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Abstract. In this paper we obtain descriptions of central operator-valued
Schur and Herz–Schur multipliers, akin to a classical characterisation due to
Grothéndieck, that reveals a close link between central (linear) multipliers
and bilinear multipliers into the trace class. Restricting to dynamical sys-
tems where a locally compact group acts on itself by translation, we identify
their convolution multipliers as the right completely bounded multipliers,
in the sense of Junge–Neufang–Ruan, of a canonical quantum group associ-
ated with the underlying group. We provide characterisations of contractive
idempotent operator-valued Schur and Herz–Schur multipliers. Exploiting
the link between Herz–Schur multipliers and multipliers on transformation
groupoids, we provide a combinatorial characterisation of groupoidmultipli-
ers that are contractive and idempotent.
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1. Introduction
Schur multipliers originated in the work of Schur on the Hadamard entry-

wise product of matrices in the early twentieth century. These are complex-
valued functions, de�ned on the Cartesian productX×Y of twomeasure spaces
(X, �) and (Y, �) that give rise to completely bounded maps on the spaceK of
all compact operators from L2(X, �) into L2(Y, �), acting by pointwise multipli-
cation on the integral kernels of the operators from the Hilbert–Schmidt class.
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A concrete description of these objects, which has found numerous applica-
tions thereafter, was given by Grothéndieck in his Resumé [14]. Since then,
Schur multipliers have played a signi�cant role in operator theory, the theory
of Banach spaces, the theory of operator spaces, and have been linked to per-
turbation theory through the concept of double operator integrals (see [8, 24]
and the references therein).

The theory of Herz–Schur, or completely bounded, multipliers of the Fourier
algebra of a locally compact group originated in the work of Herz [17], where
they were viewed as a generalisation of Fourier–Stieltjes transforms. Similarly
to Schurmultipliers, Herz–Schurmultipliers are complex-valued functions, this
time de�ned on a locally compact groupG, that give rise to completely bounded
maps on the reduced C∗-algebra C∗r (G) ofG, acting by pointwise multiplication
on its subalgebra L1(G). An important development in the subject were the
works of Gilbert and of Bożejko and Fendler [5], showing that the Herz–Schur
multipliers on the locally compact group G can be isometrically identi�ed with
the space of all Schur multipliers on G ×G of Toeplitz type. Haagerup [15] pio-
neered the use ofHerz–Schurmultipliers to study the approximation properties
of operator algebras (see also [6]).

Recently, several generalisations of Schur and Herz–Schur multipliers to the
‘operator-valued’ case have appeared: Bédos and Conti [2, 3] introduced mul-
tipliers of a C∗-dynamical system based on a Hilbert module version of the
Fourier–Stieltjes algebra, and applied these techniques to studyC∗-crossed prod-
ucts while, in [28], three of the present authors de�ned Schur and Herz–Schur
multipliers with values in the space of all completely bounded maps on a C∗-
algebra and obtained a version of the Bożejko–Fendler correspondence. The
use of multiplier techniques to study reduced crossed products, following
Haagerup’s work, has been furthered by Skalski and three of the present au-
thors in [27], by the �rst author in [26], and by the �rst and the fourth authors
in [29].

In this paper we consider special cases of the multipliers de�ned in [28]. We
de�ne central Schur and Herz–Schur multipliers in De�nition 3.2 and De�ni-
tion 3.8, respectively. They are associated with completely bounded maps on
a C∗-algebra A that are multiplication operators by elements of the centre of
the multiplier algebra of A, and are one of the most common type of multipli-
ers that appear in speci�c circumstances. A special case of particular impor-
tance arises when A is abelian. Given a central Herz–Schur multiplier of the
C∗- dynamical system (A, G, �), the corresponding completely bounded map
on the crossed product is an A-bimodule map. Such maps were considered by
Dong and Ruan [9] in their study of the Hilbert module Haagerup property
of crossed products. Exploiting the fact that commutative (unital) C∗-algebras
are algebras of continuous functions on compact topological spaces, we identify
the central Schur and Herz–Schur multipliers with scalar-valued functions on
three and two variables, respectively. This allows us to identify a close link, that
seems to have remained unnoticed until now, between central multipliers and
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the bilinear Schurmultipliers into the trace class, introduced and characterised
by Coine, Le Merdy and Sukochev in [8] (see also [24]).

A C∗-dynamical system of particular importance is (C0(G), G, �), where G is
a locally compact group, C0(G) is the C∗-algebra of all continuous functions on
G vanishing at in�nity, and � is the left translation action of G on C0(G). The
second main class of maps we are concerned with are the convolution multi-
pliers of (C0(G), G, �) introduced in [28]. We answer [28, Question 6.6], identi-
fying the Herz–Schur multipliers of the latter dynamical system with the right
multipliers of a canonical quantum group associated with G; in the case where
G is abelian, we show that these multipliers coincide with the elements of the
Fourier–Stieltjes algebra B(G × Γ), where Γ is the dual group of G.

Finally, we investigate when the special classes of multipliers considered in
this paper give rise to idempotent completely boundedmaps. The general study
of idempotent Herz–Schur multipliers goes back to Cohen [7], who charac-
terised all idempotent elements of the measure algebra M(G). In [18], Host
generalised Cohen’s characterisation by identifying the general form of idem-
potents in B(G), for any locally compact group G, while Katavolos and Paulsen
in [22] and Stan in [41] gave characterisations of contractive idempotent Schur
multipliers and contractive idempotent Herz–Schur multipliers respectively,
based on a combinatorial 3-of-4 property. In this paper, we use the 3-of-4 prop-
erty to obtain characterisations of various classes of central idempotent Schur
multipliers and idempotent Herz–Schur multipliers of dynamical systems.

The paper is organised as follows. Section 2 contains background material,
including a review of crossed products and multipliers as introduced in [28].
The section also includes some preliminary results that will be needed later.
In Section 3 we de�ne central Schur A-multipliers, and present a characterisa-
tion of the central Schur C0(Z)-multipliers, followed by a similar characterisa-
tion of central Schur A-multipliers for an arbitrary C∗-algebra A. After intro-
ducing central Herz–Schurmultipliers, we characterise the central Herz–Schur
(A, G, �)-multipliers, the central Herz–Schur (C0(Z), G, �)-multipliers, as well
as their canonical positive cones. Convolution multipliers are considered in
Section 5, �rst in the abelian and then in the general case. Therein, we also in-
vestigate idempotent multipliers within the classes of central and convolution
multipliers from Section 3 and Section 4.

2. Preliminaries
Throughout this paper, wemake the following standing separability assump-

tions: unless otherwise stated, we consider only separable C∗-algebras, sepa-
rable Hilbert spaces and second-countable locally compact groups. These as-
sumptions allowus to considermultipliers de�ned on standardmeasure spaces.
However, we note that the results remain valid for the case of discrete spaces
with counting measure, in which case the separability assumptions above can
be dropped.
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2.1. General background.

2.1.1. Measure spaces. We �x for the whole paper standard measure spaces
(X, �) and (Y, �); this means that there exist locally compact, metrisable, com-
plete, separable topologies on X and Y (called admissible topologies), with re-
spect to which � and � are regular Borel �-�nite measures. The direct products
X × Y and Y × X are equipped with the corresponding product measures. We
use standard notation for the Lp spaces over (X, �) and (Y, �) (p = 1, 2,∞);
we will also consider (not necessarily countable) sets equipped with counting
measure, in which case we write lp(X) in place of Lp(X).

