⋯)

) (
z′ − z

′
(⋯) − � (⋯)

)

+ z
′2 (

⋯
)
+ �

′ (
⋯

)

= z
′
z′ + z

′2 (
⋯

)
+ �

′ (
⋯

)
.

Next, erase primes, specify terms having z
2
as only antiholomorphic part

u = zz + 1
2

(
� + 2

∑

a+b⩾3
za�b Fa,b,2,0(v)

)
z
2
+ z

3 (
⋯

)
+ �

(
⋯

)
,

and perform the second biholomorphism

z′ ∶= z, �′ ∶= � + 2
∑

a+b⩾3
za�b Fa,b,2,0(−iw), w′ ∶= w.

Since −iw = v − iF onM, using F = z(⋯) + �(⋯), we have

�′ = � + 2
∑

a+b⩾3
za�b Fa,b,2,0

(
v − iF

)

= � + 2
∑

a+b⩾3
za�b Fa,b,2,0(v) + z

(
⋯

)
+ �

(
⋯

)
,

hence after an inversion

�′ − z
′ (
⋯

)
− �

′ (
⋯

)
= � + 2

∑

a+b⩾3
za�b Fa,b,2,0(v).
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So using �′ = �+z3(⋯)+� Oz,�(2)which gives after inversion � = �′+z′3(⋯)+
�′Oz′,�′(2), and observing that remainders correspond to one another, we can
replace

u′ = u = z′z
′
+ 1

2
z
′2 (

�′ − z
′
(⋯) − �

′
(⋯)

)
+ z

′3 (
⋯

)
+ �

′ (
⋯

)

= z′z
′
+ 1

2
z
′2
�′ + z

′3 (
⋯

)
+ �

′ (
⋯

)
.

Since terms are unchanged up to order 5, and since the right-hand side is
real, we have reached

u′ = z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′z

′
�′�

′
+ z′3z

′3
Oz′,z′(0) + z

′3
�′Oz′,�′,z′(1)

+ z′3�
′
O
z′,z′,�

′(1) + �′�
′
O
z′,�′,z′,�

′(3).

Lemma 18.1. Starting from

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� +

∑

a+b+c+d⩾5
a+b⩾1, c+d⩾1

za�bz
c
�
d
Fa,b,c,d(v),

there exists a biholomorphism of the form

z′ = z + Oz,�(4), �′ = � + Oz,�(3), w′ ∶= w,

which transformsM intoM′ of equation

u′ = z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′z

′
�′�

′
+ z′3z

′3
Oz′,z′(0) + z

′3
�′Oz′,�′,z′(1)

+ z′3�
′
O
z′,z′,�

′(1) + �′�
′
O
z′,�′,z′,�

′(4).

Proof. The only modi�cation is the information about the dependent jets re-

mainder being anO(4) after �′�
′
, which improves the previousO(3). The proof

consists in examining the Levi determinant, and proceeds similarly as at the
end of the proof of Proposition 16.4. �

19. Normalization F3,0,1,1(v) = 0

Including order 5 terms from z3�Oz,z,�(1), three new terms appear

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ 2Re
{
z3z� F3,0,1,1(v) + z4� F4,0,0,1(v) + z3�

2
F3,0,0,2(v)

}
+ Oz,�,z,�(6),

(19.1)

and we gather all remainder terms as an O(6).
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Lemma 19.1. There exists a biholomorphism of the form

z′ ∶= z, �′ ∶= � + i '(−iw) z2, w′ ∶= w,

with '(v) ∈ ℝ for v ∈ ℝ, which normalizes

ImF′3,0,1,1(v
′) ≡ 0.

Proof. On restriction toM, the inverse writes

� = �′ − i '(−iw) z′2

= �′ − i '
(
v − iF

)
z′2

= �′ − i '(v) z′2 + z′2 F
(
⋯

)

= �′ − i '(v′) z′2 + O
z′,�′,z′,�

′(4).

So we insert in (19.1) and we conclude
u′ = u

= z′z
′
+ 1

2
z
′2 (

�′ − i '(v′) z′2 + O(4)
)
+ 1

2
z′2

(
�
′
+ i '(v′) z

′2
+ O(4)

)

+ z′z
′ (
�′ − i '(v′) z′2

) (
�
′
+ i '(v) z

′2)
+ 1

2
z
′2
�′�′�

′
+ 1

2
z′2�

′
�′�

′

+ 2Re
{
z′3z

′
�
′
F3,0,1,1(v′) + z′4�

′
F4,0,0,1(v′) + z′3�

′2

F3,0,0,2(v′)
}
+ O

z′ ,�′ ,z′ ,�
′ (6)

= z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′z

′
�′�

′
+ 1

2
z
′2
�′�′�

′
+ 1

2
z′2�

′
�′�

′

+ z′2z
′2 [

− i

2
'(v′) + i

2
'(v′)

]

+ 2Re
{
z′3z

′
�
′ [
F3,0,1,1(v′) − i '(v′)

]
+ z′4�

′
F4,0,0,1(v′) + z′3�

′2

F3,0,0,2(v′)
}

+ O
z′ ,�′ ,z′ ,�

′ (6). �

Breaking routine, we do not erase primes.

Lemma 19.2. There exists a biholomorphism whose inverse is of the form

z′ ∶= z ei'(−iw), �′ ∶= � e2i'(−iw) +  (−iw) z2, w′ ∶= w,

with '(v) ∈ ℝ for v ∈ ℝ, which normalizes u′ = F′ above to u = F of the same
shape, but with

ReF′3,0,1,1(v) ≡ 0.

Proof. Start with

z′z
′
= zz ei['(v−iF)−'(v+iF)]

= zz ei['(v)+'v(v)(−iF)+F2(⋯)−'(v)−'v(v)(iF)−F
2(⋯)]

= zz e2'v(v) F+F2(⋯)

= zz
(
1 + 2'v(v) F + O(4)

)

= zz + 2'v(v) z2z
2
+ 'v(v) z�z

3
+ 'v(v) z3z� + O(6).
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Next

Re
(
z
′2
�′
)
= Re

(
z
2
e−2i'(iw)

[
� e2i'(−iw) +  (−iw) z2

])

= Re
(
z
2
� e2i[−'(v+iF)+'(v−iF)] + z2z

2
e−2i'(v+iF)  (v − iF)

)

= Re
(
z
2
� e2i[−'(v)−'v(v)(iF)−F2(⋯)+'(v)+'v(v)(−iF)+F2(⋯)]

)

+ z2z
2
 (v) + O(6)

= Re
(
z
2
� e2['v(v)+'v(v)] F+F2(⋯)

)
+ z2z

2
 (v) + O(6)

= Re
(
z
2
�
[
1 + 4'v(v)

(
zz + O(3)

)
+ O(4)

])
+ z2z

2
 (v) + O(6)

= 1
2
z
2
� + 1

2
z2� + z2z

2
 (v) + 2'v(v) z

3
z� + 2'v(v) z3z� + O(6).

Lastly

z′z
′
�′�

′
=

(
zz + O(4)

) (
� e2i'(v)+F(⋯) + ( (v) + F(⋯)) z2

)
⋅

⋅
(
� e−2i'(v)+F(⋯) + ( (v) + F(⋯)) z

2)

= zz
(
� +  (v) z2

) (
� +  (v) z

2)
+ O(6)

= zz�� + zz�z
2
 (v) + zz  (v) z2� + O(6).

Summing, we conclude by taking  (v) ∶= −2'v(v) and by taking 'v(v) ∶=
−ReF′3,0,1,1(v)

u′ = z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′z

′
�′�

′
+ 1

2
z
′2
�′�′�

′
+ 1

2
z′2�

′
�′�

′

+ 2Re
{
F′4,0,0,1(v

′) z′3z
′
�
′
+ F′3,0,0,1z

′3z
′
�
′
+ F′3,0,0,2(v

′) z′3�
′2}
+ O

z′ ,�′ ,z′ ,�
′ (6)

= zz + 1

2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ z2z
2 [
2 'v(v) +  (v)

]

+ 2Re
{
2 'v(v) +  (v) + 'v(v) + F′3,0,1,1(v)

}

+ 2Re
{
F′4,0,0,1(v) z

4� + F′3,0,0,2(v) z
3�

2}
+ Oz,�,z,�(6). �

Proposition 19.3. For every hypersurface M5 ∈ ℭ2,1, at any point p ∈ M,
given any CR-transversal curve p ∈ 
 ⊂ M, there exist holomorphic coordinates
(z, �, w) ∈ ℂ3 vanishing atp inwhich 
 is the v-axis and inwhichM has equation

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ z3z
3
Oz,z(0)

+ 2Re
{
0 + z4� F4,0,0,1(v) + z3�

2
F3,0,0,2(v)

}

+ z
3
� Oz,�,�(2) + z3� Oz,z,�(2) + �� Oz,�,z,�(4).
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Proof. The annihilation of F3,0,1,1(v) ≡ 0 has been performed above. After
that, it is necessary to repeat prenormalization, as was done in Section 18, and
this does not perturb the normalizations done up to order 5 in (z, �, z, �).

Lastly, it remains to justify the vanishing order 4 of the dependent-derivatives
remainder ��

(
⋯

)
. This can be done by examining the Levi determinant (3.1),

similarly as was done in e.g. the proof of Proposition 16.4. �

20. Normalizations at the origin
Now, we work at the origin. Expanding now in terms of all �ve variables

(z, �, z, �, v), and workingmoduloweighted order 6 terms, for the weights [z] =
1, [�] = 1, [w] = 2, we have obtained

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ z4� F4,0,0,1,0 + z
4
� F4,0,0,1,0 + z3�

2
F3,0,0,2,0 + z

3
�2 F3,0,0,2,0

+ Oz,�,z,�,v(6).

To normalize further, we can assume that the target hypersurface has already
been normalized in the same way

u′ = z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′z

′
�′�

′
+ 1

2
z
′2
�′�′�

′
+ 1

2
z′2�

′
�′�

′

+ z′4�
′
F′4,0,0,1,0 + z

′4
�′ F′4,0,0,1,0 + z′3�

′2
F′3,0,0,2,0 + z

′3
�′2 F′3,0,0,2,0

+ O
z′,�′,z′,�

′
,v′
(6).

But then, it is necessary to stabilize the normalization obtained up to order
4. With the help of a computer, one can prove the following

Lemma 20.1. Any biholomorphic map of the form

z′ ∶= f1+f2+f3, �′ ∶= g1+g2, w′ ∶= ℎ1+ℎ2+ℎ3+ℎ4,

where f1, f2, f3, g1, g2, ℎ1, ℎ2, ℎ3, ℎ4 are weighted homogeneous polynomials in
(z, �, w) of degrees equal to their indices, which stabilizes the normalization up to
order 4

zz + 1
2
z
2
� + 1

2
z2� + zz�� + Oz,�,z,�,v(5) ⟶

⟶ z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′z

′
�′�

′
+ O

z′,�′,z′,�
′
,v′
(5)
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is of the form

z′ ∶= � z − i �� z2 − i �� w − �2

�
� z3

+
(
i �r − 3

2
��� − 1

4

�2

�
" − 1

4
�"

)
zw + i �� �w,

�′ ∶= �

�
� + 2i �

�
� z + " z2 − 2i �

�
� z� + � w,

w′ ∶= ��w − 2i ��� zw −
(
2 ���2 + �2�

)
z2w +

(
− ���� + i �� r

)
w2,

where � ∈ ℂ∗, � ∈ ℂ, r ∈ ℝ, � ∈ ℂ, " ∈ ℂ are arbitrary parameters.

Compared to the expansions to orders 3, 2, 4 of the components of the isotropy
group of the Gaussier-Merker model shown in Section 5, two new parameters
appear, namely� and ". This causes little trouble to de�ne chains forM5 ∈ ℭ2,1,
analogous to the Cartan-Moser chains for Levi nondegenerateM3 ⊂ ℂ2 rede-
�ned in [32], because the linearization of the above collection of maps (in fact
a group) is

z′ ∶= � z − i �� w,

�′ ∶= �

�
� + 2i �

�
� z + � w,

w′ ∶= ��w,

and this action, parametrized by 6 variables �, �, �, �, �, �, is transitive on 1-jets
at the origin (exercise), contrary to the linearization of the action of the isotropy
group of the Gaussier-Merker model

z′ ∶= � z − i �� w,

�′ ∶= �

�
� + 2i �

�
� z + �

�
�
2
w,

w′ ∶= ��w,

in which � = �

�
�
2
is a dependent parameter. This is why we obtained an invari-

ant submanifold Σ10 in Observation 8.1.
To resolve this little discrepancy, we must normalize to higher order at the

origin.
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So to normalize further, we will employ maps of the form

z′ ∶= � z − i �� z2 − i �� w − �2

�
� z3

+
(
i �r − 3

2
��� − 1

4

�2

�
" − 1

4
�"

)
zw + i �� �w

+
∑

a+b+2e=4
fa,b,e za�bwe,

�′ ∶= �

�
� + 2i �

�
� z + " z2 − 2i �

�
� z� + � w

+
∑

a+b+2e=3
ga,b,e za�bwe,

w′ ∶= ��w − 2i ��� zw −
(
2 ���2 + �2�

)
z2w +

(
− ���� + i �� r

)
w2

+
∑

a+b+2e=5
ℎa,b,e za�bwe.

Still on a computer, we verify

Assertion 20.2. Whatever map is chosen, one has

F′3,0,0,2,0 =
1

�
F3,0,0,2,0.

Furthermore, the map

z′ ∶= z + 2F4,0,0,1,0 z3 − 2F4,0,0,1,0 z�w,

�′ ∶= � − 2F4,0,0,1,0w + 10 z2� F4,0,0,1,0,

w′ ∶= w + 2 z2wF4,0,0,1,0,

normalizes F′4,0,0,1,0 ∶= 0 (exercise). What we have proved so far deserved to be
stated as a

Proposition 20.3. At every point p ∈ M5 of a hypersurface M5 ⊂ ℂ3 in the
class ℭ2,1, there exist holomorphic coordinates (z, �, w) ∈ ℂ3 centered at p =
(zp, �p, wp) = (0, 0, 0) in whichM has equation

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ z3�
2
F3,0,0,2,0 + z

3
�2 F3,0,0,2,0 + Oz,�,z,�,v(6).

