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2–dimensional Kähler-Einstein metrics
induced by �nite dimensional
complex projective spaces

Gianni Manno and Filippo Salis

Abstract. In this paper we give a complete list of non-isometric bidimen-
sionalS1-invariantKähler-Einstein submanifolds of a �nite dimensional com-
plex projective space endowed with the Fubini-Study metric. This solves
in the aforementioned case a classical and long-staying problem addressed
among others in [7] and [31].
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1. Introduction
1.1. Description of the problem and state of the art. Holomorphic and
isometric immersions (from now on Kähler immersions) into complex space
forms (i.e. Kähler manifolds with constant holomorphic sectional curvature)
are a classical topic in complex di�erential geometry. Even though it has been
extensively studied starting from S. Bochner’s work [5] and E. Calabi’s seminal
paper [6], a complete classi�cation of Kähler manifolds admitting such type of
immersions does not exist, even for Kähler manifolds of great interest, such as
Kähler-Einstein manifolds and homogeneous Kähler ones.

In [32], M. Umehara classi�ed Kähler-Einstein manifolds that are Kähler
immersed into a �nite dimensional complex space formwith non-positive holo-
morphic sectional curvature: they are the totally geodesic submanifolds of ei-
ther the complex Euclidean space or the complex hyperbolic one. In the case
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when the space form has positive holomorphic curvature, i.e., the complex pro-
jective spaceℂPn (endowed with the Fubini–Study metric gFS), only some par-
tial results exist (see for instance [27, 7, 31, 11, 13, 14]). Motivated by this, in
the present paper we consider the problem to list those complex manifolds ad-
mitting a projectively induced Kähler-Einstein metric.

De�nition 1.1. We say that a Kählermetric on a connected complexmanifoldM
is projectively induced, ifM can be Kähler immersed into a �nite dimensional1

complex projective spaceℂPn endowed with the Fubini–Studymetric gFS , namely
the metric associated to the Kähler form given in homogeneous coordinates by

i
2))̄ log

(
|Z0|2 + … + |Zn|2

)
.

The most relevant facts known so far about complex manifolds admitting
projectively induced Kähler-Einsteinmetrics can be summarized by the follow-
ing theorems:

Theorem A (S. S. Chern [7], K. Tsukada [31]). Let (M, g) be a complete n-
dimensional Kähler–Einstein manifold (n ≥ 2). If (M, g) admits a Kähler im-
mersion into (ℂPn+2, gFS), in particular g is projectively induced, thenM is either
totally geodesic or the complex quadric in (ℂPn+1, gFS).

Theorem B (D. Hulin [14]). If a compact Kähler-Einstein manifold is projec-
tively induced then its Einstein constant is positive.

Considering the previous results and taking also into account that all the
explicit examples hitherto known are homogeneous manifolds (cfr. [28]), it
has been proposed the following conjecture (see e.g. [19, Chap. 4]):

Conjecture 1.2. If (M, g) is a Kähler-Einstein manifold endowed with a projec-
tively induced metric, then it is an open subset of a complex �ag manifold2.

Remark 1.3. The conjecture cannot be extended to Kähler-Einstein manifolds
embedded into the in�nite dimensional complex projective space3, indeed ex-
plicit examples of such non-homogeneous Kähler-Einstein manifolds can be
found in [18, 12].

1Often in the literature, the de�nition of projectively induced metric does not exclude that
ambient complex projective space may be in�nite dimensional. Our choice is dictated by purely
practical reasons, indeed we are going to study a conjecture that cannot be extended to the in�-
nite dimensional setting (see Remark 1.3).

2A compact simply-connected Kähler manifold acted upon transitivity by its holomorphic
isometry group.