Given a Banach space B, the space Lp(X, B) (p = 1, 2) is the space of (equiva-
lence classes of) Bochner p-integrable functions from X to B with respect to �;
each of these spaces contains the algebraic tensor product Cc(X)⊙B as a dense
subspace. The identi�cation L2(X,ℋ) ≅ L2(X) ⊗ ℋ will be used frequently;
here, and in the sequel, we denote byℒ⊗ℋHilbertian tensor product ofHilbert
spaces ℒ andℋ. We refer to Williams [43, Appendix B.I.4] for further details.

Letℬ(ℋ,ℒ) be the space of all bounded linear operators fromℋ intoℒ; we
write as usual ℬ(ℋ) = ℬ(ℋ,ℋ). For a weak∗-closed subspaceM ⊆ ℬ(ℋ,ℒ)

we let L∞(X,M) denote the space of (equivalence classes of) bounded functions
f ∶ X → M such that, for each x ∈ X and � ∈ L2(X,ℋ), � ∈ L2(X,ℒ), the
functions x ↦ f(x)(�(x)) and x ↦ f(x)∗(�(x)) are weaklymeasurable as func-
tions from X to ℒ and from X toℋ, respectively. We equip L∞(X,M) with the
norm ‖f‖ ∶= esssup

x∈X
‖f(x)‖ and identify each f ∈ L∞(X,M) with the op-

erator Df from L2(X,ℋ) to L2(X,ℒ) given by (Df�)(x) = f(x)�(x). See Take-
saki [42, Section IV.7] for details. We write L∞(X,ℋ) for the space of (equiva-
lence classes of) bounded weakly measurableℋ-valued functions on X.

Since we have a standing second-countability assumption for locally com-
pact groups (exceptwhenwe specify a discrete group) our groups aremetrisable
as topological spaces, and are hence standard measure spaces when equipped
with left Haar measure.

2.1.2. Operator spaces. Consider (concrete) operator spaces V ⊆ ℬ(ℋ) and
W ⊆ ℬ(ℒ). The norm-closed spatial tensor product of V andW will be writ-
ten V ⊗ W, while if V and W are weak*-closed, their weak*-spatial tensor
product will be denoted V ⊗W. The operator space projective tensor product
V ⊗̂W satis�es the canonical completely isometric identi�cations (V ⊗̂W)∗ =

CB(V,W∗) = CB(W,V∗) [10, Corollary 7.1.5]; if M and N are von Neumann
algebras, V = M∗ andW = N∗, then (V ⊗̂ W)∗ = M ⊗ N, up to a complete
isometry [10, Theorem 7.2.4]. For u ∈ Mn(V ⊙ W) let ‖u‖ℎ = inf {‖a‖‖b‖},
where the in�mum is taken over all integers p, and all matrices a ∈ Mn,p(V)

and b ∈ Mp,n(W), such that ui,j =
∑

k
ai,k⊗bk,j; the Haagerup tensor product

V⊗ℎW is the completion of the operator spaceV⊙W in ‖⋅‖ℎ; see [10, Chapter
9] for further details.

For an index set I, we will write C!
I
(V) for the operator space of families

(xi)i∈I ⊆ V such that the sums
∑

i∈J
x∗
i
xi are uniformly bounded over all �nite
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sets J ⊆ I; equivalently, C!
I
(M) = l2(I)c ⊗ M, where l2(I)c denotes l2(I),

equipped with the column operator space structure. Similarly, R!
I
(V) denotes

the operator space of families (xi)i∈I ⊆ V such that the sums
∑

i∈J
xix

∗
i
are

uniformly bounded over all �nite sets J ⊆ I; equivalently, R!
I
(M) = l2(I)r⊗M,

where l2(I)r denotes l2(I), equipped with the row operator space structure.
Further details on the row and column spaces can be found in [10] and [36]. If
V andW are dual operator spaces then their weak* Haagerup tensor product
will be written V⊗w∗ℎW; a typical element u ∈ V⊗w∗ℎW is u =

∑

i∈I
fi⊗gi,

where I is some cardinal, f = (fi)i∈I ∈ R!
I
(V) and g = (gi)i∈I ∈ C!

I
(W); see

[4] for further details.

2.1.3. The trace andHilbert–Schmidt classes. Letℋ andℒ denote Hilbert
spaces. We write K(ℋ,ℒ) (resp. S1(ℋ,ℒ)) for the compact (resp. trace class)
operators fromℋ toℒ and use the simpli�ed notationK(ℋ) ∶= K(ℋ,ℋ), etc.
The space S1(ℋ,ℒ) is equipped with the norm ‖T‖1 ∶= tr(|T|). Recall that, via
trace duality, we have isometric identi�cations

S1(ℋ,ℒ) ≅ K(ℒ,ℋ)∗ and ℬ(ℒ,ℋ) ≅ S1(ℋ,ℒ)∗.

The space of Hilbert–Schmidt operators T ∶ ℋ → ℒ, with the norm ‖T‖2 ∶=

(tr(T∗T))1∕2, will be denoted S2(ℋ,ℒ). These spaces will often appear with
ℋ = L2(X, �) and ℒ = L2(Y, �), in which case we will write S1(X, Y), S2(X),
etc.

2.1.4. Crossed products. Let A be a C∗-algebra, viewed as a subalgebra of
B(ℋA), whereℋA denotes the Hilbert space of the universal representation of
A. Let G be a locally compact group with modular function ∆, equipped with
left Haar measuremG , and � ∶ G → Aut(A) be a group homomorphism which
is continuous in the point-norm topology, i.e. for all a ∈ A the map s ↦ �s(a) is
continuous from G to A; we say (A, G, �) is a C∗-dynamical system. The space
L1(G, A) is a Banach ∗-algebra when equipped with the product × given by

(f × g)(t) ∶= ∫
G

f(s)�s
(
g(s−1t)

)
ds, f, g ∈ L1(G, A), t ∈ G,

the involution ∗ de�ned by

f∗(s) ∶= ∆(s)−1�s
(
f(s−1)∗

)
, f ∈ L1(G, A), s ∈ G,

and the L1-norm ‖f‖1 ∶= ∫
G
‖f(s)‖ds. These de�nitions also give a ∗-algebra

structure on Cc(G, A), which is a dense ∗-subalgebra of L1(G, A). Given a faith-
ful representation � ∶ A → ℬ(ℋ�), we de�ne new representations of A and G
on L2(G,ℋ�) as follows:

�� ∶ A → ℬ(L2(G,ℋ�));
(
��(a)�

)
(t) ∶= �

(
�t−1(a)

)(
�(t)

)
,

�� ∶ G → ℬ(L2(G,ℋ�)); (�
�
t
�)(s) ∶= �(t−1s),
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for all a ∈ A, s, t ∈ G , � ∈ L2(G,ℋ�). Then �� is a (strongly continuous)
unitary representation of G and

��
(
�t(a)

)
= ��

t
��(a)(��

t
)∗, a ∈ A, t ∈ G.

The pair (��, ��) is thus a covariant representation of (A, G, �) and therefore
gives rise to a ∗-representation �� ⋊ �� ∶ L1(G, A) → B(L2(G,ℋ�)) given by

(�� ⋊ ��)(f) ∶= ∫
G

��
(
f(s)

)
��s ds, f ∈ L1(G, A).