By applying the technique ofChen-Foo-Merker-Ta [8, Sections 9, 10], one can
realize, after rather hard computations, that there corresponds to this Taylor
coe�cient F3,0,0,2,0, the relative invariant W0 of Pocchiola, presented in [42, 35,
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16]

W0 ∶= − 1
3
K

(
ℒ1

(
ℒ1(k)

))

ℒ1(k)2
+ 1
3
K

(
ℒ1(k)

)
ℒ1

(
ℒ1(k)

)

ℒ1(k)3
+

+ 2
3
ℒ1

(
ℒ1(k)

)

ℒ1(k)
+ 2
3
ℒ1

(
ℒ1(k)

)

ℒ1(k)
+ i
3
T(k)
ℒ1(k)

,

Much more simply, by plugging this normalized F into this formula, we obtain
its value only at one point, namely at the origin

W0 = 4F3,0,0,2,0.

Next, we determine the isotropy of this normalization.

Lemma 20.4. Any biholomorphic map of the form

z′ ∶= f1 +f2 +f3 +f4, �′ ∶= g1 + g2 + g3, w′ ∶= ℎ1 +ℎ2 +ℎ3 +ℎ4 +ℎ5,

where f1, f2, f3, f4, g1, g2, g3, ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, are weighted homogeneous poly-
nomials in (z, �, w) of degrees equal to their indices, which stabilizes the normal-
ization up to order 5 included

zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ F3,0,0,2,0 z3�
2
+ F3,0,0,2,0 z

3
�2 + Oz,�,z,�,v(6) ⟶

⟶ z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′z

′
�′�

′
+ 1

2
z
′2
�′�′�

′
+ 1

2
z′2�

′
�′�

′

+ F′3,0,0,2,0 z
′3�

′2
+ F′3,0,0,2,0 z

′3
�′2 + O

z′,�′,z′,�
′
,v′
(6),

is of the form
z′ ∶= � z − i �� z2 − i �� w − ��2 z3

+
(
i �r − 3 ��� + 2i �� F3,0,0,2,0 − 2i �� F3,0,0,2,0

)
zw + i �� �w

+
(
8i ��2� + 1

2

�2

�

 + 4 �

�
� + 4 ��2 F3,0,0,2,0 − 8��� F3,0,0,2,0

)
z2w

+ i ��3 z4 + 3��2 z�w + �w2,

�′ ∶= �

�
� + 2i �

�
� z +

(
3 �

�
�� − i �

�
r − 2i �

�
� F3,0,0,2,0 + 6i �

�
� F3,0,0,2,0

)
z2

− 2i �

�
� z� + �

�
�
2
w

+
(
2 �

�
�r − 4i �

�
�2� − 2 �

2

�
2 
 − 8 �

�
2 � + 12 �

�
�2 F3,0,0,2,0 + 4 �

�
�� F3,0,0,2,0

)
z3

− 3 �

�
�2 z2� + 
 zw

+
(
− 2 �

�
�� + 4i �

�
� F3,0,0,2,0 − 4i �

�
� F3,0,0,2,0

)
�w,
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w′ ∶= ��w − 2i ��� zw − 3 ���2 z2w +
(
− ���� + i �� r

)
w2 + 4i ���3 z3w

+
(
6i ���2� + 2 ���r + 2 �� + 4 ���2 F3,0,0,2,0 − 4���� F3,0,0,2,0

)
zw2

+ ���2 �w2.

where � ∈ ℂ∗, � ∈ ℂ, r ∈ ℝ, 
 ∈ ℂ, � ∈ ℂ are arbitrary parameters.

In comparison to the normalization up to order 4, observe that the previous
two supplementary parameters have now been normalized

� ∶= �

�
�
2
,

" ∶= −2i �

�
� F3,0,0,2,0 + 6i �

�
� F3,0,0,2,0 + 3 �

�
�� − i �

�
r.

With this, the linearized isotropy has become the same as the one of the GM-
model written above

z′ ∶= � z − i �� w,

�′ ∶= �

�
� + 2i �

�
� z + �

�
�
2
w, (20.1)

w′ ∶= ��w.

This key fact will enable us to de�ne, at every point of any ℭ2,1 hypersurface
M5 ⊂ ℂ3, a CR-invariant 1-jet locus Σ1p ⊂ J1M,p in the bundle of CR-transversal
1-jets of C! curves 
 ⊂ M.

We will follow the guide [32], which was prepared in advance on this pur-
pose.

21. Point translations of C! hypersurfacesM5 ⊂ ℂ3

Consider as before a localC! hypersurfaceM5 ⊂ ℂ3which is 2-nondegenerate
and of constant Levi rank 1, namely belongs to the class ℭ2,1.

In coordinates (z, �, w) = (x + iy, s + it, u + iv), assume that M is locally
graphed as u = F(z, �, z, �, v). At all points p = (zp, �p, wp) ∈ M with up =
F
(
zp, �p, zp, �p, vp

)
, let us expand up to weighted order 5

u = F
(
z, �, z, �, v

)
=

∑

a+b+c+d+2e⩽5

(z−zp)a

a!

(�−�p)b

b!

(z−zp)c

c!

(�−�p)
d

d!

(v−vp)e

e!
⋅

⋅ F
za�bzc�

d
ve

(
zp, �p, zp, �p, vp

)
+ O(6),

subtract u−up, translate coordinates z ∶= z−zp, � ∶= �−�p,w ∶= w−wp, and
get a family of hypersurfaces Mp ⊂ ℂ3, parametrized by p ∈ M and passing
through the origin

u = Fp
(
z, �, z, �, v

)
=

∑

1⩽a+b+c+d+2e⩽5
za�bz

c
�
d
ve Fpa,b,c,d,e + Oz,�,z,�,v(6),
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namely with Fp(0, 0, 0, 0, 0) = 0, whose graphing function has coe�cients

Fpa,b,c,d,e ∶=
1
a!

1
b!

1
c!

1
d!

1
e!
F
za�bzc�

d
ve

(
zp, �p, zp, �p, vp

)
,

analytically parametrized by p ∈ M. Thanks to this, working at only one point,
namely at the origin, we will treat all points p ∈ M.

Question 21.1. Are there analogs, on hypersurfacesM5 ∈ ℭ2,1, of Cartan-Moser
chains [6, 5, 4, 12, 23, 10, 24, 25, 13, 39, 2, 7, 1, 3, 38, 11, 32] for Levi nondegenerate
hypersurfacesM3 ⊂ ℂ2?

Thanks to Lemma 20.4, we will construct, at each point p ∈ M, an invariant
surface in the bundle of 1-jets of CR-transversal curves inM. So there will be an
important di�erence with Cartan-Moser chains for Levi nondegenerateM3 ⊂
ℂ2: the phenomenon that there exists a CR-transversal invariant object which
is of order 1.

To view this object, similarly as in [32], we need to introduce bundles J1M
and J2M of 1-jets and 2-jets of CR-transversal curves 
∶ ℝ⟶M with 
̇ ∉ Tc
M
nowhere complex-tangential.

22. CR-invariant 2-codimensional submanifold
�1 ⊂ J1M ≅ M5 × ℝ4

In local coordinates for whichM is locally graphed as u = F(z, �, z, �, v), at
any point p ∈ M, the CR-transversal curves can be parametrized as

v ⟼
(
x(v), y(v), s(v), t(v), v

)
∈ ℝ5

x,y,z,t,v,

with 
(0) = p = (xp, yp, sp, tp, vp).
The 4 + 4 = 8 independent coordinates corresponding to the 1st derivatives(

ẋ(v), ẏ(v), ṡ(v), ṫ(v)
)
and to the 2nd derivatives

(
ẍ(v), ÿ(v), s̈(v), ẗ(v)

)
will be

denoted as follows
J1M ∶=

{(
xp, yp, sp, tp, vp, x1p, y1p, s1p, t1p, v1p

)}
= ℝ5+4,

J2M ∶=
{(
xp, yp, sp, tp, vp, x1p, y1p, s1p, t1p, v1p, x2p, y2p, s2p, t2p, v2p

)}
= ℝ5+4+4.

Now, denote the translation map as

�p ∶ (z, �, w) ,,,,,,,,,,,,→
(
z − zp, � − �p, w − wp

)
=∶ (z, �, w),

so that
�p

(
M, p

)
=∶

(
Mp, 0

)
.
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Also, let the punctual (at the origin) normalization map constructed up to
now, by Proposition 20.3, be denoted by

Φp ∶ (Mp, 0) =
{
u =

∑

1⩽a+b+c+d+2e⩽5
Fpa,b,c,d,e z

a�bz
c
�
d
ve + O(6)

}

,,,,,,,,,,,,→ (Np, 0) =
{
u = zz + 1

2
z
2
� + 1

2
z2� + zz��

+ 1
2
z
2
��� + 1

2
z2���

+ z3�
2
Fp3,0,0,2,0 + z

3
�2 Fp3,0,0,2,0

+ O(6)
}
.

According to the constructions done in Sections 11 to 19 and according to Propo-
sition 20.3, we know that Φp depends analytically on p.

Abbreviate
' ∶= Φp◦�p,

and consider the diagram

J1M,p
'(1) //

��

J1Np ,0

��
(M, p) '

// (Np, 0).

As in Observation 8.1, in the 1-jet �ber above 0 ∈ Np, introduce the surface

Σ10 ∶=
{
(x1, y1, s1, t1) ∈ J1Np ,0∶ s1 = −2x1y1, t1 = x21 − y21

}
.

Using the �rst prolongation '(1), de�ne the 2-dimensional submanifold of J1M,p

Σ1p ∶= '(1)
−1(

Σ10
)
.

Since '(1) is a di�eomorphism J1M,p
∼
⟶J1Np ,0, this Σ

1
p is also graphed, say of the

form
s1p = A

(
x1p, y1p

)
, t1p = B

(
x1p, y1p

)
,

with two C! functionsA, Bwhich depend on p, and depend also a priori on the
normalizing map '.

Σ1 �
� // J1M,p

'(1) //

��

J1Np ,0

��

Σ1_?
foo

'(1)
−1

zz

(M, p)
' // (Np, 0)
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The union
∪
p∈M

Σ1p =∶ Σ1 ⊂ J1M

is a C! submanifold of dimension 5 + 2 within J1M which has dimension 5 + 4.

Assertion 22.1. This graphed surface

Σ1p ⊂ J1M,p ≅ ℝ4

is independent of the map ' = Φp◦�p normalizing the initial hypersurfaceM of
equation u = F(z, �, z, �, v) near any of its points p ∈ M, to

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ z3�
2
Fp3,0,0,2,0 + z

3
�2 Fp3,0,0,2,0 + Oz,�,z,�,v(6).

Proof. Suppose another such normalizing map is given

(Np, 0)

 ∶='′◦'−1

��

(M, p)

'
66

'′

++
(Np

′ , 0).

By Lemma 20.4 which holds for maps stabilizing the origin,  has linear terms
exactly equal to the linear terms of the isotropy group of the GM-model, for
which we already know, thanks to Observation 8.1, that

 (1)
(
Σ10

)
= Σ′10 .

Hence in conclusion

Σ′1p = '(1)′
−1(

Σ′10
)
= '(1)′

−1(
 (1)

(
Σ10

))
= '(1)′

−1((
'′◦'−1

)(1)(
Σ10

))

= '(1)
−1(

Σ10
)
= Σ1p. �

So at each point p ∈ M, there exists a CR-invariant, or biholomorphically in-
variant, surface Σ1p ⊂ J1M,p. Therefore, it is natural to select only CR-transversal
curves 
∶ ℝ⟶M, 
(0) = p, such that 
̇(�) ∈ Σ1
(�) for every � ∈ ℝ.

But the ‘discovery’ of this CR-invariant submanifold Σ1M ⊂ J1M does not suf-
�ce, because the linear action

z′ ∶= � z − i �� w,

�′ ∶= �

�
� + 2i �

�
� z + �

�
�
2
w,

w′ ∶= ��w,
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happens to be transitive on the invariant surface Σ10 ⊂ ℝ4 of 1-jets, according to
the fact that the prolonged symmetry vector �eldsD(1), R(1), I(1)1 , I(1)2 , J(1), shown
in Section 8, are of rank 2 = dim Σ10 everywhere.

Remind from [6, 5, 24, 32] that Cartan-Moser chains were strictly of second
order. Hence, we need to explore deeper, and to normalize further, still at 0 ∈
Mp. We will realize that to each 1-jet j1p ∈ Σ1p, there is associated a unique
invariant 2-jet j2p = j2p(j1p), as we already saw when studying the GM-model in
Section 9.

23. Order 1 chains inC2,1 hypersurfacesM5 ⊂ ℂ3

So far, at the origin, we have constructed a normalizing map Φp, composed
with a translation map �p

'∶ (M, p)
�p

,,,,,,,,,,,,→ (Mp, 0)
Φp

,,,,,,,,,,,,→ (Np, 0),

which brings (M, p) to (Np, 0) at the origin of equation fully normalized up to
order 5 included

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ 2Re
{
0 + 0 + z3�

2
Fp3,0,0,2,0

}
+ Oz,�,z,�,v(6),

namely with 0 = Fp3,0,1,1,0 = Fp4,0,0,1,0, knowing that F
p
3,0,0,2,0 is a relative invari-

ant.
The di�erential '∗ establishes isomorphisms

TpM
∼
⟶ T0Np,

TcpM
∼
⟶ Tc0N

p,

Kc
pM

∼
⟶ Kc

0N
p,

where KcM ⊂ TcM is the Levi-kernel subbundle [37]. It follows that '∗ estab-
lishes an isomorphism between the 3-dimensional real quotient bundles

TpM
/(

TcpM
/
Kc
pM

) ∼
⟶ T0Np

/(
Tc0N

p/Kc
0N

p).

