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Unoriented Khovanov Homology

Scott Baldridge, Louis H. Kau�man and BenMcCarty

Abstract. The Jones polynomial and Khovanov homology of a classical
link are invariants that depend upon an initial choice of orientation for the
link. In this paper, we give a Khovanov homology theory for unoriented vir-
tual links. The graded Euler characteristic of this homology is proportional
to a similarly-de�ned unoriented Jones polynomial for virtual links, which is
a new invariant in the category of non-classical virtual links. The unoriented
Jones polynomial continues to satisfy an important property of the usual one:
for classical or even virtual links, the unoriented Jones polynomial evaluated
at one is two to the power of the number of components of the link. As part
of extending the main results of this paper to non-classical virtual links, a
new framework for computing integral Khovanov homology based upon arc-
labeled diagrams is described. This framework can be e�ciently and e�ec-
tively implemented on a computer. We de�ne an unoriented Lee homology
theory for virtual links based upon the unoriented version of Khovanov ho-
mology.
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1. Introduction
It is well-known that the Kau�man bracket polynomial does not require the

choice of an orientation on the link. However, the Jones polynomial and Kho-
vanov homology based upon it does. The same is true for virtual links: The
Khovanov homology de�ned in [8, 27] is an oriented virtual link invariant. In
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this paper, we show how to get polynomial and homology invariants of the un-
derlying link that are independent of the orientation.

In the original Khovanov invariants, the orientation was used to determine
an overall grading shift in the bracket homology (cf. Theorem 4.2 and The-
orem 5.6). (The bracket homology is the “categori�cation” of the Kau�man
bracket of a diagram.) We introduce appropriate grading shifts that also lead to
an invariant homology that does not require L to be oriented. To describe these
shifts, we need three numbers for any virtual diagram: s+, s−, and m. The
numberm is the number ofmixed-crossings of the diagram, i.e., the number of
classical crossings between di�erent components of the link. Each component
can also have several self-crossings. The self-crossings bifurcate into two types,
s+ and s−, that correspond to the number of positive and negative self-crossings
of the diagram.

Let (C(D), )) be the bracket complex de�ned in Section 4 for a diagram D

of an unoriented link L. The unoriented Khovanov chain complex, C̃(D), is a
gradings-shifted version of the bracket complex:

C̃(D) = C(D)[−s− −
1

2
m]{s+ − 2s− −

1

2
m}.

Here the �rst grading shift is for the homological grading and the second is for
the q-grading of the bi-graded complex. The homology of this complex, called
unoriented Khovanov homology, is an invariant of the link (cf. Theorem 6.1):

Theorem 6.1. Let L be an unoriented virtual link. The unoriented Khovanov
homology, denoted K̃ℎ(L), can be computed from any virtual diagram of L and is
a virtual link invariant.

For a classical link, the unoriented Khovanov homology can be de�ned di-
rectly from an unoriented link diagram (cf. Section 4). For virtual links, the
present de�nition of the chain complex requires an initial choice of an orienta-
tion for the link diagram. The chain complex is, up to isomorphism, indepen-
dent of the choice of orientation. In this sense our homology is unoriented. It
remains an open problem how to de�ne the chain complex without choosing
an orientation for the link diagram when the link is virtual.

Question 1.1. For virtual links, can unoriented Khovanov homology be de�ned
directly from an unoriented link diagram without ever choosing an orientation?

The bracket homology and grading-shifts also lead to an unoriented version
of Lee homology:

Theorem7.1. LetL be anunoriented virtual link. The unoriented LeeHomology,
Kℎ′(L), is an invariant of the link L.

The proofs of Theorem 6.1 and Theorem 7.1 start by calculating the bracket
homology H(D), of the bracket complex C(D), associated to a link diagram D,
and then shifting gradings appropriately to get an invariant of the link L (cf.
Section 4 and Section 5).
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In order to obtain an integral version of Khovanov homology for virtuals, a
number of problems had to be overcome. The fact that states di�ering in only
one smoothing canhave the samenumber of loops (see Figure 6) presents a new
phenomenon not seen in classical links. This phenomenon leads to the need
to use a local coe�cient system to de�ne the di�erential in the chain complex
for this version of Khovanov homology (cf. [8]). The local coe�cient system de-
mands the use of base points for the algebra and then the articulation of paths in
the state loops from the base points to the siteswhere algebra operations are per-
formed (to �nd boundaries in the chain complex). On these paths we count the
parity of the number of cut points (another structure on the diagram) to e�ect
the algebra transformation for the local coe�cients. All of this then requires a
global ordering, local orderings, cut point choices and base point choices. It is
proved that the resulting homology is independent of all these choices (cf. [8]).
But it is important to �nd a way to make these choices in a natural way that
lets one work with and compute with this structure. In this paper we use arc-
labeled diagrams (D,A)where the A denotes a choice of labeling on the arcs of
the diagram D (de�ned in Section 5). Thus we obtain,

Theorem 5.4. Let (D,A) be an arc-labeled diagram for a virtual link L. The arc
labels determine a di�erential

)i
A
∶ Ci,j(D) → Ci+1,j(D)

and form (Ci,j(D), )A) into a chain complex. Furthermore, if A′ is another arc
labeling for the same diagram D, thenHi,j(D,A) ≅ Hi,j(D,A′).

Until now, this additional structure was chosen manually by inspecting a di-
agram and making judgments as to where to place the base points, cut points,
etc. on the diagram. There was no standard, algorithmic process for determin-
ing these choices, which, in our observations, formed an arti�cial barrier to
working with Khovanov homology of virtual links for the last decade. Thus,
the arc labeling standardizes these choices, and makes it possible to handle the
chain complex both theoretically and practically. Themain content of Theorem
5.4 is that now in order to calculate the virtual Khovanov homology you simply
need to choose an arc labeling for the diagram and then every other choice is
determined. Furthermore, the fact that arc-labeled diagrams correspond to a
standard method of encoding knots make them particularly useful from a pro-
gramming perspective.

While the virtual link is unoriented, the arc-labeled diagram provides an ori-
entation (see Question 1.1). Another consequence of Theorem 5.4 is that the
bracket homology is independent of orientations on a given diagram. Further-
more, we show in Theorem 5.6 that the bracket homology is isomorphic to Kho-
vanov homology and unoriented Khovanov homology up to a grading shift.

An immediate consequence of Theorem 6.1 and Proposition 4.1 is that the
graded Euler characteristic of the unoriented Khovanov homology de�nes a
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polynomial invariant that does not depend on the orientation of the link:

�q(K̃ℎ(L)) =
∑

i,j∈
1

2
ℤ

(−1)iqj dim(K̃ℎ
i,j

(L)).

One might reasonably call this the “unoriented Jones polynomial” for the link
(see J0

L
in Section 3). However, this choice has two substantial de�ciencies.

First, the polynomial has complex, not real, coe�cients. Second, even for clas-
sical links, evaluating the polynomial at q = 1 is not always positive as it is for
the usual Jones polynomial. A signi�cant amount of this paper is dedicated to
correcting both of these de�ciencies. It turns out that the solution—cores and
mantles—can be applied to �x other problems that have come up in the virtual
link theory literature.

We can get a hint of how to �x these de�ciencies by looking at classical links.
For classical links, the required normalization is tomultiply�q(K̃ℎ(L)) by (−1)�
where � =

∑

i<j
Lk(Ki, Kj). (Note that this normalization does require choos-

ing an orientation, but in Section 2 we show that (−1)� is independent of that
choice.) In Section 3, we de�ne a generalization of �, denoted �̃, based upon a
modi�ed linking number between di�erent components. This number, which
is equal to the original � when the link is classical, solves the �rst de�ciency:

Theorem 3.19. The unoriented Jones polynomial, de�ned by

J̃L(q) = (−1)

(
�̃−s−−

1

2
m

)

q

(
s+−2s−−

1

2
m

)

⟨L⟩,

is an unoriented virtual link invariant. Moreover, J̃L ∈ ℤ[q
−
1

2 , q
1

2 ].

The de�nition of �̃ also solves the second de�ciency. An even link is a virtual
link in which there are an even number of classical mixed-crossings for every
component in a diagram of the link (cf. [13, 14, 32]). Even links are sometimes
called 2-colorable links in the literature (cf. [37]). Since all virtual knots and
classical links are even, one can often generalize theorems of virtual knots and
classical links to even virtual links. The next theorem is new in the literature
for the usual (oriented) Jones polynomial for non-classical virtual links L. It
also shows that �̃ correctly addresses the second issue for the unoriented Jones
polynomial (see the following and Corollary 3.24):

Theorem 3.23. If L is an oriented virtual link with l components, then

J̃L(1) = JL(1) = {
2l if L is even
0 if L is odd.

The number, JL(1), is independent of the choice of orientation.

Thus, we prove that the usual (oriented) Jones polynomial, JL, counts the
number of components of a virtual link when the link is even, extending this
well-known property for classical links, and that the unoriented Jones polyno-
mial, J̃L, also preserves this property.
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Remark 1.2. Aspects of Theorem 3.19 and Theorem 3.23 have been known about
classical links since Jones. Morton gave a speci�c formula for the change in the
Jones polynomial under change in orientation of a component [33]. His argument
was based on the skein relation andprior to the discovery of the bracketmodel. The
bracket model and theMarkov trace models make such formulae straightforward
to deduce in the classical case. We have returned to this subject in the nontrivial
case of virtuals and Khovanov homology.