The reduced crossed productA⋊�,rG ofA by G is independent of the choice of
the faithful representation � and is de�ned as the closure of (��⋊��)(L1(G, A))
in the operator norm of B(L2(G,ℋ�)); if we want to emphasise the representa-
tion � ofAwas used, we will writeA⋊�,� G. In Section 4 we will use the weak*
closureA⋊w∗

�,rG ofA⋊�,rG. In what follows wewill often simplify our notation
by omitting the superscript �. More on reduced crossed products can be found
in Pedersen [34, Chapter 7], and Williams [43].

2.2. Multipliers. Wewill use somewell-known results on classical Schur and
Herz–Schurmultipliers, as well as results from [28]. We recall some de�nitions
and results required later.

2.2.1. Schur multipliers. Let (X, �) and (Y, �) be standard measure spaces.
We say E ⊆ X × Y is marginally null if there exist null setsM ⊆ X and N ⊆ Y

such that E ⊆ (M ×Y) ∪ (X ×N). Two measurable sets E, F ⊆ X ×Y are called
marginally equivalent if their symmetric di�erence is marginally null; we say
that two functions ',  ∶ X×Y → ℂ aremarginally equivalent if they are equal
up to a marginally null set. A measurable set E ⊆ X × Y is called !-open if
it is marginally equivalent to a set of the form ∪k∈ℕIk × Jk, where Ik ⊆ X and
Jk ⊆ Y are measurable, k ∈ ℕ. The collection of !-open subsets of X × Y is a
pseudo-topology onX×Y—it is closed under �nite intersections and countable
unions; see [11, Section 3]. A function ℎ ∶ X × Y → ℂ is called !-continuous
[11] if ℎ−1(U) is !-open for every open set U ⊆ ℂ.

Letℋ be a separable Hilbert space andA ⊆ ℬ(ℋ) be a separableC∗-algebra.
With any k ∈ L2(Y × X,A), one can associate an element

Tk ∈ ℬ(L2(X,ℋ), L2(Y,ℋ))

with ‖Tk‖ ≤ ‖k‖2, by letting

(Tk�)(y) ∶= ∫
X

k(y, x)(�(x))dx, � ∈ L2(X,ℋ), y ∈ Y.

The linear space of all such operators is denoted by S2(X, Y;A) and is norm
dense in K(L2(X), L2(Y)) ⊗ A; we equip it with the operator space structure
arising from this inclusion. Note that if A = ℂ then the map k → Tk is an
isometric identi�cation of L2(Y × X) and S2(X, Y).

If B is a(nother) C∗-algebra we write CB(A, B) for the space of completely
bounded maps from A to B and set CB(A) = CB(A,A). We say that ' ∶ X ×
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Y → CB(A, B) is pointwise-measurable if (x, y) ↦ '(x, y)(a) ∈ B is weakly
measurable for each a ∈ A. If ' ∶ X × Y → CB(A) is a bounded, pointwise-
measurable function, we de�ne ' ⋅ k ∈ L2(Y × X,A) by

(' ⋅ k)(y, x) ∶= '(x, y)
(
k(y, x)

)
, (y, x) ∈ Y × X.

Let S' denote the bounded linear map on S2(X, Y;A) given by

S'(Tk) ∶= T'⋅k, k ∈ L2(Y × X,A).

De�nition 2.1. A bounded, pointwise-measurable function ' ∶ X × Y →

CB(A) is called a Schur A-multiplier if S' is a completely bounded map on
S2(X, Y;A). We denote the space of such functions by S(X,Y;A) and endow
it with the norm ‖'‖S(X,Y;A) ∶= ‖S'‖cb (we write ‖'‖S when X,Y and A are
clear from context).

This de�nition does not depend on the faithful ∗-representation of A on a sep-
arable Hilbert space [28, Proposition 2.3].

Theorem 2.2. [28, Theorem 2.6] Let A ⊆ ℬ(ℋ) be a separable C∗-algebra and
' ∶ X × Y → CB(A) a bounded, pointwise-measurable function. The following
are equivalent:
(i) ' is a Schur A-multiplier;
(ii) there exist a separable Hilbert spaceℋ�, a non-degenerate ∗-representation

� ∶ A → ℬ(ℋ�), and V ∈ L∞(X,ℬ(ℋ,ℋ�)),W ∈ L∞(Y,ℬ(ℋ,ℋ�)) such
that

'(x, y)(a) = W(y)∗�(a)V(x), a ∈ A

for almost all (x, y) ∈ X × Y.
Moreover, if these conditions hold then we may choose V andW so that

‖'‖S = esssup
x∈X

‖V(x)‖ esssup
y∈Y

‖W(y)‖.

Note that the de�nitions and theorems make sense in the case X, Y are dis-
crete spaces with counting measures, in which case we do not need to assume
separability.

When discussing SchurA-multipliers we shall always assume without men-
tioning that A is separable unless X and Y are discrete spaces with counting
measures in which case A can be arbitrary.

In the case where A = ℂ, Schur A-multipliers reduce to classical (measur-
able) Schur multipliers [35]. The elements

∑∞

i=1
fi⊗gi of the projective tensor

product S1(Y, X) = L2(X, �)⊗̂L2(Y, �) (where we assume
∑∞

i=1
‖fi‖

2 < ∞ and
∑∞

i=1
‖gi‖

2 < ∞) can be identi�ed with functions
∑∞

i=1
fi(x)gi(y) on X × Y,

well-de�ned up to a marginally null set [1]; under this identi�cation, Schur
multipliers coincide with the multipliers of S1(Y, X).

Given a ∈ L∞(X, �), letMa be the operator on L2(X, �) de�ned by

(Ma�)(x) ∶= a(x)�(x), x ∈ X.



8 A. MCKEE, R. POURSHAHAMI, I. TODOROV AND L. TUROWSKA

Let DX = {Ma ∶ a ∈ L∞(X, �)} and de�ne DY analogously. By a well-known
result of Haagerup [16] (see also[4]), there is a completely isometric weak*-
homeomorphismbetween the algebra ofweak*-continuous, completely bounded
DY , DX-bimodule maps on ℬ(L2(X), L2(Y)) and the weak* Haagerup tensor
productDY⊗

w∗ℎDX [4]; this homeomorphism sends
∑∞

k=1
bk⊗ak ∈ DY⊗

w∗ℎ

DX to the map

T ↦

∞∑

k=1

bkTak

onℬ(L2(X), L2(Y)). Note thatDY⊗
w∗ℎDX can be viewed as a space of (equiv-

alence classes of) functions, and each of these functions belongs to S(X,Y).
Theorem 2.2 can be specialised as follows in the scalar-valued case.

Theorem 2.3. Let ' ∈ L∞(X × Y). The following are equivalent:
(i) ' ∈ S(X,Y) and ‖'‖S ≤ C;
(ii) there exists sequences (ak)∞k=1 ⊆ L∞(X, �) and (bk)∞k=1 ⊆ L∞(Y, �) with

esssup
x∈X

∞∑

k=1

|ak(x)|
2 ≤ C and esssup

y∈Y

∞∑

k=1

|bk(y)|
2 ≤ C

such that

'(x, y) =

∞∑

k=1

ak(x)bk(y) for almost all (x, y) ∈ X × Y;

(iii) there exist a separable Hilbert spaceℋ and weakly measurable functions v ∶
X → ℋ, w ∶ Y → ℋ, such that

esssup
x∈X

‖v(x)‖ ≤
√
C, esssup

y∈Y

‖w(y)‖ ≤
√
C

and

'(x, y) = ⟨v(x), w(y)⟩ , for almost all (x, y) ∈ X × Y;

(iv) ‖T'⋅k‖ ≤ C‖Tk‖ for all k ∈ L2(Y × X).