3The classi�cation of Kähler-Einstein manifolds admitting an immersion into an in�nite di-
mensional complex space form is an open problem in all three cases (for some partial results see
e.g. [8, 17, 16, 20]).
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1.2. Description of themain result. The present paper is a �rst step toward
a more ambitious research plan aimed at approaching the problem described
in Section 1.1 (in particular, Conjecture 1.2) from a di�erent perspective com-
pared to the past: we do not give any assumption about the codimension of
the studied immersions (cfr. [27, 7, 31, 25]). Our only assumption involves the
group of symmetries of the metric. Indeed, our goal will be to test the above
mentioned conjecture in the case of S1-invariant4Kählermetrics, namely those
Kähler metrics admitting (around a suitable point and in suitable holomorphic
coordinates) a local Kähler potential of the form Φ

(
|z1|2, … , |zn|2

)
.

It is worth pointing out that our assumption �ts well with the purely local
nature of Conjecture 1.2 (no assumptions on the immersions or on the topol-
ogy of the manifolds are required). Therefore, our problem can be viewed as
a favorable situation in which we can investigate how local assumptions have
global implications. In particular, we are going to prove that S1-invariant and
projectively induced Kähler-Einsteinmanifolds are open subsets ofKähler toric
manifolds (Proposition 2.4). We recall that a complex manifoldM of complex
dimension n is said to be toric if it contains a complex torus (ℂ∗)n as a dense
open subset, together with a holomorphic action (ℂ∗)n ×M → M that extends
the natural action of (ℂ∗)n on itself.

Since complex projective spaces are the only irreducible S1-invariant �ag
manifolds and since only the integer multiples of the Fubini-Study metric are
projectively induced (see [6, 19]), in the speci�c case of S1-invariant Kähler
metrics Conjecture 1.2 reads as:
Conjecture 1.4. The only projectively induced and S1-invariant Kähler-Einstein
manifolds are open subsets of ℂPn1 × … × ℂPnk endowed with the Kähler metric

q (c1gFS ⊕…⊕ ckgFS) ,
where k and q ∈ ℤ+, ci =

1
Gk−1

∏
j≠i(nj + 1) for i = 1, … , k and G = gcd(n1 +

1,… , nk + 1), namely the greatest common divisor between n1 + 1,… , nk + 1.

Remark 1.5. The homogeneous spaces
(
ℂPn1×⋯×ℂPnk , q(c1gFS⊕⋯⊕ckgFS)

)

are fully embedded into ℂP(
n1+qc1
qc1

)⋯(nk+qckqck
)−1. A Kähler embedding can be ex-

plicitly described through a composition of suitable normalizations of the Vero-
nese embeddings:

(ℂPn, cgFS) → (ℂP(
n+c
c )−1, gFS)

[Zi]0≤i≤n ↦

√
(c − 1)!
cc−2 [

Zc00 …Z
cn
n

√
c0! … cn!

]
c0+…+cn=c

,

together with a Segre embedding (cfr. [6, 19]).

4Cfr. [17] for a list of projectively induced extremal metrics in the radial case, i.e. those
Kähler metrics admitting a local potential depending only on the sum of the moduli of certain
local coordinates.



KE METRICS INDUCED BY COMPLEX PROJECTIVE SPACES 423

Our main result is contained in the following theorem, that solves Conjec-
ture 1.4 in the 2-dimensional case.

Theorem 1.6. If (M, g) is a Kähler-Einstein surface whose metric is S1-invariant
and projectively induced, then (M, g) is an open subset of either (ℂP2, q gFS) or(
ℂP1 × ℂP1, q(gFS ⊕ gFS)

)
, where q ∈ ℤ+.

Since the only compact Kähler toric surfaces with positive �rst Chern class
that can be endowed with a Kähler-Einstein metric are the ones listed in the
previous theorem and the Fermat cubic5, i.e. the surface obtained by blowing
up three noncollinear points of ℂP2, the following corollary straightforwardly
follows from our main result and Proposition 2.4

Corollary 1.7. The Fermat cubic endowed with the Kähler-Einstein metric stud-
ied by Y. T. Siu in [26], cannot be holomorphically and isometrically immersed
into a �nite dimensional complex projective space.

