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ABSTRACT. In this paper we obtain descriptions of central operator-valued
Schur and Herz-Schur multipliers, akin to a classical characterisation due to
Grothéndieck, that reveals a close link between central (linear) multipliers
and bilinear multipliers into the trace class. Restricting to dynamical sys-
tems where a locally compact group acts on itself by translation, we identify
their convolution multipliers as the right completely bounded multipliers,
in the sense of Junge-Neufang-Ruan, of a canonical quantum group associ-
ated with the underlying group. We provide characterisations of contractive
idempotent operator-valued Schur and Herz-Schur multipliers. Exploiting
the link between Herz-Schur multipliers and multipliers on transformation
groupoids, we provide a combinatorial characterisation of groupoid multipli-
ers that are contractive and idempotent.
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1. Introduction

Schur multipliers originated in the work of Schur on the Hadamard entry-
wise product of matrices in the early twentieth century. These are complex-
valued functions, defined on the Cartesian product X XY of two measure spaces
(X, u) and (Y, v) that give rise to completely bounded maps on the space X of
all compact operators from L2(X, u) into L?(Y, v), acting by pointwise multipli-
cation on the integral kernels of the operators from the Hilbert-Schmidt class.
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A concrete description of these objects, which has found numerous applica-
tions thereafter, was given by Grothéndieck in his Resumé [14]. Since then,
Schur multipliers have played a significant role in operator theory, the theory
of Banach spaces, the theory of operator spaces, and have been linked to per-
turbation theory through the concept of double operator integrals (see [8, 24]
and the references therein).

The theory of Herz—Schur, or completely bounded, multipliers of the Fourier
algebra of a locally compact group originated in the work of Herz [17], where
they were viewed as a generalisation of Fourier-Stieltjes transforms. Similarly
to Schur multipliers, Herz—Schur multipliers are complex-valued functions, this
time defined on a locally compact group G, that give rise to completely bounded
maps on the reduced C*-algebra C;(G) of G, acting by pointwise multiplication
on its subalgebra L}(G). An important development in the subject were the
works of Gilbert and of Bozejko and Fendler [5], showing that the Herz-Schur
multipliers on the locally compact group G can be isometrically identified with
the space of all Schur multipliers on G X G of Toeplitz type. Haagerup [15] pio-
neered the use of Herz-Schur multipliers to study the approximation properties
of operator algebras (see also [6]).

Recently, several generalisations of Schur and Herz-Schur multipliers to the
‘operator-valued’ case have appeared: Bédos and Conti [2, 3] introduced mul-
tipliers of a C*-dynamical system based on a Hilbert module version of the
Fourier-Stieltjes algebra, and applied these techniques to study C*-crossed prod-
ucts while, in [28], three of the present authors defined Schur and Herz-Schur
multipliers with values in the space of all completely bounded maps on a C*-
algebra and obtained a version of the Bozejko-Fendler correspondence. The
use of multiplier techniques to study reduced crossed products, following
Haagerup’s work, has been furthered by Skalski and three of the present au-
thors in [27], by the first author in [26], and by the first and the fourth authors
in [29].

In this paper we consider special cases of the multipliers defined in [28]. We
define central Schur and Herz-Schur multipliers in Definition 3.2 and Defini-
tion 3.8, respectively. They are associated with completely bounded maps on
a C*-algebra A that are multiplication operators by elements of the centre of
the multiplier algebra of A, and are one of the most common type of multipli-
ers that appear in specific circumstances. A special case of particular impor-
tance arises when A is abelian. Given a central Herz-Schur multiplier of the
C*- dynamical system (A, G, @), the corresponding completely bounded map
on the crossed product is an A-bimodule map. Such maps were considered by
Dong and Ruan [9] in their study of the Hilbert module Haagerup property
of crossed products. Exploiting the fact that commutative (unital) C*-algebras
are algebras of continuous functions on compact topological spaces, we identify
the central Schur and Herz-Schur multipliers with scalar-valued functions on
three and two variables, respectively. This allows us to identify a close link, that
seems to have remained unnoticed until now, between central multipliers and
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the bilinear Schur multipliers into the trace class, introduced and characterised
by Coine, Le Merdy and Sukochev in [8] (see also [24]).

A C*-dynamical system of particular importance is (Cy(G), G, ), where G is
a locally compact group, Cy(G) is the C*-algebra of all continuous functions on
G vanishing at infinity, and f is the left translation action of G on Cy(G). The
second main class of maps we are concerned with are the convolution multi-
pliers of (Cy(G), G, B) introduced in [28]. We answer [28, Question 6.6], identi-
fying the Herz-Schur multipliers of the latter dynamical system with the right
multipliers of a canonical quantum group associated with G; in the case where
G is abelian, we show that these multipliers coincide with the elements of the
Fourier-Stieltjes algebra B(G x I'), where I' is the dual group of G.

Finally, we investigate when the special classes of multipliers considered in
this paper give rise to idempotent completely bounded maps. The general study
of idempotent Herz-Schur multipliers goes back to Cohen [7], who charac-
terised all idempotent elements of the measure algebra M(G). In [18], Host
generalised Cohen’s characterisation by identifying the general form of idem-
potents in B(G), for any locally compact group G, while Katavolos and Paulsen
in [22] and Stan in [41] gave characterisations of contractive idempotent Schur
multipliers and contractive idempotent Herz—Schur multipliers respectively,
based on a combinatorial 3-of-4 property. In this paper, we use the 3-of-4 prop-
erty to obtain characterisations of various classes of central idempotent Schur
multipliers and idempotent Herz—Schur multipliers of dynamical systems.

The paper is organised as follows. Section 2 contains background material,
including a review of crossed products and multipliers as introduced in [28].
The section also includes some preliminary results that will be needed later.
In Section 3 we define central Schur A-multipliers, and present a characterisa-
tion of the central Schur Cy(Z)-multipliers, followed by a similar characterisa-
tion of central Schur A-multipliers for an arbitrary C*-algebra A. After intro-
ducing central Herz—Schur multipliers, we characterise the central Herz-Schur
(A, G, )-multipliers, the central Herz-Schur (Cy(Z), G, @)-multipliers, as well
as their canonical positive cones. Convolution multipliers are considered in
Section 5, first in the abelian and then in the general case. Therein, we also in-
vestigate idempotent multipliers within the classes of central and convolution
multipliers from Section 3 and Section 4.

2. Preliminaries

Throughout this paper, we make the following standing separability assump-
tions: unless otherwise stated, we consider only separable C*-algebras, sepa-
rable Hilbert spaces and second-countable locally compact groups. These as-
sumptions allow us to consider multipliers defined on standard measure spaces.
However, we note that the results remain valid for the case of discrete spaces
with counting measure, in which case the separability assumptions above can
be dropped.
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2.1. General background.

2.1.1. Measure spaces. We fix for the whole paper standard measure spaces
(X, w) and (Y, v); this means that there exist locally compact, metrisable, com-
plete, separable topologies on X and Y (called admissible topologies), with re-
spect to which u and v are regular Borel o-finite measures. The direct products
X XY and Y X X are equipped with the corresponding product measures. We
use standard notation for the LP spaces over (X, ) and (Y,v) (p = 1,2, c0);
we will also consider (not necessarily countable) sets equipped with counting
measure, in which case we write £°(X) in place of LP(X).

Given a Banach space B, the space LP(X, B) (p = 1, 2) is the space of (equiva-
lence classes of) Bochner p-integrable functions from X to B with respect to u;
each of these spaces contains the algebraic tensor product C.(X) ® B as a dense
subspace. The identification L2(X, ) =~ L*(X) ® J{ will be used frequently;
here, and in the sequel, we denote by £L&QH Hilbertian tensor product of Hilbert
spaces £ and . We refer to Williams [43, Appendix B.I.4] for further details.

Let B(H, £) be the space of all bounded linear operators from J into £; we
write as usual B(H) = B(H,H). For a weak*-closed subspace M C B(H, L)
we let L*(X, M) denote the space of (equivalence classes of ) bounded functions
f : X — M such that, for each x € X and £ € L*(X, %), n € L*(X, L), the
functions x ~ f(x)(§(x))and x — f(x)*(n(x)) are weakly measurable as func-
tions from X to £ and from X to J(, respectively. We equip L*°(X, M) with the
norm || f|| := esssup, ., ||f(x)|| and identify each f € L*(X, M) with the op-
erator Dy from L*(X, #) to L*(X, £) given by (D£)(x) = f(x)&(x). See Take-
saki [42, Section IV.7] for details. We write L (X, ) for the space of (equiva-
lence classes of) bounded weakly measurable #(-valued functions on X.

Since we have a standing second-countability assumption for locally com-
pact groups (except when we specify a discrete group) our groups are metrisable
as topological spaces, and are hence standard measure spaces when equipped
with left Haar measure.

2.1.2. Operator spaces. Consider (concrete) operator spaces V C B(H ) and
W C B(L). The norm-closed spatial tensor product of V' and W will be writ-
ten V ® W, while if V and W are weak*-closed, their weak*-spatial tensor
product will be denoted V ® W. The operator space projective tensor product
V ® W satisfies the canonical completely isometric identifications (V/ ® W)* =
CB(V,W*) = CB(W,V*) [10, Corollary 7.1.5]; if M and N are von Neumann
algebras, V. = M, and W = N,, then (V ® Wy =M ® N, up to a complete
isometry [10, Theorem 7.2.4]. For u € M,(V © W) let ||[u||,, = inf{||al|||b||},
where the infimum is taken over all integers p, and all matrices a € M,, ,(V)
and b € M, ,(W), such thatu; ; = 3}, a; ) ® by ;; the Haagerup tensor product
V ®" W is the completion of the operator space VO W in ||-||,; see [10, Chapter
9] for further details.

For an index set I, we will write C;’(V) for the operator space of families
(x)ier € V such that the sums )}, <y X; x; are uniformly bounded over all finite
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sets J C I; equivalently, CY(M) = ¢2(I), ® M, where ¢2(I), denotes ¢2(I),
equipped with the column operator space structure. Similarly, R’(V') denotes
the operator space of families (x;);c; € V such that the sums Zi oy Xix; are
uniformly bounded over all finite sets J C I; equivalently, RY(M) = 2, @M,
where ¢%(I), denotes ¢?(I), equipped with the row operator space structure.
Further details on the row and column spaces can be found in [10] and [36]. If
V and W are dual operator spaces then their weak* Haagerup tensor product
will be written V @Y " W; a typical elementu € V QU Wisu = ZieI fi®g,
where I is some cardinal, [ = (f;)ic; € R(V) and g = (gp)ier € C7(W); see
[4] for further details.

2.1.3. The trace and Hilbert-Schmidt classes. Let 7( and £ denote Hilbert
spaces. We write K (F(, £) (resp. 8;(F(, £)) for the compact (resp. trace class)
operators from H to £ and use the simplified notation K (H) := K (I, F), etc.
The space 8;(J(, £) is equipped with the norm ||T||; := tr(|T|). Recall that, via
trace duality, we have isometric identifications

S1(H, L) = K(L,H)* and  B(L,H) = 8, (H, L) .

The space of Hilbert-Schmidt operators T : # — £, with the norm ||T||, :=
(tr(T*T))'/2, will be denoted S,(¥, £). These spaces will often appear with
H = L*(X,u) and £ = L3(Y,v), in which case we will write 8,(X,Y), 8,(X),
etc.

2.1.4. Crossed products. Let A be a C*-algebra, viewed as a subalgebra of
B(%(,), where ¥ 4 denotes the Hilbert space of the universal representation of
A. Let G be a locally compact group with modular function A, equipped with
left Haar measure mg, and @ : G — Aut(A) be a group homomorphism which
is continuous in the point-norm topology, i.e. for alla € A the map s — ag(a) is
continuous from G to A; we say (A, G, «) is a C*-dynamical system. The space
LY(G, A) is a Banach x-algebra when equipped with the product x given by

(fxg) = f f®as(gs™)ds, f,g €LY G,A), t G,
G

the involution * defined by
[ := A a(f(s7)), [ €LYG,A), sEG,

and the L'-norm ||f||; := J ||f(s)||ds. These definitions also give a sx-algebra
structure on C,.(G, A), which is a dense *-subalgebra of L'(G, A). Given a faith-
ful representation 6 : A — B(¥Hy), we define new representations of A and G
on L?(G, #(p) as follows:

7% 1 A = B(L*(G, Hy)); (7(@)é)(t) 1= 6(a-1(a))(£(D)),
28 1 G = B(LXG, Hp)); (A2E)(s) := E(t71s),



6 A. MCKEE, R. POURSHAHAMI, I. TODOROV AND L. TUROWSKA

foralla € A, s,t € G, & € L*G, (). Then Aisa (strongly continuous)
unitary representation of G and

79(a (@) = °7%(a)(1%)*, ae€A, teG.