By de�nition, on these bundles Tc∕Kc, the Levi form ofM is nondegenerate, of
maximal possible rank 1.

In a neighborhood of some reference point p0 ∈ M, we can take coordinates
(z, w, �) with z = x + iy, � = s + it, w = u + iv, so thatM is locally graphed as
u = F(z, �, z, �, v), with (v, x, y, s, t) ∈ M5 being intrinsic coordinates, so that
the Levi form ofM is nonzero near p0 along the intrinsic (1, 0) vector �eld

ℒ ∶= )
)z

− i
Fz

1 + i Fv
)
)v
.

We will let p ∼ p0 vary in a neighborhood of p0.
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Taking jet coordinates (x1, y1, s1, t1) near p0 so that

J1M =
{
(v, x, y, s, t, x1, y1, s1, t1)

}
,

it follows from the above isomorphisms and from the de�nition of Σ10 ⊂ J1Mp ,0
that Σ1 ⊂ J1M is locally de�ned near p0 as a graph

s1 = A
(
v, x, y, s, t, x1, y1

)
, t1 = B

(
v, x, y, s, t, x1, y1

)
,

in terms of certain two C! functions A, B, which vanish for x1 = y1 = 0. In
this respect, the �rst two coordinates (x1p, y1p) of a 1-jet j1p at some point p =
(vp, xp, yp, sp, tp) ∈ M near p0 should be thought of as being horizontal, and
the last two coordinates (s1p, t1p) as being vertical.

An alternative presentation of CR-invariant CR-transversal 1-jets on hyper-
surfacesM5 ⊂ ℂ3 will be useful in a moment.

De�nition 23.1. A 1-jet j1p ∈ J1M,p is said to be the jet of an order 1 chain at a
point p ∈ M, or to belong to the invariant surface Σ1p ⊂ J1M,p, if, given any punc-
tual normalizingmap from (M, p) to (Np, 0) up to order 5 as in Proposition 20.3

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ 2Re
{
0 + 0 + z3�

2
Fp3,0,0,2,0

}
+ Oz,�,z,�,v(6),

which sends j1p to a 1-jet at 0 ∈ Np having vanishing horizontal part

'(1)
(
j1p

)
=

(
0, 0, s10, t

1
0
)
,

then in fact j1p is the inverse image of the �at 1-jet at the origin

j1p = '(1)
−1(

0, 0, 0, 0
)
,

or equivalently s10 = t10 = 0.

This de�nition does not depend on the normalizing map Φp in ' = �p◦Φp,
because if another Φ′p is chosen, which leads to the diagram

(Np, 0)

 ∶='′◦'

��

(M, p)

'
66

'′

++
(Np

′ , 0),

with (Np
′ , 0) having an equation similar to the one of (Np, 0) above, then the

ambiguity map  ∶= '′◦' should stabilize the �at 1-jet, and for this to hold,
we already know from the formulas (20.1) that this forces � = 0.
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We will now employ this de�nition in two ways. It is clear that the graphed
equations of Σ1 ⊂ J1M lead to a system of two �rst-order ordinary di�erential
equations

ṡ = A
(
v, x, y, s, t, ẋ, ẏ

)
, ṫ = B

(
v, x, y, s, t, ẋ, ẏ

)
,

the time parameter being v. For any choice of any two functions (x(v), y(v))
with (x(0), y(0)) = (xp, yp), with (ẋ(0), ẏ(0)) ≠ (0, 0), and with (s(0), t(0)) =
(sp, tp), there exists a unique local C! solution to this system passing through
p at ‘time’ v = 0, which is a CR-transversal curve having tangents in Σ1M .

Terminology 23.2. Such a curve will be called an order 1 chain.

Later, when passing to order 2 chains, we will see that the large freedom in
the choice of arbitrary functions (x(v), y(v)) will drop.

Once order 1 chains are known, it is natural to restart the whole process of
prenormalization and of partial normalization which begun in Section 11, by
assuming that the CR-transversal curve p ∈ 
 ⊂ M (not anymore chosen at
random) is an order 1 chain.

Then, coming back to Proposition 19.3, but viewed at the origin up to order 6
in all variables (z, �, z, �, v), we remember that we have constructed a normal-
izing map Φp, composed with a translation map �p

'∶ (M, p)
�p

,,,,,,,,,,,,→ (Mp, 0)
Φp

,,,,,,,,,,,,→ (Np, 0),

which brings (M, p) to (Np, 0) at the origin of equation

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ 2Re
{
0 + z4� Fp4,0,0,1,0 + z3�

2
Fp3,0,0,2,0

}
+ Oz,�,z,�,v(6),

without changing the CR-transversal curve 0 ∈ 
 ⊂ M being the v-axis, hence
having �at 1-jet at the origin.

Assertion 23.3. Then Fp4,0,0,1,0 = 0 holds automatically, without having the
needs to perform any further biholomorphism.

Proof. Indeed, we already know that one can continue to normalize andmake
Fp4,0,0,1,0 = 0 by means of the map

z′ ∶= z + 2Fp4,0,0,1,0 z
3 − 2Fp4,0,0,1,0 z�w,

�′ ∶= � − 2Fp4,0,0,1,0w + 10 z2� Fp4,0,0,1,0,

w′ ∶= w + 2 z2wFp4,0,0,1,0,

which we may call Ψ∶ (Np, 0)⟶ (Np
′ , 0). We then reason as in [32, 9.5].

If Fp4,0,0,1,0 ≠ 0would be nonzero, due to the presence in �′ of the linear term

2Fp4,0,0,1,0w, this map Ψ would not stabilize the �at order 1 jet j10 = (0, 0, 0, 0),
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and so, this would contradict De�nition 23.1 applied to (M, p) ∶= (Np, 0), to
' ∶= Ψ, and to (Np, 0) ∶= (Np

′ , 0). �

Lastly, coming again back to Proposition 19.3, we remember that we have
constructed a normalizing map which bringsM near 0 ∈ M to the equation

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ z3z
3
Oz,z(0)

+ 2Re
{
0 + z4� F4,0,0,1(v) + z3�

2
F3,0,0,2(v)

}

+ z
3
� Oz,�,z(2) + z3� Oz,z,�(2) + �� Oz,�,z,�(4),

without changing any starting CR-transversal curve 0 ∈ 
 ⊂ M. We now realize
that F4,0,0,1(v) ≡ 0 vanishes for free.

Proposition 23.4. For every hypersurfaceM5 ∈ ℭ2,1, at any point p ∈ M, given
any CR-transversal curve p ∈ 
 ⊂ M which is an order 1 chain, there exist holo-
morphic coordinates (z, �, w) ∈ ℂ3 vanishing at p in which 
 is the v-axis and in
whichM has equation

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ z3z
3
Oz,z(0)

+ 2Re
{
0 + 0 + z3�

2
F3,0,0,2(v)

}

+ z
3
� Oz,�,z(2) + z3� Oz,z,�(2) + �� Oz,�,z,�(4).

Proof. What was done an instant ago by Assertion 23.3 at the origin (z, �, w) =
(0, 0, 0) applies in fact at every point (0, 0, iv) along the v-axis, thanks to the fact
that the (pre)normalizations of Propositions 16.4 and 19.3 were achieved all
along the v-axis. �

Because we know the existence of a CR-invariant surface Σ1p ⊂ J1M,p on
which the isotropy is transitive, we will assume that, starting with any �xed
1-jet j1p ∈ Σ1p, the partial normalization map performed up to now sends j1p to
the �at 1-jet at 0 ∈ Mp, namely to j10 = (0, 0, 0, 0). We will assume that sub-
sequent normalizations stabilize this invariant �at 1-jet. For this, at the very
beginning, we have to assume that the CR-transversal curve used in Section 11,
whose choice was left free, has 1-jet at the origin 0 equal to the �at 1-jet. By
surveying all normalizations done up to now, one realizes that the v-axis was
always stabilized, contained in M, hence the �at 1-jet was always preserved
(implicitly).

Preserving the �at 1-jet at 0 corresponds to making � ∶= 0 in the formulas
of Section 9 and of Lemma 20.4. We state this explicitly as a
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Corollary 23.5. The biholomorphic maps of Lemma 20.4 which stabilize punc-
tual normalizations of (Mp, 0) at the origin up to order 5 andwhich stabilize also
the �at 1-jet j10 = (0, 0, 0, 0) ∈ Σ10 read, with � ∶= 0 and � ∶= 
, as

z′ ∶= � z + i � r zw +
( 1
2

�2

�
� + 4 �

�
�
)
z2w + �w2,

�′ ∶= �

�
� − i �

�
r z2 +

(
− 2 �

2

�
2 � − 8 �

�
2 �

)
z3 + � zw,

w′ ∶= ��w + i �� r w2 + 2�� zw2.

24. End of point normalization of C! hypersurfacesM5 ⊂ ℂ3

Thus, we have to look at 6th order terms in the currently normalized equation
of (Mp, 0), which, taking account of the vanishing of the Levi determinant, are
of the form (exercise)

u = zz + 1

2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2��� + zz����

+ Fp3,0,0,2,0 z
3�

2
+ Fp3,0,0,2,0 z

3
�2 + ��

(
3Fp3,0,0,2,0 z

2z� + 3Fp3,0,0,2,0 z�z
2)

+ z3z
3
Fp3,0,3,0,0

+ 2Re
{
z5� Fp5,0,0,1,0 + z4z� Fp4,0,1,1,0 + z4�

2
Fp4,0,0,2,0

+ z3z
2
� Fp3,0,2,1,0 + z3z�

2
Fp3,0,1,2,0

+ z3�
3
Fp3,0,0,3,0

}
+ Oz,�,z,�,v(7).

To normalize further order 6 terms, it is natural to assume that the normal-
izations up to order 5 included are stabilized, and also that the �at 1-jet at the
origin is stabilized as well. Thus we will employ maps of the form

z′ ∶= � z + i � r zw +
( 1
2

�2

�
� + 4 �

�
�
)
z2w + �w2 +

∑

a+b+2e=5

fa,b,e za�bwe,

�′ ∶= �

�
� − i �

�
r z2 +

(
− 2 �

2

�
2 � − 8 �

�
2 �

)
z3 + � zw +

∑

a+b+2e=4

ga,b,e za�bwe,

w′ ∶= ��w + i �� r w2 + 2�� zw2 +
∑

a+b+2e=6

ℎa,b,e za�bwe.

Lemma 24.1. One can annihilate

Fp3,0,3,0,0 = 0 and
(
either Fp4,0,1,1,0 = 0 or Fp3,0,2,1,0 = 0

)
.

Proof. By hand or on a computer, one veri�es that the map

z′ ∶= z + 3
4
Fp3,0,3,0,0 zw

2,

�′ ∶= �,

w′ ∶= w +
( 1
4
Fp3,0,3,0,0 + Fp3,0,3,0,0

)
w3,
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makes Fp ′3,0,3,0,0 = 0. It is visible (eyes exercise) that this map stabilizes the �at
1-jet j10 = (0, 0, 0, 0).

Next, assuming that Fp3,0,3,0,0 = 0 = Fp ′3,0,3,0,0, the map parametrized by � ∈ ℂ

z′ ∶= z + 2 � z2w + �w2 − � �w2,
�′ ∶= � − 4 � zw + 4 � z�w,

w′ ∶= w + 2 � zw2,

also stabilizes the �at 1-jet j10 = (0, 0, 0, 0), and it transforms as follows the six
remaining coe�cients

Fp ′5,0,0,1,0 = Fp5,0,0,1,0, Fp ′4,0,1,1,0 = Fp4,0,1,1,0 − 2 �, Fp ′4,0,0,2,0 = Fp4,0,0,2,0,

Fp ′3,0,2,1,0 = Fp3,0,2,1,0 + 2 �, Fp ′3,0,1,2,0 = Fp3,0,1,2,0,

Fp ′3,0,0,3,0 = Fp3,0,0,3,0.

So one of the two mentioned coe�cients can be normalized. �

A choice must be made. We then determine the stability group for both
choices of normalizations, again with the constraint of stabilizing the �at 1-jet
j10 . Both choices lead to the same stability group (exercise on a computer).

Lemma 24.2. Any biholomorphic map of the form
z′ ∶= f1 + f2 + f3 + f4 + f5, �′ ∶= g1 + g2 + g3 + g4,

w′ ∶= ℎ1 + ℎ2 + ℎ3 + ℎ4 + ℎ5 + ℎ6,

where f1, f2, f3, f4, f5, g1, g2, g3, g4, ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6, are weighted homoge-
neous, which stabilizes the normalization up to order 6 included

u = zz + 1

2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2��� + zz����

+ Fp3,0,0,2,0 z
3�

2
+ Fp3,0,0,2,0 z

3
�2 + ��

(
3Fp3,0,0,2,0 z

2z� + 3Fp3,0,0,2,0 z�z
2)

+ 0 + 2Re
{
z5� Fp5,0,0,1,0 + 0 + z4�

2
Fp4,0,0,2,0

+ z3z
2
� Fp3,0,2,1,0 + z3z�

2
Fp3,0,1,2,0

+ z3�
3
Fp3,0,0,3,0

}

+ Oz,�,z,�,v(7),

and which stabilizes the �at 1-jet at the origin, is of the form

z′ ∶= � z + i � r zw + 2 �
2

�
� z3w +  zw2,

�′ ∶= �

�
� − i �

�
r z2 − 4 �

2

�
2 � z

4 +
(
− 8

3

 

�
+ 4

3

�

�
2  −

1
3

�

�
r2

)
z2w + �w2,

w′ ∶= ��w + i �� r w2 + �2� z2w2 +
(
− 1

3
�� r2 + 1

3
� + 1

3
� 

)
w3,

where � ∈ ℂ∗, r ∈ ℝ,  ∈ ℂ, � ∈ ℂ are arbitrary parameters.
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Furthermore, with this map, if one stabilizes the normalization F4,0,1,1,0 =
0 = Fp ′4,0,1,1,0, the other coe�cients transform as

Fp ′5,0,0,1,0 =
1

�3
Fp5,0,0,1,0, 0 = 0, Fp ′4,0,0,2,0 =

1

��
Fp4,0,0,2,0,

Fp ′3,0,2,1,0 =
1

��
2 F

p
3,0,2,1,0 − 2i 1

��
2 F

p
3,0,0,2,0, Fp ′3,0,1,2,0 =

1

�
2 F

p
3,0,1,2,0,

Fp ′3,0,0,3,0 =
�

�
2 F

p
3,0,0,3,0,

while if one stabilizes the normalization F3,0,2,1,0 = 0 = Fp ′3,0,2,1,0, the other
coe�cients transform as

Fp ′5,0,0,1,0 =
1

�3
Fp5,0,0,1,0, F

p ′
4,0,1,1,0 =

1

�2�
2 F

p
4,0,1,1,0 − 2 �, Fp ′4,0,0,2,0 =

1

��
Fp4,0,0,2,0,

0 = 2i �� rFp3,0,0,2,0, Fp ′3,0,1,2,0 =
1

�
2 F

p
3,0,1,2,0,

Fp ′3,0,0,3,0 =
�

�
2 F

p
3,0,0,3,0.