In order to de�ne �̃, we needed to introduce a new idea in virtual link theory
that extends even link invariants to all virtual links: the identi�cation of the
core andmantle of a virtual link, andmore generally, amulti-core decomposition
(See Section 3.2). A multi-core decomposition is the separation of a virtual link
L into a set of invariant sub-links, L = C1 ∪ … ∪ Cn ∪Mn, where each sub-link
Ci is even (C1 is called the core), and the sub-linkMn is either the empty link,
or it is odd (Mn is the �nal mantle).

While there are a number of invariants for even virtual links in the literature,
generalizing them to all virtual links has been elusive. They fail to be invariants
for odd virtual links because the de�nition of the invariant often depends heav-
ily on each component having an even number of classical mixed-crossings. By
identifying an invariant even sub-link, the core, and eventually a set of invari-
ant even sub-links in themulti-core decomposition, one can derive an invariant
of odd links by applying the even link invariants to each even core in the de-
composition.

Theorem 3.8. Any invariant of even links, Ψ, induces a tuple of invariants

(Ψ(C1), … , Ψ(Cn))

for the multi-core decomposition of a virtual link L, and the tuple itself is an in-
variant.

In the case of the unoriented Jones polynomial, the multi-core decomposi-
tion identi�es a maximal set of maximal even sub-links on which the virtual
link “acts like” an even link. Thus, the unoriented Jones polynomial for odd
links de�ned in this paper is the polynomial that is the “closest to” the unori-
ented Jones polynomial for classical links.

Acknowledgements. Kau�man’s work was supported by the Laboratory of
Topology and Dynamics, Novosibirsk State University (under contract number
14.Y26.31.0025 with the Ministry of Education and Science of the Russian Fed-
eration). All three authors would like to thank William Rushworth for many
helpful conversations and suggestions.

2. Unoriented Jones polynomial for classical inks
We introduce the main ideas of this paper by reviewing and generalizing the

oriented version of the Jones polynomial for classical links to the unoriented
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Jones polynomial. Recall that to get the Jones polynomial, one multiplies the
Kau�man bracket by a normalization factor that depends on the writhe, i.e.,

JL(q) = (−1)−n−qn+−2n−⟨L⟩

where n− and n+ are the number of negative and positive (classical) cross-
ings respectively1 (cf. [4, 12, 16]). Here we are using the form of the Kau�man
bracket given by

⟨ ⟩ = ⟨ ⟩ − q⟨ ⟩, and (1)
⟨○ ∪ D⟩ = (q−1 + q)⟨D⟩. (2)

Clearly, the normalization depends upon the way the components are oriented,
but the Kau�man bracket itself does not depend upon a choice of orientation.
The new normalization factor is de�ned as follows. Let L = K1 ∪ ⋯ ∪ Kl be
a link with l components and let D be a virtual diagram of L. A self-crossing
in D is a classical crossing in which both under- and over-arcs of the crossing
are from the same component. For a speci�c component Ki, the usual signs for
each self-crossing of Ki are the same for either orientation of Ki. Let s+ and s−
be the total number of positive and negative self-crossings of a link L.

The�rst Reidemeistermove is covered by the self-crossing data, and the third
Reidemeister move does not play a role in any normalization. For the second
Reidemeister move, the case of using the move on a single component Ki is
taken care of by the self-crossing data. The�nal case is aReidemeister twomove
for strands from two di�erent components of a link. Therefore, the remaining
type of crossing to consider is a mixed-crossing: Let m be the total number
of mixed-crossings of a diagram D. Note that we do not assign a positive or
negative sign to these crossings.

Applying the Kau�man bracket to two strands with one over the other, we
see that

⟨ ⟩ = −q⟨ ⟩.

In other words, we can pull the strands apart at the cost of multiplying by an
overall factor of−q−1 (which partiallymotivates the usual normalization). Note
that

(−1)
−
1

2
m
q
−
1

2
m
, (3)

yields the proper correction factor to ensure that the polynomial is invariant
under a Reidemeister 2 move. Further, note that the change in − 1

2
m is equal

to the change in n+ − 2n− under the move because, for any orientation of the
strands, there will always be one positive crossing and one negative crossing.

1The Jones polynomial is usuallywrittenwith (−1)n− instead of (−1)−n− . These are equivalent
since n− is an integer. Later in this paper, we work with half-integer powers of −1 where the
negative of a power is not equivalent: (−1)

1

2 ≠ (−1)
−
1

2 . In this context, (−1)−n− is the correct
normalization.
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Thus we may de�ne the unoriented Jones polynomial of a classical link L by

J̃L(q) = (−1)−n−q

(
s+−2s−−

1

2
m

)

⟨L⟩. (4)

Based upon Expression (3), one should expect to see−s−−
1

2
m as the exponent

of −1 instead of −n−. However, as we will elaborate in Section 3,

n− = −� + s− +
1

2
m, (5)

where � =
∑

i<j
Lk(Ki, Kj). To compute � requires a choice of orientation. This

sum of linking numbers changes by an even number when the orientation of
L is changed. Hence, n− is made up of two terms that do not change under a
change of orientation and one term that changes by an even number.

The discussion above immediately implies
Theorem 2.1. The unoriented Jones polynomial J̃L of a classical link L is an
invariant of the link.

Next we extend the de�nition of the unoriented Jones polynomial to virtual
links. There are a number of pitfalls. The �rst is that 1

2
m and Lk(Ki, Kj) can

be half integers. This means that the polynomial may have imaginary-valued
coe�cients. Since we wish to preserve (as much as possible) the well known
fact that evaluating the Jones polynomial at 1 is 2l, this presents a problem.
Worse yet, if the orientation of Ki (or Kj) is reversed, then Lk(Ki, Kj) changes
by an odd number if the total number of mixed-crossings between Ki and Kj is
odd. Hence, the term � needs to be modi�ed to compensate for this issue. We
tried many potential modi�cations that were orientation invariant, however,
these modi�cations could not be normalized so that the well-known fact (2l)
continued to hold, even for classical links. For a discussion about why this
might be desired, see the second item in Section 8. The solution involves what
we call the “core” of the virtual link, and it turns out that the core has far wider
implications for virtual link theory.

3. Unoriented Jones polynomial for virtual links
Before de�ning the core of a virtual link, we begin this section by recalling

some basic facts about virtual link theory.

3.1. Virtual knot theory. Classical knot theory is the study of embeddings
of disjoint unions of S1 in S3. Virtual knot theory, as introduced by Kau�man
[18], is also the study of disjoint unions of S1, but in a di�erent ambient space:
Σg×[0, 1], whereΣg denotes a closed orientable surface of genus g. Unlike links
in many other 3-manifolds, virtual links have a diagrammatic theory, akin to to
that of classical links. We begin by recalling some of the relevant facts about
the theory, and refer the reader to [18, 20, 30] for a more thorough treatment.

A virtual link diagram is a 4−valent planar graph in which the vertices are
decorated with classical crossings or virtual crossings, denoted by . Examples
of virtual link diagrams are given in Figure 2 and Figure 12.
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Two classical knots are equivalent if and only if their diagrams are related
by a �nite sequence of the classical Reidemeister moves. Two virtual knots are
equivalent if and only if their diagrams are related by a �nite sequence of the
Reidemeister moves together with the virtual Reidemeister moves. The moves
are shown in Figure 1. Onemay think of the virtual link itself as an equivalence
class of virtual link diagrams, each member of which is related to the rest by a
�nite sequence of classical and virtual Reidemeister moves.

V1R1

R2

R3

V2

V3

VM

Figure 1. The classical and virtual Reidemeister moves.

A classical link diagram is simply a virtual link diagramwithout virtual cross-
ings. Thus, classical knot theory is a proper subset of virtual knot theory. For
an in-depth treatment of the diagrammatic theory of virtual links see [18].

3.2. The even core of a virtual link. For classical links, the Jordan Curve
Theorem implies that each component of a link diagram intersects every other
component of the diagram in an even number of crossings. However, virtual
crossings are not genuine crossings, which allows one to de�ne various parities
for virtual links.

De�nition 3.1 (Component-to-Component Parity). Let D be a diagram of a
virtual link L with components K1, ..., Kl. The component-to-component parity,
denoted �(Ki, Kj), is 0 if there are an even number of mixed crossings between
components Ki and Kj and 1 otherwise.

De�nition 3.2 (Component Parity). Let D be a diagram of a virtual link L with
componentsK1, ..., Kl. De�ne the parity ofKi , denoted �(Ki), to be the number of
mixed crossings of D involving component Ki , modulo 2.

Note that the number ofmixed crossings of a component is equal to the num-
ber of virtual crossings modulo two.

De�nition 3.3 (Link Parity). Let D be a diagram of a virtual link L with com-
ponents K1, ..., Kl. The link L is called even if all components of L are even, i.e.,
�(Ki) = 0 for all i, and called odd if there exists an odd component. The parity of
L, denoted �(L), is �(L) = 0 if L is even and �(L) = 1 if L is odd.

Note that the virtual Reidemeistermoves have no e�ect on these parities, and
the classical Reidemeister moves clearly leave them unchanged, and hence we
obtain:
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Lemma 3.4. The link parity, each component parity, and each component-to-
component parity of a link are all virtual link invariants.