2. Proof of Theorem 1.6
The proof of Theorem 1.6 is organized in three subsections, described below.
In Section 2.1, we recall the de�nition ofCalabi’s diastasis function andBoch-

ner’s coordinates.
In Section 2.2, on account of the results recalled in Section 2.1, by proving

several auxiliary lemmas, we rephrase in Proposition 2.6 the statement of The-
orem 1.6 in terms of existence and uniqueness of polynomial solutions of a par-
ticular family of real Monge-Ampère equations, where the unknown function
is the Calabi’s diastasis function and the independent variables are the moduli
of the Bochner’s coordinates. The existence of polynomial solutions is a part
of Proposition 2.6, whereas the proof of the uniqueness of such solutions is the
core of Section 2.3.

In fact, in Section 2.3, we �nd a set of suitable initial conditions for the afore-
mentioned family of Monge-Ampère equations: an arbitrary polynomial solu-
tion to a Monge-Ampère equation of this family needs to satisfy one and only
one initial condition of such set. Taking this into account, in the end of the
section, we prove that the solutions we listed in Proposition 2.6 are actually
unique, thus getting the statement of Theorem 1.6.

2.1. Calabi’s diastasis function. In order to prove Theorem 1.6, we need to
recall the de�nition of Calabi’s diastasis function and some of its properties.

Let (M, g) be a Kähler manifold with a local Kähler potential Φ, namely
! = i

2
))̄Φ, where ! is the Kähler form associated to g. If g (and hence Φ)

is assumed to be real analytic, by duplicating the variables z and z̄, Φ can be

5There exist only �ve distinct compact complex toric Fano surfaces (up to isomorphisms).
They are ℂP1 ×ℂP1 and ℂP2#kℂP2, with 0 ≤ k ≤ 3 (see e.g. [23] and references therein). Since
a complex Fano surface admits aKähler-Einsteinmetric if and only if the Calabi-Futaki invariant
vanishes (see e.g. [29]),ℂP1 ×ℂP1,ℂP2 andℂP2#3ℂP2 are the only compact toric Fano surfaces
admitting a Kähler-Einstein metric.
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complex analytically extended to a function Φ̃ de�ned in a neighbourhood U
of the diagonal containing (p, p̄) ∈ M × M̄ (here M̄ denotes the manifold con-
jugated to M). Thus one can consider the power expansion of Φ around the
origin with respect to z and z̄ and write it as

Φ(z, z̄) =
∞∑

j,l=0
ajlzmj z̄ml , (1)

where we arrange every n-tuple of nonnegative integers as a sequence
mj = (mj,1, … ,mj,n) and order them as follows: m0 = (0, … , 0) and if |mj| =∑n

�=1mj,�, |mj| ≤ |mj+1| for all positive integer j. Moreover, zmj denotes the
monomial in n variables

∏n
�=1 z

mj,�
� .

A Kähler potential is not unique, but it is de�ned up to an addition of the real
part of a holomorphic function. The diastasis function D0 for g is nothing but
the Kähler potential around p such that each matrix (ajk) de�ned according to
equation (1) with respect to a coordinate system z = (z1, … , zn) centered in p,
satis�es aj0 = a0j = 0 for every nonnegative integer j.

Moreover, for any real analytic Kähler manifold there exists a coordinates
system, in a neighbourhood of each point, such that

D0(z) =
n∑

�=1
|z�|2 +  2,2, (2)

where  2,2 is a power series with degree ≥ 2 in both z and z̄. These coordi-
nates, uniquely determined up to unitary transformation (cfr. [5, 6]), are called
Bochner’s coordinates (cfr. [5, 6, 13, 14, 24, 30]).

Notice that throughout this paper we will consider either projectively in-
duced metrics or Kähler-Einstein metrics. In both cases these metrics are real
analytic6 and hence diastasis functions and Bochner’s coordinates are de�ned.
Moreover, in the particular case of S1-invariant metrics, the diastasis function
around the origin of the Bochner’s coordinates system is a S1-invariant Kähler
potential.