This second choice happens to be less natural than the �rst one, because it
forces to discuss the dichotomy branching

Fp3,0,0,2,0 = 0,

Fp3,0,0,2,0

66

((
Fp3,0,0,2,0 ≠ 0,

and when Fp3,0,0,2,0 ≠ 0, it leads to normalize the parameter r, which belongs to
the isotropy of the GM-model, and such a normalization is too early to be done.

Therefore, we choose the normalization Fp ′4,0,1,1,0 = 0.
By applying the technique of Chen-Foo-Merker-Ta [8, Sections 9, 10], one

can realize, after rather hard computations, that there corresponds to the Taylor
coe�cient F5,0,0,1,0, the relative invariant J0 of Pocchiola, presented in [42, 35,
16]

J0 ∶=
1
6
ℒ1

(
ℒ1

(
ℒ1

(
ℒ1(k)

)))

ℒ1(k)
− 5
6
ℒ1

(
ℒ1

(
ℒ1(k)

))
ℒ1

(
ℒ1(k)

)

ℒ1(k)2

− 1
6
ℒ1

(
ℒ1

(
ℒ1(k)

))

ℒ1(k)
P + 20

27
ℒ1

(
ℒ1(k)

)3

ℒ1(k)3
+ 5
18

ℒ1
(
ℒ1(k)

)2

ℒ1(k)2
P

+ 1
6
ℒ1

(
ℒ1(k)

)
ℒ1

(
P
)

ℒ1(k)
− 1
9
ℒ1

(
ℒ1(k)

)

ℒ1(k)
P P

− 1
6 ℒ1

(
ℒ1

(
P
))
+ 1
3 ℒ1

(
P
)

P − 2
27 P P P.



308 WEI-GUO FOO, JOËL MERKER AND THE-ANH TA

Much more simply, by plugging this normalized F into this formula, we obtain
its value only at one point, namely at the origin

J0 = 20F5,0,0,1,0.

25. Order 2 chains inC2,1 hypersurfacesM5 ⊂ ℂ3

In Lemma 24.2, the presence of the free parameter � ∈ ℂ in the last term
�w2, of order 4, of �′ = �

�
� + ⋯ + �w2, shows that the �at second jet j20 =

(0, 0, 0, 0, 0, 0, 0, 0) is not invariant by transformations which stabilize the nor-
malizations achieved up to now at order 6.

To de�ne chains as in De�nition 8.4 of [32], we need then to explore a bit
further the normalizations.

As we already know thanks to Proposition 16.4, it is possible, by some punc-
tual normalization, to also make, at order 7

0 = Fpa,b,0,0,e (a + b + 2e = 7),

0 = Fpa,b,1,0,e (a + b + 2e = 6),

0 = Fpa,b,2,0,e (a + b + 2e = 5).

Once these normalizations are done, the condition that they are preserved forces
� = 0 (exercise).

We therefore come to maps which express the ‘ambiguity’ of punctual nor-
malizations being of the form

z′ ∶= � z + i � r zw +  zw2,

�′ ∶= �

�
� − i �

�
r z2 +

(
− 8

3

 

�
+ 4

3

�

�
2  −

1
3

�

�
r2

)
z2w,

w′ ∶= ��w + i �� r w2 +
(
− 1

3
�� r2 + 1

3
� + 1

3
� 

)
w3.

Then such maps have the property that they send curves ℝ1
v ⟶ℝ4

x,y,s,t of the
form

x = Ov(2), y = Ov(2), s = Ov(2), t = Ov(2),

to curves of the similar form

x′ = Ov′(2), y = Ov′(2), s = Ov′(2), t = Ov′(2),

hence they stabilize the �at 2-jet j20 = (0, 0, 0, 0, 0, 0, 0, 0).
In conclusion, we have reached a point at which we can state an analog of

De�nition 8.4 in [32].

De�nition 25.1. Given a hypersurfaceM5 ⊂ ℂ3 in the class ℭ2,1, a point p ∈
M, a 1-jet j1p ∈ Σ1p at p, given the translation map �p ∶ (M, p) ⟶ (Mp, 0),
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and using any normalizing map Φp ∶ Mp ⟶ Np which sends (Mp, 0) to a
hypersurface (Np, 0) of equation

zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2���

+ 2Re
{
0 + 0 + Fp3,0,0,2,0 z

3�
2
+ ��

(
3 z2z� Fp3,0,0,2,0

)}

+ 0 + 2Re
{
z5� Fp5,0,0,1,0 + 0 + z4�

2
Fp4,0,0,2,0

+ z3z
2
� Fp3,0,2,1,0 + z3z�

2
Fp3,0,1,2,0

+ z3�
3
Fp3,0,0,3,0

}

+ Oz,�,z,�,v(7),

with in addition
0 = Fpa,b,0,0,e (a + b + 2e = 7),

0 = Fpa,b,1,0,e (a + b + 2e = 6),

0 = Fpa,b,2,0,e (a + b + 2e = 5),

and which also sends j1p to the �at 1-jet j10 = (0, 0, 0, 0) at 0 ∈ Np, assign the
2-jet j2p of the chain at p ∈ M associated with j1p to be the inverse image of the
�at 2-jet at 0 ∈ Np

j2p ∶=
(
Φp◦�p

)(2)−1(
0, 0, 0, 0, 0, 0, 0, 0

)
.

Thanks to the preceding reasonings, the result j2p is independent of the nor-
malizing map Φp◦�p satisfying (Φp◦�p)

(1)(j1p) = (0, 0, 0, 0), the �at 1-jet at
0 ∈ Np.

Furthermore, there are C! functions A, B, C, D, E, F, which can be made
explicit in terms of

{
Fa,b,c,d,e

}
1⩽a+b+c+d+2e⩽6

, such that equations of chains are,
with time parameter v

ṡ = A
(
v, x, y, s, t, ẋ, ẏ

)
,

ṫ = B
(
v, x, y, s, t, ẋ, ẏ

)
,

ẍ = C
(
v, x, y, s, t, ẋ, ẏ

)
,

ÿ = D
(
v, x, y, s, t, ẋ, ẏ

)
,

s̈ = E
(
v, x, y, s, t, ẋ, ẏ

)
,

ẗ = F
(
v, x, y, s, t, ẋ, ẏ

)
.

Integrability follows from the fact that Σ20 is a surface.
After that order 2 chains are known, it is natural to restart once more the

whole process of prenormalization and of partial normalization which begun
in Section 11, by assuming that the CR-transversal curve p ∈ 
 ⊂ M (not
anymore chosen at random) is an order 2 chain. In fact, to have a second order
chain at a point p ∈ M, it su�ces to prescribe two real constants, the initial
values ẋ(0), ẏ(0).
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Then, coming back to Proposition 23.4, but viewed at the origin up to order 6
in all variables (z, �, z, �, v), we remember that we have constructed a normal-
izing map Φp, composed with a translation map �p

'∶ (M, p)
�p

,,,,,,,,,,,,→ (Mp, 0)
Φp

,,,,,,,,,,,,→ (Np, 0),

which brings (M, p) to (Np, 0) at the origin of equation

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2��� + zz����

+ z3z
3
Fp3,0,3,0,0 + z3z

3
Oz,z,v(1)

+ 2Re
{
0 + 0 + z3�

2
Fp3,0,0,2,0 + ��

(
3 z2z� Fp3,0,0,2,0

)}

+ 2Re
{
z5� Fp5,0,0,1,0 + z4z� Fp4,0,1,1,0 + z4�

2
Fp4,0,0,2,0

+ z3z
2
� Fp3,0,2,1,0 + z3z�

2
Fp3,0,1,2,0

+ z3�
3
Fp3,0,0,3,0

}

+ Oz,�,z,�,v(7),

without changing the CR-transversal curve 0 ∈ 
 ⊂ M being the v-axis, hence
having �at 1-jet at the origin.

Assertion 25.2. Then Fp4,0,1,1,0 = 0 holds automatically, without having the
needs to perform any further biholomorphism.

Proof. Indeed, from the proof of Lemma 24.1 we already know that with the
choice

� ∶= 1
2 F

p
4,0,1,1,0,

one can continue to normalize and make Fp ′4,0,1,1,0 = 0 by means of the map

z′ ∶= z + Fp4,0,1,1,0 z
2w − 1

2
Fp4,0,1,1,0 �w

2 + 1
2
Fp4,0,1,1,0w

2,

�′ ∶= � − 2Fp4,0,1,1,0 zw + 2Fp4,0,1,1,0 �w
2,

w′ ∶= w + Fp4,0,1,1,0 zw
2,

which we may call Ψ∶ (Np, 0)⟶ (Np
′ , 0). We then reason as in [32, 9.5]

If Fp4,0,1,1,0 ≠ 0 would be nonzero, due to the presence in z′ of the qua-

dratic term 1
2
Fp4,0,1,1,0w

2, this map Ψ would not stabilize the �at order 2 jet
j20 = (0, 0, 0, 0, 0, 0, 0, 0), and so, this would contradict De�nition 25.1 applied
to (M, p) ∶= (Np, 0), to ' ∶= Ψ, and to (Np, 0) ∶= (Np

′ , 0). �
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26. Moser-like normal form forC2,1 hypersurfacesM5 ⊂ ℂ3

Lastly, coming again back to Proposition 19.3, all what precedes showed that,
without changing any starting order 2 chain 0 ∈ 
 ⊂ M to be straightened to be
the v-axis, we have constructed a normalizing map (M, 0) ⟶ (N, 0) so that,
in the equation of N, we may (at last!) let appear all the terms of order 6 in
(z, �, z, �)

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2��� + zz����

+ z3z
3
F3,0,3,0(v) + z3z

3
Oz,z(1)

+ 2Re
{
0 + 0 + z3�

2
F3,0,0,2(v) + ��

(
3 z2z� F3,0,0,2(v)

)}

+ 2Re
{
z5� F5,0,0,1(v) + z4z� F4,0,1,1(v)

◦
+ z4�

2
F4,0,0,2(v)

+ z3z
2
� F3,0,2,1(v) + z3z�

2
F3,0,1,2(v)

+ z3�
3
F3,0,0,3(v)

}

+ z
3
� Oz,�,z(3) + z3� Oz,z,�(3) + �� Oz,�,z,�(5).

Assertion 26.1. The function F4,0,1,1(v) ≡ 0 vanishes for free.

Proof. What was done an instant ago by Assertion 25.2 at the origin (z, �, w) =
(0, 0, 0) applies in fact at every point (0, 0, iv) along the v-axis, thanks to the fact
that the above graphed equation is the same all along the v-axis. �

Proposition 26.2. There exists a biholomorphism of the form

z′ ∶= z '(−iw), �′ ∶= � + �(−iw) z2, w′ ∶= i  (−iw),

with  (v) ∈ ℝ for v ∈ ℝ, which normalizes in addition F′3,0,3,0(v
′) ≡ 0.

Proof. Left to the reader. Hint: imitate [32, Lm. 12.4]. �

In summary, we can state

Theorem 26.3. [Existence of normal form] For every 2-nondegenerate hy-
persurfaceM5 ∈ ℭ2,1 whose Levi form has constant rank 1, at any point p ∈ M,
given any order 2 CR-transversal chain p ∈ 
 ⊂ M, there exist holomorphic co-
ordinates (z, �, w) ∈ ℂ3 vanishing at p in which 
 is the v-axis and in whichM
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has normalized equation

u =
zz+ 1

2
z2�+z2�

1−��

+ z3z
3
Oz,z(1) + 2Re

{
z3�

2
F3,0,0,2(v) + ��

(
3 z2z� F3,0,0,2(v)

)}

+ 2Re
{
z5� F5,0,0,1(v) + z4�

2
F4,0,0,2(v)

+ z3z
2
� F3,0,2,1(v) + z3z�

2
F3,0,1,2(v) + z3�

3
F3,0,0,3(v)

}

+ z
3
� Oz,�,z(3) + z3� Oz,z,�(3) + �� Oz,�,z,�(5).

27. Consequence of prenormalization on dependent jets
After the prenormalization Proposition 16.4, we know that we have

u = F = m + G

= m + z3z
3
Oz,z(0) + z3� Oz,�,z(0) + z

3
� Oz,z,�(0) + �� Oz,�,z,�(3).

The next statement shows that the dependent-jets remainder is in addition an
Oz,z(3).

Proposition 27.1. In prenormalized coordinates, G = Oz,z(3).

This writing means here that G is of order 3 in (z, z), with coe�cients being
arbitrary functions of (z, �, z, �, v), namely that

G = z3
(
⋯

)
+ z2z

(
⋯

)
+ zz

2 (
⋯

)
+ z

3 (
⋯

)
.

Proof. Since the coordinates are prenormalized, we have at least

u = zz + 1
2
z
2
� + 1

2
z2� + Oz,�,z,�(4) = m + G.