It is well-known that even virtual links form a subset of virtual links for
which it is often easier to de�ne invariants (cf. [14,32,37]). However, odd virtual
links present certain challenges. Some of these challenges may be overcome by
choosing an invariant even sublink.

De�nition 3.5. Given a diagram of a virtual link L = K1∪K2∪…∪Kl we obtain
a sub-link L1 by deleting all the odd components of L. The resulting sub-link L1
may be even or odd. If it is even, stop. Otherwise, repeat the procedure on L1 to
get L2, and continue until an even sub-link, Lk, is obtained (Lk may be the empty
link, which is even). Call the even sub-link Lk the core of L and denote it by C.

Note that after deleting the odd components of Li to get Li+1, it is possible
that components of Li+1 that were even in Li become odd in Li+1. Lemma 3.4
still applies to the sub-link Li+1 thought of as a link by itself. Therefore the
deletion process is unique: L1 will always be even or odd as its own link, and
the odd components of L1 that are deleted to get L2 will always be the same
components, and so on. Thus, we immediately obtain:

Lemma 3.6. Any invariant of the even core of a virtual link L is an invariant of
L.

Invariants of odd links calculated from the even core leave out much of the
information about the link. In order to recapture some of that information it is
helpful to look at the complement of the even core, which we call themantle of
the virtual link.

De�nition 3.7. Themantle of a link L is the sub-linkM given by the complement
of the core, i.e.,M = L ⧵ C.

Note that the mantle may be either an even or odd link in its own right, and
possesses its own even core. Hence, wemay repeat the process described above.
Given a virtual link L, determine its core C1 and mantle, M1 (L = M1 ∪ C1)
using De�nition 3.5. Next, determine the core ofM1 and denote it by C2 using
De�nition 3.5. This process also determines a new mantle, M2. At this stage,
L = C1 ∪ C2 ∪ M2. Repeat this process until Mn is either empty or has an
empty core (ifMn is non-empty and has empty core, it must contain only odd
components). Thus, one obtains a decomposition of the link: L = C1∪…∪Cn∪

Mn. We call this themulti-core decomposition of the link. Repeated applications
of Lemma 3.6 yield the following theorem.

Theorem 3.8. Any invariant of even links, Ψ, induces a tuple of invariants

(Ψ(C1), … , Ψ(Cn))

for the multi-core decomposition of a virtual link L, and the tuple itself is an in-
variant of L.
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In particular, this theorem implies that any invariant of even links imme-
diately generalizes to a new invariant of all virtual links—not just even links.
For example, the papers [32] and [14] generalize the odd writhe of a virtual
knot [19] to even virtual links. In [14], a virtual orientation is described where
the orientation of a component changes direction in a diagram D at every vir-
tual crossing (which is why the link must be even). Using this orientation, the
sum of the signs of classical crossings between Ki and Kj whose over arc is Ki
is denoted ΛD(i, j). Clearly, this number depends upon the order: ΛD(i, j) ≠
ΛD(j, i) in general.

Corollary 3.9. [cf. Theorem 14 of [14], see also [32]] Let L = K1∪K2∪⋯∪Kl be
an ordered virtual link. Every core Cr inherits an ordering from the ordering of L.
For every core Cr of L, and any pair of components, Ki and Kj in Cr, the number
|ΛCr(i, j)| is an invariant of the ordered unoriented virtual link L.

Another generalization of the odd writhe to even links was given in [37]. In
that paper, an even link is equivalent to the link being 2-colorable. The de�ni-
tion of 2-color writhe, J2(D), of an even link diagramD depends upon a special
parity function on each crossing that satis�es the parity axioms (brie�y men-
tioned below). For a given 2-coloring of an oriented link, de�ne a quantity for
that coloring as the sum of classical crossing signs of only the odd crossings
(where odd is de�ned by that parity function). The 2-color writhe of the link,
J2(L), is then a tuple of these numbers—one for each 2-coloring of a diagram
D of L. This tuple is de�ned up to permutations of the entries.

Corollary 3.10. The tuple,
(
J2(C1), … , J

2(Cn)
)
, consisting of the 2-color writhe

of each core is an invariant of the oriented virtual link L.

Rushworth shows that for a virtual knot, J2(K) is the odd writhe of K (see
Proposition 3.4 of [37]).

Sometimes these tuples of invariants can be pro�tably added together to get
an overall invariant of the link. We want more, however. For an upgraded def-
inition of � for all virtual links (not just even links), we wish to de�ne “linking
numbers” for all components, not just components in each of the cores. To do
so, we introduce a parity function de�ned from pairs of components of L. This
parity function is de�ned on components, but could be described as a parity
function on crossings (cf. [31], and [28], [37]), as we will see next.

3.3. A parity function. It will be useful to de�ne a parity function on pairs
of components of a virtual link. Let L = K1 ∪ … ∪ Kl be a virtual link with
multi-core decomposition, L = C1 ∪ C2 ∪…∪Cn ∪Mn. We de�ne a component
parity function on pairs of components as follows:

p(Ki, Kj) = {
0 Ki, Kj ∈ Cr for some r
1 otherwise. (6)

This component parity function descends to a parity function on crossings, as
described in [31] and [37]. If c is a crossing between componentKi andKj, then
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we assign the parity, p(Ki, Kj), to c. Any self-crossing is assigned a parity of 0.
Axioms 0 and 1 (cf. [37]) are clearly satis�ed. Because all crossings between Ki
andKj will have the sameparity, Axiom2 is clearly satis�ed. For aReidemeister
3 move, we either have all three components in the same core, Cr, two in the
same core, and one is not, or, no two of the strands are in the same core. These
correspond to the three allowable cases ofAxiom3. We could justworkwith the
parity function on crossings, but �nd it convenient toworkwith the component
parity function at the level of component-to-component for reasons that will
become apparent below.

3.4. The unoriented Jones polynomial of a virtual link. We wish now to
generalize the unoriented Jones polynomial (Equation (4)) for classical links
to an invariant of unoriented virtual links. In fact, the same de�nition together
with Equation (5) works for any even virtual link. Here is why: Suppose the ori-
entation of Ki is reversed. In the classical case, the number of mixed crossings
between Ki and each other component will be even. For an even virtual link,
it is possible that the number of mixed crossings between Ki and Kj is odd for
some j (cf. Figure 12). In that case, reversing the orientation on Ki will change
Lk(Ki, Kj) by an odd number. However, in an even virtual link, �(Ki) = 0 for
all i. Hence, there must be an even number of components that intersect Ki in
an odd number of mixed crossings. Thus, the overall parity of the exponent on
(−1) is unchanged by the orientation swap.

For an odd virtual link, the unoriented Jones polynomial as de�ned for even/
classical links need not be an orientation invariant, as the following example
shows.

Example 3.11. Let L0 and L1 be the oriented virtual Hopf links shown on the
left and right, respectively in Figure 2. Observe that unoriented Jones polyno-
mial de�ned for classical links is not orientation invariant, because �−s−−

1

2
m

for L0 is −1 while for L1 it is 0.

Figure 2. Virtual Hopf links with two di�erent orientations.

Thus, we need to extend the unoriented Jones polynomial de�ned for classi-
cal/even links to odd links. This amounts to rede�ning the term �. We do this
next. Consider a diagram of an oriented virtual link L = K1 ∪ … ∪ Kl.

We �rst de�ne amodi�ed linking number:

L̃k(Ki, Kj) ∶= (−1)
p(Ki ,Kj)⋅

(
Lk(Ki ,Kj)+

1

2
�(Ki ,Kj)

)

Lk(Ki, Kj),

wherep(Ki, Kj) is the component parity function and�(Ki, Kj) is the component-
to-component parity. SupposeL hasmulti-core decompositionL = C1∪…∪Cn∪
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Mn. The modi�ed linking number is, up to sign, the ordinary linking number,
and if Ki and Kj belong to the same core, Cr, it has the same sign as the ordi-
nary linking number. If Ki and Kj belong to di�erent cores, or if at least one of
them belongs to the mantle,Mn, then the modi�ed linking number may have
the opposite sign as the ordinary linking number.

Lemma 3.12. Themodi�ed linking number, L̃k(Ki, Kj), is an element of 1
2
ℤ and

is an oriented virtual link invariant.

Proof. Consider a diagram of an oriented link L, and a multi-core decompo-
sition L = C1 ∪ … ∪ Cn ∪ Mn. If Ki and Kj belong to the same core, then the
modi�ed linking number is the ordinary linking number and is an integer since
each core is an even sub-link.

If Ki and Kj do not belong to the same core, but they do interact in an even
number of mixed-crossings, then L̃k is still an integer. Otherwise, Ki and Kj
interact in an odd number ofmixed-crossings. Thus Lk(Ki, Kj) is a half-integer,
and because �(Ki, Kj) = 1 in this case, the exponent on −1 in the de�nition of
L̃k will be an integer.

The fact that L̃k is an oriented virtual link invariant follows from the fact that
the ordinary linking number and parity are link invariants. �

We can use the modi�ed linking number to extend � from even links to all
virtual links:

�̃(L) =
∑

1≤i<j≤l

L̃k(Ki, Kj). (7)

Since �̃ is de�ned in terms of linking numbers, which are invariant under
the Reidemeister moves (virtual and classical), we immediately obtain:

Lemma 3.13. The number �̃ is an oriented virtual link invariant.