We remark that if X and Y are discrete spaces with counting measures the
theorem holds true with possibly uncountable families (ak) and (bk).

2.2.2. Herz–Schur multipliers. Let G be a locally compact second count-
able group, vN(G) (resp. C∗r (G)) be its von Neumann algebra (resp. reduced
C∗-algebra) and A(G) be the Fourier algebra of G [12]. Let A be a separable
C∗-algebra. A bounded function F ∶ G → CB(A) will be called pointwise-
measurable if, for every a ∈ A, the map s ↦ F(s)(a) is a weakly measurable
function from G into A. Suppose that the function F ∶ G → CB(A) is bounded
and pointwise-measurable, and de�ne

(F ⋅ f)(s) ∶= F(s)
(
f(s)

)
, f ∈ L1(G, A), s ∈ G.
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Since F is pointwise-measurable, F ⋅ f is weakly measurable, and ‖F ⋅ f‖1 ≤

sup
s∈G

‖F(s)‖‖f‖1 (f ∈ L1(G, A)); hence F ⋅ f ∈ L1(G, A) for every f ∈

L1(G, A).

De�nition 2.4. A bounded, pointwise-measurable function F ∶ G → CB(A)

will be called aHerz–Schur (A, G, �)-multiplier if themapSF on (�⋊�)(L1(G, A)),
given by

SF
(
(� ⋊ �)(f)

)
∶= (� ⋊ �)(F ⋅ f),

is completely bounded.

If F is a Herz–Schur (A, G, �)-multiplier, we continue to denote by SF the
corresponding extension to a completely bounded map on A⋊�,r G.

De�nition 2.4 is independent of the faithful representation ofA [28, Remark
3.2(ii)]. Wenote that the set of allHerz–Schur (A, G, �)-multipliers is an algebra
with respect to the pointwise operations; we denote it byS(A,G, �) and endow
it with the norm ‖F‖HS ∶= ‖SF‖cb.

The de�nition makes sense when G is an arbitrary discrete group. In this
case we can drop the separability assumption on A.

In what follows we shall always consider C∗-dynamical systems (A, G, �)
where either G is second countable andA is separable or G is discrete in which
case A can be arbitrary.

Given a function F ∶ G → CB(A), de�neN(F) ∶ G × G → CB(A) by letting

N(F)(s, t)(a) ∶= �t−1
(
F(ts−1)

(
�t(a)

))
, s, t ∈ G, a ∈ A.

Observe that if F is pointwise-measurable then so is N(F). The following re-
sult [28, Theorem 3.5] relates Schur A-multipliers and Herz–Schur (A, G, �)-
multipliers, generalising a classical transference result of Bożejko–Fendler [5].

Theorem 2.5. Let (A, G, �) be a C∗-dynamical system and F ∶ G → CB(A) a
bounded, pointwise-measurable function. The following are equivalent:
(i) F is a Herz-Schur (A, G, �)-multiplier;
(ii) N(F) is a Schur A-multiplier.
Moreover, if the above conditions hold then ‖F‖HS = ‖N(F)‖S.

The Schur A-multipliers ' of the form ' = N(F) will be called �-invariant.
We note that a di�erent de�nition was given in [28] (see [28, De�nition 3.14]),
but by [28, Theorem 3.18], it agrees with the one adopted here.

In the case where A = ℂ and the action is trivial, Herz–Schur (A, G, �)-
multipliers coincide with the classical Herz–Schur multipliers of G [6], that is,
with the functions u ∶ G → ℂ such that uA(G) ⊆ A(G) and the map

mu ∶ A(G) → A(G); mu(v) ∶= uv, v ∈ A(G),

is completely bounded. Here we equip A(G)with the operator space structure,
arising from the identi�cation A(G)∗ = vN(G) [12, Chapitre 3]. The space of
classical Herz–Schurmultipliers ofGwill be denoted byMcbA(G). We note that
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if u ∈ McbA(G) then the restriction Su ∶= m∗
u|C∗r (G) is a completely bounded

map satisfying [6]

Su ∶ C
∗
r (G) → C∗r (G); Su

(
�(f)

)
= �(uf), f ∈ L1(G).

2.3. Preliminary results. In this subsection, we give several technical results
on Schur and Herz–Schur multipliers that will be needed in the sequel. The
equivalence between (i) and (iii) in the next propositionwas given, in the scalar-
valued case, in [22, Theorem 7].

Proposition 2.6. Let ℋ be a separable Hilbert space, A ⊆ ℬ(ℋ) a separable
C∗-algebra and ' ∶ X ×Y → CB(A) a bounded, pointwise-measurable function.
The following are equivalent:
(i) '(x, y) = 0 for almost all (x, y) ∈ X × Y;
(ii) S' = 0.
If ' is a Schur A-multiplier of the form '(x, y)(a) = W(y)∗�(a)V(x), a ∈ A, as
in Theorem 2.2, then these conditions are equivalent to:
(iii) '(x, y) = 0 for marginally almost all (x, y) ∈ X × Y.

Proof. (i) ⟹ (ii) Let Tk ∈ S2(X, Y;A). If '(x, y) = 0 for almost all (x, y) ∈
X ×Y then ' ⋅ k = 0 almost everywhere, for every k ∈ L2(Y ×X,A), and hence
S'(Tk) = T'⋅k = 0 for every k ∈ L2(Y × X,A).

(ii) ⟹ (i) Suppose S' = 0 and let k ∈ L2(Y × X,A). We have S'(Tk) =
T'⋅k = 0, so we conclude that ' ⋅ k = 0 almost everywhere by [28, Lemma 2.1].
We claim that '(x, y) = 0 for almost all (x, y) ∈ X × Y. Indeed, let {ei}i∈ℕ be a
dense subset ofℋ, � ∈ L2(X) and � ∈ L2(Y); then

⟨
S'(Tk)(� ⊗ ei), � ⊗ ej

⟩
= ∫

Y

⟨
S'(Tk)(� ⊗ ei)(y), (� ⊗ ej)(y)

⟩
dy (1)

= ∫
Y

⟨

∫
X

(' ⋅ k)(y, x)(� ⊗ ei)(x)dx, (� ⊗ ej)(y)

⟩

dy

= ∫
Y

∫
X

⟨
'(x, y)

(
k(y, x)

)
ei, ej

⟩
�(x)�(y)dx dy.

Fix a ∈ A, choose w ∈ L2(Y × X), and let k(y, x) = w(y, x)a. Then (1) implies

∫
Y

∫
X

⟨
'(x, y)(a)ei, ej

⟩
w(y, x)�(x)�(y)dx dy = 0.

Since '(x, y)(a) is a bounded operator, we conclude that ⟨'(x, y)(a)ei, ej⟩ = 0

almost everywhere for all i, j ∈ ℕ. Hence '(x, y) = 0 almost everywhere by
the separability of A and the continuity of '(x, y) as a map on A.

Now suppose that ' is a Schur A-multiplier.
(iii)⟹ (i) is trivial.
(i)⟹ (iii) Assume that the set

R ∶= {(x, y) ∈ X × Y ∶ '(x, y) ≠ 0}
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is null. LetA0 andℋ0 be countable dense subsets ofA andℋ respectively; then

Rc = {(x, y) ∶ '(x, y) = 0} =
⋂

a∈A0, �,�∈ℋ0

{(x, y) ∶
⟨
'(x, y)(a)�, �

⟩
= 0}

=
⋂

a∈A0, �,�∈ℋ0

{(x, y) ∶
⟨
�(a)V(x)�,W(y)�

⟩
= 0}.