Thus if we write

G =
∑

�⩾2

∑

a+b+c+d=�
Ga,b,c,d(v) za�bz

c
�
d
=∶

∑

�⩾2
G�(v).

we have 0 = G2 = G3, which are certainly both Oz,z(3).
The proof will consist in examining, order by order, the Levi determinant for

F = m + G
|||||||||||||||||||||||

0 Fz F� − 1
2
+ 1

2i
Fv

Fz Fzz F�z
1
2i
Fzv

F� Fz� F��
1
2i
F�v

− 1
2
− 1

2i
Fv − 1

2i
Fzv − 1

2i
F�v

1
4
Fvv

|||||||||||||||||||||||

.
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Reasoning by induction, assume, for some � ⩾ 4, that G2, G3, … , G�−1 are all
Oz,z(3). For all 2 ⩽ l ⩽ � − 1, it then follows that

Glz = Oz,z(2), Gl� = Oz,z(3), Glv = Oz,z(3),

Gl
z
= Oz,z(2), Gl

zz
= Oz,z(1), Gl

�z
= Oz,z(2), Gl

zv
= Oz,z(2),

Gl
�
= Oz,z(3), Gl

z�
= Oz,z(2), Gl

��
= Oz,z(3), Gl

�v
= Oz,z(3),

Glv = Oz,z(3), Glzv = Oz,z(2), Gl�v = Oz,z(3), Glvv = Oz,z(3).

To capture information about G�, we may truncate modulo Oz,�,z,�(� + 1)

m ≡ m2 +m3 +⋯+m�−2 +m�−1 +m�,

G ≡ G2 + G3 +⋯+ G�−2 + G�−1 + G�,

where, for any formal

H =
∑

a,b,c,d⩾0
za�bz

c
�
d
Ha,b,c,d(v),

and any � ⩾ 0, we set

H� ∶=
∑

a+b+c+d=�
za�bz

c
�
d
Ha,b,c,d(v),

��(H) ∶=
∑

a+b+c+d⩽�
za�bz

c
�
d
Ha,b,c,d(v).

We will insert F = m + G in the Levi determinant and apply the projection
��−2(∙) in order to capture G�

��
.

Assertion 27.2. Under the induction assumption, G�
��
= Oz,z(3).

Proof. Some further preliminaries are necessary. At �rst, for any formal func-
tion L = L(z, �, z, �, v) which is an Oz,�,z,�(�) for some � ⩾ 0, it holds, with a
shift, that

��−2
(
L ⋅ H

)
= ��−2

(
��−2

(
L
)
⋅ ��−2−�

(
H
))
. (27.1)

Next, with ∙ and ∙,∙ denoting partial derivatives with respect to any of the
variables z, �, z, �, we have

��−2(m) = m2 +⋯+m�−2,

��−2
(
m∙

)
= m2

∙ +⋯+m�−2
∙ +m�−1

∙ ,

��−2
(
m∙,∙

)
= m2

∙,∙ +⋯+m�−2
∙,∙ +m�−1

∙,∙ +m�
∙,∙,

and
��−2(G) = G2 +⋯+ G�−2,

��−2
(
G∙

)
= G2∙ +⋯+ G�−2∙ + G�−1∙ ,

��−2
(
G∙,∙

)
= G2∙,∙ +⋯+ G�−2∙,∙ + G�−1∙,∙ , +G�∙,∙.
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Also, we will be using various values � = 0, 1, 2 of the integer � ⩾ 0 above

mz =
z+z�

1−��
= Oz,z(1), mz =

z+z�

1−��
= Oz,z(1),

m� =
1
2
(z+z�)2

(1−��)2
= Oz,z(2), m� =

1
2
(z+z�)2

(1−��)2
= Oz,z(2),

mzz =
1

1−��
= Oz,z(0), m�z =

z+z�

(1−��)2
= Oz,z(1),

mz� =
z+z�

(1−��)2
= Ozz(1), m�� =

(z+z�)2

(1−��)3
= Oz,z(2).

Indeed, we start from

0 ≡ ��−2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

||||||||||||||||||||||||||

0 mz +
∑

4⩽j⩽�−1
Gj
z m� +

∑

4⩽k⩽�−1
Gk
� − 1

2
− i

2

∑

4⩽l⩽�−2
Gl
v

mz +
∑

4⩽i⩽�−1
Gi
z

mzz +
∑

4⩽j⩽�
Gj
zz

m�z +
∑

4⩽k⩽�
Gk
�z

− i

2

∑

4⩽l⩽�−1
Gl
zv

m� +
∑

4⩽i⩽�−1
Gi
�

mz� +
∑

4⩽j⩽�
Gj

z�
m�� +

∑

4⩽k⩽�
Gk
��

− i

2

∑

4⩽l⩽�−1
Gl
�v

− 1

2
+ i

2

∑

4⩽i⩽�−2
Gi
v

i

2

∑

4⩽j⩽�−1
Gj
zv

i

2

∑

4⩽k⩽�−1
Gk
�v

1

4

∑

4⩽l⩽�−2
Gl
vv

||||||||||||||||||||||||||

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let us expand this determinant along its �rst row, using (27.1) in order to take
account of various useful negative shifts for the summations in the entries of the
obtained 3 × 3 determinants

0 ≡ ��−2

⎛
⎜
⎜
⎜
⎜
⎝

−
(
mz +

∑

4⩽j⩽�−1
Gj
z

)

|||||||||||||||||||||

mz +
∑

4⩽i⩽�−2
Gi
z

m�z +
∑

4⩽k⩽�−1
Gk
�z

− i

2

∑

4⩽l⩽�−2
Gl
zv

m� +
∑

4⩽i⩽�−2
Gi
�

m�� +
∑

4⩽k⩽�−1
Gk
��

− i

2

∑

4⩽l⩽�−2
Gl
�v

− 1

2
+ i

2

∑

4⩽i⩽�−3
Gi
v

i

2

∑

4⩽k⩽�−2
Gk
�v

1

4

∑

4⩽l⩽�−3
Gl
vv

|||||||||||||||||||||

+
(
m� +

∑

4⩽k⩽�−1
Gk
�

)

||||||||||||||||||||||||||||

mz +
∑

4⩽i⩽�−3
Gi
z

mzz +
∑

4⩽j⩽�−2
Gj
zz

− i

2

∑

4⩽l⩽�−3
Gl
zv

m� +
∑

4⩽i⩽�−3
Gi
�

mz� +
∑

4⩽j⩽�−2
Gj

z�
− i

2

∑

4⩽l⩽�−3
Gl
�v

− 1

2
+ i

2

∑

4⩽i⩽�−4
Gi
v

i

2

∑

4⩽j⩽�−3
Gj
zv

1

4

∑

4⩽l⩽�−4
Gl
vv

||||||||||||||||||||||||||||

−
(
− 1

2
+ Oz,z(3)

)

||||||||||||||||||||||

mz +
∑

4⩽i⩽�−1
Gi
z

mzz +
∑

4⩽j⩽�
Gj
zz

m�z +
∑

4⩽k⩽�
Gk
�z

m� +
∑

4⩽i⩽�−1
Gi
�

mz� +
∑

4⩽j⩽�
Gj

z�
m�� +

∑

4⩽k⩽�
Gk
��

− 1

2
+ i

2

∑

4⩽i⩽�−2
Gi
v

i

2

∑

4⩽j⩽�−1
Gj
zv

i

2

∑

4⩽k⩽�−1
Gk
�v

||||||||||||||||||||||

⎞
⎟
⎟
⎟
⎟
⎠

.
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Now, apply the induction assumption, and simultaneously also, expand the
last determinant along its �rst column

0 ≡ ��−2
⎛
⎜
⎝
−Oz,z(1)

|||||||||||

Oz,z(1) Oz,z(1) Oz,z(2)
Oz,z(2) Oz,z(2) Oz,z(3)
Oz,z(0) Oz,z(3) Oz,z(3)

|||||||||||

+Oz,z(2)
|||||||||||

Oz,z(1) Oz,z(0) Oz,z(2)
Oz,z(2) Oz,z(1) Oz,z(3)
Oz,z(0) Oz,z(2) Oz,z(3)

|||||||||||

+
( 1
2
+ Oz,z(3)

)
⎧
⎪

⎨
⎪
⎩

(
mz +

∑

4⩽i⩽�−1
Gi
z

)
||||||||||||||

mz� +
∑

4⩽j⩽�−1
Gj

z�
m�� +

∑

4⩽k⩽�−1
Gk
��

i

2

∑

4⩽j⩽�−2
Gj
zv

i

2

∑

4⩽k⩽�−2
Gk
�v

||||||||||||||

−
(
m� +

∑

4⩽i⩽�−1
Gi
�

)
||||||||||||||

mzz +
∑

4⩽j⩽�−2
Gj
zz

m�z +
∑

4⩽k⩽�−2
Gk
�z

i

2

∑

4⩽j⩽�−3
Gj
zv

i

2

∑

4⩽k⩽�−3
Gk
�v

||||||||||||||

+
(
− 1

2
+ Oz,z(3)

)
||||||||||||||

mzz +
∑

4⩽j⩽�
Gj
zz

m�z +
∑

4⩽k⩽�
Gk
�z

mz� +
∑

4⩽j⩽�
Gz� m�� +

∑

4⩽k⩽�
Gk
��

||||||||||||||

⎫
⎪

⎬
⎪
⎭

⎞
⎟
⎟
⎟
⎠

.

Taking account of 0 ≡ ||||
mzz m�z
mz� m��

|||| in the last 2 × 2 determinant, we may continue
to expand

0 ≡ Oz,z(3) + Oz,z(1)
||||||||

Oz,z(1) Oz,z(2)
Oz,z(2) Oz,z(3)

||||||||
− Oz,z(2)

||||||||

Oz,z(0) Oz,z(1)
Oz,z(2) Oz,z(3)

||||||||

+
(
− 1

4
+ Oz,z(3)

)
⎧
⎪

⎨
⎪
⎩

mzz
∑

4⩽k⩽�
Gk
��
+m��

∑

4⩽j⩽�−2
Gj
zz
+

( ∑

4⩽j⩽�−2
Gj
zz

)( ∑

4⩽k⩽�−2
Gk
��

)

− m�z
∑

4⩽j⩽�−1
Gj
z�
−mz�

∑

4⩽k⩽�−1
Gk
�z
−

( ∑

4⩽k⩽�−2
Gk
�z

)( ∑

4⩽j⩽�−2
Gj
z�

)

⎫
⎪

⎬
⎪
⎭

,

that is

Oz,z(3) ≡ mzz

( ∑

4⩽k⩽�−1
Gk
��
+ G�

��

)
+ Oz,z(2)Oz,z(1) + Oz,z(1)Oz,z(3)

− Oz,z(1)Oz,z(2) − Oz,z(1)Oz,z(2) − Oz,z(2)Oz,z(2),

and reminding mzz =
1

1−��
, this gives the concluding identity

Oz,z(3) =
1

1−��
G�
��
. �

By integration, G� = ��(z, �, z, v) + �
�
(z, �, z, v) + Oz,z(3). After absorption

inOz,z(3), we can assume that �� is of degree ⩽ 2 in (z, z), hence contains only
monomials za�bz

c
ve with a + c ⩽ 2 and a + b + c = �. So b ⩾ � − 2.

Further, G�(z, �, 0, 0, v) ≡ 0 imposes ��(z, �, 0, v) ≡ 0. So 1 ⩽ c ⩽ 2. Conse-
quently, �� can contain only three monomials

��(z, �, z, v) = a(v) z��−1 + b(v) zz ��−2 + c(v) z
2
��−2.
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Since � ⩾ 4, we see that the conjugate �
�
(z, �, z, v) is multiple of �

�−2⩾2
, hence

G�
(
z, �, z, 0, v

)
= ��(z, �, z, v) + �

�
(z, 0, z, v)

◦
+ Oz,z(3).

Finally, because the prenormalized coordinates of Proposition 16.4 require
G�(z, �, z, 0, v) = Oz,z(3), we reach ��(z, �, z, v) = Oz,z(3), which forces a =
b = c = 0 = ��, so as asserted G� = Oz,z(3). �

28. Consequence of prenormalization on equivalences
Thanks to Proposition 16.4, if we are given a holomorphic map

H∶ (z, �, w) ⟼ (z′, �′, w′)

between two ℭ2,1 hypersurfacesM5 ⊂ ℂ3 andM′5 ⊂ ℂ′3, we can assume that
both hypersurfaces are prenormalized. In particular, Proposition 27.1 tells us
that the whole remainders after the GM-model part of their graphing functions
is of order 3 in (z, z)

u = m + G = m + Oz,z(3) and u′ = m′ + G′ = m + Oz′,z′(3).

Observation 28.1. Complex scalings (z, �, w) ⟼
(
�z, �

�
�, ��w

)
with � ∈ ℂ∗

preserve prenormalizations as in Proposition 16.4. �

With � ∶= � ∈ ℝ∗, this is
(
�1z, �0�, �2w

)
. Hence this observation suggests

naturally to assign the following weights to the three complex variables and
their real and imaginary parts

[z] ∶= 1 =∶ [z], [�] ∶= 0 =∶ [�], [w] ∶= 2 =∶ [w].

Accordingly, let us decompose the components (f, g, ℎ) of H in weighted
homogeneous parts

f = f0 + f1 + f2 + f3⋯, g = g0 + g1 + g2 +⋯ ,
ℎ = ℎ0 + ℎ1 + ℎ2 + ℎ3 + ℎ4 +⋯ .

Proposition 28.2. If bothM andM′ are prenormalized, possibly after composing
with a complex dilation (z′, �′, w′)⟼

(
�z′, �

�
�′, ��w′), one has f0 = 0, f1 = z,

g0 = �, ℎ0 = 0, ℎ1 = 0, ℎ2 = w, and the weighted homogeneous components of f,
g, ℎ are

f = z + f2 + f3 +⋯ , g = � + g1 + g2 +⋯ ,
ℎ = w + ℎ3 + ℎ4 +⋯ .