2.2. RealMonge-Ampère equations. The lemmas contained in this section
hold for manifolds of arbitrary dimension. By applying them to the bidimen-
sional case, we show how the property of the projectively inducedmetrics to be
S1-invariant , allows us to address Conjecture 1.4 through real analysis’ tech-
niques. Indeed, we prove the equivalence of the statement of Theorem 1.6 to
a uniqueness problem in a class of solutions of a family of real Monge-Ampère
equations (Proposition 2.6).

6The condition of being a Kähler-Einstein metric reads locally, with respect to any local holo-
morphic coordinates (that clearly are real analytic), as a nonlinear overdetermined system of
fourth-order elliptic PDEs. The real-analycity of � follows from regularity results for elliptic
PDEs (see e.g. [4]).
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Lemma 2.1. Let V be an open subset of ℂn where it is de�ned a S1-invariant
potential for a Kähler metric g. Let f ∶ (V, g) → (ℂPN , gFS) be a full7 Kähler
immersion. Then D0(z) can be written as

D0(z) = log (P(z)) , (3)

where

P(z) = 1 +
n∑

j=1
|zj|2 +

N∑

j=n+1
aj|z

mℎj |2 (4)

with aj > 0 and ℎj ≠ ℎl for j ≠ l.

Proof. Recall that Z0, … , ZN are the homogeneous coordinates on ℂPN (see
De�nition 1.1). Up to a unitary transformation of ℂPN and by shrinking V if
necessary we can assume f(p) = [1, 0… , 0] and f(V) ⊂ U0 = {Z0 ≠ 0}. Since
the a�ne coordinates on U0 are Bochner’s coordinates for the Fubini–Study
metric gFS, by [6, Theorem 7], f can be written as:

f ∶ V → ℂN , z = (z1, … , zn) ↦ (z1, … zn, fn+1(z), … , fN(z)),
where

fj(z) =
∞∑

l=n+1
�jlzml , j = n + 1,… ,N.

Since the diastasis function is hereditary (see [6, Prop. 6] ) and that of ℂPn
around the point [1, 0… , 0] is given onU0 byΦ(z) = log(1+∑N

j=1 |zj|
2), where

zj =
Zj
Z0
, one gets

D0(z) = log
⎛
⎜
⎝
1 +

n∑

j=1
|zj|2 +

N∑

j=n+1
|fj(z)|2

⎞
⎟
⎠
.

The rotation invariance of D0(z) and the fact that f is full imply that the fj’s
are monomials of z of di�erent degree and formula (3) follows. �

By setting
x = (x1, … , xn) = (|z1|2, … , |zn|2) , (5)

the diastasis function D0 of a S1-invariant Kähler metric g can be viewed as a
function of the real variables xi.

From now on we set, with a little abuse of notation,

P(x) = P(z(x)) , (6)

where P(z) is given by (4) and x by (5).
A diastasis function of a S1-invariant Kähler-Einsteinmetric satis�es the fol-

lowing lemma.

7A holomorphic immersion f∶ U → ℂPn is said to be full provided f(U) is not contained in
any ℂPℎ for ℎ < n.



426 GIANNI MANNO AND FILIPPO SALIS

Lemma 2.2. If g is a S1-invariant Kähler-Einstein metric, its diastasis D0(x),
where x is given by (5), is a solution of the real Monge-Ampère equation

det (
)2D0
)x�)x�

x� +
)D0
)x�

���) = e−
�
2
D0 (7)

where ��� is the Kronecker delta and � is the Einstein constant.

Proof. A Kähler metric g with diastasis function D0(z) is Einstein (see e.g.
[21]) if and only if there exists � ∈ ℝ such that

� i2))̄D0 = −i))̄ log det(g��̄).

Hence, by the ))̄-lemma, there exists a holomorphic function ' such that

det(g��̄) = e−
�
2
(D0+'+'̄). (8)

Once Bochner’s coordinates are set, by comparing the series expansions of both
sides of the previous equation, we get that '+ '̄ is forced to be zero (cfr. [3, 14,
25]). The PDE (8), in coordinates (5), coincides with (7). �

Lemma 2.3. The Einstein constant � of a projectively induced and S1-invariant
Kähler-Einstein manifold of dimension n is a positive rational number less than
or equal to 2(n + 1).