The pair (7, 1) is thus a covariant representation of (A, G, «) and therefore
gives rise to a %-representation 70 % 1° 1 LY(G, A) — B(LA(G, Hyp)) given by

(7 X A9)(f) : = f 7°(f(s))A%ds, f € L'(G,A).

G

The reduced crossed product A X, . G of A by G is independent of the choice of
the faithful representation 8 and is defined as the closure of (7° X 1°)(L'(G, A))
in the operator norm of B(L?(G, #(y)); if we want to emphasise the representa-
tion © of A was used, we will write A X, ¢ G. In Section 4 we will use the weak*
closure A ><1§’; G of AX, G. In what follows we will often simplify our notation
by omitting the superscript 8. More on reduced crossed products can be found
in Pedersen [34, Chapter 7], and Williams [43].

2.2. Multipliers. We will use some well-known results on classical Schur and
Herz-Schur multipliers, as well as results from [28]. We recall some definitions
and results required later.

2.2.1. Schur multipliers. Let (X, u) and (Y, v) be standard measure spaces.
We say E C X X Y is marginally null if there exist nullsets M C X and N CY
suchthat E C (M XY)U (X X N). Two measurable sets E,F C X XY are called
marginally equivalent if their symmetric difference is marginally null; we say
that two functions ¢, 9 : X XY — C are marginally equivalent if they are equal
up to a marginally null set. A measurable set E C X X Y is called w-open if
it is marginally equivalent to a set of the form Uy nI X Ji, where I, C X and
Jr €Y are measurable, k € N. The collection of w-open subsets of X X Y is a
pseudo-topology on X XY — it is closed under finite intersections and countable
unions; see [11, Section 3]. A function h : X XY — C is called w-continuous
[11]if A~Y(U) is w-open for every open set U C C.

Let J be a separable Hilbert space and A C B(J) be a separable C*-algebra.
With any k € L>(Y X X, A), one can associate an element

Ty € B(LA(X, H),LA(Y, H))
with || Ty || < [Ik|l,, by letting

(T = f k(y,x)(§(x)dx, §eL*X, ), yeY.
X

The linear space of all such operators is denoted by 8,(X,Y; A) and is norm
dense in K(L*(X),L*(Y)) ® A; we equip it with the operator space structure
arising from this inclusion. Note that if A = C then the map k — T} is an
isometric identification of L?(Y X X) and 8,(X, Y).

If B is a(nother) C*-algebra we write CB(A, B) for the space of completely
bounded maps from A to B and set CB(A) = CB(A, A). We say that ¢ : X X
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Y — CB(A, B) is pointwise-measurable if (x,y) — ¢@(x,y)(a) € B is weakly
measurable foreacha € A. If ¢ : X XY — CB(A) is a bounded, pointwise-
measurable function, we define ¢ - k € L*(Y x X, A) by

(@ -, x) 1= o(x, (k. x), (¢,X) €Y XX,
Let S, denote the bounded linear map on 8,(X, Y; A) given by
So(T) :=Tpy, k eL*(Y XX,A).

Definition 2.1. A bounded, pointwise-measurable function ¢ : X XY —
CB(A) is called a Schur A-multiplier if S, is a completely bounded map on
8,(X,Y; A). We denote the space of such functions by &(X, Y; A) and endow
it with the norm [|¢||gx,y;a) = [ISpllcy (We write [|p||g when X,Y and A are
clear from context).

This definition does not depend on the faithful %-representation of A on a sep-
arable Hilbert space [28, Proposition 2.3].

Theorem 2.2. [28, Theorem 2.6] Let A C B(H) be a separable C*-algebra and
@ : X XY — CB(A) a bounded, pointwise-measurable function. The following
are equivalent:

(i) @ is a Schur A-multiplier;

(ii) there exist a separable Hilbert space J{,, a non-degenerate x-representation
p:A— B(I,) and V € L®(X, B(I(,I,)), W € L¥(Y, B(I(, H(,)) such
that

p(x,y)a) = WH)*p(a)V(x), a€A
foralmostall (x,y) € X XY.

Moreover, if these conditions hold then we may choose V and W so that

llplle = esssup || V(x)|| esssup || W(y)||.
xeX yeY

Note that the definitions and theorems make sense in the case X, Y are dis-
crete spaces with counting measures, in which case we do not need to assume
separability.

When discussing Schur A-multipliers we shall always assume without men-
tioning that A is separable unless X and Y are discrete spaces with counting
measures in which case A can be arbitrary.

In the case where A = C, Schur A-multipliers reduce to classical (measur-
able) Schur multipliers [35]. The elements ZZI fi ® g; of the projective tensor
product 8;(Y,X) = LX(X, ) @ LA(Y, 1) (Where we assume Y~ ||fil|> < oo and
2121 llgill*> < o) can be identified with functions Zzl fi(x¥)gi(y) on X X Y,
well-defined up to a marginally null set [1]; under this identification, Schur

multipliers coincide with the multipliers of $;(Y, X).
Given a € L®(X, ), let M, be the operator on L?(X, ) defined by

(M E)(x) := a(x)é(x), x €X.
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Let Dy = {M, : a € L*(X, w)} and define Dy analogously. By a well-known
result of Haagerup [16] (see also[4]), there is a completely isometric weak*-
homeomorphism between the algebra of weak*-continuous, completely bounded
Dy, Dx-bimodule maps on B(L*(X),L*(Y)) and the weak* Haagerup tensor
product Dy @ " Dy, [4]; this homeomorphism sends ZZOZI by ®a; € Dy @Y
Dy to the map

(o0
T+ Z kaak
k=1
on B(L*(X),L*(Y)). Note that Dy ®”" Dy can be viewed as a space of (equiv-
alence classes of) functions, and each of these functions belongs to ©(X,Y).
Theorem 2.2 can be specialised as follows in the scalar-valued case.

Theorem 2.3. Let p € L®(X X Y). The following are equivalent:
() 9 € BX,Y)and ||p|le < C;
(ii) there exists sequences (ai) ., € L*(X, w) and (by),2, € L*(Y,v) with

esssup Z lap(x)|> < C and esssup z Ib(M|?> < C

x€X g=1 YEY =1
such that
p(x,y) = Z a,(x)b(y) foralmostall (x,y) e X XY;
k=1

(iii) there exist a separable Hilbert space J{ and weakly measurable functions v :
X > F,w:Y — I such that

esssup [|(x)|| < VC, esssup w(y)|| < VC
xeX yeY

and

p(x,y) = (v(x),w(y)), foralmostall(x,y) € X XY;
() ||Tp.ill < C||Tk|| forall k € L*(Y X X).

We remark that if X and Y are discrete spaces with counting measures the
theorem holds true with possibly uncountable families (a; ) and (by).

2.2.2. Herz-Schur multipliers. Let G be a locally compact second count-
able group, VN(G) (resp. C;(G)) be its von Neumann algebra (resp. reduced
C*-algebra) and A(G) be the Fourier algebra of G [12]. Let A be a separable
C*-algebra. A bounded function F : G — CB(A) will be called pointwise-
measurable if, for every a € A, the map s —» F(s)(a) is a weakly measurable
function from G into A. Suppose that the function F : G — CB(A) is bounded
and pointwise-measurable, and define

(F- )s) :=F@G)(f(s), fe€LYG,A),s€eGQG.
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Since F is pointwise-measurable, F - f is weakly measurable, and ||F - f]|; <
sup.; [[FOIfIl. (f € LYG,A)); hence F - f € LYG,A) for every f €
LY(G, A).

Definition 2.4. A bounded, pointwise-measurable function F : G — CB(A)
will be called a Herz-Schur (A, G, a)-multiplier if the map Sp on (7 XA)(L(G, A)),
given by

Se((r X D)) 1= (w X DF - ),

is completely bounded.

If F is a Herz-Schur (A, G, a)-multiplier, we continue to denote by Sy the
corresponding extension to a completely bounded map on A X, . G.

Definition 2.4 is independent of the faithful representation of A [28, Remark
3.2(ii)]. We note that the set of all Herz—-Schur (4, G, «)-multipliers is an algebra
with respect to the pointwise operations; we denote it by ©(A, G, o) and endow
it with the norm ||F||gs := [|SF||cb-

The definition makes sense when G is an arbitrary discrete group. In this
case we can drop the separability assumption on A.

In what follows we shall always consider C*-dynamical systems (A, G, &)
where either G is second countable and A is separable or G is discrete in which
case A can be arbitrary.

Given a function F : G — CB(A), define N'(F) : G X G — CB(A) by letting

NEF)s, t)(a) := aa (Fts™H(a(a)), st €G, a€A.

Observe that if F is pointwise-measurable then so is V'(F). The following re-
sult [28, Theorem 3.5] relates Schur A-multipliers and Herz-Schur (4, G, a)-
multipliers, generalising a classical transference result of Bozejko-Fendler [5].

Theorem 2.5. Let (A, G, a) be a C*-dynamical system and F : G — CB(A) a
bounded, pointwise-measurable function. The following are equivalent:

(i) F is a Herz-Schur (A, G, o0)-multiplier;

(ii) N (F) is a Schur A-multiplier.

Moreover, if the above conditions hold then ||F||gs = ||V (F)||s-

The Schur A-multipliers ¢ of the form ¢ = IV (F) will be called a-invariant.
We note that a different definition was given in [28] (see [28, Definition 3.14]),
but by [28, Theorem 3.18], it agrees with the one adopted here.

In the case where A = C and the action is trivial, Herz-Schur (A, G, @)-
multipliers coincide with the classical Herz—Schur multipliers of G [6], that is,
with the functions u : G — C such that uA(G) C A(G) and the map

m, . A(G) - A(G); m,(v) :=uv, ve€ AG),

is completely bounded. Here we equip A(G) with the operator space structure,
arising from the identification A(G)* = vN(G) [12, Chapitre 3]. The space of
classical Herz—Schur multipliers of G will be denoted by M, A(G). We note that
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if u € MypA(G) then the restriction S, := my|cx ) is a completely bounded
map satisfying [6]

S, CHG) = CHOY: S (A) = Awf), f € LY.

2.3. Preliminaryresults. In thissubsection, we give several technical results
on Schur and Herz-Schur multipliers that will be needed in the sequel. The
equivalence between (i) and (iii) in the next proposition was given, in the scalar-
valued case, in [22, Theorem 7].

Proposition 2.6. Let 7 be a separable Hilbert space, A C B(J) a separable
C*-algebraand ¢ : X XY — CB(A) a bounded, pointwise-measurable function.
The following are equivalent:
() p(x,y) =0 foralmostall (x,y) € X XY;
(i) S, = 0.
If p is a Schur A-multiplier of the form ¢(x,y)(a) = W()*p(a)V(x), a € A, as
in Theorem 2.2, then these conditions are equivalent to:
(iii) p(x,y) = 0 for marginally almost all (x,y) € X X Y.

Proof. (i) = (ii) Let T, € 8,(X,Y;A). If p(x,y) = 0 for almost all (x,y) €
X XY then ¢ - k = 0 almost everywhere, for every k € L*(Y x X, A), and hence
So(Ty) = Ty = 0 for every k € LA(Y x X, A).

(ii) = (i) Suppose S, = 0 and let k € L*(Y X X, A). We have S,(Ty) =
Ty = 0, so we conclude that ¢ - k = 0 almost everywhere by [28, Lemma 2.1].
We claim that ¢(x, y) = 0 for almost all (x,y) € X X Y. Indeed, let {¢;};c be a
dense subset of 7, £ € L2(X) and n € L*(Y); then

(Sp(TE ®e)n®e;) = f (Sp(T)(E ® e)(), (n ® e)() dy (1)
Y

[{[ @-100:0¢ @ ). @ e0))ay
Y 'YX

/ f {00, Yk, X))e, e;) E(y)dx dy.
Yy Jx
Fix a € A, choose w € L*(Y X X), and let k(y, x) = w(y, x)a. Then (1) implies

f f (9. y)@ers ) w(y, ECMOIdx dy = 0.
Y X

Since ¢(x, y)(a) is a bounded operator, we conclude that (¢p(x, y)(a)e;,e;) = 0
almost everywhere for all i, j € N. Hence ¢(x,y) = 0 almost everywhere by
the separability of A and the continuity of ¢(x, y) as a map on A.

Now suppose that ¢ is a Schur A-multiplier.

(iii) = (i) is trivial.