Remark 3.14. When L is even, L is the core. Thus, for an even link L, � = �̃ and
�̃ extends the de�nition of � to odd links.

The number �̃ is well-behaved under a change of orientation. Suppose Ks ∈
Cr. LetLs be the linkLwith the sameorientations on the components except the
orientation of Ks reversed. Let Ks denote the component Ks with the opposite
orientation. Subtracting �̃(L) − �̃(Ls), we pick up only the terms where the
orientation changes. Thus:

�̃(L) − �̃(Ls) =
∑

1≤j≤l

(
L̃k(Ks, Kj) − L̃k(Ks, Kj)

)

=
∑

1≤j≤l

((−1)
p(Ks ,Kj)⋅

(
Lk(Ks ,Kj)+

1

2
�(Ks ,Kj)

)

+(−1)
p(Ks ,Kj)⋅

(
−Lk(Ks ,Kj)+

1

2
�(Ks ,Kj)

)

) Lk(Ks, Kj).
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For any j such that Kj ∈ Cr, the term in the sum above becomes 2Lk(Ks, Kj).
It may be that Ks and Kj interact in an odd number of classical crossings, in
which case 2Lk(Ks, Kj)may be odd. However, if that happens, it must do so for
an even number of such j, because Cr is an even sub-link.

For any j such that Kj ∉ Cr, the component parity function is given by
p(Ks, Kj) = 1, and so the exponents come into play. It is still possible that
Ks and Kj interact in an even or odd number of classical crossings. If Ks inter-
acts with Kj in an odd number of classical crossings, then �(Ks, Kj) = 1 and
one of the exponents above will be even and the other will be odd. Hence that
term will contribute 0. Otherwise, �(Ks, Kj) = 0 and the exponents will both
be even or both be odd. Thus, that term will contribute ±2Lk(Ks, Kj), which is
an even number, since Lk(Ks, Kj) is an integer in this case.

If Kr ∈ Mn, the argument is similar to the previous case. Hence, these ob-
servations, together with Lemma 3.13, prove:

Lemma 3.15. If Ls is the virtual link obtained from L = K1∪…∪Kl by reversing
the orientation on component Ks then �̃(L) and �̃(Ls) di�er by an even integer.

By de�nition �̃ is possibly a half-integer, and in many cases, an integer. But,
in either case the previous lemma guarantees that (−1)�̃ is invariant of the
choice of orientation of L, since changing the orientation on a component

changes �̃ by an even integer. (Here and throughout the paper, we take (−1)
1

2 =

i.)

Theorem 3.16. The complex number (−1)�̃ is invariant of the choice of orienta-
tion of L.

We now have all of the ingredients in place to de�ne the unoriented Jones
polynomial for any virtual link L.

De�nition 3.17 (Unoriented Jones Polynomial). The unoriented Jones poly-
nomial for a virtual link L is

J̃L(q) = (−1)

(
�̃−s−−

1

2
m

)

q

(
s+−2s−−

1

2
m

)

⟨L⟩. (8)

Note that this de�nition extends both the de�nition of the unoriented Jones
polynomial for classical links (cf. Equation (4) and Equation (5)) and even links
by Remark 3.14. When L is an even virtual link (i.e. when L is its own even
core), these two formulas are identical.

As observed in Theorem 3.16, (−1)�̃ need not be a real number, but it turns
out that (−1)�̃−

1

2
m is. In particular, given a diagram of a virtual link L = K1 ∪

…∪Kl, observe that if �(Ki, Kj) = 1 then L̃k(Ki, Kj) is a half-integer. If there is
an odd number of such pairs, then �̃ will be a half-integer as well. Otherwise, �̃
will be an integer. Similarly, in counting the total number of mixed crossings,
if there is an odd number of pairs of components such that �(Ki, Kj) = 1, then
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there will be an odd number of mixed crossings in the diagram. Hence, 1
2
mwill

be a half-integer in this case, and will be an integer otherwise. In either case,
noting that s− ∈ ℤ, we obtain the following lemma.

Lemma 3.18. For any virtual link L, �̃ − 1

2
m ∈ ℤ, and hence, (−1)�̃−s−−

1

2
m
∈

{−1, 1}.

Theorem 3.19. The unoriented Jones polynomial, J̃L, is an unoriented virtual

link invariant. Moreover, J̃L ∈ ℤ[q
−
1

2 , q
1

2 ].

Proof. The Kau�man bracket clearly does not depend on orientation. The

normalization factor q
(
s+−2s−−

1

2
m

)

depends only on self-crossings and the to-
tal number of mixed-crossings, neither of which change under an orientation
switch, and (s− +

1

2
m) is orientation invariant for similar reasons. Thus, by

Theorem 3.16, the �rst statement follows.
The second statement follows from Lemma 3.18 and the fact that the poly-

nomial q
(
s+−2s−−

1

2
m

)

⟨L⟩ has integer coe�cients. �

3.5. Evaluating the unoriented Jones polynomial at 1. In this subsection,

we explain why the choices of (−1)−n− and (−1)�̃−s−−
1

2
m are important normal-

ization factors for the oriented and unoriented Jones polynomials, JL and J̃L.
Namely, we will show that evaluating either polynomial at 1 is either 2l for
an l-component even link or 0 if the link is odd. We start with the following
de�nition and lemma.

De�nition 3.20. We de�ne a numerical invariant for virtual links by evaluating
the bracket polynomial at 1: [L] = ⟨L⟩(1).

Observe that JL(1) = (−1)−n−[L] and that J̃L(1) = (−1)
�̃−s−−

1

2
m
[L].

Lemma 3.21. The usual (oriented) Jones polynomial and unoriented Jones poly-
nomial evaluated at 1 are each invariant under crossing changes. That is, if L1
and L2 are oriented virtual links with diagrams that are identical except for a sin-
gle crossing change, then JL1(1) = JL2(1) and J̃L1(1) = J̃L2(1).

Proof. Consider J̃ �rst. The e�ect of a crossing change on [L] is to multiply by
−1. Thus it su�ces to show that

(
�̃ − s− −

1

2
m

)
changes parity under a cross-

ing change. Suppose c is the crossing to be changed. If c is a self-crossing,
then �̃ andm are una�ected (since they only consider mixed crossings), and s−
changes by ±1.

If c is a mixed crossing then s− and 1

2
m remain unchanged. If c involves

two components in the same core of L, then the crossing change results in a
net change of 1 in the linking number. If the crossing change is between two
components that do not belong to the same core, then we consider the e�ect of
the crossing change on L̃k(Ki, Kj)whereKi andKj are the two components that
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cross at c. When the crossing is switched, Lk(Ki, Kj) will change by 1 which is
su�cient to change the parity of L̃k(Ki, Kj) as desired.

The proof for J is simpler: changing a positive crossing to a negative (or vice-
versa) clearly changes the parity of n− and hence, compensates for the sign
change of [L]. �

Remark 3.22. One possible extension of � we considered was to use the classi-
cal/even � only on the crossings in the even core(s) and ignore all other crossings.
Lemma 3.21 shows why we needed a modi�ed linking number that incorporated
every mixed-crossing.

It is well known that, for a classical link, the usual (oriented) Jones polyno-
mial is, when evaluated at 1, equal to two to the number of components of the
link. It was not known how this result extended to virtual links. The following
theorem is a new theorem in the (non-classical) virtual link literature.

Theorem 3.23. If L is an oriented virtual link with l components, then

JL(1) = {
2l if L is even
0 if L is odd.

The number, JL(1), is independent of the choice of orientation.

We �rst noticed this result in the category of planar trivalent graphs (cf. [1,
3]), and wondered if a similar result held for virtual links. The fact that it does
was an important motivation behind this current paper and [2] (See Future
Aims, Section 8).

Proof. Enumerate the components of L by L = K1∪…∪Kl. The proof proceeds
by induction on the number of classical crossings in the diagram of L. The
theorem is clearly true if there are no classical crossings.

Suppose that there exists some crossing for a diagram of L. By repeated ap-
plications of Lemma 3.21 we can assume without loss of generality that every
crossing of L is positive, i.e., n− = 0. Let c be a (positive) crossing between
Ki and some other component Kj of L. If LA represents the link L with an
A-smoothing ( → ) at crossing c, and LB represents the link L with a
B-smoothing ( → ) at crossing c, then

[L] = [LA] − [LB]. (9)

Both LA and LB have one less component than L since Ki is welded to Kj (see
Figure 3).
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Figure 3. Smoothing a crossing.

Observe that if c is oriented as shown on the left side of Figure 3, then the
A-smoothing LA is compatible with this orientation, while the B-smoothing LB
must be reoriented as shown in Figure 4. Let Kij stand for the component in
LB with orientation given by Kj and Ki, i.e., the part of Ki from L but with the
opposite orientation.

Figure 4. Reorienting LB.

Since n− = 0 for L, JL(1) = [L]. Similarly, JLA(1) = [LA]. If Ki has k + 1

classical crossings in L, then after reversing the orientation of Ki in LB to get an
orientation for Kij, the welded Kij component will have k negative crossings
in LB. Thus, JLB(1) = (−1)k[LB]. Insert these equations for L, LA, and LB into
Equation (9) to get

JL(1) = JA(1) − (−1)kJB(1). (10)
Note that (−1)k+1 = (−1)�(Ki). Hence, we can rewrite Equation (10) as

JL(1) = JA(1) + (−1)�(Ki)JB(1).