It is easily seen that a function of the form (x, y) ↦ ⟨�(x), �(y)⟩, where � ∈

L∞(X,ℋ�) and � ∈ L∞(Y,ℋ�), is !-continuous; thus, the set

{(x, y) ∶ ⟨�(x), �(y)⟩ ≠ 0}

is !-open. It follows that the set
⋃

a∈A0, �,�∈ℋ0

{(x, y) ∶
⟨
�(a)V(x)�,W(y)�

⟩
≠ 0}

is !-open. Hence there are families An ⊆ X, Bn ⊆ Y of measurable sets such
that R is marginally equivalent to ∪∞

n=1
An × Bn. Since (� × �)(R) = 0 we have

�(An)�(Bn) = 0 for each n. Let

N1 ∶=
⋃

�(Bn)≠0

An and N2 ∶=
⋃

�(An)≠0

Bn.

We have that �(N1) = 0, �(N2) = 0 and R that is marginally equivalent to a
subset of N1 × Y ∪ X × N2; thus, R is marginally null. �

The next lemma contains a completely isometric version of the main trans-
ference result of [28, Section 3].

Lemma 2.7. Let (A, G, �) be a C∗-dynamical system. The map N is a com-
pletely isometric algebra homomorphism from the space of Herz–Schur (A, G, �)-
multipliers to the space of Schur A-multipliers on G × G.

Proof. Fix n ∈ ℕ andHerz–Schur (A, G, �)-multipliers Fi,j, 1 ≤ i, j ≤ n. Since
(SFi,j )i,j is an element ofCB(A⋊�,rG,Mn(A⋊�,rG)) there exist a representation
� ∶ A ⋊�,r G → ℬ(ℋ�) and operators V,W ∶ L2(G,ℋ) → ℋ� such that
(SFi,j )i,j = W∗�(⋅)V and ‖V‖‖W‖ = ‖(SFi,j )i,j‖cb. Take a ∈ A and r ∈ G.
Arguing as in the proof of [28, Theorem 3.8] we obtain representations �A and
�G , of A and G respectively, such that

(
�(Fi,j(t)(a))�r

)

i,j
=

(
SFi,j (�(a)�r)

)

i,j
= W∗�A(a)�G(r)V.

De�ne
V(s) ∶= �G(s

−1)V�s and W(t) ∶= �G(t
−1)W�t,

so that sup
s∈G

‖V(s)‖ sup
t∈G

‖W(t)‖ = ‖V‖‖W‖ = ‖(SFi,j )i,j‖cb. Calculations
as in the proof of [28, Theorem 3.8] show that

(N(Fi,j)(s, t)(a))i,j = W(t)∗�A(a)V(s),
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almost everywhere, so

‖(SN(Fi,j)
)i,j‖cb ≤ sup

s∈G

‖V(s)‖ sup
t∈G

‖W(t)‖ = ‖V‖‖W‖ = ‖(SFi,j )i,j‖cb.

In the converse direction, note that (SFi,j )i,j is the restriction of (SN(Fi,j)
)i,j to

Mn(A ⋊�,r G), so ‖(SFi,j )i,j‖cb ≤ ‖(SN(Fi,j)
)i,j‖cb. Thus F ↦ N(F) is a complete

isometry. The homomorphism claim is trivial. �

3. Central multipliers
Let (X, �) and (Y, �) be standardmeasure spaces. We denote for brevity byℬ

(resp.K) the spaceℬ(L2(X, �), L2(Y, �)) (resp.K(L2(X, �), L2(Y, �))). Through-
out this section A denotes a separable C∗-algebra, acting non-degenerately on
a separable Hilbert spaceℋ. The multiplier algebra of A will be writtenℳ(A)

and identi�ed with the idealiser of A in ℬ(ℋ):

ℳ(A) = {c ∈ ℬ(ℋ) ∶ ca, ac ∈ A for all a ∈ A}.

As usual, we denote by Z(B) the centre of the C∗-algebra B.
The following is immediate, and will be used several times in the sequel.

Remark 3.1. LetB ⊆ A be aC∗-subalgebra, and' ∶ X×Y → CB(A) be a Schur
A-multiplier. Suppose that '(x, y) leaves B invariant for almost all (x, y), and
let 'B ∶ X × Y → CB(B) be the map given by 'B(x, y)(b) ∶= '(x, y)(b) (b ∈ B,
(x, y) ∈ X × Y). Then 'B is a Schur B-multiplier and ‖'B‖S ≤ ‖'‖S.

3.1. Central Schur multipliers.

De�nition 3.2. A Schur A-multiplier ' ∈ S(X,Y;A) will be called central if
there exists a family (ax,y)(x,y)∈X×Y ⊆ Z(ℳ(A)) such that

'(x, y)(a) = ax,ya, a ∈ A. (2)

Remark 3.3. Let ' ∈ S(X,Y;A) be a central Schur A-multiplier.
i. The family (ax,y)(x,y)∈X×Y associated to ' in De�nition 3.2 is unique up to
a set of zero product measure.

ii. If (ax,y)(x,y)∈X×Y is associated to' as inDe�nition 3.2 then themapX×Y →

Z(ℳ(A)), (x, y) ↦ ax,y, is weakly measurable.

LetA be a commutativeC∗-algebra, and assume thatA = C0(Z), whereZ is a
locally compactHausdor� space. The standing separability assumption implies
that Z is second-countable, and hence metrisable. Since C0(Z) is separable it
has a faithful state, so the associated Radon measurem on Z has full support.

Let C0(Z, B) be the space of all continuous functions from Z into a normed
space B vanishing at in�nity. We writeK = K(L2(X), L2(Y)) and note that, up
to a canonical ∗-isomorphism,

K ⊗C0(Z) = C0(Z,K). (3)

The algebraic tensor product L2(Y×X)⊙C0(Z) can thus be viewed as a (dense)
subspace of both the spaceK ⊗C0(Z) and the space C0(Z,K).
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Let' ∈ S(X,Y; C0(Z)) be a central SchurC0(Z)-multiplier, associatedwith a
family (ax,y)(x,y)∈X×Y ⊆ Cb(Z) as in De�nition 3.2; we view ' as a scalar-valued
function on X × Y × Z by letting

'(x, y, z) = ax,y(z), x ∈ X, y ∈ Y, z ∈ Z.

By de�nition, ' is a bounded, measurable function on X ×Y ×Z which is con-
tinuous in the Z-variable. On the other hand, suppose ' ∶ X × Y × Z → ℂ is
a bounded measurable function, continuous in the Z-variable. Then (x, y) ↦
'(x, y, ⋅)a(⋅) ∈ C0(Z) is weakly measurable for each a ∈ C0(Z). Indeed, the
function (x, y) ↦ �z('(x, y)(a)) = '(x, y, z)a(z) is measurable for each z ∈ Z

(here �z denotes the pointmassmeasure at z ∈ Z). As anym ∈ M(Z) = C0(Z)
∗

is the weak* limit of linear combinations of point mass measures, we conclude
that the function (x, y) ↦ m('(x, y)(a)) is measurable for all m ∈ M(Z).
We thus identify the central SchurC0(Z)-multipliers with boundedmeasurable
functions ' ∶ X × Y × Z → ℂ, continuous in the Z-variable. For each z ∈ Z,
let 'z ∶ X×Y → ℂ be given by 'z(x, y) = '(x, y, z); clearly, 'z is a measurable
function for each z ∈ Z.