(i) = (iii) Assume that the set

R:={(xy)€EXXY : o(x,y) # 0}
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isnull. Let Ay and J, be countable dense subsets of A and J respectively; then

R ={x,y):p(x=0= [] {0 :{p(y)@En)=0}

a€A, & neF,

= (] {6 (e@VEE Wym) =0}

a€A, & neFH,

It is easily seen that a function of the form (x,y) — (a(x),5(y)), where a €
L®(X, }Cp) and § € L*(Y, }Cp), is w-continuous; thus, the set

{(x,y)  {a(x), B(y)) # 0}

is w-open. It follows that the set

U ) (e@veg, wiym) + o}

a€A, & nEH,

is w-open. Hence there are families A,, C X, B,, C Y of measurable sets such
that R is marginally equivalent to U>? ' A, X B,,. Since (u X v)(R) = 0 we have
u(A,)v(B,,) = 0 for each n. Let

Ni:= (J 4 and N,:= ] B,
v(B,)#0 u(Ap)#0

We have that u(N;) = 0, »(IN,) = 0 and R that is marginally equivalent to a
subset of N; X Y U X X N,; thus, R is marginally null. O

The next lemma contains a completely isometric version of the main trans-
ference result of [28, Section 3].

Lemma 2.7. Let (A,G,a) be a C*-dynamical system. The map N is a com-
pletely isometric algebra homomorphism from the space of Herz—Schur (A, G, a)-
multipliers to the space of Schur A-multipliers on G X G.

Proof. Fixn € N and Herz-Schur (A, G, a)-multipliers F; j»1 <1, j < n.Since
(SFi’j)i, jisanelement of CB(A X, G, M,,(A X, ,G)) there exist a representation
p i AXg, G — B(J,) and operators V,W : L*(G,H) — I, such that
(Sr, )iy = WPV and [VI[WI| = IS, )il Take @ € Aand r € G.
Arguing as in the proof of [28, Theorem 3.8] we obtain representations p4 and
pg» of A and G respectively, such that

(n(Fy(O@DA,), ;= (Sp, (@A), , = W*pa(@psr)V.
Define
V(s) i=po(s™ VA and W) := pe(t™ WA,

so that sup,. [| V(][ sup,eg [WOI| = IVIIWI| = [[(S5,,)llep- Caleulations
as in the proof of [28, Theorem 3.8] show that

(N(F ), 1)), ; = W) pa(@)V(s),
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almost everywhere, so
IS, pijllew < sup [[V(S)]| sup [[WOI = [IVIIIWI] = [I(SF, )i,jllcb-
seG teG

In the converse direction, note that (SFij)i, j is the restriction of (SN(Fij))i, j to
M, (A Xa s G, 50 1Sk, i jlleo < ISxe, )i jllev- Thus F > N(F) is a complete
isometry. The homomorphism claim is trivial. O

3. Central multipliers

Let (X, u) and (Y, v) be standard measure spaces. We denote for brevity by B
(resp. X) the space B(L(X, ), L2(Y,v)) (resp. K (L*(X, w), L*(Y,v))). Through-
out this section A denotes a separable C*-algebra, acting non-degenerately on
a separable Hilbert space 7. The multiplier algebra of A will be written M(A)
and identified with the idealiser of A in B(¥):

M(A)={c € B(HK) : ca,ac € Aforalla € A}.

As usual, we denote by Z(B) the centre of the C*-algebra B.
The following is immediate, and will be used several times in the sequel.

Remark 3.1. Let B C Abe aC*-subalgebra,and ¢ : XXY — CB(A)bea Schur
A-multiplier. Suppose that ¢(x, y) leaves B invariant for almost all (x, y), and
let g : X XY — CB(B) be the map given by ¢g(x,y)(b) := ¢(x,y)(b) (b € B,
(x,y) € X XY). Then ¢p is a Schur B-multiplier and ||¢;|le < ||¢|ls-

3.1. Central Schur multipliers.

Definition 3.2. A Schur A-multiplier ¢ € &(X,Y; A) will be called central if
there exists a family (ay ) )(x,)exxy € Z(M(A)) such that

p(x,y)a) = ay,a, ac€A. 2)

Remark 3.3. Let ¢ € ©(X,Y; A) be a central Schur A-multiplier.

i. The family (ay ,)(x,)exxy associated to ¢ in Definition 3.2 is unique up to
a set of zero product measure.
ii. If (ayy)(x,yexxy is associated to ¢ as in Definition 3.2 then the map X XY —
Z(M(A)), (x,y) = ay ,, is weakly measurable.

Let A be acommutative C*-algebra, and assume that A = Cy(Z), where Z isa
locally compact Hausdorff space. The standing separability assumption implies
that Z is second-countable, and hence metrisable. Since C((Z) is separable it
has a faithful state, so the associated Radon measure m on Z has full support.

Let Cy(Z, B) be the space of all continuous functions from Z into a normed
space B vanishing at infinity. We write X = K (L*(X), L*(Y)) and note that, up
to a canonical *-isomorphism,

K ® Co(Z) = ColZ, K. 3)

The algebraic tensor product L2(Y X X) ® Cy(Z) can thus be viewed as a (dense)
subspace of both the space X ® Cy(Z) and the space Cy(Z, X).
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Letp € ©(X,Y;Cy(Z))be acentral Schur Cy(Z)-multiplier, associated with a
family (ay ) )x,y)exxy € Cp(Z) as in Definition 3.2; we view ¢ as a scalar-valued
function on X X Y X Z by letting

p(x,y,z) =ay,(2), X€X,y€EY,z€EZ.

By definition, ¢ is a bounded, measurable function on X X Y X Z which is con-
tinuous in the Z-variable. On the other hand, suppose ¢ : X XY X Z — Ciis
a bounded measurable function, continuous in the Z-variable. Then (x,y)
p(x,y,)a(-) € Cy(Z) is weakly measurable for each a € Cy(Z). Indeed, the
function (x,y) — &,(e(x,y)a)) = ¢(x,y,z)a(z) is measurable for each z € Z
(here §, denotes the point mass measure atz € Z). Asanym € M(Z) = Cy(Z)*
is the weak* limit of linear combinations of point mass measures, we conclude
that the function (x,y) — m(@(x,y)(a)) is measurable for all m € M(Z).
We thus identify the central Schur Cy(Z)-multipliers with bounded measurable
functions ¢ : X XY X Z — C, continuous in the Z-variable. For each z € Z,
letp, : XXY — Cbegiven by ¢,(x,y) = p(x,y, z); clearly, ¢, is a measurable
function for each z € Z.

We recall some terminology from [8] that will be used in the sequel. Let
@ € L®(X X Y X Z) and associate with it a bounded bilinear map

Ay 8(Y,Z) X 8:(X,Y) = 8:(X, Z); Ap(Ths Tie) 2= Tp(hsi)s
where k € L>(Y X X), h € L*(Z x Y) and

p(h * k)(z,x) := fgo(x,y,z)h(z, k@, x)dy, (x,z)EXXZ.
Y

By [8, Corollary 10] the norm ||A,|| of A, as a bilinear map, where the spaces
8,(Y,Z) and 8,(X,Y) are equipped with their Hilbert-Schmidt norm, is equal
to ||l¢ll- We say that ¢ is an operator 8,-multiplier if A, maps 8,(Y,Z) x
8,(X,Y)into 8;(X, Z). The following characterisation of operator 8;-multipliers
was obtained in [8]:

Theorem 3.4. Letp : X XY X Z — C be a bounded measurable function. The
following are equivalent:

(i) the function @ is an operator 8;-multiplier;
(ii) there exist a Hilbert space £ and weakly measurable functionsv : XXZ — L,
w Y XZ — L, satisfying

esssup ||v(x,z)|| < oo, esssup |[w(y,z)|| < oo,
(x,2)EXXZ (y,2)EYXZ

such that
o(x,y,z) =(v(x,z),w(y,z)), almostall(x,y,z)EXXYXZ. (4)
Moreover, if these conditions hold then

llplle = esssup [[v(x,z)|| esssup ||w(y,z)|-
(x,2)EXXZ (y,2)EYXZ
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In Theorem 3.6, we relate operator S;-multipliers to central multipliers. We
first include a lemma. If € is an operator space then we identify Cy(Z) ® € with
a dense subspace of the minimal tensor product C,(Z)® & (and equip it with the
operator space structure arising from this inclusion), and its elements — with
continuous functions from Z into &. If £ is in addition an operator system, we
equip the algebraic tensor product Cy(Z) ® € with the operator system structure
arising from its inclusion in Cy(Z) ® E.

Lemma 3.5. Let Z be a locally compact Hausdorff space and & be an operator
space. Let®, : € - Ebealinearmap,z € Z,and ® : Co(Z)OE - Cy(Z2) R E
a linear map defined by

P(a®T)z) =a(z)®,(T), zeZ.

The following are equivalent:

(i) @ is completely bounded;

(i) @, is completely bounded for every z € Z and sup,, ||P, ||, < oo.
Moreover, if these conditions are fulfilled then ||®||, = sup,, [|P;|[cb-

Assume that € is an operator system. The following are equivalent:

(i) @ is completely positive;
(ii’) @, is completely positive for every z € Z.

Proof. (i) = (ii) Fix z € Z and note that, if a € Cy(Z) has norm one and
a(z) = 1 then

O,(1)=06,Qid)(Pa®T)), TeC.
It follows that @, is completely bounded and

sup [|Pz||cy < [|Pllcb- (5)
zeZ

(ii)) = (i) We identify M,(Cy(Z) ® &) with a subspace of Cy(Z, M,,(E)) in
the canonical way. Let (h; ;); j € M,(Co(Z) © &). The claim is immediate from
the fact that

) ((hy,ij) (2) = (q)(hi,j)(z))i’j = (q)z(hi,j(z)))i’j-

It remains to note the reverse inequality in (5); it follows by the fact that, if
a € Cy(Z) has norm one and a(z) = 1 then ||q>g")(T)|| < |#™(a @ T)||, for
every T € M,(&).

Now assume that £ is an operator system.

(i) = (ii’) follows as the implication (i) = (ii), by choosing the function
a to be in addition positive.

(i) = (@’) follows similarly to the implication (ii) = (i), by taking into
account that a matrix (h; ;); ; belongs to the positive cone of M,(Cy(Z) © &) if
and only if (h; ;(2));; € M, forevery z € Z. O

Theorem 3.6. Let ¢ : X XY X Z — C be a bounded measurable function,
continuous in the Z-variable. The following are equivalent:

(i) @ is a central Schur Co(Z)-multiplier;
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(ii) the function ¢, is a Schur multiplier for every z € Z, and the map D, :
Co(Z,K) — Cy(Z,X) given by
Dy(h)(z) = Sy, (h(2)), z€Z,

is completely bounded;
(iii) the function ¢, is a Schur multiplier for every z € Z, and

sup [|¢;|lg < oo0;
zeZ

(iv) the function @ is an operator S;-multiplier.
If these conditions hold then ||p||g = sup,., ||¢;||e-

Proof. (i) < (ii) Let ¢ be a central Schur Cy(Z)-multiplier. We fix a measure
m € M(Z) so that the representation of Cy(Z) on L?>(Z, m), given by a — M,,
where

(Mo6)(2) := a(2)§(2), a€Cy(2), § €LX(Z,m), z € Z,

is faithful. By [28, Proposition 2.3], we may identify C,(Z) with its image in
B(L*(Z)), so we abuse notation by writing a in place of M,. We recall that the
map S, extends to a completely bounded map on X ® C(Z). We observe that,
when the identification (3) is made, we have that the map S,, (which is defined
asatransformation on X®C((2)) is identified with D,. Indeed, ifk € LA2(YxX)

and a € Cy(Z) then
Se(k ® a)(z) = (¢(-,+,2) - k)a(z) = Dy(k ® a)(z), z € Z.

The equivalence now follows.
(ii)e=(iii) is immediate from Lemma 3.5.
(i) = (iv) Defineamap ¢ : f + 1y, on L'(Z) by letting

br(x,y) 1= f o(x,y,2)f(z)dz, (x,y)EXXY.
Z

We will show that 3 ; belongs to L®(X)®% "L*(Y) and has norm at most ||¢|| .
Take f € C.(Z), k € LA(Y x X), and a € Cy(Z) with ||a|| = 1 and a(z) = 1

for all z € supp(f). Writing f = f1f2, f1, f2 € L*(2), |IfIl, = If1ll2]lf2ll2 for
£ € L’(X)and n € L*(Y), we have

(s, on)|=| [ Uﬂmmmm%mmeMW
XXY Z

= [(Sp(Tiea) (€ ® f1).7 ® f2)]
< lI9llelTrgalllé LIl lInIL11f21l,
< gl TwllIlF I 1€l lImll2-

Thus the map Sy, ; is bounded in the operator norm, implying that ¢ ; is a Schur
multiplier with [[¢¢|lg < ll@llgllf]l;- It follows from the density of C.(Z) in
LY(Z) that ¢ is a bounded map, with ||9|| < ||¢||e; We view ¥ as taking values
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in L®(X) @V L*(Y) using the standard identification of this tensor product
with the Schur multiplierson X X Y.
By standard operator space identifications (see [8] and [24]), we have

P € B(LNZ),L®(X) @™ L¥(Y)) = L®(Z) ® (L®(X) ®“" LX(Y)),

where ¢ € L®(XXY xZ)is the corresponding element in L*(Z QUL (X)QW™
L*®(Y)). Condition (iv) now follows by [8, Theorem 19] and Theorem 3.4.