Proof. By Lemma 2.1, the diastasis of a S1-invariant and projectively induced
Kähler metric can be written as D0(x) = log(P(x)), where P is a polynomial of
type (6). By Lemma 2.2, we have

Dn(P) = P−
�
2
+n+1, (9)

where we denote byDn the following di�erential operator

Dn(P) =
det [(P )2P

)x�)x�
− )P

)x�

)P
)x�

) x� + P )P
)x�

���]
1≤�,�≤n

Pn−1 .

By multilinearity of determinants and by considering that ( )P
)x�

)P
)x�

x�)1≤�,�≤n is
a rank-1matrix, we get that left side of (9) is a polynomial. Therefore � needs to
be a rational number satisfying the inequality −�

2
+ n + 1 ≥ 0. Then we obtain

the upper bound for the Einstein constant �. Furthermore, by comparing the
degrees of both sides of (9), we get � ≥ 2 n

deg P
> 0. �

Proposition 2.4. AnS1-invariantKähler-Einsteinmanifold endowedwith apro-
jectively induced metric is an open subset of a simply-connected compact Kähler
toric Fano manifold.

Proof. According to Hulin’s results [13], every Kähler-Einstein manifold em-
bedded into a (possibly in�nite dimensional) complex projective space can be
extended to a complete Kähler-Einstein manifoldM. Since by Lemma 2.3 the
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Einstein constant ofM needs to be positive, then it follows from theMyers’ the-
orem thatM is compact. Moreover,M is also simply connected by awell-known
theorem of Kobayashi [15].

The existence of a S1-invariant Kähler potential yields the existence of n =
dimM local commuting Killing vector �elds Xi corresponding to the S1-action
on the special holomorphic coordinates. Being M a real-analytic and simply-
connected manifold, each Killing vector �eld Xi can be extended to a unique
Killing vector �eld X̃i de�ned on the whole manifold by Nomizu’s extension
theorems [22]. Furthermore, we have that [X̃i, X̃j] ≡ 0.

Since Killing vector �elds vanish at most on (n − 1) - complex dimensional
submanifolds, there exists an open dense subset U ofM where

D = span{X̃1, … , X̃n}

is a distribution of rank n.
Being M compact, every Killing vector �eld is also Hamiltonian and real

holomorphic. Then

d(!(X̃i, X̃j)) = −i[X̃i ,X̃j]! + iX̃iℒX̃j! − iX̃jℒX̃i! ≡ 0,

where ! is the Kähler form onM. Since !(Xi, Xj)|0 = 0, D|U is an integrable
Lagrangian distribution. Hence,M is toric. �

Remark 2.5. It’sworth to notice that every local immersion of a simply-connected
manifold into a complex space form can be extended to a global one (cfr. [6]).

Now, let � be the Einstein constant of a projectively induced and S1-invariant
Kähler-Einsteinmanifold of dimensionn. In viewof Lemma2.3, � = 2 s

q
, where

gcd(s, q) = 1. Since gcd(2nq, s) = 1, a polynomial solution of type (6) to (9), is
forced to be the q-th power of a polynomial R(x). After the change of variables
x = x̃

q
, we easily check that R(x̃) is a solution for (9) with q = 1. Vice versa,

every solution R(x̃) of (9) for q = 1 gives rise to a solution of (9) for q ≠ 1 by
taking the q-th power ofR(x̃) and by considering the same changing of variables
x̃ = qx. Hence, we are going to study from now on the real Monge-Ampère
equations (9) just when q = 1.

By restricting (9) to the case n = 2, by recalling that, for our purposes, we
consider only solutions belonging to the polynomial class (6) and that the upper
bound for the above parameter s can be obtained by Lemma 2.3, we have that
the statement of Theorem 1.6 can be get by proving the following proposition.