We recall some terminology from [8] that will be used in the sequel. Let
' ∈ L∞(X × Y × Z) and associate with it a bounded bilinear map

Λ' ∶ S2(Y, Z) × S2(X, Y) → S2(X, Z); Λ'(Tℎ, Tk) ∶= T'(ℎ∗k),

where k ∈ L2(Y × X), ℎ ∈ L2(Z × Y) and

'(ℎ ∗ k)(z, x) ∶= ∫
Y

'(x, y, z)ℎ(z, y)k(y, x)dy, (x, z) ∈ X × Z.

By [8, Corollary 10] the norm ‖Λ'‖ of Λ' as a bilinear map, where the spaces
S2(Y, Z) and S2(X, Y) are equipped with their Hilbert–Schmidt norm, is equal
to ‖'‖∞. We say that ' is an operator S1-multiplier if Λ' maps S2(Y, Z) ×
S2(X, Y) intoS1(X, Z). The following characterisation of operatorS1-multipliers
was obtained in [8]:

Theorem 3.4. Let ' ∶ X × Y × Z → ℂ be a bounded measurable function. The
following are equivalent:
(i) the function ' is an operator S1-multiplier;
(ii) there exist aHilbert spaceℒ andweaklymeasurable functions v ∶ X×Z → ℒ,

w ∶ Y × Z → ℒ, satisfying

esssup
(x,z)∈X×Z

‖v(x, z)‖ < ∞, esssup
(y,z)∈Y×Z

‖w(y, z)‖ < ∞,

such that

'(x, y, z) = ⟨v(x, z), w(y, z)⟩ , almost all (x, y, z) ∈ X × Y × Z. (4)

Moreover, if these conditions hold then

‖'‖S = esssup
(x,z)∈X×Z

‖v(x, z)‖ esssup
(y,z)∈Y×Z

‖w(y, z)‖.
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In Theorem 3.6, we relate operator S1-multipliers to central multipliers. We
�rst include a lemma. If ℰ is an operator space then we identify C0(Z)⊙ℰ with
a dense subspace of theminimal tensor productC0(Z)⊗ℰ (and equip it with the
operator space structure arising from this inclusion), and its elements — with
continuous functions from Z into ℰ. If ℰ is in addition an operator system, we
equip the algebraic tensor productC0(Z)⊙ℰwith the operator system structure
arising from its inclusion in C0(Z) ⊗ ℰ.

Lemma 3.5. Let Z be a locally compact Hausdor� space and ℰ be an operator
space. LetΦz ∶ ℰ → ℰ be a linear map, z ∈ Z, andΦ ∶ C0(Z)⊙ ℰ → C0(Z)⊗ ℰ

a linear map de�ned by

Φ(a ⊗ T)(z) = a(z)Φz(T), z ∈ Z.

The following are equivalent:
(i) Φ is completely bounded;
(ii) Φz is completely bounded for every z ∈ Z and sup

z∈Z
‖Φz‖cb < ∞.

Moreover, if these conditions are ful�lled then ‖Φ‖cb = sup
z∈Z

‖Φz‖cb.
Assume that ℰ is an operator system. The following are equivalent:

(i’) Φ is completely positive;
(ii’) Φz is completely positive for every z ∈ Z.

Proof. (i) ⟹ (ii) Fix z ∈ Z and note that, if a ∈ C0(Z) has norm one and
a(z) = 1 then

Φz(T) = (�z ⊗ id)(Φ(a ⊗ T)), T ∈ ℰ.

It follows that Φz is completely bounded and

sup
z∈Z

‖Φz‖cb ≤ ‖Φ‖cb. (5)

(ii) ⟹ (i) We identify Mn(C0(Z) ⊙ ℰ) with a subspace of C0(Z,Mn(ℰ)) in
the canonical way. Let (ℎi,j)i,j ∈ Mn(C0(Z) ⊙ ℰ). The claim is immediate from
the fact that

Φ(n)
(
(ℎi,j)i,j

)
(z) =

(
Φ(ℎi,j)(z)

)

i,j
=

(
Φz(ℎi,j(z))

)

i,j
.

It remains to note the reverse inequality in (5); it follows by the fact that, if
a ∈ C0(Z) has norm one and a(z) = 1 then ‖Φ

(n)
z (T)‖ ≤ ‖Φ(n)(a ⊗ T)‖, for

every T ∈ Mn(ℰ).
Now assume that ℰ is an operator system.
(i’) ⟹ (ii’) follows as the implication (i) ⟹ (ii), by choosing the function

a to be in addition positive.
(ii’) ⟹ (i’) follows similarly to the implication (ii) ⟹ (i), by taking into

account that a matrix (ℎi,j)i,j belongs to the positive cone ofMn(C0(Z) ⊙ ℰ) if
and only if (ℎi,j(z))i,j ∈ M+

n for every z ∈ Z. �

Theorem 3.6. Let ' ∶ X × Y × Z → ℂ be a bounded measurable function,
continuous in the Z-variable. The following are equivalent:
(i) ' is a central Schur C0(Z)-multiplier;
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(ii) the function 'z is a Schur multiplier for every z ∈ Z, and the map D' ∶

C0(Z,K) → C0(Z,K) given by

D'(ℎ)(z) = S'z(ℎ(z)), z ∈ Z,

is completely bounded;
(iii) the function 'z is a Schur multiplier for every z ∈ Z, and

sup
z∈Z

‖'z‖S < ∞;

(iv) the function ' is an operator S1-multiplier.
If these conditions hold then ‖'‖S = sup

z∈Z
‖'z‖S.

Proof. (i) ⟺ (ii) Let ' be a central Schur C0(Z)-multiplier. We �x a measure
m ∈ M(Z) so that the representation of C0(Z) on L2(Z,m), given by a ↦ Ma,
where

(Ma�)(z) ∶= a(z)�(z), a ∈ C0(Z), � ∈ L2(Z,m), z ∈ Z,

is faithful. By [28, Proposition 2.3], we may identify C0(Z) with its image in
ℬ(L2(Z)), so we abuse notation by writing a in place ofMa. We recall that the
map S' extends to a completely bounded map onK⊗C0(Z). We observe that,
when the identi�cation (3) is made, we have that the map S' (which is de�ned
as a transformation onK⊗C0(Z)) is identi�edwithD'. Indeed, if k ∈ L2(Y×X)

and a ∈ C0(Z) then

S'(k ⊗ a)(z) = ('(⋅, ⋅, z) ⋅ k)a(z) = D'(k ⊗ a)(z), z ∈ Z.

The equivalence now follows.
(ii)⟺(iii) is immediate from Lemma 3.5.
(i)⟹ (iv) De�ne a map  ∶ f ↦  f, on L1(Z) by letting

 f(x, y) ∶= ∫
Z

'(x, y, z)f(z)dz, (x, y) ∈ X × Y.

Wewill show that f belongs to L∞(X)⊗w∗ℎL∞(Y) and has norm atmost ‖'‖S.
Take f ∈ Cc(Z), k ∈ L2(Y × X), and a ∈ C0(Z) with ‖a‖ = 1 and a(z) = 1

for all z ∈ supp(f). Writing f = f1f2, f1, f2 ∈ L2(Z), ‖f‖1 = ‖f1‖2‖f2‖2, for
� ∈ L2(X) and � ∈ L2(Y), we have

|||||

⟨
S f (Tk)�, �

⟩|||||
=

|||||||||

∫
X×Y

(∫
Z

'(x, y, z)f(z)dz) k(y, x)�(x)�(y)dx dy

|||||||||

=
||||

⟨
S'(Tk⊗a)(� ⊗ f1), � ⊗ f2

⟩||||

≤ ‖'‖S‖Tk⊗a‖‖�‖2‖f1‖2‖�‖2‖f2‖2

≤ ‖'‖S‖Tk‖‖f‖1‖�‖2‖�‖2.