(iv) = (i) Let v and w be the functions arising as in Theorem 3.4, and
M C X XY X Z be aset with (u X v x m)(M¢) = 0, such that (4) holds for all
(x,y,z) € M. Set M, , ={z : (x,y,z) € M}and N = {(x,y) : m(MfC,y) = 0}
it is clear that (u X V)(N¢) = 0. Write W(y) : L*(Z) - £ ® L*(Z) and V(x) :
L*(Z) —» £ ® L*(Z) for the maps, given by

(V()€)(2) = v(x,2)E(2z) and (W(Y)E)(2) 1= w(y,2)é(z), & € LX(2);
we have

esssup || V(x)|| = esssup ||v(x,z)|| < oo,
xeX X,z2)EXXZ

esssup || W()|| = esssup ||w(y,z)|| < oo.
YEY (y,2)EYXZ

Fora € Cy(Z), £,n € L*(Z) and (x,y) € N, we have
(WO @ M)V(x)é,1) = (I @ M) V(X)E, W(y)n)

_ f a(2)0(x, 2), w0, DE(DNEdm(z)
VA

= fa(z)qo(x,y,z)é’(z)@dm(z).

z
It follows that, if (x,y) € N then

WE)* I Q My)V(x) = M(pxyya’ a € Cy(2)

(here ¢, , is the function on Z given by ¢, ,(z) = ¢(x,y, z)). By [28, Theorem
2.6], ¢ is a Schur Cy(Z)-multiplier which is clearly central, and

llelle < esssup [|V(x)|| esssup [| W(Y)|| = esssup [|¢,[|e-
xeX YEY zeZ

Finally, from the proof of (i) = (ii) = (iii), equation (5), and the estimate
in (iv) = (i) we have ||¢[lg = sup,, [|¢:lle- O

In the next result we assume that A acts non-degenerately on a separable
Hilbert space J(, and we identify the elements of the centre Z(M(A)) of A with
completely bounded maps on A acting by operator multiplication.

Corollary 3.7. Letp : X XY — Z(M(A)) be a pointwise-measurable function,
and assume that Z(A)A = A. The following are equivalent:
(i) @ is a central Schur A-multiplier;
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(i) there exist an index set I and operators V € CP(L*(X,Z(A)")) and W €
CP(L®(Y,Z(A)")), such that
p(x,y) = Z W,(y)*Vi(x), foralmostall (x,y)e X XY.
iel
Moreover, if o : X XY — Z(M(A)) is weakly measurable then the above condi-
tions are equivalent to:
(iii) @ is a central Schur B-multiplier for any C*-algebra B C B(H) with Z(A) C
Z(B).
If the conditions hold we may choose V', W such that

lelle = IVllce@scx.,zcaymIW llce e v, zcayn),

where ||¢||g is the norm of the Schur multiplier in either (i) or (iii).

Proof. Since Z(A)A = A, the algebra Z(A) is non-degenerate and Z(A)"” =
—w
Z(A) ,where the latter closure is in the weak operator topology.

(i) = (ii) By Remark 3.1, ¢ is a Schur Z(A)-multiplier. Following the
proof of Theorem 3.6, and using the identification Z(A) = Cy(Z) and Z(A)" =~
L*(Z,m), for some measure space (Z, m), we identify ¢ with an element of
L®(Z, m)QL®(X)QW "L (Y)). Using [8], we see that there exist an index set I
and two families (V;)ic;, (W))ier, WhereV; : X —» Z(A)" and W, : Y — Z(A)"
are measurable functions satisfying

esssup
xeX

<oo and esssup
yeY

< 00,

D Vi) Vi(x)

iel

DWO)WiG)

iel

such that ¢(x,y) = Zi o Wi(»)*V;(x) almost everywhere on X X Y (the series
converges weakly) and

D Vi) Vi(x)

i€l

PWO)WL)

iel

. (6)

esssup
yey

llellewx,vizcay = esssup
xex

(ii) = (i) For a € A, we have
e(x,y)@) = Y, W) Vi(x)a = 3, Wi(y)*aVi(x) = W*e(@)V(x), (7)
iel iel
where V(x) 1= (Vi(x))ier» W) 1= (W;(¥))ier and p(a) = ids2) ® a. By
[28, Theorem 2.6] ¢ is a Schur A-multiplier, and it is clearly central.
(ii) = (iii) The assumption implies that (x,y) — @(x, y)(b) € B is weakly
measurable for all b € B, so it makes sense to speak of ¢ being a Schur B-

multiplier. Now the same proof as that of the implication (ii) = (i) can be
applied.

(iii) = (i) is trivial.
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For the norm equality observe that ||¢|lgx.v:z) = ||®llecx,v:za) While, by
(7), we have

l#llecx,y;p) < esssup || V(x)|| esssup [WH)|
xeX yeY

= esssup
xeX

esssup
yey

Z Vi(x)*Vi(x)

iel

D W) W)

iel

= IVllce@swx,zcaym W llce ey, zcayn)-
The equality follows by combining this with (6). O

We remark that the results of this subsection and the rest of the section re-
main true when X and Y are discrete spaces with counting measures, Z is an
arbitrary (not necessarily second countable) locally compact Hausdorff space
and A is an arbitrary (not necessarily separable ) C*-algebra.

3.2. Central Herz-Schur multipliers. In this subsection, similarly to The-
orem 3.6, we characterise central Herz—Schur multipliers, a natural invariant
version of central Schur multipliers, which we now introduce.

Definition 3.8. Let (A, G, o) bea C*-dynamical system. A Herz-Schur (A4, G, a)-
multiplier F will be called central if there exists a family (a,),eqg € Z(M(A))
such that

F(r)a)=a,a, a€ A, regG.

Proposition 3.9. Let A be a C*-algebra such that Z(A)A = A, (A,G,a) be a
C*-dynamical system, (a,),eq be a family in Z(M(A)) and suppose that the map
F : G — CB(A), given by F(r)(a) = a,a, is pointwise-measurable. The following
are equivalent:

(i) F is a central Herz-Schur (Z(A), G, a)-multiplier;

(ii) F is a central Herz-Schur (A, G, ot)-multiplier;
(iii) there exist V,W € CP(L™(G, Z(A)")) such that

a1(ag) = Z Wi(t)*Vi(s), foralmostall(s,t) € GXG.
iel

Moreover, V and W may be chosen so that

IFllus = IV llce@e(c.zcaymlIW llce e c,zcaymy)
where ||F||gs refers to the norm of F in either (i) or (ii).

Proof. (i) = (ii) By [28, Theorem 3.8] V'(F) is a Schur Z(A)-multiplier; it is
clearly central. Using the assumption Z(A)A = A we observe that Z(A) acts
non-degenerately on any Hilbert space where A acts non-degenerately, so by
Corollary 3.7 we have that V' (F) is a central Schur A-multiplier. Applying again
[28, Theorem 3.8], we obtain that F is a central Herz—Schur (A, G, a)-multiplier.

(ii) = (i) Immediate from [28, Theorem 3.8] and Remark 3.1.
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(i) = (iii) By [28, Theorem 3.8] V'(F) is a central Schur Z(A)-multiplier,
and fora € Aand s, t € G,

N(F)(s,t)a) = ai1(aie1)a, a € A.
By Corollary 3.7(ii), there exist V, W € C?(L*(G, Z(A)")) such that

ai-1(a-1)a = Z W) aVi(s) = Z W,(t)*V;(s)a almost everywhere.
iel iel
Since thisholds foreverya € Aand A C B(J)isseparable and non-degenerate,
we conclude that
a-1(aps1) = Z Wi(£)*V(s),
iel
for almost all (s,t) € G X G.
(iii) = (i) For a € A and almost all 5,t € G we have

N(F)(s,1)(a) = a-1(a-)a = ), Wit)*aVi(s) = W(t)*e(a)V(s),
iel
where p(a) = idey ® a, V(s) 1= (Vi(s))ier and W(t) := (W;(t));s- There-
fore F is a Herz—Schur (Z(A), G, a)-multiplier by [28, Theorem 3.8].
Since NV is an isometry, the norm equality follows from the norm equality in
Theorem 3.7. O

A central Herz-Schur (Cy(Z), G, a)-multiplier F : G — CB(Cy(Z)), associ-
ated with a family (a,),eqg C Cp(Z), may be identified with a bounded measur-
able function, continuous in the Z-variable, given by

F:GXZ->C; F(r,z)=a,(z), reG,zeZ

conversely, if F : G X Z — C is a bounded measurable function, continuous
in the Z-variable, then the associated function F : G — CB(C,(Z)) is bounded
and pointwise-measurable. In the sequel, if Z is a locally compact Hausdorff
space and (Cy(Z), G, a) is a C*-dynamical system, we let (z,t) — zt be the
mapping from Z X G into Z that satisfies the condition f(zt) = o,(f)(2),z € Z,
t € G. The mapping is jointly continuous and satisfies z(st) = (zs)t for all
z € Zands,t €0G.

Corollary 3.10. Let (Cy(Z), G, a) be a C*-dynamical system, and F : GXZ — C

a bounded measurable function, continuous in the Z-variable. The following are

equivalent:

(i) F is a central Herz-Schur (Cy(Z), G, ot)-multiplier;

(ii) thereexist a Hilbert space £ and weakly measurable bounded functionsv, w :
G X Z — L such that

F(ts7t,zt™Y) = (v(s,z),w(t,z)) almostall (s,t,z) € G X G X Z.

Moreover, ||F|lgs = eSSSUP(; 1)z [[v(s, x)|| esSSUP ; 1)z [lw(e, y)I|-
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Proof. Immediate from Proposition 3.9 by taking £ := ¢£2(I),
v(s, x); i= (Vi()(x) and  w(t,y); := (Wi®)y), steG, x,y€Z
O

3.3. Positive central multipliers. Positive Schur A-multipliers, in the case
of sets equipped with the counting measure, were studied in [27] (see [27, Defi-
nition 2.3] and [27, Theorem 2.6]). Here we extend this by considering arbitrary
standard measure spaces and identifying corresponding versions of the previ-
ous results.

Definition 3.11. Let A be a C*-algebra. A Schur A-multiplierp : X X X —
CB(A) is called positive if S, is completely positive.

Before giving a completely positive version of Theorem 3.6, we include a
lemma. Since L®(X) ®“'" L*(X) = (L'(X) ®" L}(X))*, every Schur multi-
plier ¢ on X X X gives rise to a canonical bilinear map F, : L'(X)xLY(X) — C.
As usual, we write F, ((Pn’") for the corresponding amplification, a bilinear map
from M, (L'(X)) x M,(L'(X)) into M,,.

Lemma 3.12. Let (X, u) be a standard measure space and ¢ € L®(X) Q™"
L*®(X) be a positive Schur multiplier. If T = (f; ;)!._, € M, (L*(X)) and T* =

i,j=1
(F100,_, then Fg"™(T, T*) € M.