By induction, JA(1)must be either 2l−1 or 0 based on the parity of LA. Sim-
ilarly, JB(1) is either 2l−1 or 0 based on the parity of LB. Moreover, since c is a
crossing between two components of L, the parities of LA and LB are the same:
�(LA) = �(LB). Thus,

JL(1) =
(
1 + (−1)�(Ki)

)
2l−1 ⋅ �(LA).

A similar argument applies when the chosen crossing involves only a sin-
gle component. In that case, LA and LB will have an extra component, but the
reasoning remains essentially the same. Thus, by induction the theorem fol-
lows. �

The proof above is for the usual (oriented) Jones polynomial for virtual links,
but the result still holds for the unoriented Jones polynomial. There are two
key observations needed to see why this is true. First, by Theorem 3.23, [L] = 0
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if L is odd. Thus, we need only check J̃L(1) for L even. Second, for an even
virtual link, �̃ = � (cf. Remark 3.14), and n− = −� + s− +

1

2
m. Putting these

observations together, we get:

Corollary 3.24. If L is an unoriented virtual link with l components, then

J̃L(1) = {
2l if L is even
0 if L is odd.

Therefore, J̃L(1) = JL(1), which means J̃L continues to have the same non-
negativity propoerty when evaluated at 1 as the (oriented) Jones polynomial
JL.

3.6. Other componentparity functions andotherpolynomials. There are
other component parity functionswemight have chosen to use in our de�nition
of the modi�ed linking number. Each may be useful in other contexts, though
they do not necessarily preserve the properties described in Theorem 3.23 and
Corollary 3.24.

The �rst option is to rede�ne the parity function so that only components in
the even core C = C1 of L evaluate to 0:

pC(Ki, Kj) = {
0 Ki, Kj ∈ C

1 otherwise.

Using this component parity function in the place of p in the de�nition of the
modi�ed linking number leads to a di�erent �C and another polynomial JC

L

for which Theorem 3.19 and Corollary 3.24 are both true. While this choice
satis�es both of the criteria listed above, the component parity function p is
still preferable, as it maximizes the behavior of even links in L.

Another option is to de�ne the parity function to be 1 on every pair of com-
ponents:

pM(Ki, Kj) = 1 for all Ki and Kj.

Using this parity to de�ne amodi�ed linking number gives rise to a polynomial,
JM
L
, for which Theorem 3.19 is still true. However, Corollary 3.24 will fail to be

true.
The last option we consider is in some sense the simplest, as it does not use

�, or its variants, at all. The polynomial we obtain from this choice is

J0
L
(q) = (−1)

(
−s−−

1

2
m

)

q

(
s+−2s−−

1

2
m

)

⟨L⟩. (11)

The polynomial is an unoriented virtual link invariant in the sense that it does
not require an orientation to de�ne it. It can have complex coe�cients, so it
does not satisfy the last part of Theorem 3.19, nor does it satisfy Corollary 3.24.
Nevertheless, J0

L
(q)has the advantage of being entirely determined by the graded

Euler characteristic of the unoriented Khovanov homology described in Sec-
tion 6.
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4. Bracket homology and Khovanov homology
In this section, we brie�y describe Khovanov homology along the lines of

[4,22], and we tell the story so that the gradings and the structure of the di�er-
ential emerge in a natural way. This approach to motivating the Khovanov ho-
mology uses elements of Khovanov’s original approach, Viro’s use of enhanced
states for the bracket polynomial [39, 40], and Bar-Natan’s emphasis on tangle
cobordisms [5].

We begin by working without using virtual crossings, and then introduce ex-
tra structure and generalize the Khovanov homology to virtual knots and links
in the next section.

A keymotivating idea involved in de�ning the Khovanov invariant is the no-
tion of categori�cation. One would like to categorify the Kau�man bracket ⟨D⟩

for a link diagram D of a link L. There are many meanings to the term cate-
gorify, but here the quest is to �nd a way to express the link polynomial as a
graded Euler characteristic ⟨D⟩ = �q(H(D)) for some homology theory associ-
ated with ⟨D⟩. In this section, we de�ne a homology theory with this property.
Moreover, the homology theory we de�ne can be used with an orientation on
L to get the usual Khovanov homology invariant of L. We call this the bracket
homology of D and denote itH(D).

The bracket polynomial [16, 17] model for the Jones polynomial [10–12, 41]
can be described by the inductive expansion of unoriented crossings into
A-smoothings and B-smoothings on a link diagramD via Equation 1 and
Equation 2: ⟨ ⟩ = ⟨ ⟩−q⟨ ⟩with ⟨○⟩ = (q+q−1). While the bracket poly-
nomial is often described in a variable A, it useful to work with the q-variable
version in the context of Khovanov homology.

There is a well-known convention for describing the bracket state expansion
by enhanced states where an enhanced state has a label of 1 or x on each of its
component loops. We then regard the value of the loop q + q−1 as the sum of
the value of a circle labeled with a 1 (the value is q) added to the value of a circle
labeled with an x (the value is q−1).

To see how theKhovanov grading arises, consider the expansion of the bracket
polynomial in enhanced states s:

⟨D⟩ =
∑

s

(−1)nB(s)qj(s)

where nB(s) is the number of B-smoothings in s, r(s) is the number of loops in
s labeled 1minus the number of loops labeled x, and j(s) = nB(s) + r(s). This
can be rewritten in the following form:

⟨D⟩ =
∑

i ,j

(−1)iqj dimCi,j(D)

where we de�ne Ci,j(D) to be the linear span of the set of enhanced states with
nB(s) = i and j(s) = j. Then the number of such states is dimCi,j(D).
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Wewould like to turn the bigraded vector spacesCi,j into a bigraded complex
(Ci,j, )) with a di�erential

) ∶ Ci,j(D)⟶ Ci+1,j(D).

The di�erential should increase the homological grading i by 1 and preserve the
quantum grading j. Then we could write

⟨D⟩ =
∑

j

qj
∑

i

(−1)i dimCi,j(D) =
∑

j

qj�
(
C∙,j(D)

)
,

where �
(
C∙,j(D)

)
is the Euler characteristic of the subcomplex C∙,j(D) for a

�xed j. This formula would constitute a type of categori�cation of the bracket
polynomial.

Below, we shall see how the original Khovanov di�erential ) is uniquely de-
termined by the restriction that j()s) = j(s) for each enhanced state s. Since j
is preserved by the di�erential, these subcomplexes C∙,j have their own Euler
characteristics and homology. We have�(H∙,j(D)) = �(C∙,j(D))whereH∙,j(D)

denotes the bracket homology of the complex C∙,j(D). We can write

⟨D⟩ =
∑

j

qj�(H∙,j(D)).

The last formula expresses the bracket polynomial as a graded Euler character-
istic, �q(H(D)), of a homology theory associated with the enhanced states of
the bracket state summation. This is the desired categori�cation of the bracket
polynomial. Khovanov proved that a gradings-shifted version of this homology
theory (using an orientation of the link) is an invariant of oriented knots and
links, and that the graded Euler characteristic of the gradings-shifted version
is the usual (oriented) Jones polynomial. Thus, he created a new and stronger
invariant than the original Jones polynomial.

To de�ne the di�erential regard two states as adjacent if one di�ers from the
other by a single smoothing at some site. Let (s, �) denotes a pair consisting
of an enhanced state s and a site � of that state with � of type A. Consider all
enhanced states s′ obtained from s by resmoothing � fromA toB and relabeling
(with 1 or x) only those loops that are a�ected by the resmoothing. Call this set
of enhanced states S′[s, �]. De�ne the partial di�erential )�(s) as a sum over
certain elements in S′[s, �] and the di�erential for the complex by the formula

)(s) =
∑

�

(−1)c(s,�))�(s)

with the sum over all type A sites � in s. Here c(s, �) denotes the number of
A-smoothings prior to the A-smoothing in s that is designated by �. Priority is
de�ned by an initial choice of order for the crossings in the knot or link diagram.

In Figure 5, we indicate the original forms of the states for the bracket (not
yet labeled by 1 or x to specify enhanced states) and their arrangement as a
Khovanov category where the generatingmorphisms are arrows from one state
to another where the domain of the arrow has one moreA-state than the target
of that arrow. In this �gure we have assigned an order to the crossings of the
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knot, and so the reader can see from it how to de�ne the signs for each partial
di�erential in the complex.

Figure 5. Bracket states and Khovanov complex.

We now explain how to de�ne )�(s) so that j(s) is preserved. The form of the
partial di�erential can be described by the following structure of multiplication
and comultiplication on the algebra V = k[x]∕(x2) where k = ℤ for integral
coe�cients:

(1) The element 1 is a multiplicative unit and x2 = 0, and
(2) ∆(1) = 1 ⊗ x + x ⊗ 1 and ∆(x) = x ⊗ x.

These rules describe the local relabeling process for loops in an enhanced state.
Multiplication corresponds to the case where two loops merge to a single loop,
while comultiplication corresponds to the case where one loop bifurcates into
two loops. Thus,

Proposition 4.1. The partial di�erentials )�(s) are uniquely determined by the
condition that j(s′) = j(s) for all s′ involved in the action of the partial di�eren-
tial on the enhanced state s.