Thus the map S f is bounded in the operator norm, implying that  f is a Schur
multiplier with ‖ f‖S ≤ ‖'‖S‖f‖1. It follows from the density of Cc(Z) in
L1(Z) that  is a bounded map, with ‖ ‖ ≤ ‖'‖S; we view  as taking values
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in L∞(X) ⊗w∗ℎ L∞(Y) using the standard identi�cation of this tensor product
with the Schur multipliers on X × Y.

By standard operator space identi�cations (see [8] and [24]), we have

 ∈ ℬ(L1(Z), L∞(X) ⊗w∗ℎ L∞(Y)) ≅ L∞(Z) ⊗ (L∞(X) ⊗w∗ℎ L∞(Y)),

where' ∈ L∞(X×Y×Z) is the corresponding element in L∞(Z)⊗(L∞(X)⊗w∗ℎ

L∞(Y)). Condition (iv) now follows by [8, Theorem 19] and Theorem 3.4.
(iv) ⟹ (i) Let v and w be the functions arising as in Theorem 3.4, and

M ⊆ X × Y × Z be a set with (� × � × m)(Mc) = 0, such that (4) holds for all
(x, y, z) ∈ M. SetMx,y = {z ∶ (x, y, z) ∈ M} and N = {(x, y) ∶ m(Mc

x,y) = 0};
it is clear that (� × �)(Nc) = 0. WriteW(y) ∶ L2(Z) → ℒ ⊗ L2(Z) and V(x) ∶
L2(Z) → ℒ⊗ L2(Z) for the maps, given by

(
V(x)�

)
(z) ∶= v(x, z)�(z) and

(
W(y)�

)
(z) ∶= w(y, z)�(z), � ∈ L2(Z);

we have

esssup
x∈X

‖V(x)‖ = esssup
(x,z)∈X×Z

‖v(x, z)‖ < ∞,

esssup
y∈Y

‖W(y)‖ = esssup
(y,z)∈Y×Z

‖w(y, z)‖ < ∞.

For a ∈ C0(Z), �, � ∈ L2(Z) and (x, y) ∈ N, we have
⟨
W(y)∗(I ⊗Ma)V(x)�, �

⟩
=

⟨
(I ⊗Ma)V(x)�,W(y)�

⟩

= ∫
Z

a(z)⟨v(x, z), w(y, z)⟩�(z)�(z)dm(z)

= ∫
Z

a(z)'(x, y, z)�(z)�(z)dm(z).

It follows that, if (x, y) ∈ N then

W(y)∗(I ⊗Ma)V(x) = M'x,ya
, a ∈ C0(Z)

(here 'x,y is the function on Z given by 'x,y(z) = '(x, y, z)). By [28, Theorem
2.6], ' is a Schur C0(Z)-multiplier which is clearly central, and

‖'‖S ≤ esssup
x∈X

‖V(x)‖ esssup
y∈Y

‖W(y)‖ = esssup
z∈Z

‖'z‖S.

Finally, from the proof of (i)⟹ (ii)⟹ (iii), equation (5), and the estimate
in (iv)⟹ (i) we have ‖'‖S = sup

z∈Z
‖'z‖S. �

In the next result we assume that A acts non-degenerately on a separable
Hilbert spaceℋ, and we identify the elements of the centre Z(ℳ(A)) ofAwith
completely bounded maps on A acting by operator multiplication.

Corollary 3.7. Let ' ∶ X × Y → Z(ℳ(A)) be a pointwise-measurable function,
and assume that Z(A)A = A. The following are equivalent:
(i) ' is a central Schur A-multiplier;
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(ii) there exist an index set I and operators V ∈ C!
I
(L∞(X, Z(A)′′)) and W ∈

C!
I
(L∞(Y, Z(A)′′)), such that

'(x, y) =
∑

i∈I

Wi(y)
∗Vi(x), for almost all (x, y) ∈ X × Y.

Moreover, if ' ∶ X × Y → Z(ℳ(A)) is weakly measurable then the above condi-
tions are equivalent to:
(iii) ' is a central Schur B-multiplier for any C∗-algebra B ⊆ ℬ(ℋ) with Z(A) ⊆

Z(B).
If the conditions hold we may choose V,W such that

‖'‖S = ‖V‖C!
I
(L∞(X,Z(A)′′))‖W‖C!

I
(L∞(Y,Z(A)′′)),

where ‖'‖S is the norm of the Schur multiplier in either (i) or (iii).

Proof. Since Z(A)A = A, the algebra Z(A) is non-degenerate and Z(A)′′ =
Z(A)

w

, where the latter closure is in the weak operator topology.
(i) ⟹ (ii) By Remark 3.1, ' is a Schur Z(A)-multiplier. Following the

proof of Theorem 3.6, and using the identi�cation Z(A) ≅ C0(Z) and Z(A)′′ ≅
L∞(Z,m), for some measure space (Z,m), we identify ' with an element of
L∞(Z,m)⊗(L∞(X)⊗w∗ℎL∞(Y)). Using [8], we see that there exist an index set I
and two families (Vi)i∈I , (Wi)i∈I , whereVi ∶ X → Z(A)′′ andWi ∶ Y → Z(A)′′

are measurable functions satisfying

esssup
x∈X

‖‖‖‖‖‖‖‖‖

∑

i∈I

Vi(x)
∗Vi(x)

‖‖‖‖‖‖‖‖‖

< ∞ and esssup
y∈Y

‖‖‖‖‖‖‖‖‖

∑

i∈I

Wi(y)
∗Wi(y)

‖‖‖‖‖‖‖‖‖

< ∞,

such that '(x, y) =
∑

i∈I
Wi(y)

∗Vi(x) almost everywhere on X × Y (the series
converges weakly) and

‖'‖S(X,Y;Z(A)) = esssup
x∈X

‖‖‖‖‖‖‖‖‖

∑

i∈I

Vi(x)
∗Vi(x)

‖‖‖‖‖‖‖‖‖

esssup
y∈Y

‖‖‖‖‖‖‖‖‖

∑

i∈I

Wi(y)
∗Wi(y)

‖‖‖‖‖‖‖‖‖

. (6)

(ii)⟹ (i) For a ∈ A, we have

'(x, y)(a) =
∑

i∈I

Wi(y)
∗Vi(x)a =

∑

i∈I

Wi(y)
∗aVi(x) = W∗(y)�(a)V(x), (7)

where V(x) ∶= (Vi(x))i∈I , W(y) ∶= (Wi(y))i∈I and �(a) ∶= idl2(I) ⊗ a. By
[28, Theorem 2.6] ' is a Schur A-multiplier, and it is clearly central.

(ii) ⟹ (iii) The assumption implies that (x, y) ↦ '(x, y)(b) ∈ B is weakly
measurable for all b ∈ B, so it makes sense to speak of ' being a Schur B-
multiplier. Now the same proof as that of the implication (ii) ⟹ (i) can be
applied.