Proof. Note that, if ¢ is a positive Schur multiplier, by virtue of [16], one may
write ¢ = Zzl a; ® a;, where (a;)2, is a bounded row operator with entries in
L*(X). It thus suffices to prove the statement in the case where ¢ = a ® a, for

some a € L®(X). However, then we have
n

n _ _\h
F&(T,T%) = (Z<fi,k,a><f,-,k,a>) =2 ((fiwaXfiea) .
k=1 i,jzl k=1 J=
and the conclusion follows. O

Theorem 3.13. Let ¢ : X X X X Z — C be a bounded measurable function,
continuous in the Z-variable. The following are equivalent:

(i) @ is a positive central Schur Cy(Z)-multiplier;

(ii) there exist a Hilbert space £ and an essentially bounded, weakly measurable
functionv : X X Z — £ such that ¢(x,y,z) = (v(x, z), v(y, z)) for almost
all (x,y,z) e XXX XZ;

(iii) foreach z € Z the function ¢, is a positive Schur multiplier, and

sup [|¢;|leg < oo.
zeZ

Moreover, if the space X is discrete and u is the counting measure the above con-
ditions are equivalent to:

(iv) forany xy, ..., x, € X and z € Z the matrix (p(x;, X, 2)); j is positive in M,,.
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Proof. (i) = (ii) Suppose that ¢ is a positive central Schur Cy(Z)-multipli-
er. We have seen in the proof of Theorem 3.6 that ¢ € L*(Z) ® (L®(X) @¥'™h
L®(X)). With ¢ we associate the completely bounded bilinear map @, : LY (X)x
LY(X) —» L®(Z) given by

O, ((f,)) =(p,h @ (f®g), [f.g€L'X), heL'(2).
‘We obtain

@,((f,8)(h) = /f/ (x,y,2)h(z)f(x)g(y)dx dy dz
XXXXZ

= f ( / ¢z(x,y)f(x)g(y)dxdy) h(z)dz
VA XXX

@, ((f,)(z) = f ®-(x,¥)f(x)g(y)dxdy almost everywhere.
XXX

(®)

and

Set
@, ((f,8) = D,((f,8))2), zE€Z

By Lemma 3.5, ¢, is a positive Schur multiplier and, by Lemma 3.12,
0 ((fi ), (1) € M

for any (f; ;) € M L(L1(X)). By [40, Theorem 4.4, Remark 4.5(iii)], there exists
a family (¥;);ep € CB(L'(X),L*®(Z)) such that || Diier 1Y@l < Cllal?,

a € L'(X), for some constant C > 0, and
®,((a,b)) = Y hi(@Pi(b*)*, a,b € L'(X).
ieA
Identifying each 1; with an element ; of L*(X X Z) via

B = f f B DfOh@dxdz, [ e LNX), he LY(Z),
X JYZ

letting £ = ¢2(A) and v(x, z) := (¥;(x, 2));en gives (ii).
(ii) = (i) Define
V(x) : LA(2) » L Q LX(2); (V(X)§)(2) :=v(x,2)é(z), & € L*(2).
Then
p(x,y)(a) = V() (id @ M,)V(x), a € Cy(Z)
for almost all (x, y) (see the proof of Theorem 3.6 (iv) <= (i)). Therefore ¢
is a central Schur Cy(Z)-multiplier, and (as in the proof of [28, Theorem 2.6])
writing p for the representation a — id ® M, of Cy(Z) on £ ® L*(Z) we have
So(T) = V*(id @ pX(T)V, T € K(L*(X)) ® Co(2).

Hence S, is completely positive.
(i) < (iii) follows from the following two facts: (a) since ¢ is a Schur Cy(Z)-
multiplier, we have that S,(K)(z) = S,,_(K(2)),z € ZforanyK € Cy(Z, X), and
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(b) an element K € Cy(Z, X) is positive if and only if K(z) > 0 as an operator
inX forallz € Z.

Now assume that u is the counting measure on the discrete space X. Observe
that (iv) is equivalent to (¢(x;, x;)) being a positive element of M,(Cy(2)).

(i) = (iv) Let xy, ..., x, € X. By [27, Theorem 2.6], the matrix (¢(x;, x;)(a))
€ M, (Cy(2)) is positive when a € Cy(Z) is positive. For a fixed z, € Z, let
a € Cy(Z) be such that a(z,) = 1. It follows that ((x;, x;, o)), j € M.

(iv) = (i) For a positive (q; ;) € M,(Cy(2)), the matrix (¢(x;, x;)(q; ;)) is
the Schur product of (¢(x;, x;)) and (a; ;) in M,,(Cy(Z)). Since (iv) ensures the
positivity of (¢(x;, x;)), and the Schur product of two positive matrices over a
commutative C*-algebra is positive, (i) follows from [27, Theorem 2.6]. O

In the next corollary we assume A acts nondegenerately on a separable Hilbert
space J.

Corollary 3.14. Letp : XXX — Z(M(A)) C CB(A) be a pointwise-measurable
function, and assume that Z(A)A = A. The following are equivalent:

() @ is a positive central Schur A-multiplier;
(i) there exist an index setI and V € Cy(L®(X, Z(A)")) such that

o(x,y) = Z V.(y)*Vi(x), foralmostall(x,y)e X XY.
iel
Moreover, if o : X X X — Z(M(A)) is weakly measurable then the above condi-
tions are equivalent to:
(iii) @ is a positive central Schur B-multiplier for any C*-algebra B C B(H) with
Z(A) C Z(B).

Proof. Follows from Theorem 3.13 in the same way as Corollary 3.7 follows
from Theorem 3.6. O

We recall the following definition from [27].

Definition 3.15. A Herz-Schur (A, G, a)-multiplier F : G — CB(A) is called
completely positive if Sg is completely positive on A X, G.

Theorem 3.16. Let (A, G, ) be a C*-dynamical system such that Z(A)A = A,
and F : G - Z(M(A)) be a pointwise-measurable function. The following are
equivalent:

(i) F is a completely positive central Herz-Schur (Z(A), G, a)-multiplier;
(ii) F is a completely positive central Herz—Schur (A, G, a)-multiplier;
(iii) N (F) is a positive central Schur Z(A)-multiplier;
(iv) N'(F) is a positive central Schur A-multiplier.

Proof. (ii) = (iv) Assume that F : G — Z(M(A)) is a positive central Herz—
Schur (A, G, a)-multiplier. By the proof of [28, Theorem 3.8], using the Stine-
spring dilation theorem in place of the Haagerup-Paulsen-Wittstock theorem,
we have Sp(T) = V*p(T)V, T € A X,, G. The representation po(r X 1) of the
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full crossed product A X, G has the form p4 X pg, where (o4, pg) is a covariant
pair. Let V(s) := pg(s~H)VA,; as in [28, page 408], we have N(F)(s, t)(a) =
V() pa(a)V(s), s0 Sy = V*(pa ® id)(-)V is completely positive. Therefore
N (F) is a positive Schur A-multiplier, and it is clearly central.

(iv) => (ii) As in the proof of [28, Theorem 3.8], we have Sg = S (¢l ax, G-
so Sr is completely positive. ’

(iv) = (iii) Follows from Remark 3.1.

(iii) = (iv) Let V' (F) be a positive central Schur Z(A)-multiplier. Following
the proof of the implication (i) = (ii) of Corollary 3.7 and applying [40, Re-
mark 4.5(iii)], we see that there exists an index set I and an essentially bounded
function V' € CP(L*(G,Z(A)")) such that N'(F)(s,t) = 3., Vi(t)*V;(s) al-
most everywhere on G X G (the series converges weakly). Hence for a € A and
s5,t € G we have

N(E)s, (@) = ), Vi)' Vis)a = Y Vit)*aVi(s) = V(6)*p(a) V(s),
iel iel
where V(r) := (V;(r))ier and p(a) = id ® a. As in the proof of the implication
(i) = (i) of [28, Theorem 2.6], it follows that Sy = V*(id ® p)(-)V is
completely positive, so N'(F) is a positive central Schur A-multiplier.
(i) < (iii) This is a special case of (ii) < (iv). O

Using Theorem 3.13, similarly to Corollary 3.10, one can obtain the following
description of completely positive central Herz-Schur (Cy(Z), G, a)-multipliers.

Corollary 3.17. Let (Cy(Z), G, a) be a C*-dynamical system, and F : GXZ — C

a measurable function, continuous in the Z-variable. The following are equiva-

lent:

(i) F is a completely positive central Herz-Schur (Cy(Z), G, o)-multiplier;

(ii) there exist a Hilbert space £ and a weakly measurable functionv : GXZ — £
such that F(ts~%, xt™') = (uv(s, x), v(t, x)) almost everywhere on G X G X Z.

3.4. Connections with other types of multipliers. Let Z be a locally com-
pact Hausdorff space, equipped with an action of a locally compact group G;
thus, we are given amap Z X G — Z, (x,s) — xs, jointly continuous and such
that x(st) = (xs)t for all x € Z and all 5,t € G. We consider the crossed prod-
uct Cy(Z) X, G, where « is the corresponding action of G on Cy(Z). The set
G = Z x G is a groupoid, where the set G of composable pairs is given by

G = {[(x1, 1), (X2, )] © x5 = X114},
andif[(x;, t7), (x5, )] € G2, the product (x,, t;)-(x,, t,) is defined to be (x, t; 1,),
while the inverse (x,t)~! of (x, t) is defined to be (xt,t™!). The domain and
range maps are given by

d((x,1)) 1= (0, )7L (x,0) = (xt,e), r((x,1) :=(x,0)-(x, )7 =(x,e).

The unit space G, of the groupoid, which is by definition equal to the common
image of the maps d and r, can therefore be canonically identified with X. We
refer to [37] for background on groupoids (see also [28, Section 5.2]).
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Lety : ZXG — Cbeabounded continuous function. Let Fy(s) € CB(Cy(2))
be given by Fy(s)(f)(x) 1= 9(x,8)f(x), f € Cp(Z), s € G. In [28, Section 5]
it was shown that such a function 1 is a Herz-Schur (Cy(Z), G, a)-multiplier
if and only if ¢ is a completely bounded multiplier of the Fourier algebra of G
in the sense of Renault [38]. In the terminology of this paper such functions
¥ are central Herz-Schur (Cy(Z), G, a)-multipliers. The following is therefore
immediate from [28, Proposition 5.3] and Corollary 3.10.

Corollary 3.18. Let (Cy(Z2), G, x) be a C*-dynamical system, and write G for the
underlying groupoid. Let ) : Z X G — C be a bounded continuous function and
write Fy(r)(f)(x) 1= %(x,r)f(x), f € Cy(Z). The following are equivalent:

(i) Fy is a central Herz-Schur (Cy(Z), G, a)-multiplier;
(i) ¥ is a completely bounded multiplier of the Fourier algebra of G;
(iii) there exist a Hilbert space £ and essentially bounded functionsv,w : GXZ —
L such that

P(xt L ts7h) = (u(s, x), w(t, x)), s,t €G, almostall x € X.
If the conditions hold then we can choose v and w such that

[$llas = esssup [[v(s, x)|| esssup [[w(t,x)||.
(s,x)EGXZ (t,x)EGXZ

We next link central multipliers to the multipliers studied by Dong-Ruan
in [9]. Let (A,G,a) be a C*-dynamical system with A unital and G discrete.
Dong-Ruan define a function h : G — A to be a multiplier with respect to o if
there is an A-bimodule map ® on A X, G such that ®(4,) = 4,7 (h(r)). The
A-bimodule requirement forces h(r) € Z(A) for all r € G. Hence ® = Sy for
the central (A, G, @) multiplier given by F(r)(a) = h(r)a.

In [9, Section 6], the authors use the fact that classical (positive) Schur multi-
pliers on a discrete group G give rise to (positive) central Herz-Schur multipli-
ers of (€*°(G), G, 8) (here 3 denotes the left translation action). This connection
is also utilised by Ozawa [33]. We formalise this connection in the next propo-
sition.

Proposition 3.19. Let G be a discrete group. Consider a functionp : GXG — C
and a family a = (a,),eg C Cp(G). Define

al(p) :=(r7ip7Lp™) and @,(s,1) 1= a1 (7).

The assignments ¢ — a? and a — @, are mutual inverses, and give a one-to-
one correspondence between the classical Schur multipliers and the central Herz-
Schur (Cy(G), G, B)-multipliers. This bijection is an isometric algebra isomor-
phism which preserves positivity.

Proof. Itiseasy to check that ¢,» = ¢ and a®s = a and that these assignments
are linear and multiplicative.
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Now suppose that a = (a,),¢g is a central Herz-Schur (Cy(G), G, §)-multiplier.
By Corollary 3.10, there exist a Hilbert space £ and weakly measurable func-
tionsv,w : G X G — £, such that

(s, 1) = a;1(t71) = (v(s,e),w(t,e)y, s,t €QG.

It follows from [5] that ¢, is a Schur multiplier and ||@,||le < ||a||gs-
Conversely, suppose ¢ : G X G — C is a Schur multiplier, and take v,w :
G — J( are such that ¢(s, t) = (v(s), w(t)) and

llelle = sup|lv(s)]| sup [[w(®)]|.
seG teG

Then, for s, t,x € G,

a?_ (xt™) = (st Hexh txh) = p(sx 7L ex ) = (u(sx ), wtx 1))

ts—1

Therefore, by Corollary 3.10, a® = (a’ ), is a central Herz-Schur (Co(G), G, @)-
multiplier with ||a?||gs < ||¢l|s-

If a is a positive central multiplier (resp. ¢ is a positive Schur multiplier) then
applying Corollary 3.17, taking v = w in the above calculations, shows ¢, (resp.
a?®) is also positive. O

4. Convolution multipliers

In this section, we give a characterisation of Herz-Schur convolution multi-
pliers first studied in [28, Section 6]. We will use the notion of a Herz-Schur
f-multiplier of a C*-dynamical system (A, G, @), introduced in [28, Definition
3.3]. Let® : A - B(Jp) be a faithful representation of (the separable C*-
algebra) A on the separable Hilbert space Hp, and let (7%, 19) be the regular
covariant pair associated to this representation (see Subsection 2.1.4). A func-
tion F : G —» CB(A) will be called a Herz—Schur 6-multiplier of (A, G, a) if the
map

(@)1 = 7O(F(r)(a))A?

extends to a completely bounded, weak*-continuous map on A N;‘”’; G. As be-
fore we assume that G is either second countable or discrete.