We brie�y describe how to obtain the usual Khovanov homology from the
bracket homology. Let {b} denote the degree shift operation that shifts the ho-
mogeneous component of a graded vector space in dimension m up to dimen-
sion m + b. Similarly, let [a] denote the homological shift operation on chain
complexes that shifts the rth vector space in a complex to the (r + a)th place,
with all the di�erential maps shifted accordingly (cf. [4]). Given an orientation
of the link L, the crossings in the diagram D of L can be assigned to be posi-
tive or negative in the usual way. If n+ and n− are the total number of positive
and negative crossings (classical, not virtual), we can shift the gradings of the
bracket homology H(D) by [−n−] and {n+ − 2n−}. Khovanov proved that this
shifted bracket homology was an invariant of the oriented link:

Theorem 4.2 (Khovanov, [22]). Let D be a link diagram of an oriented link L.
Then

Kℎ(L) ≅ H(D)[−n−]{n+ − 2n−}.
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It is this form of the theory that generalizes nicely to an unoriented version
of Khovanov homology (see Section 6).

There is much more that can be said about the nature of the construction
of this section with respect to Frobenius algebras and tangle cobordisms. The
partial boundaries can be conceptualized in terms of surface cobordisms. The
equality of mixed partials corresponds to topological equivalence of the corre-
sponding surface cobordisms, and to the relationships between Frobenius alge-
bras and the surface cobordism category. The proof of invariance of Khovanov
homologywith respect to the Reidemeistermoves (respecting grading changes)
will not be given here. See [4, 5, 22]. It is remarkable that this version of Kho-
vanov homology is uniquely speci�ed by natural ideas about adjacency of states
in the bracket polynomial.

5. Bracket homology of virtual links
In this section, we describe how to de�ne and calculate Khovanov homol-

ogy for virtual links for arbitrary coe�cients. This section utilizes techniques
from [27] and [8], but shows that all of the auxiliary structure (cf. Section 5.1)
needed to de�ne the homology emanates from the choice of a single arc-labeled
diagram. The arc-labeled diagram turns out to also be perfectly adapted to im-
plementation in a computer algorithm because it encodes the abstract structure
of the virtual knot independent of any planar representation (cf. Section 5.3).

Figure 6. Khovanov complex for the two-crossing virtual unknot.
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As described in the introduction, extending Khovanov homology to virtual
knots for arbitrary coe�cients is complicated by the single cycle smoothing as
depicted in the �rst row and second column of Figure 6. We de�ne a map for
this smoothing � ∶ V ⟶ V. In order to preserve the quantum grading as in
Proposition 4.1, we must have that � is the zero map.

Consider the complex in Figure 6 arising from the 2-crossing virtual unknot.
Composing along the top and right we have �◦� = 0. But composing along the
opposite sides we see

m◦∆(1) = m(1 ⊗ x + x ⊗ 1) = x + x = 2x.

Hence the complex does not naturally commute or anti-commute.
When the base ring is ℤ∕2ℤ the de�nition of Khovanov homology given in

the previous section goes through unchanged. Manturov [27] (see also [29],
[30]) introduced a de�nition of Khovanov homology for (oriented) virtual knots
with arbitrary coe�cients. Dye, Kaestner andKau�man [8] reformulatedMan-
turov’s de�nition and gave applications of this theory. In particular, they found
a generalization of the Rasmussen invariant and proved that virtual links with
all positive crossings have a generalized four-ball genus equal to the genus of
the virtual Seifert spanning surface. The method used in these papers to create
an integral version of Khovanov homology involves placing auxiliary structure
upon a virtual diagram to make corrections in the local boundary maps so that
the individual squares commute. This auxiliary structure includes a base point
set, a global order, a local order, and a cut-system.

Our formulation for generating these structures begins by numbering the
arcs of a link diagram D, see Figure 7. The arcs of each component are labeled
numerically in increasing order. Arc labels change with each pass through a
classical crossing. If a component has no classical crossings or only two arcs,
stabilize with Reidemeister 1 moves until each component has more than two
labeled arcs. This requirement ensures that the increasing order of the arc la-
bels speci�es an orientation of the component by traveling along it (see the right
hand picture of Figure 7). We summarize these speci�cations with a de�nition:

De�nition 5.1. Let L be a virtual link. An arc-labeled diagram is an ordered
pair (D,A)whereD is a link diagram of L andA is a numbering of the arcs of the
diagram D such that

(1) each arc of each component is labeled numerically in increasing order,
changing only when passing through a classical crossing, and

(2) the arc labels specify an orientation on each component by following the
increasing order of the numbered arcs, i.e., all components have three or
more arcs.

If a link L is oriented and each component of a diagram D of L has three or
more arcs, it is possible to choose an arc labeling A for D such that orientation
on (D,A) agrees with the orientation of L.
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Weweremotivated to work with arc-labeled diagrams for two reasons. First,
andmost importantly for this paper, with an arc-labeled diagramone can canon-
ically de�ne a base point set, global order, local order, and cut-system needed to
de�ne integral Khovanov homology. Second, they are the input needed to de-
�ne the PD notation of knots used in knot tables (cf. [7,24]), whichmakes them
conducive for encoding knots for computers (see Section 5.3 for a description
of PD notation).
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P = {(3,4,4,1),(2,7,3,6),(1,6,2,5),(7,5,8,8)}L

P = {(4,3,1,2),(1,4,2,3)}T

Figure 7. A virtual trefoil and a 2-component virtual linkwith
labeled arcs.
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Figure 8. The local order determined by the link orientation.

Figure 9. Inserting cut-points at the crossings using the
canonical source-sink orientation.

5.1. A new auxiliary structure. A diagram with labeled arcs also leads to a
natural base point set, global order, local order, and cut-system. Next we show
how to build this auxiliary structure from a given arc-labeled diagram, (D,A),
of a virtual link L and show that the bracket homology does not depend upon
these choices.

Base points: Smoothing each classical crossing results in amerger of two pairs
of arcs. With each merger, we label each new arc with the smaller of the two
labels. For example, the A-smoothing of the top crossing of the virtual trefoil in
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Figure 7 would result in two new arcs now labeled 1 and 3. After smoothing all
classical crossings we are left with a collection of immersed circles in the plane,
each labeled by the smallest arc in that circle. Since each circle in each state is
made up of the labeled arcs from (D,A), including the smallest labeled arc, we
can place the base point of [8] on each circle halfway along this smallest labeled
arc.

Global order: A global order is a choice of an ordering for each set of circles in
a state. By the process described above for base points, each circle in each state
has a label given by the smallest arc that forms that circle. An ordering for the
set of circles in a state is then given by ordering these labeled circles from least
to greatest.

Sign convention for the hypercube: We follow the approach of [27] to put
signs on the maps that correspond to edges in the hypercube of states. These
signs ensure that each diagram corresponding to a face of the hypercube anti-
commutes. First, an exterior algebra-like object (cf. the ordered tensor product
in [27]) is created by taking thewedge product of the labeled circles given by the
global order. For example, if a state has circles labeled {c1, c3, c7, c9}, then form
the object c1∧c3∧c7∧c9. The sign of themap corresponding to, say, themerger of
circles c3 and c9 in this example is determined by an application of the exterior
algebra structure with a comparison to the local order of a crossing, as follows:
Count the number of transpositions tomove each circle to the head of the global
order to get −c3 ∧ c9 ∧ c1 ∧ c7. If circle 3 and 9 disagree with the local order
(cf. Figure 8) we transpose them; otherwise we do nothing. In this example,
suppose c3 and c9 disagree with the local order. Thus, we get c9 ∧ c3 ∧ c1 ∧ c7.
The circles are then merged to form circle c3 (since 3 is the smaller label, this
will be the corresponding labeled circle in the new state andwill locate the base-
point on that circle). We then count the number of transpositions required to
move c3 to its position determined by the global order: −c1 ∧ c3 ∧ c7. The total
number of transpositions used determines the sign to associate to the merger
map m. In this example, the number of transpositions is �ve, so the merger
map would be −m.

The process for a comultiplication is similar.

Creating a cut-system: As in [8], we place cut points on the diagram to create
a source-sink orientation. Unlike [8], we place cut points algorithmically at
every classical crossing as shown in Figure 9. They are placed very near the
crossing so as not to confuse where the base points are located with respect to
the cut points. This is a well-de�ned cut-system since it is locally well-de�ned,
and away from the classical crossings the source-sink orientation corresponds
to that of the orientation of the link given by the arc labels in (D,A).

The source-sink orientation used in Figure 9 is the same as the one used
in Figure 11 of [8] at the classical crossings. Whenever our convention places
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two cut-points on the same arc, they may be canceled using the �rst two cut-
point moves in Figure 11 of [15]. Thus we obtain a cut-system that is cut-point
equivalent to the canonical cut-system of [8].

Remark 5.2. With the cut-system, base-points and local/global orders so chosen,
one may now delete the orientation as in the right hand pictures of Figure 8 and
Figure 9. From a diagrammatic perspective, an orientation is no longer required
to compute the boundary maps as in Figure 10. However, as described in Ques-
tion 1.1, it is an open question whether or not this can be accomplished without
reference to an orientation.