Mind the fact that this does not mean that the map is Id +Oz,w,�(2), since in
f2, there can still be the linear term f0,0,2w, and in g1 + g2, there can still be
the linear terms g1,0,0 z + g0,0,1w.
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Proof. The fundamental identity expressing that we have a map M ⟶ M′

reads

ℎ0 + ℎ1 +⋯+ ℎ0 + ℎ1 +⋯ = 2F′
(
f0 + f1 +⋯ , g0 + g1 +⋯ ,

f0 + f1 +⋯ , g0 + g1 +⋯ ,
1
2i

(
ℎ0 + ℎ1 +⋯− ℎ0 − ℎ1 −⋯

))
.

(28.1)

Observe that f0 = f0(�), g0 = g0(�), ℎ0 = ℎ0(�) depend only on �. This identity
projected to weight 0 becomes

ℎ0(�) + ℎ0(�) ≡ 2F′
(
f0(�), g0(�), f0(�), g0(�),

1
2i
ℎ0(�) −

1
2i
ℎ0(�)

)
.

Put � ∶= 0, use the assumption that there are no pluriharmonic terms (coordi-
nates are prenormalized), namely that 0 ≡ F′(z′, �′, 0, 0, v′), and get ℎ0(�) ≡ 0.

Once again, look at (28.1), and get from F′ = m′ + G′ = m′ + Oz′,z′(3)

0 ≡
2f0(�)f0(�) + f0(�)2 g0(�) + f0(�)

2 g0(�)

1 − g0(�)g0(�)
+ Of0(�),f0(�)

(3).

We claim that f0(�) ≡ 0. Otherwise, f0 = e �� + O�(� + 1) with e ≠ 0 and
� ∈ ℕ⩾1. Hence

0 ≡ 2 ee ���
� (
1 + O�,�(1)

)
+ �2� (⋯) + �

2�
(⋯) + O�,�

(
3 �

)
,

and this forces ee = 0. So f0(�) ≡ 0, and (28.1) at weight 0, namely the identity
above, reduces to 0 = 0.

Next, examine weight 1. Certainly, f1 = zf1(�) and ℎ1 = zℎ1(�), while g
will not participate here. Since m′ is weighted 2-homogeneous, as it contains
zz, z

2
, z2 times functions of (�, �), we have F′ = Oz′,z′(2), so the identity

z ℎ1(�) + z ℎ1(�) ≡ Ozf1(�),zf1(�)
(2) = Oz,z(2),

forces ℎ1(�) ≡ 0.
Next, expand in powers of z, w

f = z f1(�) + z2(⋯) + w(⋯), g = g0(�) + z g1(�) + z2(⋯) + w(⋯),

ℎ = ℎ2 + ℎ3 +⋯ , ℎ2 = z2 '(�) + w  (�).

The holomorphic Jacobian at the origin is assumed to be invertible

0 ≠
|||||||||||

fz(0) f�(0) fw(0)
gz(0) g�(0) gw(0)
ℎz(0) ℎ�(0) ℎw(0)

|||||||||||
=

|||||||||||

f1(0) 0 fw(0)
g1(0) g′0(0) gw(0)
0 0 ℎw(0)

|||||||||||
,
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whence ℎw(0) ≠ 0 and g′0(0) ≠ 0 and also f1(0) ≠ 0. Then the fundamental
identity (28.1) becomes in weight 2

ℎ2 + ℎ2 ≡ 2m′(zf1(�), g0(�), zf1(�), g0(�)
)
,

that is, after replacing w = m + iv in ℎ2

z2 '(�) + z
2
'(�) +m(z, �, z, �)

[
 (�) +  (�)

]
+ i v

[
 (�) −  (�)

]
≡

≡
2 z f1(�) z f1(�) + z

2
f1(�) g0(�) + z2 f1(�)2 g0(�)

1 − g0(�) g0(�)
,

this holding identically in ℂ{z, �, z, �, v}. This forces  (�) ≡ � to be constant,
with � ∈ ℝ∗, and then '(�) ≡ 0 necessarily.

It remains an identity

m(z, �, z, �) 2 � ≡ 2m′(zf1(�), g0(�), zf1(�), g0(�)
)
,

which expresses that the map (z, �, w) ⟼
(
zf1(�), g0(�), � w

)
is an auto-

morphism — in fact a rigid automorphism, cf. [8] — of the Gaussier-Merker
model. But we know from Section 5, see the fractional expression of w′ there,
that this requires � = 0 and r = 0, while only � ∈ ℂ∗ is free. Consequently, the
map is of the form (f1, g0, ℎ2) =

(
�z, �

�
�, ��w

)
. Post-composing by the inverse

map yields the conclusion. �

29. Uniqueness of normal form
Starting with a C! hypersurfaceM5 ⊂ ℂ3 which is 2-nondegenerate and of

constant Levi rank 1, at any point p ∈ M, it is elementary to �nd holomorphic
coordinates (z, �, w) vanishing at p in whichM has equation

u = F = zz + 1
2
z
2
� + 1

2
z2� + zz�� + Oz,�,z,�,v(5). (29.1)

Such an equation can hence freely be taken as the starting point towards a com-
plete normalization of F(z, �, z, �, v).

In the preceding sections, we have in fact established the existence of a nor-
mal form forM. We can now present a �nal uniqueness statement which will
terminate our article.

Theorem 29.1. GivenM5 ⊂ ℂ3 in the class ℭ2,1 with 0 ∈ M of the form

u = zz + 1
2
z
2
� + 1

2
z2� + zz�� + Oz,�,z,�,v(5),
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there exists a biholomorphism (z, �, w)⟼ (z′, �′, w′)�xing 0whichmaps (M, 0)
into (M′, 0) of normalized equation

u′ = z′z
′
+ 1

2
z
′2
�′ + 1

2
z′2�

′
+ z′z

′
�′�

′
+ 1

2
z
′2
�′�′�

′
+ 1

2
z′2�

′
�′�

′
+ z′z

′
�′�

′
�′�

′

+ 0 + z′3z
′3
Oz′ ,z′ (1)

+ 2Re
{
0 + 0 + z′3�

′2

F′3,0,0,2(v
′) + �′�

′ (
3 z′2z

′
�
′
F′3,0,0,2(v

′)
)}

+ 2Re
{
z′5�

′
F′5,0,0,1(v

′) + 0 + z′4�
′2

F′4,0,0,2(v
′)

+ z′3z
′2
�
′
F′3,0,2,1(v

′) + z′3z
′
�
′2

F′3,0,1,2(v
′)

+ z′3�
′3

F′3,0,0,3(v
′)
}

+ z
′3
�′ Oz′ ,�′ ,z′ (3) + z′3�

′
O
z′ ,z′ ,�

′ (3) + �′�
′
Oz′ ,�′ ,z′ (3)Oz′ ,�′ ,z′ ,�

′ (2).

Furthermore, the map exists and is unique if it is assumed to be of the form

z′ ∶= z + f⩾2(z, �, w) �′ ∶= � + g⩾1(z, �, w), w′ ∶= w + ℎ⩾3(z, �, w),
0 = fw(0), 0 = Imℎww(0).

Here of course, f⩾2 is of weight ⩾ 2, while g⩾1 is of weight ⩾ 1, and ℎ⩾3 is of
weight ⩾ 3 for the currently useful weighting [z] ∶= 1, [�] ∶= 0, [w] ∶= 2.

Proof. By choosing a chain at 0 ∈ M whose �rst jet is �at, directed along the
v-axis, one can verify (exercise) that all the constructions done in the preceding
sections do indeed give a biholomorphism of this speci�c form. So our job is to
establish uniqueness.

Suppose therefore that two suchnormalizationsH� ∶ (z, �, w)⟼ (z+f�, �+
g�, w + ℎ�), � = 1, 2, are given

M′
1

H2◦H−1
1

��

M

H1

55

H2
))
M′
2,

with 0 = f�,w(0) and 0 = Reℎ�,ww(0) for � = 1, 2. We leave to the reader to verify
that, then,H ∶= H2◦H−1

1 is also of the form (z, �, w)⟼
(
z+f⩾2, �+g⩾1, w+

ℎ⩾3
)
also with 0 = fw(0) and 0 = Imℎww(0). For this, one has to take account

of (29.1).
The theorem asserts that H1 = H2. Equivalently, H2◦H−1

1 = Id. This will be
o�ered by the next independent key uniqueness statement. �
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Theorem29.2. For a givenM5 ⊂ ℂ3 in the classℭ2,1, if two normal formsN and
N′ at some point p ∈ M are constructed, withN having normalized equation

u = zz + 1

2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2��� + zz����

+ 0 + z3z
3
Oz,z(1)

+ 2Re
{
0 + 0 + z3�

2
F3,0,0,2(v) + ��

(
3 z2z� F3,0,0,2(v)

)}

+ 2Re
{
z5� F5,0,0,1(v) + 0 + z4�

2
F4,0,0,2(v)

+ z3z
2
� F3,0,2,1(v) + z3z�

2
F3,0,1,2(v)

+ z3�
3
F3,0,0,3(v)

}

+ z
3
� Oz,�,z(3) + z3� Oz,z,�(3) + �� Oz,�,z(3)Oz,�,z,�(2),

and with N′ having similarly normalized equation, and if the map (z, �, w) ⟼
(z′, �′, w′) between them is of the form
z′ ∶= z + f⩾2(z, �, w) �′ ∶= � + g⩾1(z, �, w), w′ ∶= w + ℎ⩾3(z, �, w),
0 = fw(0), 0 = Imℎww(0),

then the map (z′, �′, w′) = (z, �, w) is the identity, and the two normal forms
N = N′ coincide.

Proof. Equivalently, the graphing function F =
∑

a,b,c,d z
a�bz

c
�
d
Fa,b,c,d(v) of

N satis�es the general prenormalization conditions
0 ≡Fa,b,0,0(v) ≡ F0,0,c,d(v),
0 ≡Fa,b,1,0(v) ≡ F1,0,c,d(v),
0 ≡Fa,b,2,0(v) ≡ F2,0,c,d(v),

with the obvious two exceptions F1,0,1,0(v) ≡ 1 and F0,1,2,0(v) ≡
1
2
≡ F2,0,0,1(v),

together with the sporadic normalization conditions, listed by increasing order
4, 5, 6

0 ≡ F3,0,0,1(v) ≡ F0,1,3,0(v),
0 ≡ F4,0,0,1(v) ≡ F0,1,4,0(v), 0 ≡ F3,0,1,1(v) ≡ F1,1,3,0(v),
0 ≡ F4,0,1,1(v) ≡ F1,1,4,0(v), 0 ≡ F3,0,3,0(v),

and the same holds about F′.
Accordingly, let us introduce

S ∶=
{
(a, b, 0, 0), (0, 0, c, d), (a, b, 1, 0), (1, 0, c, d), (a, b, 2, 0), (2, 0, c, d)

}

∪
{
(3, 0, 0, 1), (0, 1, 3, 0), (4, 0, 0, 1), (0, 1, 4, 0), (3, 0, 1, 1), (1, 1, 3, 0),

(4, 0, 1, 1), (1, 1, 4, 0), (3, 0, 3, 0)
}
.

Notice that S takes no dependent derivatives ��(⋯), namely one always has
b + d ⩽ 1 for any (a, b, c, d) ∈ S.
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For a general real converging power series vanishing at the origin (z, �, z, �, v)
= (0, 0, 0, 0, 0) we have

H =
∑

a,b,c,d,e
Ha,b,c,d,e za�bz

c
�
d
ve (Hc,d,a,b,e = Ha,b,c,d,e),

i.e. withH0,0,0,0,0 = 0, introduce the projection

ΠS(H) ∶=
∑

(a,b,c,d)∈S

∞∑

e=0
Ha,b,c,d,e za�bz

c
�
d
ve,

so that

ΠS(F) = zz+ 1
2
z
2
�+ 1

2
z2� and ΠS(F′) = z′z

′
+ 1

2
z
′2
�′+ 1

2
z′2�

′
.

By assumption (or because of Proposition 28.2), the map is of the form

z′ = z+f2+f3+⋯ , �′ = �+g1+g2+⋯ , w′ = w+ℎ3+ℎ4+⋯ ,

that is, more precisely

f =
∑

�⩾3
f�−1 =

∑

�⩾3
(

∑

a+b+2e=�−1
fa,b,e za�bwe),

g =
∑

�⩾3
g�−2 =

∑

�⩾3
(

∑

a+b+2e=�−2
ga,b,e za�bwe),

ℎ =
∑

�⩾3
ℎ� =

∑

�⩾3
(

∑

a+b+2e=�
ℎa,b,e za�bwe).

Let us introduce the projections

��−1(f) ∶= f�−1, ��−2(g) ∶= g�−2, ��(ℎ) ∶= ℎ�,

and also

��(H) ∶=
∑

a+b+c+d+2e=�
Ha,b,c,d,e za�bz

c
�
d
ve,

so that
ΠS

(
��(F)

)
= 0 = ΠS

(
��(F′)

)
(∀ � ⩾ 3).

Also, let us introduce
�� ∶= �2 +⋯+ ��.

Now, remind that m =
zz+ 1

2
z2�+z2�

1−��
is homogeneous of weight 2. Thanks to

Proposition 27.1, we may write

u = F = m +
∑

�⩾3
G�.
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Then for a holomorphic function e� = e�(z, �, w)which isweighed�-homogen-
eous, it holds (exercise)

��(e�
(
z, �, i v +m(z, �, z, �) +

∑

�⩾3
G�

(
z, �, z, �, v

))
) = e�

(
z, �, i v +m

)
.