4.1. Abelian case. Let G be an abelian locally compact group equipped with
a Haar measure and T be its dual group. We denote by A" the left regular rep-
resentation on L?(T"). We shall identify each element s € G with a character on
T, and use S to denote the natural action of G on C;(T') by letting

Bs(A'(N) :=AT(sf), seG, f el )

thus, (C}(I), G, B) is a C*-dynamical system.

Given a bounded measurable functiony : GXT' - Candt € G (resp. x €
I), let the function ¢, : T — C (resp. p* : G — C) be given by 3,(y) :=9(¢,y)
(resp. P*(s) := P(s, x)). We call ¢ admissible if ), € B(T") for every t € G and
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sup, |[¥:llpry < oo. Assuming that ¢ is admissible, let Fy(t) : C;(T) — C;(T)
be the map given by

Fy()(A"(g) = 2" (hg), g e LM D).
We define the Herz—Schur convolution multipliers of G to be the elements of the
set
Seconv(G) ={p : GXT — C : ¢ is admissible and Fy is
a Herz-Schur (C;(I), G, B)-multiplier},
and write
@4 (G)={ : GXT —= C : ¢ is admissible and Fyis
a Herz—Schur id-multiplier of (C;(I'), G, B)}.

Here we write id for the canonical representation of C;(I') on L3(I"). Clearly,
the space ©,,,(G) is an algebra with respect to the operations of pointwise
addition and multiplication, and &< _(G) is a subalgebra of &_,,,(G). Fory €
Sconv(G), let [|[P]lus = ||Fyllus, and use Sy to denote the map SF,-

We identify an elementary tensor u ® h, where u € B(G) and h € B(T'), with
the function (s, x) — u(s)h(x),s € G, x € I'. Let F(B(G), B(T")) be the complex
vector space of all separately continuous functions ¢ : GXI' — C such that, for
every s € G (resp. x € I), the function 1), : T' — C (resp. p* : G — C) belongs
to B(T) (resp. B(G)). By [28, Section 6], we have the following inclusions:

B(G) © B(I') € @y (G) € F(B(G), B(T)).
We now answer [28, Question 6.6] by identifying @  (G).

Theorem 4.1. Let G be a locally compact abelian group and ¢ : G XI' = C be
an admissible function. The following are equivalent:

() % € Siony(G);
(ii) Y € B(G xT).
The identification is an isometric algebra homomorphism.

Proof. (i) = (ii) Let ¢ € @ignv(c) and let Fy, : G — CB(C;(I) be the
corresponding Herz-Schur multiplier of (C;(I'), G, 8). By [28, Theorem 3.8],
N (Fy)(s,t) is a Schur C;(I')-multiplier and hence there exist a Hilbert space
J,, operators V, W € L(G, B(LAT), I »)), a continuous unitary representa-
tionp : T — B(H,)and asubset N C G X G with (mg X mg)(N) = 0, such
that
N(Fy)(s, O(AT(N) = WO*p(HV(s),  f e LD,

forall (s,t) &€ N, and

19lle = esssup || V(s)|| esssup || W(D)|. )
seG teG

As
N (Fy)(s, YA () = Bn1 (Fy(ts (B AT () = AT @51 ),
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we obtain

M@ ) = WO p(HHV(s), e LX),
for all (s,t) ¢ N. As 1,1 € B(I'), we have that ;1 is a completely bounded
multiplier of A(T'), and the map Sy, can be extended to a weak*-continuous
linear operator on vN(T"); we have

Pts™L )AL = W) p(x)V(s), x €T, (s,t) & N.
Thus, for & € L2(T") with ||£]|, = 1, we have

PesLxy (€, &) = </1£_1 W) p(x)p(»)* V(s)A, €, §>
= (e V() &, p(x)* W(DALE) .
Letting v(s,y) 1= p(»)*V(s)A, ¢ and w(t, x) := p(x)* W(t)A £, we obtain

P((8,x)(8,)71) = (u(s, ¥), w(t,x)y, (s,1) &N.

By [5], ¥ is equal almost everywhere to a completely bounded multiplier of
A(G x T), and hence to an element u € B(G X I') [21, Theorem 5.1.8]. To see
that (¢, x) = u(t, x) for all (¢, x), for each t € G we let

N; ={x el : P, x)=u(tx)}

By Fubini’s Theorem, the set {t € G : mp(N;) > 0} has measure zero, that is,
for almost all t € G, we have that (¢, x) = u(t, x) almost everywhere. As ¢ is
separately continuous, the last equality holds for all x € T'. Using again the sep-
arate continuity of 1) we obtain that ¢(¢t, x) = u(t, x) for all (¢, x). Furthermore,
by (9),

[$llpexry < esssup [|o()* V()ALE]| esssup [[o(x)* W(DALE|

(s,y)eGxT (t,x)eGXT

< esssup [|V(s)| esssup WOl = [IPlle-

seG

(ii) = (i) Assume that ¢ € B(G x I'). By [5], there exist a Hilbert space
and continuous v,w : G X I' - H such that

P(es™L xy™Y) = (u(s,y), w(t, x)), s,tE€G, x,y €T,

and
1%1lpexry = sup [[u(s, p)|| sup [[w(t, X)|I.
(s.3) (t,x)
Choose an orthonormal basis {e;};c; in J€ and let v;(s,y) := (v(s,y),e;) and

w;(t, x) := (e;, w(t, x)). Then
Peshxy™) = D vils, Ywit,x), s,tEG, x,y €L
iel
Let S be the completely bounded operator on B(L*(G x I')), given by S(T) :=
Yic; My, TM,,. Clearly,
ISllco = 1P llBiexT)- (10)
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To complete*the proof, it suffices to show that the restriction of the operator S
to C;(T) NE),i 4 G is given by
S(74@ADHAY) = 7id(y(s, x)AL) A, (11)
First note that
TEADEND) = B ADEW) = t)ATE®), & € LAG,LAT)).  (12)

Writing v;(¢)(-) and w;(¢)(-) for v;(¢, -) and w;(¢, -), respectively, for t € G and
y €T, and fixing £,7 € L*(G, L*(T")), we have

(SEADANE, n)
= Y (M, 74ADAM, £, 1)
iel
= (Mu ot COAEMy (-1 (s710)) (I(E, p)dedy
iel
= > | wilt, v~ x T IOEGTHE x T yn(E, y)dedy

i€l

f Pt yy Ot (0)E (s e, x Ly (e, y)dedy

f (s, X)(TUADAE) (¢, y)n(e, y)dedy.
Together with (12), this establishes (11). In addition,

S

I¥lle = < [ISlles = 1¥llaGxr),

® *
CHOXEG| |,

which together with (10) gives the desired equality. .
To see that the identification is multiplicative, observe thatify, y € &4 (G)
thenSF¢SFX :SFV)X' |

In Theorem 4.4 below we will show that the identification in Theorem 4.1 is
in fact a complete isometry.

4.2. General case. Now let G be an arbitrary locally compact group. In order
to define convolution multipliers, we replace C;(I') with the quantum group
dual of C}(G), namely Cy(G), equipped with its natural action of G. Similarly
we replace B(I') by M(G), the Banach algebra of all complex-valued Radon mea-
sures on G with the convolution multiplication, given by

(u*v)(f) := fff(st)d,u(S) dv(t), f € Co(G), u,v € M(G).
G YJG

We identify L!(G) with the norm-closed ideal in M(G) consisting of absolutely
continuous measures with respect to left Haar measure. We have that L1(G)
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is an M(G)-bimodule in the natural way. Using the identification L}(G)* =
L*(G), we arrive at an M(G)-bimodule structure on L*(G), given by

<:ufah>=<f’h*lu> and <f:ush>=<f’,u*h>a
for h € LY(G), f € L®(G), u € M(G). In particular,

(- F)s) = f FOdu(t) and  (f - () = f F(s)du(s).
G G

Let p be the right regular representation of G on L*(G); thus,

(ps)(1) = A(s)Y/2&(ts).
For u € M(G), define a bounded linear operator 8(u)(a), a € B(L*(G)), by

B(u)(a) = f psaptdu(s).
G

By [31, Theorem 3.2] (see also [30, Theorem 4.5]), the map 6 above is a weak*-
weak* continuous completely isometric homomorphism from M(G) to the space
CB?(B(L*(G))) of all completely bounded weak* continuous linear maps on
B(LX(G)) and [|6()]|ep = I0GDI| = ||ull- We have

o) =pu-f L), [feL=OG).
Moreover, O(u) is a vN(G)-bimodule map.
Foreacht € G,let 3, : L*(G) —» L*(G) be given by 5,(f) := A?f/ltcil = f4
where f,(x) = f(t7'x). Then

Biob(u) = 6(u)op,, tE€G. (13)
For A = {i;};ec € M(G), define F,, : G — CB(Cy(G)) by

FA(O(f) :=0u)(f), teG, feCyG).

Definition 4.2. A family A = {i; };,eg € M(G) is called a convolution multiplier
if F is a Herz-Schur (Cy(G), G, f)-multiplier.

If A = {i;};ec is a convolution multiplier, we set ||A||gs = ||Fallgs-

Let id denote the representation of Cy(G) on L?(G) by multiplication opera-
tors and @iggmv (G) be the collection of families A = {;};c¢ € M(G)suchthatF,
is a Herz-Schur id-multiplier of (Cy(G), G, B), endowed with the algebra struc-
ture coming from pointwise operations on the maps F,. When G is abelian,
the identifications Cy(G) = C;(T') and M(G) = B(T') show that this usage of the
notation @< (G) agrees with that from Subsection 4.1.

Consider the operator space projective tensor product
LY(G) ® A(G) = (L*(G) ® VN(G))...

We note that, when equipped with the product given on elementary tensors by

FOW(E®V) = *2Qwv), f,g€LYG), u,ve A(G),
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the operator space L(G) ®AG)isa completely contractive Banach algebra. A

map T € B(LY(G) ® A(G)) will be called a right multiplier of L*(G) ® A(G) if
T(ab) = aT(b), a,b € LY(G)® A(G).

If, in addition, T is completely bounded, we write T € Mgb(Ll(G) ® A(G)), and

call T a right completely bounded multiplier of L'(G) ® A(G). When G is abelian
we have the identifications

M (LY(G) ® A(G)) = Mep(A(T X G)) = B(I' X G).
Our goal is to generalise Theorem 4.1, identifying @4 (G) with the space of
right completely bounded multipliers Mgb(Ll(G) ® A(G)).

If M is any of the von Neumann algebras L*(G), vN(G) or L*(G) ® VN(G),
TeMand f € M,,wewrite f-Tand T - f € M for the operators given by

(f-T.8) :=(T.8f), (T-f.8):=(T.fg), g&EM,,

where (-, -) is the pairing between M and M,,. We recall [12] that the support of
T € vN(G) is the closed set of all t € G such thatu - T # 0 whenever u € A(G)
and u(t) # 0.

Lemmad.3. IfT € Mgb(Ll(G)(ﬁ?)A(G)) then there exists a unique family {u; };cc C
M(G) such that

T*(f ®47) =0(u)() @47, feL®(G), tEG.
Proof. Let f1, f, € L}(G), a;,a, € A(G). The equality
T((f1 ® a(f2 ® a)) = (f1 ® a)T(f>, ® a)
implies that, if g € L*(G) then
(T ® A7), (f1 ® a)(f2® @) = ar(O(T* (g - /L @A), L@ a2). (14)
Taking the limit along an approximate identity {f,},ca of L}(G), we obtain
(T*@® 1)), [, @ a1az) = (@ (NT* (g ® 7). f> ® az)- (1s)
For w € LY(G), letR, : L®(G) ® VN(G) — vN(G) be the slice map, defined by
(R,(S),a) :=(S,w®a), Se&L®G)Q®VN(G), aec A(G).
After taking a limit along an approximate unit for L!(G), equation (15) implies
that
ar - Ry(T*(g ® A7) = a1 ()R, (T*(g ® A7)
It follows that R,(T*(g ® /ltG)) € vN(G) has support in {t}. By [12, Théoréme
4.9], R,y (T*(g ® 1°)) = c(w, t)AC for some constant c(w, t) and
R,(T*(g® 7)1 ®17,)) € CI.