Modifying the local boundary maps: Algebra to be processed by the local
boundary maps is placed initially at the basepoint of each circle in the state. It
is then transferred to the site where the map occurs (e.g. joining two circles at
that site or splitting one circle into two at that site). Taking a path along the
circle from this basepoint to the site, one will pass either an even number of
cut points or an odd number. If the parity is even, then both x and 1 transport
to x and 1 respectively. If the parity is odd, then x is transported to −x and
1 is transported to 1. The local boundary map is performed (using the signed
map described above) on the algebra, and then in the image state, the resulting
algebra is transported back to the base point(s). As above, the path from the site
back to the base point will pass through an even or odd number of cut points.
The sign of x and 1 at the base point is then determined by this parity according
to the same rules above.

Example 5.3. For the arc-labeled diagram of the two-crossing virtual unknot
in Figure 10, we showhow these choices of global order, local order, base points,
and cut point systems work together. In the hypercube of states in Figure 10,
we have illustrated the situation where the top left state is labeled with 1 and
in the left vertical column we have −∆(1) = −1 ⊗ x − x ⊗ 1. We show how
the initial element 1 appears at the base point of the upper left state and how
it is transported (as a 1) to the site for the co-multiplication. The result of the
co-multiplication is −1 ⊗ x − x ⊗ 1 and this is shown at the re-smoothed site.
To perform the next local boundary map, we have to transport this algebra to a
multiplication site. This result of the co-multiplication is to be transported back
to basepoints and then to the new site ofmultiplication for the next composition
of maps. In the �gure we illustrate the transport just for−x⊗1.At the new site
this is transformed tox⊗1.Notice that the (−x) in this transportmoves through
a single cut-point. We leave it for the reader to see that the transport of −1⊗ x

has even parity for both elements of the tensor product. Thus−1⊗x−x⊗1 is
transported to −1⊗ x + x ⊗ 1 at the multiplication site. Upon multiplying we
havem(−1⊗x+x⊗1) = −x+x = 0.Thuswe nowhave that the composition of
the left and bottom sides of the square is equal to the given zero composition of
the right and top sides of the square (which is a composition to two zero single
cycle maps).
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Figure 10. Computing the Khovanov complex for the two-
crossing virtual unknot.

5.2. Brackethomology. As in Section 4, we cande�ne the chain groupsCi,j(D)
from the states in the hypercube. The auxiliary structure described above, in-
cluding the base point set, global order, local order and cut-system allows one
to de�ne a di�erential )i

A
∶ Ci,j(D) → Ci+1,j(D). The next theorem shows that

(Ci,j(D), )A) is a chain complex. We will refer to the homology of this complex
as the bracket homology of (D,A), and denote itH(D,A).

Theorem 5.4. Let (D,A) be an arc-labeled diagram for a virtual link L. The arc
labels determine a di�erential

)i
A
∶ Ci,j(D) → Ci+1,j(D)

and form (Ci,j(D), )A) into a chain complex. Furthermore, if A′ is another arc
labeling for the same diagram D, thenHi,j(D,A) ≅ Hi,j(D,A′).

Proof. Given an arc-labeled diagram (D,A), use the numbering on the arcs to
de�ne a base point set, global order, local order, and cut-system as described in
the paragraphs above. These choices constitute a valid auxiliary structure for
computing an integral coe�cient homology theory according to [8] (see also
[27]). By Theorem 3(2) of [34], any two valid auxiliary structures on the same
diagram lead to isomorphic homology theories. �

For a given diagramD of an unoriented virtual link L, the arcs of the diagram
can be labeled in di�erent ways. For example, starting with a di�erent arc to
label 1 can clearly change the global order. Also, by changing the orientation
of the labelings on a component of L, the cut-system and therefore the local
order can change. The previous theorem says that the bracket homology does
not depend on the choice of arc labeling and therefore it is independent of the
choice of the auxiliary structure. It also says that the bracket homology is an
invariant of the unoriented link diagram itself (see Remark 5.2). Thus, we may
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make the the following de�nition andworkwith link diagrams instead of (D,A)
from now on.

De�nition 5.5. Given an unoriented link diagram D, label the arcs in order to
produce an arc-labeled diagram, (D,A). The chain complex and bracket homol-
ogy of D is de�ned to be the chain complex and bracket homology of (D,A), i.e.,

) ∶= )A andH(D) ∶= H(D,A).

While the bracket homology itself is independent of changes in the orienta-
tion for a given diagram, calculating it requires the choice of an arc labeling. An
arc-labeled diagram automatically comes with an orientation since each com-
ponent is made up of three or more numerically increasing labeled arcs. The
orientation provided allows us to relate the bracket homology to the Khovanov
homology by shifting the complex appropriately. Thus we obtain:

Theorem 5.6. Given two diagrams, D and D′, for the same unoriented virtual
link L, the bracket homology of each will be isomorphic up to a grading shift. In
particular, for some numbers a and b,

H(D) ≅ H(D′)[a]{b}.

In particular, if D is a link diagram of an oriented virtual link L, and n+ and n−
are the number of positive and negative crossings respectively in D, then

H(D)[−n−]{n+ − 2n−} ≅ Kℎ(L).

Proof. Given two diagrams D and D′, choose an arc labeling for each to ob-
tain arc-labeled diagrams (D,A) and (D′, A′). The arc labelings give rise to a
natural auxiliary structure as outlined in this section, and the arc labelings ori-
ent the diagrams. Therefore, by Theorem 3(3) of [34], the bracket homology
of each, H(D) and H(D′), is isomorphic to the Khovanov homology, with the
usual grading shift determined by the orientation. Since the bracket homolo-
gies are isomorphic to the Khovanov homology of the link, we obtain thatH(D)
and H(D′) are also isomorphic to each other after an appropriate grading shift
(the grading shift accounts for both sequences of Reidemeister moves, as well
as a possible change in orientation). �

Note the similarity between Theorem 5.6 and Theorem 4.2. The bracket ho-
mology for virtual links de�ned in this section is a natural extension of the
bracket homology for classical links described in Section 4. In the classical
case, the two homologies are isomorphic. Other de�nitions for virtual Kho-
vanov homology have been given by [38] and [36]. Each of these de�nitions
give di�erent solutions to handling the di�cult diagramm◦∆ = �◦� discussed
above.
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5.3. PD notation and computer programming. The PD notation is a com-
mon type of coding of knot diagrams along with Gauss code, Gauss diagrams,
and Dowker code (cf. [7, 24]). In this subsection, we show that the PD nota-
tion is entirely determined by an arc-labeled diagram (D,A). First, specify a
4-tuple for each classical crossing by recording the arc label of the incoming
under-crossing arc and then recording the remaining arc labels in order by go-
ing counterclockwise around the crossing (cf. Figure 11). For example, the
tuple for the top crossing in the diagram on the left of Figure 7 is (4, 3, 1, 2).
The set of all 4-tuples is called the PD notation for the link diagram D with la-
beled arcs and is denoted P. The PD notation of the virtual trefoil diagramwith
labeled arcs on the left in Figure 7 is PT = {(4, 3, 1, 2), (1, 4, 2, 3)}. For compari-
son, the PD notation for the link diagramwith labeled arcs for the link L on the
right of Figure 7 is PL = {(3, 4, 4, 1), (1, 6, 2, 5), (2, 7, 3, 6), (7, 5, 8, 8)}.

(a,b,c,d)
a b

cd

Figure 11. Obtaining a 4-tuple for PD notation from a single
classical crossing of an arc-labeled diagram.

Since virtual crossings are merely an artifact of the planar representation of
a virtual link, it is appropriate that PD notation ignores the virtual crossings,
and records only the classical crossings. The set of 4-tuples for the classical
crossings determines an arc-labeled diagram up to virtual Reidemeister moves
and local isotopy. In this sense, PD notation and arc-labeled diagrams are in-
terchangeable.

Having converted arc-labeled diagrams to a set of 4-tuples, note that the aux-
iliary structure, and therefore the homology can be derived algorithmically and
directly from the PDnotation. For example, in any state we know exactly where
the base points are and exactlywhere the cut points are (cf. Figure 9), and there-
fore one can determine the sign for any path from the basepoint to the smooth-
ing site. The reason why there was no program (since 2007) is that the problem
of encoding the needed auxiliary structure seemed insurmountable. Solving
the problem of how to produce the auxiliary structure from the arc-labeled di-
agram (therefore, the PD notation), opened the door to the creation of a new
program to compute Khovanov homology. Such a program has been written,
and will be described in a subsequent paper.

6. Unoriented Khovanov homology
We are now ready to describe the unoriented Khovanov homology in terms

of the bracket homology and a grading shift. Let L be a virtual link and D a
diagram of the link. Using Theorem 5.6, the bracket homology H(D) is an in-
variant of the link up to grading shifts, i.e., given any two diagrams D1 and D2
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of the same link, there are numbers a and b such that H(D1) ≅ H(D2)[a]{b}.
While the bracket homology requires the choice of an orientation for compu-
tation (though it is independent of that choice), the grading shifts (−s− −

1

2
m)

and (s+ − 2s− −
1

2
m) needed to de�ne the unoriented Khovanov homology do

not require such a choice (see the Introduction and Section 2).
For a diagram D of a link L, shift the bracket chain complex (C(D), )) to get

the unoriented Khovanov chain complex:

C̃(D) = C(D)[−s− −
1

2
m]{s+ − 2s− −

1

2
m}. (12)

We do not include �, as � can jump by an even integer by choosing a di�erent
orientation. Let K̃ℎ(D) be the homology of this chain complex.