Proposition 2.6. The only solutions of type

P(x) = P(x1, x2) = 1 + x1 + x2 + �(x1, x2), (10)

where � is a polynomial with positive coe�cients and no terms of degree less than
2, to the real Monge-Ampère equation

D2(P) = P3−s (11)
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for some integer s ∈ {1, 2, 3}, are

⎧

⎨
⎩

1 + x1 + x2, when s = 3;
(1 + x1)(1 + x2) when s = 2;
(1 + x1+x2

3
)3 and (1 + x1

2
)2(1 + x2

2
)2 when s = 1.

(12)

Remark 2.7. The holomorphic coordinate system we choose to study Kähler-
Einstein metrics on compact Kähler toric surfaces might appear unnatural, if
we consider the existence of coordinate systems more studied and more suit-
able for this purpose, such as symplectic coordinates (see e.g. [1]). On the one
hand, symplectic coordinates would lead to re-interpret our problem as a clas-
si�cation of particular solutions to a special case of the Abreu equation, a PDE
better suited than (9) to be studied from an analytical point of view and exten-
sively studied in the last few decades (see e.g. [2, 10, 9]). On the other hand, we
would lose the polynomial nature of our problem, making harder the algebraic
considerations on which our approach is based on.

2.3. Proof of Proposition 2.6. As a �rst step towards the proof of Proposition
2.6, we characterize the initial conditions that an arbitrary polynomial solution
of type (10) to the Monge-Ampère equation (11) needs to satisfy on the coordi-
nate axes. These conditions will be given by the Corollary 2.9 of the following
lemma, that holds true for any dimension.

Lemma 2.8. The restriction p on a coordinate axis of a polynomial solution of
type (6) to the Monge-Ampère equation (9) reads as:

⎧
⎪
⎨
⎪
⎩

p(t) = 1 + t, when s = n + 1;

p(t) =
(
1 + t

k

)k
, with k ∈ {1, 2} when s = n;

p(t) =
(
1 + t

k

)k
, with k ∈ ℤ+ when 1 ≤ s ≤ n − 1.

(13)

Proof. Let p be the restriction on the i-th coordinate axis (i.e. the line xj =
0, for j ≠ i) of a polynomial solution P of type (6) to the Monge-Ampère equa-
tion (9). Hence, we have that

D1 (p(t)) q(t) = p(t)n−s+1, (14)

where the polynomial q(t) is the restriction on the i-th coordinate axis of∏j≠i
)P
)xj

.

Let {−r1, … , −rR} be the (possibly complex) distinct roots of p, namely8

p(t) = 1
∏R

i=1 r
ki
i

R∏

i=1
(t + ri)ki .

8Notice that the constant term of p(x) and q(x) are �xed to be equal to 1 by the de�nition of
(6).
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Considering that

D1
⎛
⎜
⎝

R∏

i=1
(t + ri)ki

⎞
⎟
⎠
=

R∏

i=1
(t + ri)2ki−2

R∑

i=1
kiri

R∏

j=1
j≠i

(t + rj)2,

the equation (14) can be written as

⎛
⎜
⎜
⎝

R∑

i=1
kiri

R∏

j=1
j≠i

(t + rj)2
⎞
⎟
⎟
⎠

q(x) = 1
∏R

i=1 r
ki(n−s−1)
i

R∏

i=1
(t + ri)ki(n−s−1)+2.

Therefore we get

q(t) = 1
∏R

i=1 r
ki(n−s−1)+2
i

R∏

i=1
(t + ri)ki(n−s−1)+2 (15)

and
R∑

i=1
kiri

R∏

j=1
j≠i

(t + rj)2 −
R∏

i=1
r2i = 0. (16)

Let us now consider (16) as a linear system in the variables k1, … , kR. If R = 1,
such a system consists of just one equation, which has a unique solution: k1 =
r1. If R ≥ 2, it cannot be compatible for any t. Indeed, being the left hand side
of (16) a polynomial in t of degree 2R − 2, in particular its �rst R higher order
coe�cients have to vanish. Therefore, k1, … , kR need to satisfy a homogeneous
system, whose determinant of the coe�cients matrix can be easily computed:

R!
R∏

i=1
ri

∏

1≤i<j≤R
(ri − rj).