By [23], T*(g ® 47)(1 ® 2%,) € L®(G) ® CI and hence T*(g ® 17) = g, @ A7
for some g, € L*(G).



CENTRAL AND CONVOLUTION MULTIPLIERS 31

The map @, : g — g; is completely bounded, normal, and T*(g ® /1?) =
D,(g) ® A%, t € G. By (14),
(g~ f1)=2(8) - f1. f1€LYG),

showing that (®,)..(f1 * f2) = f1 * ((®,).(f>)). Thus (®,), is a right com-
pletely bounded multiplier of L1(G). By [31, Theorem 3.2] (see also [30, Theo-
rem 4.5]), there exists {y,};cc such that ®,(g) = 6(u,)(g). O

In what follows we will speak of a family A = {u;};cc € M(G) being a con-
volution multiplier or a (completely bounded) right multiplier. For a right mul-

tiplier A of LX(G) ® A(G) we denote by R, the mapping on L¥(G) ® vN(G),
given by

RA(f ® A7) 1= 8(u)(f) ® A7 (16)
Theorem 4.4. Let A = {i;};,cq € M(G). The following are equivalent:
(i) A € S (G
(i) A € M, (LY(G) ® A(G)).
The identification Ry — Sg, is a completely isometric algebra isomorphism.
Proof. (i) = (ii) We identify Cy(G) ><1,2,“1 4 G with the von Neumann algebra
crossed product L*®(G) ><IEN G, and let A = {1}, be a convolution multiplier.
For f € L*(G), using (13) we have

NENS ) = Ba (FAUts™(B(f))
= B (e(:uts—l)(ﬁt(f))) = O(pys-1)(f).

Following similar arguments as in the proof of [28, Theorem 3.8], we obtain
that there exist a normal *-representation p of L*(G) on J(, and

V, W € L*(G, B(L*(G), H,))
such that
B(s)(f) = WHDR(F)V(s)
and [|Allg = esssup,, [|V(s)]] esssup,g [ WO
Define a map R, : L®(G) ® VN(G) — B(L3*(G) @ L3(G)) by
RA(f ® A%) 1= W*(p(f) ® A7)V,
where V, W € B(L*(G, H,QL*(G))) are given by (VE)(t) = V()E(), (WE)(t) =
W(t)&(t). Then
RA(f @ A%)E(s) = WH()p(/) V(T )E(t1s) = O(y(s-10))(EE1S)
= (6(u)(f) @ ATEX(S).
In particular, Ry(f ® /I[G) € L*(G) ® VN(G), and hence R, is a normal com-
pletely bounded map on L*(G) @ vN(G). Moreover, if f;, f, € LY(G), a;, a, €
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A(G), g € L*(G), and (R,),. is the predual of R,, we have
(g® 28, R)L((f1® a)(f2 ® ay))) = (6(1,)(g) ® 28, f1%f,® a,a;)
= (U - & f1 % f2></1G,alaz> =g (f1 * f2) * ) <a1 'fltG’az>
= (g f1.f2* m){a '/1?,‘12> = (- (g fO ) (a1 (DAF, az)
=(RAg- [1® a1(t)/1tG)’ 2Qa)=( f1® a (DA, (RN ® ay))
=(g® 28, (f1 ® a)Rp).(f> ® a)),
ie.
(RA)((f1 ® a))(f2 ® a2)) = (f1 ® a1)(Rp):(f2 ® ay).
Hence (Ry)..(ab) = a(Rp).(b) foranya,b € Ll(G)A® A(G) and therefore (Ry)..
is a right completely bounded multiplier of L!(G)®A(G). In addition,
IRAlleb < esssup 48 esssup WOl = [Alle- 17)

(i) = (i) Assume now that A = {u},e¢ € M/ (LX(G) ® A(G)), i.e. the
map f ® /1tG ~ 0(u)(H® /1? extends to a normal right L!(G) ® A(G)-modular
completely bounded map R, on L®(G)®VN(G). By [20, Proposition 4.3], there
exists a unique vN(G) @L‘”(G):Eimodule map R, € CB?(B(L%(G x G))) such
that RAle(G)§vN(G) = R, and [|[Ra]lcb = ||RAllch- We have, in particular,

RA(g® fA%) = 0(u)(®@) ® A, f,g€L(G). (18)
Note that L?>(G x G) = L*(G,L*(G)) and let 7 : L®(G) — B(L*(G x G)) be
the *-representation, given by
(HEE) = B (NHE®), § € LX(GXG), f € L.
Let f € L*(G) and note that 7(f) € L*(G X G). Thus, there exists a net
{wataea C span{g ® h : g,h € L*®(G)}, with w, —4ea 7(f) in the weak*
topology. Write w, = Zln:“l 8o ® h; 4. Using (13) and (18), we have

(R0 ® A%) = lim > 6041 ® hyAC = 7(8(1)(N)1 © 29).
i=1

Since

(Sp, (x(HA® A7) = (OUI(MNA ® A7),
the restriction of R, to the crossed product Co(G) X gr G coincides with Sg ,
implying the converse statement. Note, in addition, that

1S5, lleb < 1RAlles = lIRalleo- (19)
By (17), [|Rallch < IS, llcv» and together with (19) this shows that ||Ry ||, =
ISk, |lcb- Moreover, by Lemma 2.7 the map Fp = N'(F,) is a complete isometry,

and by [20, Proposition 4.3] the map R, — R, is a complete isometry, therefore
the norm inequalities hold on all matrix levels, implying that the identification
Sp, P R, is a complete isometry.
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The homomorphism claim follows from Lemma 2.7 and the fact that the
identification in [20, Proposition 4.3] is a homomorphism. O

We observe that the product of the convolution multipliers A = {i,},ec and
E = {v}ec is given by AE = {i; * v;}ieq- We write © (A, G, @) for the
central Herz-Schur (A, G, a)-multipliers.

Proposition 4.5. We have ©,,(G) N ©..1(Cy(G), G, B) = My, A(G).

Proof. Suppose that F : G — CB(C,(G)) is a central multiplier which is also
a convolution multiplier. Then for each r € G there is a, € C,(G) such that
F(r)(a) = a,a. Also, since F is a convolution multiplier, by (13) F(r) satisfies

B:(F(r)(a)) = F(r)(Bi(a)), r,t€G, a€ CyG).

Combining these two identities, and allowing a to vary, gives a,(st) = a,(t) for
all s,t € G, so a, is a scalar multiple of the identity. The conclusion follows
from [28, Proposition 4.1]. O

5. Idempotent multipliers

Given standard measure spaces (X, x) and (Y, v), a well-known open prob-
lem asks for the identification of the idempotent Schur multipliers on X X Y.
A characterisation of the contractive idempotent Schur multipliers, based on a
combinatorial argument, combined with an observation of Livshitz [25], was
given by Katavolos-Paulsen in [22].

In a similar vein, for a general locally compact group G, there is no known
characterisation of the idempotent Herz-Schur multipliers. Some partial re-
sults are known: the idempotent measures in M(G) of norm one were charac-
terised by Greenleaf [13] — a measure u has the properties u * 4 = u and
||| = 1if and only if u = ymy, where my; is the Haar measure on a compact
subgroup H and y is a character of H. Such u is positive if and only if y above
is equal to 1. Dually, the idempotent elements of B(G) were characterised by
Host [18]; using Host’s method, Ilie and Spronk [19] characterised contractive
idempotents — a function u € B(G) has the properties u?> = u and |ju|| = 1 if
and only ifu = y, where C is an open coset of G. Such u is positive if and only
if C is a subgroup of G. Stan [41] extended this characterisation to norm one
idempotent elements of M, A(G).

In this section we use the aforementioned results of Katavolos—-Paulsen and
Stan to study the idempotent central and the idempotent convolution multipli-
ers.

5.1. Central idempotent multipliers. We fix standard measure spaces (X, )
and (Y, v) and a separable, non-degenerate C*-algebra A C B(H). Suppose
@ € L®(X x Y) is an idempotent Schur multiplier, so the map k — ¢ - k on
L*(Y x X) gives rise to a bounded idempotent map S, on the space of compact
operators; we have that ¢%(x, y)k(y, x) = ¢(x, y)k(y, x) almost everywhere for
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all k € L3(Y x X), which implies that > = ¢. By [22, Proposition 11], ¢ = g
almost everywhere for some w-open and w-closed E C X X Y.

Recall from [22] that a subset E C X X Y is said to have the 3-of-4 property
provided that given any distinct pair of points x; # x, in X and any pair of
distinct pairs y; # y, in Y, whenever 3 of the 4 ordered pairs (x;, y;) belong to
E then the fourth one also belongs to E.

For a subset W C C X Z, where C is a set (which will below be equal to either
X orY), and an element z € Z, we write W, = {t € C : (t,z) € W}. The
following result generalises [22, Theorem 10].

Proposition 5.1. Let (X, 1) and (Y, v) be standard measure spaces and Z a lo-
cally compact Hausdorffspace. Let ¢ : X XY XZ — C be a measurable function,
continuous in the Z-variable. The following are equivalent:

(i) @ is a contractive idempotent central Schur Cy(Z)-multiplier;
(ii) foreach z € Z, there exist families (A7);en and (B );en of pairwise disjoint
measurable subsets of X and Y, respectively, such that

o(x,,2) = 2 xaz () x5:(¥)

i=1
almost everywhere.

Proof. (i) = (ii) By Theorem 3.6, ¢, is a contractive idempotent Schur mul-
tiplier for every z € Z. By [22, Theorem 10], there exist families (A7), and
(Bf)2, of pairwise disjoint measurable subsets of X and Y, respectively, such

that ¢,(x,y) = 221 Xaz (x) XB? (y) almost everywhere.

(ii) = (i) By [22, Theorem 10], ¢, is a contractive idempotent Schur mul-
tiplier for every z € Z; thus, by Theorem 3.6, ¢ is a central Cy(Z)-multiplier,
which is easily seen to be idempotent. Since each ¢, is contractive we have ¢ is
contractive by Theorem 3.6. O

Remark 5.2. The statement holds when the standard measure spaces are re-
placed by discrete spaces X and Y with counting measures, but in this case the
families (A7);, (BY); might be uncountable if X or Y is uncountable. In this
case (i) is also equivalent to ¢ = yy,, where W, has the 3-of-4 property for each
z € Z, see [22, Lemma 2].

Let Z be a locally compact Hausdorff space equipped with an action «a of a
locally compact group G. In the subsequent results, we view the set Z X G as
a groupoid as in Section 3.4. We provide a combinatorial characterisation of
the contractive central Herz-Schur (Cy(Z), G, a)-multipliers. It is easy to see
that in this case ¥(x,t) = yy(x,t) for some subset V' C Z X G. Theorem 5.3
generalises the result of Stan [41, Theorem 3.3].

Theorem 5.3. Assume thatV C Z X G is a subset that is both closed and open.
The following are equivalent:

(i) F,, is a contractive central Herz-Schur (Co(2Z), G, oo)-multiplier;
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(i) if (x,t), (x,s), (xr,r7ts) € V then (xr,r~'t) € V; equivalently, if (x,t),
(y,s), (z,p) € V and the product (z, p)(y,s)"1(x,t) is well defined then
(z, p)(¥,8) " (x,t) € V.

In particular, if V = Z X A for some A C G then A is an open coset of G.

Proof. Let
W={(x,51t)€ZXGXG : (xt7L,ts) eV}

By Corollary 3.18, F,,, is a Herz-Schur (Cy(Z), G, a)-multiplier if and only if
the map NV'(F,, ), given by

N(Fy, (s, 0)(a)(x) = xy(xt™, ts™Ha(x) = xw(x,s, Ha(x),

is a Schur Cy(Z)-multiplier.

We first show that condition (ii) is equivalent to W, := {(s,t) € G X G :
(z,s,t) € W} having the 3-of-4 property for all z € Z. Suppose that (z, t1, s7),
(z,t1,8,) and (z,1,,5,) € W, which is equivalent to (zt]', t;571), (zt7, 11571,
(zt;1,t,5;") € V. Writing zt]! = x, tys7" = 1,115, = sand 1,1, = r, we get
zt;! = xr, t,s57" = r7't and t,s;' = r7's and hence (x, 1), (x,s), (xr,r's) €
V. The condition (z,t,,s;) € W is equivalent to (xr,r~'t) € V, giving the
statement. We note that (z, p)(y, s)~(x, t) = (z, p)(ys, s~1)(x, t) is well defined
ifand onlyify = x and z = xsp~!;letting r = sp~!, we have (z, p) = (xr,r1s).
We have shown that condition (ii) is equivalent to the 3-of-4 property for each
W,.

Assume first that G is a locally compact second countable group and hence
(G, mg) is a standard measure space.