Theorem 6.1. Let L be an unoriented virtual link, and D1 and D2 be two dia-
grams of L that are equivalent except they di�er by one virtual Reidemeister move
(virtual or classical). Then K̃ℎ(D1) ≅ K̃ℎ(D2).

Proof. For a diagram D of a virtual link L, the homology of the unoriented
Khovanov complex C̃(D) is equal toH(D)[−s−−

1

2
m]{s+−2s−−

1

2
m}. By Theo-

rem 5.6,H(D1) andH(D2) are isomorphic up to a gradings shift. Therefore, we
only need to show that if K̃ℎ(D1) ≅ K̃ℎ(D2)[a]{b}, then a = b = 0. Since D1
and D2 di�er by a single Reidemeister move, we check each type of move. Vir-
tual moves V1, V2, V3 and VM (cf. Figure 1) do not e�ect the enhanced states,
s+, s−, or m. Hence K̃ℎ(D1) = K̃ℎ(D2) in that case. For the �rst classical Rei-
demeister move and the second classical Reidemeister move performed on the
same component, the terms−s− and s+−2s− shift the bracket homology by the
same number as in the proof of the oriented Khovanov homology. For the sec-
ond classical Reidemeistermove performed between twodi�erent components,
H(D1) ≅ H(D2)[1]{1} for the move that removes two mixed-crossings in D1. In
this case, the term −

1

2
m in both grading shifts compensates for this change in

grading. Finally, the third classical Reidemeister move does not change s+, s−
orm, and it induces an isomorphismH(D1) ≅ H(D2). In each case, a = b = 0,
which was to be shown. �

A corollary of this theorem is that K̃ℎ(D) is isomorphic for every diagram D

of L. Thus, K̃ℎ(D) is an invariant of L. Therefore, we de�ne:

De�nition 6.2. Let L be an unoriented virtual link and D be a diagram of L.
The unoriented Khovanov homology of L, denoted K̃ℎ(L), is the homology of the
complex C̃(D).

Remark 6.3. The gradings for the chain complex (C(D), )) are always integer
valued, but the gradings of the shifted unoriented Khovanov chain complex
(C̃(D), ))may be half-integer valued.
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For classical links, the gradings of C̃(D) are always integer valued—there are
always an even number of mixed-crossings in a classical link, thus 1

2
m is always

an integer. Onemight conjecture that the same is true for even links since each
component has an even number of mixed-crossings. This is not true, however,
as the even virtualized Borromean rings in Figure 12 shows:

Figure 12. An even virtual Borromean Rings with an odd
number of mixed-crossings.

Since the homology K̃ℎ(L) can be graded by half-integers, we must extend
the usual integral grading to the additive group 1

2
ℤ. The graded Euler charac-

teristic for unoriented Khovanov homology is then

�q(K̃ℎ(L)) =
∑

i,j∈
1

2
ℤ

(−1)iqj dim(K̃ℎ
i,j

(L)).

Everything in the formula above continues to make sense if we choose the

standard square root of −1, i.e., (−1)
1

2 = i. The graded Euler characteristic of
the unoriented Khovanov homology is a polynomial that may have imaginary
valued coe�cients. Therefore, evaluating the graded Euler characteristic at 1
is of the form ik ⋅ 2l for an even virtual link and 0 for an odd link. We could
have de�ned the unoriented Jones polynomial as this graded Euler character-
istic, which would yield J0

L
(cf. Equation (11)). For some purposes this could

be a reasonable thing to do. However, normalizing the polynomial so that it
evaluates to 2l (even) or 0 (odd) is desirable from the standpoint of matching
and generalizing already known theorems in classical link theory. The main
motivation behind working with the core and mantle of Section 3.2 was to es-
tablish an overall normalization that makes the unoriented Jones polynomial
have integer-valued coe�cients and evaluates like the oriented Jones polyno-
mial. It is the reason for the extra (−1)�̃ in Equation (8). Thus, up to a well
de�ned “sign,” the unoriented Khovanov homology categori�es the unoriented
Jones polynomial:

Theorem 6.4. Let L be a virtual link. Then

J̃L(q) = (−1)�̃�q(K̃ℎ(L)),

where �̃ ∈ 1

2
ℤ.
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The complex number (−1)�̃, i.e., the “sign,” is calculated by choosing an ori-
entation of the virtual link diagram of L, but once computed, the result is inde-
pendent of the choice of that orientation by Theorem 3.16.

Remark 6.5. The correction provided by (−1)�̃ could be incorporated into the
homological grading of C̃(D). De�ne a function l̃ of �̃ to the set {0, 1

2
, 1,

3

2
} by

l̃ =

⎧
⎪

⎨
⎪

⎩

0 if 2�̃ ≡ 0 (mod 4)
1

2
if 2�̃ ≡ 1 (mod 4)

1 if 2�̃ ≡ 2 (mod 4)
3

2
if 2�̃ ≡ 3 (mod 4)

The value l̃ is the same number for any orientation by Theorem 3.16. Replacing
(−s− −

1

2
m) with (l̃ − s− −

1

2
m) in Equation (12) gives an unoriented Khovanov

homology whose graded Euler characteristic is J̃L.

7. Lee homology of unoriented links
Lee [23] makes another homological invariant of knots and links by using a

di�erent Frobenius algebra. She takes the algebra A = k[x]∕(x2 − 1) with

x2 = 1,

∆(1) = 1 ⊗ x + x ⊗ 1,

∆(x) = x ⊗ x + 1 ⊗ 1,

�(x) = 1,

�(1) = 0.

This can be used to de�ne a di�erential )′ and a link homology theory that is
distinct from Khovanov homology. In this theory, the quantum grading j is not
preserved, but one can use j to �lter the chain complex for the Lee homology. The
result is a spectral sequence that starts fromKhovanov homology and converges
to Lee homology.

We can extend Lee’s Frobenius algebra to virtual links to get a bracket com-
plex for Lee theory as follows. The involution de�ned in Section 5 that takes
x ↦ −x as it is transported through a cut point leads to a well-de�ned, �ltered
bracket chain complex, (C′(D), )′), for the algebra A. After shifting overall by
the unoriented gradings-shifts presented in this paper, we get a Lee theory for
a link that does not require a choice of orientation to de�ne the homology:

Theorem 7.1. Let L be an unoriented virtual link and D be any virtual diagram
of L. The unoriented Lee Homology Kℎ′(L), i.e., the homology of the chain com-
plex

(C′(D)[−s− −
1

2
m]{s+ − 2s− −

1

2
m}, )′),

is an invariant of the link L.
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The usual (oriented) Lee homology is simple for classical links. One has
that the dimension of the Lee homology is equal to 2l where l is the number of
components of the link L (cf. Theorem 3.23). Up to homotopy, Lee’s homology
has a vanishing di�erential, and the complex behaves well under link concon-
dance. In his paper [6], Dror BarNatan remarks, “In a beautiful article Eun
Soo Lee introduced a second di�erential on the Khovanov complex of a knot
(or link) and showed that the resulting (double) complex has non-interesting
homology. This is a very interesting result." Rasmussen [35] uses Lee’s result
to de�ne invariants of links that give lower bounds for the four-ball genus, and
determine it for torus knots. Rasmussen’s invariant gives an (elementary) proof
of a conjecture of Milnor that had been previously shown using gauge theory
by Kronheimer and Mrowka [25,26].

In [8], Lee homologywas generalized to virtual knots and links. Applications
of it to unoriented links can be articulated againwith themethods of the present
paper. We will carry this out in detail in a future paper.

8. Future aims
This paper has been devoted to formulating an unoriented version of the

Jones polynomial (via a normalization of the Kau�man bracket polynomial)
and a corresponding version of Khovanov homology for virtual knots and links
that is an unoriented link invariant. We intend the present paper as a basis for
further research and wish to make the following points about future work.

(1) The dependence of the invariant on a choice of orientations is useful in
certain contexts. For example, orientations are useful in the context of
oriented cobordisms. An invariant of the underlying link is useful as
well and may inform on unoriented cobordisms. We will explore the
unoriented version of Lee homology for virtual links described above
and its applications to cobordisms, genus, and Rasmussen invariants in
future research.

(2) This paper grew out of a search for an invariant in a di�erent context:
the 2-factor polynomial for ribbon graphs. A ribbon graph G with a
perfect matchingM can be made to behave like a knot by orienting the
cycles in G ⧵M (see for example [1,3]). However, to de�ne an invariant
of a ribbon graph that is independent of the choice of perfect matchings
of the graph and orientations on the complementary cycles required an
“orientation free” invariant. Remarkably, it turns out that the 2-factor
polynomial for ribbon graphs corresponds to the unoriented Jones poly-
nomial for virtual links de�ned in this paper. The integer-valued (not
complex-valued) evaluation of the polynomial at 1 turns out to be sig-
ni�cant from a graph-theoretic perspective. We explore this idea in [2],
and will do more in future papers.
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(3) As described in Section 5.3, the authors together with Heather Dye and
Aaron Kaestner have constructed a program to calculate the homology
theories discussed in this paper using Theorem 5.4. This will appear in
a subsequent paper.

At the present time, we know remarkably little about virtual Khovanov homol-
ogy. It is our intent that this situation will begin to change with the tools devel-
oped in this paper.
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