In viewof our hypotheses, suchdeterminant is always di�erent fromzero. There-
fore our system admits only the trivial solution, leading to a contradiction, since
ki represent the multiplicity of a root of a polynomial, so they should be posi-
tive. �

Corollary 2.9. Anarbitrary polynomial solution of type (10) to theMonge-Ampère
equation (11) satis�es one and only one of the following initial conditions on the
coordinate axis x2 = 0:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

P(x1, 0) = 1 + x1,
)P
)x2
(x1, 0) = 1 when s = 3;

P(x1, 0) = 1 + x1,
)P
)x2
(x1, 0) = 1 + x1 when s = 2;

P(x1, 0) =
(
1 + x1

2

)2
, )P
)x2
(x1, 0) =

(
1 + x1

2

)2
or

P(x1, 0) =
(
1 + x1

3

)3
, )P
)x2
(x1, 0) =

(
1 + x1

3

)2
when s = 1.

(17)
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Proof. Let P be a solution of type (10) to (11). By Lemma 2.8, P(x1, 0) =
(
1 + x1

k

)k
and P(0, x2) =

(
1 + x2

ℎ

)ℎ
for suitable k, ℎ ∈ ℤ+. Moreover, by (15),

)P
)x2
(x1, 0) =

(
1 + x1

k

)k(1−s)+2
and )P

)x1
(0, x2) =

(
1 + x2

ℎ

)ℎ(1−s)+2
. By computing

)2P
)x1)x2

(0, 0), we get k = ℎ. Therefore, P reads as:

(1 + x1
k )

k
+ (1 + x2

k )
k
− 1 + x1 (1 +

x2
k )

k(1−s)+2
+ x2 (1 +

x1
k )

k(1−s)+2

− x1 − x2 − (1 − s + 2
k) x1x2 + x21x

2
2 �(x1, x2), (18)

where � is a polynomial. By putting (18) in (11), by di�erentiating both sides of
the equation by )2

)x1)x2
and by evaluating at (0, 0), we straightforwardly get the

Diophantine equation s2k2 − 5sk + 6 = 0. Therefore, by solving the previous
equation, we easily get our statement. �

Since each solution (12) satis�es the correspondent initial condition (17), we
conclude the proof of Proposition 2.6 by showing that

Lemma 2.10. If there exists a polynomial solution to (11) satisfying an initial
condition of type (17), then it is unique.

Proof. LetFs be a functionwhose zero de�nes the PDE (11), i.e.,Fs ∶= D2(P)−
P3−s. Then, from a straightforward computation, we get the following formula

)ℎFs
)xℎ2

(x1, 0) =

(ℎ (P)
2P
)x21

x1 − ( )P)x1
)
2
x1 + P )P)x1

) )
ℎ+1P
)xℎ+12

+ Tℎ) (x1, 0) , (19)

where Tℎ(x1, 0) is a polynomial expression in x1, P(x1, 0) and derivatives of P
up to order ℎ + 1 (computed in (x1, 0)), that does not contain

)ℎP
)xℎ2

(x1, 0) and
)ℎ+1P
)xℎ+12

(x1, 0). If P is a polynomial solution to (11) satisfying an initial condition

of type (17), P(x1, 0) =
(
1 + x1

k

)k
for a suitable integer k, hence we have

(P)
2P
)x21

x1 − ( )P)x1
)
2
x1 + P )P)x1

) (x1, 0) = (x1k + 1)
2k−2

≢ 0.

By considering formula (19) when ℎ = 1, we realize that initial conditions (17)
uniquely determine )2P

)x22
(x1, 0), from which one obtains )2+ℎP

)xℎ1 )x
2
2
(x1, 0) for every

ℎ ∈ ℕ. By iteration, we get the whole Taylor expansion of P on the line x2 = 0.
Therefore, we get the statement of the lemma. �
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