(29.2)

Now, the fundamental identity expressing that (z + f, � + g,w + ℎ) is a map
N ⟶N′ writes

0 ≡ −Re
(
w + ℎ3 + ℎ4 +⋯

)

+ F′
(
z + f2 + f3 +⋯ , � + g1 + g2 +⋯ ,

z + f2 + f3 +⋯ , � + g1 + g2 +⋯ , Im
(
w + ℎ3 + ℎ4 +⋯

))
. (29.3)

In order to prove that (f, g, ℎ) = (0, 0, 0), we may proceed progressively, by
induction on � ⩾ 3

(∙3) (f2, g1, ℎ3) = (0, 0, 0);

(∙�−1)
(
f�−1, g�−2, ℎ�

)
= (0, 0, 0) for � = 3,… , � − 1 and some � ⩾ 4 implies

that
(
f�−1, g�−2, ℎ�

)
= (0, 0, 0).

Therefore, let us examine �rst the fundamental identity in weight � = 3, re-
membering that this identity already holds true in weights 0, 1, 2 — according
to (the proof of) Proposition 28.2, or according to our hypothesis —

0 ≡ �3( − Re
(
w + ℎ3

)
+m′(z + f2, � + g1, z + f2, � + g1

)

+ F′3
(
z + f2, � + g1, z + f2, � + g1

)
)

≡ �3( − m − F3 − Reℎ3 +m′(z + f2, � + g1, z + f2, � + g1
)
)

+ F′3
(
z, �, z, �

)
,

sincem′ is weighted homogeneous of degree 2, since we use here (29.2). Equiv-
alently

F3
(
z, �, z, �

)
− F′3

(
z, �, z, �

)
≡ �3

(
m′(z + f2, � + g1, z + f2, � + g1

)

−m
(
z, �, z, �

))
− Re ℎ3

(
z, �,m + iv

)
.

Generally, for any � ⩾ 3, starting from the induction assumption expressed
by (∙�−1) above, the same reasoning (exercise) conducts to the identity

F�
(
z, �, z, �

)
− F′�

(
z, �, z, �

)
≡ ��

(
m′(z + f�−1, � + g�−2, z + f�−1, � + g�−2

)

−m
(
z, �, z, �

))
− Re ℎ�

(
z, �,m + iv

)
.
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Observe that

mz =
z+z�

1−��
and m� =

1
2
(z+z�)2

(1−��)2
.

Lemma 29.3. One has

��
(
m′(z + f�−1, � + g�−2, z + f�−1, � + g�−2

)
−m

(
z, �, z, �

))

= 2Re
{ z+z�
1−��

f�−1
(
z, �, m + iv

)
+ 1

2
(z+z�)2

(1−��)2
g�−2

(
z, �, m + iv

)}
.

Proof. The reader is referred to [8, Prp. 6.2] which provides all arguments. �

Next, let us apply ΠS(∙) to the above identity, multiplied by 2, namely to

2F� − 2F′� ≡ ��
(
2m′ − 2m

)
− 2Re ℎ�,

so that all monomials in the left-hand side disappear due to our assumption
that both N and N′ are in normal form

0 ≡ ΠS(��
(
2m′ − 2m

)
− 2Re ℎ�)

≡ ΠS(2Re
{
2 z+z�

1−��
f�−1

(
z, �, m + iv

)
+ (z+z�)2

(1−��)2
g�−2

(
z, �, m + iv

)

− ℎ�
(
z, �, m + iv

)}
).

Then for allmonomials za�bz
c
�
d
ve with (a, b, c, d) ∈ S anda+b+c+d+2e =

�, we obtain a system of linear equations

(E�)∶ 0 = La,b,c,d,e
({
fa′,b′,e′

}
a′+b′+2e′=�−1

,
{
ga′,b′,e′

}
a′+b′+2e′=�−2

,
{
ℎa′,b′,e′

}
a′+b′+2e′=�

)
.

On the other hand, by considering the complete f = f2 + f3 +⋯, the com-
plete g = g1+g2+⋯, and the complete ℎ = ℎ3+ℎ4+⋯ — not to be confused
with the previous (z′, �′, w′) = (z, �, w) + (f, g, ℎ) —, we can introduce the
analog ‘complete’ linear system

0 ≡ ΠS(2Re
{
2 z+z�

1−��
f
(
z, �, m + iv

)
+ (z+z�)2

(1−��)2
g
(
z, �, m + iv

)
− ℎ

(
z, �, m + iv

)}
),

which, similarly, after extracting the coe�cients of all monomials za�bz
c
�
d
ve

with (a, b, c, d) ∈ S and any e ∈ ℕ, can be abbreviated as

(E)∶ 0 = La,b,c,d,e
(
f∙,∙,∙, g∙,∙,∙, ℎ∙,∙,∙

)
((a, b, c, d) ∈ S, e ∈ ℕ).

The key and elementary observation is that, because m + iv is (weighted)
2-homogeneous, the full system (E) splits into the linear subsystems (E�) having
separate unknowns

(
f�−1, g�−2, ℎ�

)

(E) = (E3) ∪ (E4) ∪⋯ ∪ (E�) ∪⋯ .
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Therefore
(
(E) ⟹ (f, g, ℎ) = (0, 0, 0)

)
⟺

⟺
(
(E�) ⟹

(
f�−1, g�−2, ℎ�

)
= (0, 0) for all � ⩾ 3

)
.

The interest of this equivalence is that one will be able to gather all powers ve
for e ∈ ℕ in order to deal with functions of the real variable v ∈ ℝ, and hence,

extract only coe�cients of powers za�bz
c
�
d
, as we will see in a while.

Thus, we are left with establishing the following main technical statement,
which will close the proof of Theorem 29.2. �

Theorem 29.4. In weighted expansions, assume that f = f2 + f3 + ⋯, that
g = g1 + g2 +⋯, and that ℎ = ℎ3 + ℎ4 +⋯ vanish at the origin and satisfy in
addition

0 = fw(0) and 0 = Imℎww(0).

If, for all (a, b, c, d) ∈ S and all e ∈ ℕ

0 =
[
za�bz

c
�
d
ve

]
(2Re

{
2 z+z�

1−��
f
(
z, �,m + iv

)
+ (z+z�)2

(1−��)2
g
(
z, �,m + iv

)

− ℎ
(
z, �,m + i v

)}
),

then (f, g, ℎ) = (0, 0, 0).

Proof. For some reason of technical simpli�cation, to be explained in a little in-
terlude below, we now decide to ‘shift’ to the representation v = F(z, �, z, �, u)
instead of u = F(z, �, z, �, v), where u = Rew and v = Imw as always.

The hypotheses become (exercise), instead

0 = fw(0) and 0 = Reℎww(0),

and also, for all (a, b, c, d) ∈ S and all e ∈ ℕ

0 =
[
za�bz

c
�
d
ue

]
(2Re

{
2 z+z�

1−��
f
(
z, �, u + im

)
+ (z+z�)2

(1−��)2
f
(
z, �, u + im

)

+ i ℎ
(
z, �, u + im

)}
).

Because S does not contain any dependent-jet monomial ��(⋯) by its very
de�nition given above, we may compute everything modulo ��(⋯), and this
will simplify our task. Thus, by expanding

m =
zz + 1

2
z
2
� + 1

2
z2�

1 − ��

= zz + 1
2
z
2
� + 1

2
z2� + zz�� + 1

2
z
2
��� + 1

2
z2��� + zz���� +⋯ ,
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we visibly have

m ≡ zz + 1
2
z
2
� + 1

2
z2�,

mz ≡ z + z�,

m� ≡ 1
2
z
2
+ zz� + 1

2
z2�

2
,

mz ≡ z + z�,

m� ≡ 1
2
z2 + z�z + 1

2
z
2
�2.

We will also need (little exercise), still modulo ��(⋯)

m2 ≡ z2z
2
+ z�z

3
+ z3z� + 1

4
z4�

2
+ 1

4
�2z

4
,

m3 ≡ z3z
3
+ 3

2
z2�z

4
+ 3

2
z4z

2
�
2
+ 3

4
z5z�

2
+ 3

4
zz

5
�
2
+ 1

8
z6�

3
+ 1

8
�3z

6
,

m m� ≡ 1
2
zz

3
+ 1

4
�z

4
+ 5

4
z2z� + z3z�

2
+ 1

4
z4�

3
,

m mz ≡ zz
2
+ 1

2
�z

3
+ 3

2
z2z� + 1

2
z3�

2
,

m2 mz ≡ z2z
3
+ z�z

4
+ 2 z3z

2
� + 1

4
�2z

5
+ 5

4
z4z�

2
+ 1

4
z5�

3
.

Assuming therefore that the graphing equation v = F = m + G is solved
with respect to v, not to u, with arguments (z, �, w) = (z, �, u+ im), the Moser
(linear) operator is de�ned as

L(f, g, ℎ) ∶= 2mz f + 2mz f + 2m� g + 2m� g + i ℎ − i ℎ.

Given a holomorphic function e = e(w), we may Taylor expand at u

e
(
u + im

)
= e(u) + ew(u) [im] + eww(u)

[
− m2

2

]
+ ewww(u)

[
− i m3

6

]
+⋯

=∶ e + e′ [im] + e′′
[
− m2

2

]
+ e′′′

[
− i m3

6

]
+⋯ ,

and we can abbreviate derivatives using primes, even without writing the argu-
ment u. Let us now make the promised little interlude.

The other choice of graphing u = F = m + G leads to e(w) = e(iv + m)
which expands as

e
(
iv +m

)
= e(iv) + ew(iv) [m] + eww(iv)

[m2

2

]
+ ewww(iv)

[m3

6

]
+⋯ .

It is then convenient to consider the composed function of one real variable

v ⟼ e(iv) =∶ E(v),
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which satis�es

d
dv
E(v) = i ew(iv) ⟺ −i E′(v) = ew(iv),

d2

dv2
E(v) = − eww(iv) ⟺ −E′′(v) = eww(iv),

d3

dv3
E(v) = − i ewww(iv) ⟺ i E′′′(v) = ewww(iv).

Thus

e
(
iv +m

)
= E(v) − i E′(v) [m] − E′′(v)

[m2

2

]
+ i E′′′(v)

[m3

6

]
+⋯ ,

e
(
− iv +m

)
= E(v) + i E

′
(v) [m] − E

′′
(v)

[m2

2

]
− i E

′′′
(v)

[m3

6

]
+⋯ ,

and similarly for the conjugate. If by convention, we then make the abuse of
notation to denote e instead of E, that is e(v) instead of E(v) = e(iv), we can
abbreviate, without writing the arguments iv or −iv

e
(
iv +m

)
= e + e′

[
− im

]
+ e′′

[
− m2

2

]
+ e′′′

[
i m3

6

]
+⋯ ,

e
(
− iv +m

)
= e + e

′ [
im

]
+ e

′′ [
− m2

2

]
+ e

′′′ [
− i m3

6

]
+⋯ .

This can be applied to functions e = fj,k or e = gj,k or e = ℎj,k in the useful
expansions

f =
∑

j

∑

k
zj�k fj,k(w), g =

∑

j

∑

k
zj�k gj,k(w), ℎ =

∑

j

∑

k
zj�k ℎj,k(w).

But in these last paragraphs of our paper, we decided to choose v = F in order
to simplify a bit the presentation, so that e = e(u) = E(u) and there will be no
abuse of notation.

We can write the Moser operator as

L(f, g, ℎ) = T1 + T1 + T2 + T2 + T3 + T3.
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Computing modulo ��(⋯), start with

T3 ≡
∑

j

∑

k
zj�k i ℎj,k

(
u + im)

≡
∑

j

∑

k
zj�k

{
i ℎj,k + ℎ′j,k

[
−m

]
+ ℎ′′j,k

[
− i

2
m2] + ℎ′′′j,k

[ 1
6

m3] +⋯
}

≡
∑

j

∑

k
zj�k

{
ℎj,k [i] + ℎ′j,k

[
− zz − 1

2
z2� − 1

2
z2�

]

+ ℎ′′j,k
[
− i

2
z2z2 − i

2
z�z3 − i

2
z3z� − i

8
z4�

2
− i

8
�2z4

]

+ ℎ′′′j,k
[ 1
6
z3z3 + 1

4
z2�z4 + 1

4
z4z2�

2
+ 1

8
z5z�

2
+ 1

8
zz5�

2
+ 1

48
z6�

3
+ 1

48
�3z6

]

+⋯
}

≡
∑

j

∑

k

{
ℎj,k

[
izj�k

]
+ ℎ′j,k

[
− zj+1�kz − 1

2
zj�k+1z2 − 1

2
zj+2�k�

]

+ ℎ′′j,k
[
− i

2
zj+2�kz2 − i

2
zj+1�k+1z3 − i

2
zj+3�kz� − i

8
zj+4�k�

2
− i

8
zj�k+2z4

]

+ ℎ′′′j,k
[ 1
6
zj+3�kz3 + 1

4
zj+2�k+1z4 + 1

4
zj+4�kz2�

2
+ 1

8
zj+5�kz�

2
+ 1

8
zj+1�kz5�

2

+ 1
48
zj+6�k�

3
+ 1

48
zj�k+3z6

]
+⋯

}
.

The useful expression of T3 is obtained by plain complex conjugation.
Next, going only to derivatives of gj,k up to order 1, which will be enough,

we obtain, without intermediate explanations

T2 ≡
∑

j

∑

k

{
gj,k

[
zj�kz

2
+ 2zj+1�kz� + zj+2�k�

2]

+ g′j,k
[
izj+1�kz

3
+ i

2
zj�k+1z

4
+ 5i

2
zj+2�kz

2
� + 2izj+3�kz�

2
+ i

2
zj+4�k�

3]
+⋯

}
.

Lastly, going to derivatives of order 2 of the fj,k

T1 ≡
∑

j

∑

k

{
fj,k

[
2zj�kz + 2zj+1�k�

]

+ f′j,k
[
2izj+1�kz

2
+ izj�k+1z

3
+ 3izj+2�kz� + izj+3�kz

2]

+ f′′j,k
[
− 1

2
zj+2�kz

3
− 1

2
zj+1�k+1z

4
− zj+3�kz

2
� − 1

8
zj�k+2z

5

− 5

8
zj+4�kz�

2
− 1

8
zj+5�k�

3]
+⋯

}
.