(i) = (ii) If (i) holds then V'(F,, ) is a contractive idempotent Schur Cy(Z)-
multiplier. By Theorem 3.6, ¢, = xy, is a contractive idempotent Schur multi-
plier for each z € Z. By [22, Theorem 10], there exist countable collections {I,,,}
and {J,,,} of mutually disjoint Borel subsets of G, such that, if E = U,,,[,,, X J,,;,
then yy,_ = yp almost everywhere.

As xyw, is continuous and hence w-continuous and xy is w-continuous, by
[39, Lemma 2.2], xy,, = xp marginally almost everywhere. Hence there exists a
null set N, such that yy, = ypon N;XN7. In particular, W,N(N;XN7) has the
3-of-4 property. To see that the whole W, has the property, take t,, t,, 51, s, such
that (¢, s1), (1, $2), (£5,5,) € W,,butsome of t1, 51, 5, 5, belong to N,. Using the
fact that W, is open and m(N,) = 0 we can find sequences (¢]),,, (s])p, (£3)ns
(s3), of elements in N7 such that (¢, s7), (¢],s7), (£},5;) € W, and ¢! — ¢,
Sl.” — §;,i = 1,2. Hence (tg,sf) eW,,andas1 = )(Wz(t”,s’f) = xw,(t2,51), we
obtain that (¢,,s;) € W,. Hence (ii) holds.

(ii) = (i) As W, is open and hence w-open, W, is marginally equivalent to
a countable union of Borel rectangles. Hence W, N (N7 X N7) = U>_ A7, X B,
where mg(N,) = 0and each A%, xB? is Borel. By [22, Lemma 2] and the second
paragraph in the proof, W, and hence W, N (N X N) has the 3-of-4 property
for each z € Z and there exist families {X};¢; and {Y7};¢; of pairwise disjoint
sets of G, such that W, N (N7 X N;) = U, X7 X Y. Arguing as in the proof of
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[22, Theorem 10] one shows that the index set I can be chosen countable and
each X7 x Y7 is a Borel rectangle. Hence yy, is a contractive Schur multiplier.
By Proposition 5.1 yyy is a contractive idempotent central Schur multiplier, so
Xv is a contractive idempotent central Herz—Schur (Cy(Z), G, or)-multiplier.

If G is discrete, the statement follows from Remark 5.2. Finally, if V = Z X A
then yy(x,t) = ya(t) which is a Herz-Schur (Cy(Z), G, a)-multiplier if and
only if y 4 is a Herz—Schur multiplier. It is of norm at most 1 if and only if A is
an open coset of G. O

Remark 5.4. It follows from Theorem 5.3 that if F,, is a contractive Herz-
Schur (Cy(2), G, ar)-multiplier and the points

(x, 1), r((x,0)=(x,e), d((x,t)) = (xt,e)
all belong to V then (x,t)™' = (xt,t™!) € V. Moreover, if (x,t), d((x,t)) =
(xt,e) and (xt,s) € V then (x, t)(xt,s) = (x,ts) € V.

The following corollary is an immediate consequence of Remark 5.4.

Corollary 5.5. With the notation of Theorem 5.3, assume that G, C V. We have
that F,,  is a contractive Herz-Schur (Co(Z), G, ao)-multiplier if and only if V is a
subgroupoid of G.

5.2. Positive central idempotent multipliers. The following description of
positive contractive Schur multipliers can be obtained in a similar manner to
[22, Theorem 10], and we omit its proof.

Proposition 5.6. Let (X, u) be a standard measure space and E C X X X. The
following are equivalent:
(1) xg is a positive contractive Schur multiplier;
(i) E is equivalent to a subset of the form U _ 1, X I,,, with respect to product
measure, where {I,,}>_, is a collection of disjoint Borel subset of X.

Remark 5.7. The standard measure space (X, 1) can be replaced by discrete
space X with counting measure. In this case the collection of disjoint subsets
of X might be uncountable.

The following positive version of Proposition 5.1 and its discrete version can
be proved using similar ideas, and we omit the detailed argument.

Proposition 5.8. Let (X, 1) and (Y, v) be standard measure spaces and Z a lo-

cally compact Hausdorff space. Let ¢ : X XY XZ — C be a measurable function

which is continuous in the Z-variable. The following are equivalent:

() @ is a positive contractive idempotent central Schur Cy(Z)-multiplier;

(ii) for each z € Z, there exists a family (A7); of pairwise disjoint measurable
subsets of X, such that p(x,y, z) = Zzl X Af(x) XAz (y) almost everywhere.

Proposition 5.1 and the transference theorem of [28] give an implicit charac-
terisation of the positive central idempotent Herz—Schur (Cy(Z), G, «)-multipliers.
In Theorem 5.9 below, we give a more direct description of the positive central
idempotent Herz-Schur multipliers of norm not exceeding 1.
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Theorem 5.9. Let (Cy(Z), G, a) be a C*-dynamical system andV C Z X G be a
closed and open subset. The following are equivalent:

(i) F,, is a positive, contractive Herz-Schur (Co(Z), G, a)-multiplier;

(i) V is a subgroupoid of Z X G.

Proof. We will prove the theorem for G a locally compact second countable
group. The case when G is discrete can be treated in a similar but simpler way.
(i) = (ii) Let

W ={(z,51)€ZXGXG : (zt7},ts71) e V}.

If F,, is a positive contractive Herz-Schur (Cy(Z), G, a)-multiplier then the
function NV'(F,,,), given by N'(F,, )(s,t)(a)(z) = xw(z,s,t)a(z), is a positive
Schur Cy(Z)-multiplier. By Theorem 3.13, yyy_ is a positive Schur multiplier for
each z € Z. Note also that, as it is continuous, it is w-continuous. Using [39,
Lemma 2.2], we see that there exist a weakly measurable function v, : G — ¢2
and a null set N, C G such that

XWZ(Sa t) = (U (s),v,(0)), s,t &N,
Let (x,t) € V; as in Remark 5.4, it suffices to show that (x, e) and (xt,e) € V.
Assume that (x,e) € V, and note that

XV(X’ e) = XV((Xt)t_15 tt_l) = XW(Xt, L, t) and XV(xi t) = XW(Xt, e, t)
Ift ¢ N, and e ¢ N,; then

xw(xt, £,1) = |[vg (D5 = 0 and yyw(xt, e, 1) = (Uy(e), Uy (1)) = 0,

giving a contradiction. If one or both of e or t arein N,,,say t € N,, bute & N,
then, as m(N,;) = 0 there exists a sequence s,, € N,; such thats, — t. As y
is continuous, we obtain

(sl = xwCxt, 55, 80) = xw(xt, £,6) =0,
while

(Uxe(@), Uy (8)) = xw(xt,e,s,) = xw(xt,e,t),
forcing yy (xt,e,t) = 0, a contradiction. The other cases are treated similarly.
To see that (xt,e) € V observe that

XV(Xta €) = XW(x’ t_la t_l) and )(V(x’ t) = XW(xa t_la e)
and apply similar analysis.

(ii) = (i) Let now V be an open subgroupoid. Arguing as in the proof of
Theorem 5.3 we see that W, has the 3-of-4 property for each z € Z. Moreover, if
(x,s,t) € Wwehave that (xt~!,ts7!) € Vandhencer(xt™%,ts7!) = (xt71,e) €
V and d(xt™1,ts71) = (xs71,e) € V, implying (x,t,t) € W and (x,s,s) €
W. Therefore the projections W} and W2 of W, on the first and the second
coordinates are equal and {(s,s) : s € W1} C W,. It follows easily now that
for each z € Z there exists disjoint sets {X} };er such that W, = U,er X7 X X7.
Arguing as in [22, Theorem 10], there is a Borel subset N,, ms(N,) = 0 such
that (X7 NN;) X (X7 NNy) is a Borel rectangle and W, N (N3 X Ny) is a countable
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union of (X7 N N;) X (X7 N N7). By Proposition 5.6 yy,, is a positive contractive
Schur multiplier. Therefore yyy is a positive contractive Schur Cy(Z)-multiplier
by Theorem 3.13. O

5.3. Idempotent convolution multipliers. We next provide some examples
of idempotent convolution multipliers. The following is immediate from The-
orem 4.1 and [19, Theorem 2.1].

Corollary 5.10. Suppose G is an abelian locally compact group and W C G X T
is a measurable set, such that yy, € @9 .. Then ||xwl|le < 1ifand only if W is
an open coset of G X I

It is clear that if G is abelian, and C and D are open cosets of G and I" respec-
tively, then C X D is an open coset of G X I" and therefore y.p is an idempotent
convolution multiplier of norm 1 by Corollary 5.10. The following example
shows that not all idempotent convolution multipliers of norm 1 are of this
product form.

Example 5.11. Consider the abelian group G = R X Z,, and note that G is
isomorphic to its dual group I'. Define

H :={(a,0,b,0), (c,1,d,1) : a,b,c,d € R}.

It is clear that H is an open subgroup of G X I, but H cannot be written as a
product of subgroups of G and T'.

Remark 5.12. Let G be an abelian locally compact group; by Theorem 4.1, a
contractive idempotent Herz—Schur convolution multiplier, say F, corresponds
to a characteristic function yy,, for an open coset W C G X I'. In the following,
we show more precisely how the family (F(r)),cg € CB(C; (I')) arises. Suppose
that W = xH for an open subgroup H of G X I"'and x € G X I'. Let v be the
representation of G x I" on ¢2((G x I')/H), given by v(2)8yy = 6, (2, €
G xT), {6,u}, be the standard orthonormal basis in ¢ 2((G xT)/H)), and write
v for the unitary representation y — v(e,y) of . Forr € G, let u, € B(T') be
the function given by

U 1 T = G u(y) 1= (VS Sw ) -
Then
Sy ®29) = xw (r, AL ® A8) = (8¢, 6w ) (AL ® AF)
= (v(r,V)8u, 8w) (A ® A7)
= (V)30 O ) (A ® A9)
= u, ()AL @ AC,

so the idempotent element yy,, € B(G X I') corresponds to the Herz—-Schur
convolution multiplier F(r) := u,.
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It is immediate from Host’s theorem that if G is a connected locally compact
group then B(G) does not have non-trivial idempotent elements. We observe
that this extends to idempotent convolution multipliers on abelian groups. In-
deed, let ¢ be an idempotent convolution multiplier of the dynamical system
(CX(I"), G, B) and write ¢ = yy, forsome W C G XT. For x € T'and s € G, let

W*:={teG:(t,x)eW} and W :={yerl: (s,y) Wi

Proposition 5.13. Lety) = yy € @9 (G)and |[¢||g < 1. Then W* (resp. W)
is an open coset of G (resp. T') for all x € T (resp. s € G).

Proof. Since for any x € I, s € G, we have * = yy. and g = xw,, the
statement follows from [19, Theorem 2.1], as ¥* € B(G) and 3, € B(I'). O

Ify = yw € @ic%nV(G) is contractive, as 1 is separately continuous, we
obtain that W, = Wy, if s and s are in the same connected component of G.
Similarly, we have W* = W¥ for x, x’ in the same connected component of T,
This implies the following corollary.

Corollary 5.14. If the group G (resp. I') is connected then any contractive idem-
potent multiplierp € @9 (G)isgivenbyh = 1® x4 (resp. 1 = x4 ® 1), where
A is an open coset of T (resp. G).

In particular, we have that C;(R) X , R has no non-trivial idempotent Herz-
Schur convolution multipliers, and any idempotent Herz-Schur convolution
multiplier of C(T) Xz, Z is given by x4 ® 1, where A is a coset of Z.

Example 5.15. Let G be a locally compact group. Since My, L}(G) = M(G), we
have that ymy ® x¢ € My, (LY(G) ® A(G)), where C is an open coset of G, H is
a compact subgroup and y is a character of H. The corresponding convolution
multiplier A = (u;);cq is given by u; = yc(t)ymy. Infact, if R is the completely
bounded map

R(f®8) = ((ymy) * /)® xcg [ €L(G), g€ AG),
then
R*(h ® 4,) = 6(ymy)(h) ® xcA; = 6(ymy)h @ xc(t)A,.

Remark 5.16. For a (not necessarily abelian) locally compact group G the al-
gebra Cy(G x G) := Cy(G) ® C;(G) can be considered as a quantum group
with the comultiplication induced from comultiplications of the factors Cy(G)
and C;(G). In [32] the authors give a characterisation of contractive idem-
potent functionals on C*-quantum groups in terms of compact quantum sub-
groups and group-like unitaries of the subgroup. It would be interesting to use
this characterisation to describe contractive convolution multipliers in the non-
abelian case. At present, however, a lack of examples of compact quantum sub-
groups of Co(G X G) impedes the application of the results of [32] to convolution
multipliers.
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