Now, patiently, in 0 = T1 + T2 + T3 + T1 + T2 + T3, we chase coe�cients

za�bz
c
�
d
for all (a, b, c, d) ∈ S, and each time, we obtain linear combinations

of (di�erentiated) functions of u. Using a computer helps to avoid mistakes.
We hence obtain several groups of linear di�erential equations in the func-

tions fj,k(u), gj,k(u), ℎj,k(u). We begin with three major groups coming from
(part of) the prenormalization assumption andwhich imply a certain agreeable
‘nilpotency phenomenon’, well known to also hold for Levi nondegenerate hy-
persurfaces ([12, 24, 32]). Figures help to grasp the inequalities we are stating
below, which show certain regions R∗

ℎ, R
∗
f, R

∗
g.
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(R1
ℎ) 0 = i ℎj,k(u) for (j, k, 0, 0) ∈ S with j ⩾ 3 or with k ⩾ 1. This yields,

without writing the argument u of the ℎj,k(u), that ℎ is a relative polynomial in
(z, �)

ℎ = ℎ0,0 + ℎ1,0 z + ℎ2,0 z2.

(R1
f) 0 = 2f0,k(u) for (j, k, 1, 0) ∈ S with j = 0 and k ⩾ 2.

(R2
f) 0 = 2fj,k(u) − ℎ′j−1,k(u) for (j, k, 1, 0) ∈ S with j ⩾ 1 and: with k ⩾ 2

when j = 1; with k ⩾ 1 when j = 2, 3; with k ⩾ 0 when j ⩾ 4. This yields
relative polynomialness of

f = f0,1 � + f1,1 z�

+ f0,0 + f1,0 z + f2,0 z2 + f3,0 z3.
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(R1
g) 0 = g0,k −

1
2
ℎ′0,k−1 for (j, k, 2, 0) ∈ S with j = 0 and k ⩾ 3.

(R2
g) 0 = g1,k −

1
2
ℎ′1,k−1 + 2i f′0,k for (j, k, 2, 0) ∈ S with j = 1 and k ⩾ 2.

(R3
g) 0 = gj,k −

1
2
ℎ′j,k−1 + 2if′j−1,k −

i
2
ℎ′′j−2,k for (j, k, 2, 0) ∈ Swith j ⩾ 2 and

k ⩾ 1 excepting (j, k) = (2, 1).

(R4
g) 0 = gj,0 + 2if′j−1,0 −

i
2
ℎ′′j−2,0 , for (j, k, 0, 0) ∈ S with j ⩾ 5 and k = 0.

All this also yields relative polynomialness of

g = g0,2 �2

+ g0,1 � + g1,1 z� + g2,1 z2�

+ g0,0 + g1,0 z + g2,0 z2 + g3,0 z3 + g4,0 z4.

To prove that (f, g, ℎ) = (0, 0, 0), it su�ces to prove that the 3+6+9 remain-
ing functions of u, namely ℎ0,0, ℎ1,0, ℎ2,0 and f0,1, f1,1, f0,0, f1,0, f2,0, f3,0, and
g0,2, g0,1, g1,1, g2,1, g0,0, g1,0, g2,0, g3,0, g4,0 are identically zero.

For this, we have to examine the remaining groups of linear ordinary di�er-
ential equations with (a, b, c, d) ∈ S.

Firstly (�rst group), the equations for (j, k, 0, 0) ∈ S outside the region R1
ℎ

are

0 = i ℎ0,0 − i ℎ0,0, (0, 0, 0, 0)

0 = 2f0,0 + i ℎ1,0, (1, 0, 0, 0)

0 = g0,0 + i ℎ2,0. (2, 0, 0, 0)

The conjugate equations are not written, should be understood, and will in fact
be considered later.

Secondly (second group), the equations for (j, k, 1, 0) ∈ S outside R1
f ∪ R

2
f

are

0 = 2f0,0 − i ℎ1,0 [Already seen], (0, 0, 1, 0)

0 = 2f1,0 − ℎ′0,0 − ℎ
′
0,0 + 2f1,0, (1, 0, 1, 0)

0 = 2f2,0 + g1,0 − ℎ′1,0 − 2i f
′

0,0, (2, 0, 1, 0)

0 = 2f3,0 − ℎ′2,0 − i g
′
0,0, (3, 0, 1, 0)

0 = 2f0,1 + 2f0,0, (0, 1, 1, 0)

0 = 2f1,1 − ℎ′0,1
◦
+ 2 g0,0. (1, 1, 1, 0)

Notice that the last equation let appear ℎ0,1(u), which we already know is iden-
tically zero. Again, the conjugate equations are understood.
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Thirdly (third group), the equations for (j, k, 2, 0) outsideR1
g ∪R2

g ∪R3
g ∪R4

g
are

0 = g0,0 − i ℎ2,0 [Already seen], (0, 0, 2, 0)

0 = g1,0 + 2f2,0 − ℎ
′
1,0 + 2i f′0,0 [Already seen], (1, 0, 2, 0)

0 = g2,0 + g2,0 − 2i f
′

1,0 + 2i f′1,0 −
i
2
ℎ′′0,0 +

i
2
ℎ
′′
0,0, (2, 0, 2, 0)

0 = g3,0 − i g
′
1,0 + 2i f′2,0 −

i
2
ℎ′′1,0 − f

′′

0,0, (3, 0, 2, 0)

0 = g4,0 + 2i f′3,0 −
i
2
ℎ′′2,0 −

1
2
g
′′
0,0, (4, 0, 2, 0)

0 = g0,1 + 2f1,0 −
1
2
ℎ
′
0,0 −

1
2
ℎ′0,0, (0, 1, 2, 0)

0 = g1,1 + 2 g1,0 −
1
2
ℎ′1,0 − 3i f

′

0,0 + 2i f′0,1, (1, 1, 2, 0)

0 = g2,1 −
1
2
ℎ′2,0 −

5i
2
g
′
0,0 + 2i f′1,1 −

i
2
ℎ′′0,1

◦
, (2, 1, 2, 0)

0 = g0,2 + g0,0 −
1
2
ℎ′0,1

◦
. (0, 2, 2, 0)

Notice that the last two equations let appear ℎ0,1(u), which we already know is
identically zero.

Fourthly (fourth group) and lastly, we list the sporadic equations

0 ≡ 2f2,0 −
1
2
ℎ′1,0 − i f

′

0,0, (3, 0, 0, 1)

0 ≡ 1
6
ℎ′′′0,0 +

1
6
ℎ
′′′
0,0 − f′′1,0 − f

′′

1,0 + i g′2,0 − i g
′
2,0, (3, 0, 3, 0)

0 ≡ 2f3,0 −
1
2
ℎ′2,0 −

i
2
g
′
0,0, (4, 0, 0, 1)

0 ≡ 2 g2,0 − i g
′
0,1 − i f

′

1,0 + 3i f′1,0 +
i
2
ℎ
′′
0,0 −

i
2
ℎ′′0,0, (3, 0, 1, 1)

0 ≡ 2 g3,0 −
i
2
g
′
1,0 + 3i f′2,0 −

i
2
ℎ′′1,0 − f

′′

0,0. (4, 0, 1, 1)

Now, the assumptions of Theorem 29.4 can be reformulated by comparing
the two representations

f⩾2 =
∑

j

∑

k
zj�k fj,k(u), g⩾1 =

∑

j

∑

k
zj�k gj,k(u),

ℎ⩾3 =
∑

j

∑

k
zj�k ℎj,k(u),

and one realizes that
0 = f(0, 0, 0) = g(0, 0, 0) = ℎ(0, 0, 0) ⟺ 0 = f0,0(0) = g0,0(0) = ℎ0,0(0),

f = f2 + f3 +⋯ ⟹ f1,0(0) = 0,
ℎ = ℎ3 + ℎ4 +⋯ ⟹ ℎ′0,0(0) = 0,

fw(0) = 0 ⟺ f′0,0(0) = 0,
Re ℎww(0) = 0 ⟺ Reℎ′′0,0(0) = 0.
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The proof of Theorem 29.4 will hence be �nished with the next statement. �

Proposition 29.5. If 3+6+9 analytic functions ℎ0,0, ℎ1,0, ℎ2,0 andf0,1, f1,1, f0,0,
f1,0, f2,0, f3,0, and g0,2, g0,1, g1,1, g2,1, g0,0, g1,0, g2,0, g3,0, g4,0 of the real variable
u ∈ ℝ with

0 = f0,0(0) = f1,0(0), 0 = g0,0(0), 0 = ℎ0,0(0),
0 = f′0,0(0), 0 = ℎ′0,0(0) = Re ℎ′′0,0(0),

satisfy the above system of four groups of linear ordinary di�erential equations,
then they all vanish identically.

Proof. From the �rst two groups of equations and conjugate equations, wemay
solve

ℎ0,0 ∶= ℎ0,0,

ℎ1,0 ∶= 2i f0,0, ℎ1,0 ∶= −2i f0,0,

ℎ2,0 ∶= i g0,0, ℎ2,0 ∶= − i g0,0,

f1,0 ∶= −f1,0 + ℎ′0,0,

f2,0 ∶= − 1
2
g1,0 + 2i f

′

0,0, f2,0 ∶= − 1
2
g1,0 − 2i f′0,0,

f3,0 ∶= i g
′
0,0, f3,0 ∶= − i g′0,0,

f0,1 ∶= −f0,0, f0,1 ∶= −f0,0,

f1,1 ∶= −g0,0, f1,1 ∶= −g0,0.

Once this is done, these �rst two groups of equations become just 0 = 0, while
the third group becomes1

0
2020
= g2,0 + g2,0 − 2i ℎ′′0,0 + 4i f′1,0,

0
3020
= g3,0 − 2i g

′
1,0 − 4f

′′

0,0, 0
2030
= g3,0 + 2i g′1,0 − 4f′′0,0,

0
4020
= g4,0 − 2 g

′′
0,0, 0

2040
= g4,0 − 2 g′′0,0,

0
0120
= g0,1 − 2f1,0 + ℎ′0,0, 0

2001
= g0,1 + 2f1,0 − ℎ′0,0,

0
1120
= g1,1 + 2 g1,0 − 6i f

′

0,0, 0
2011
= g1,1 + 2 g1,0 + 6i f′0,0,

0
2120
= g2,1 − 5i g

′
0,0, 0

2021
= g2,1 + 5i g′0,0,

0
0220
= g0,2 + g0,0, 0

2002
= g0,2 + g0,0,

1 — mind the fact that becausewe have sometimes solved e in terms of e for certain functions
e = e(u), the obtained equations are not all pairwise conjugates on certain lines, and this is
normal —
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and the fourth, last, sporadic group becomes

0
3001
= 2i f

′

0,0 − g1,0, 0
0130
= −2i f′0,0 − g1,0,

0
3030
= − 2

3
ℎ′′′0,0 + i g′2,0 − i g

′
2,0,

0
4001
= i g

′
0,0, 0

0140
= − i g′0,0,

0
3011
= 2 g2,0 − i g

′
0,1 − i ℎ′′0,0 + 4i f′1,0, 0

1130
= 2 g2,0 + i g′0,1 − 3i ℎ′′0,0 + 4i f′1,0,

0
4011
= 2 g3,0 − 6f

′′

0,0 − 2i g
′
1,0, 0

1140
= 2 g3,0 − 6f′′0,0 + 2i g′1,0.

Hence, from the third group, we can solve

g2,0 ∶= −g2,0 − 4i f′1,0 + 2i ℎ′′0,0,

g3,0 ∶= 2i g
′
1,0 + 4f

′′

0,0, g3,0 ∶= −2i g′1,0 + 4f′′0,0,

g4,0 ∶= 2 g
′′
0,0, g4,0 ∶= 2 g′′0,0,

g0,1 ∶= 2f1,0 − ℎ′0,0, g0,1 ∶= −2f1,0 + ℎ′0,0,

g1,1 ∶= 6i f
′

0,0 − 2 g1,0, g1,1 ∶= −6i f′0,0 − 2 g1,0,

g2,1 ∶= 5i g
′
0,0, g2,1 ∶= −5i g′0,0,

g0,2 ∶= −g0,0, g0,2 ∶= −g0,0,

and after that, all equations of the third group reduce to 0 = 0. Then the equa-
tions of the fourth group become

0
3001
= 2i f

′

0,0 − g1,0, 0
0130
= −2i f′0,0 − g1,0,

0
3030
= 4

3
ℎ′′′0,0 + 2i g′2,0 − 4f′′1,0,

0
4001
= i g

′
0,0, 0

0140
= − i g′0,0,

0
3011
= 2 g2,0 − 2i ℎ′′0,0 + 6i f′1,0, 0

1130
= −2g2,0 − 2i f′1,0,

0
4011
= 2f

′′

0,0 + 2i g
′
1,0, 0

1140
= 2f′′0,0 − 2i g′1,0.

From this, we can solve, thanks to the assumption g0,0(0) = 0

g0,0 = 0, g0,0 = 0,

g1,0 = −2i f′0,0, g1,0 = 2i f
′

0,0,

g2,0 ∶= −2i f′1,0.
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The remaining equations become

0
3030
= 4

3
ℎ′′′0,0 − 2f′′1,0,

0
3011
= −2i ℎ′′0,0 + 4i f′1,0,

0
4011
= −2f

′′

0,0,

0
1140
= −2f′′0,0.

Di�erentiating once the second equation, using 0 ≠ ||||
4
3

−2
−2i 4i

||||, we get

ℎ′′′0,0 = 0, f′′1,0 = 0.

But we have assumed 0 = ℎ0,0(0) = ℎ′0,0(0) = Re ℎ′′0,0(0), and we know from the
beginning that ℎ0,0 = ℎ0,0 is real. So ℎ0,0 = 0.

Back to
3011
= above, we get f′1,0 = 0. Also, we have assumed that f1,0(0) = 0.

So f1,0 = 0.
Lastly, f′′0,0 = 0 together with f′0,0(0) = 0 gives f0,0 = 0. This concludes

everything. �
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