(iii)⟹ (i) is trivial.
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For the norm equality observe that ‖'‖S(X,Y;B) ≥ ‖'‖S(X,Y;Z(A)) while, by
(7), we have

‖'‖S(X,Y;B) ≤ esssup
x∈X

‖V(x)‖ esssup
y∈Y

‖W(y)‖

= esssup
x∈X

‖‖‖‖‖‖‖‖‖

∑

i∈I

Vi(x)
∗Vi(x)

‖‖‖‖‖‖‖‖‖

esssup
y∈Y

‖‖‖‖‖‖‖‖‖

∑

i∈I

Wi(y)
∗Wi(y)

‖‖‖‖‖‖‖‖‖

= ‖V‖C!
I
(L∞(X,Z(A)′′))‖W‖C!

I
(L∞(Y,Z(A)′′)).

The equality follows by combining this with (6). �

We remark that the results of this subsection and the rest of the section re-
main true when X and Y are discrete spaces with counting measures, Z is an
arbitrary (not necessarily second countable) locally compact Hausdor� space
and A is an arbitrary (not necessarily separable ) C∗-algebra.

3.2. Central Herz–Schur multipliers. In this subsection, similarly to The-
orem 3.6, we characterise central Herz–Schur multipliers, a natural invariant
version of central Schur multipliers, which we now introduce.

De�nition3.8. Let (A, G, �) be aC∗-dynamical system. AHerz–Schur (A, G, �)-
multiplier F will be called central if there exists a family (ar)r∈G ⊆ Z(ℳ(A))

such that
F(r)(a) = ara, a ∈ A, r ∈ G.

Proposition 3.9. Let A be a C∗-algebra such that Z(A)A = A, (A, G, �) be a
C∗-dynamical system, (ar)r∈G be a family in Z(ℳ(A)) and suppose that the map
F ∶ G → CB(A), given by F(r)(a) = ara, is pointwise-measurable. The following
are equivalent:
(i) F is a central Herz–Schur (Z(A), G, �)-multiplier;
(ii) F is a central Herz–Schur (A, G, �)-multiplier;
(iii) there exist V,W ∈ C!

I
(L∞(G, Z(A)′′)) such that

�t−1(ats−1) =
∑

i∈I

Wi(t)
∗Vi(s), for almost all (s, t) ∈ G × G.

Moreover, V andW may be chosen so that

‖F‖HS = ‖V‖C!
I
(L∞(G,Z(A)′′))‖W‖C!

I
(L∞(G,Z(A)′′))

where ‖F‖HS refers to the norm of F in either (i) or (ii).

Proof. (i) ⟹ (ii) By [28, Theorem 3.8]N(F) is a Schur Z(A)-multiplier; it is
clearly central. Using the assumption Z(A)A = A we observe that Z(A) acts
non-degenerately on any Hilbert space where A acts non-degenerately, so by
Corollary 3.7we have thatN(F) is a central SchurA-multiplier. Applying again
[28, Theorem3.8], we obtain thatF is a centralHerz–Schur (A, G, �)-multiplier.

(ii)⟹ (i) Immediate from [28, Theorem 3.8] and Remark 3.1.
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(i) ⟹ (iii) By [28, Theorem 3.8] N(F) is a central Schur Z(A)-multiplier,
and for a ∈ A and s, t ∈ G,

N(F)(s, t)(a) = �t−1(ats−1)a, a ∈ A.

By Corollary 3.7(ii), there exist V,W ∈ C!
I
(L∞(G, Z(A)′′)) such that

�t−1(ats−1)a =
∑

i∈I

Wi(t)
∗aVi(s) =

∑

i∈I

Wi(t)
∗Vi(s)a almost everywhere.

Since this holds for everya ∈ A andA ⊆ ℬ(ℋ) is separable andnon-degenerate,
we conclude that

�t−1(ats−1) =
∑

i∈I

Wi(t)
∗Vi(s),

for almost all (s, t) ∈ G × G.
(iii)⟹ (i) For a ∈ A and almost all s, t ∈ G we have

N(F)(s, t)(a) = �t−1(ats−1)a =
∑

i∈I

Wi(t)
∗aVi(s) = W(t)∗�(a)V(s),

where �(a) ∶= idl2(I) ⊗ a, V(s) ∶= (Vi(s))i∈I andW(t) ∶= (Wi(t))i∈I . There-
fore F is a Herz–Schur (Z(A), G, �)-multiplier by [28, Theorem 3.8].

SinceN is an isometry, the norm equality follows from the norm equality in
Theorem 3.7. �

A central Herz–Schur (C0(Z), G, �)-multiplier F ∶ G → CB(C0(Z)), associ-
ated with a family (ar)r∈G ⊆ Cb(Z), may be identi�ed with a bounded measur-
able function, continuous in the Z-variable, given by

F ∶ G × Z → ℂ; F(r, z) = ar(z), r ∈ G, z ∈ Z;

conversely, if F ∶ G × Z → ℂ is a bounded measurable function, continuous
in the Z-variable, then the associated function F ∶ G → CB(C0(Z)) is bounded
and pointwise-measurable. In the sequel, if Z is a locally compact Hausdor�
space and (C0(Z), G, �) is a C∗-dynamical system, we let (z, t) → zt be the
mapping from Z ×G into Z that satis�es the condition f(zt) = �t(f)(z), z ∈ Z,
t ∈ G. The mapping is jointly continuous and satis�es z(st) = (zs)t for all
z ∈ Z and s, t ∈ G.

Corollary 3.10. Let (C0(Z), G, �) be aC∗-dynamical system, andF ∶ G×Z → ℂ

a bounded measurable function, continuous in the Z-variable. The following are
equivalent:
(i) F is a central Herz–Schur (C0(Z), G, �)-multiplier;
(ii) there exist aHilbert spaceℒandweaklymeasurable bounded functions v, w ∶

G × Z → ℒ such that

F(ts−1, zt−1) = ⟨v(s, z), w(t, z)⟩ almost all (s, t, z) ∈ G × G × Z.

Moreover, ‖F‖HS = esssup
(s,x)∈G×Z

‖v(s, x)‖ esssup
(t,y)∈G×Z

‖w(t, y)‖.
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Proof. Immediate from Proposition 3.9 by taking ℒ ∶= l2(I),

v(s, x)i ∶=
(
Vi(s)

)
(x) and w(t, y)i ∶=

(
Wi(t)

)
(y), s, t ∈ G, x, y ∈ Z.

�

3.3. Positive central multipliers. Positive Schur A-multipliers, in the case
of sets equipped with the counting measure, were studied in [27] (see [27, De�-
nition 2.3] and [27, Theorem 2.6]). Herewe extend this by considering arbitrary
standard measure spaces and identifying corresponding versions of the previ-
ous results.

De�nition 3.11. Let A be a C∗-algebra. A Schur A-multiplier ' ∶ X × X →

CB(A) is called positive if S' is completely positive.

Before giving a completely positive version of Theorem 3.6, we include a
lemma. Since L∞(X) ⊗w∗ℎ L∞(X) = (L1(X) ⊗ℎ L1(X))∗, every Schur multi-
plier ' onX×X gives rise to a canonical bilinear map F' ∶ L1(X)×L1(X) → ℂ.
As usual, we write F(n,n)' for the corresponding ampli�cation, a bilinear map
fromMn(L

1(X)) × Mn(L
1(X)) intoMn.

Lemma 3.12. Let (X, �) be a standard measure space and ' ∈ L∞(X) ⊗w∗ℎ

L∞(X) be a positive Schur multiplier. If T = (fi,j)
n
i,j=1

∈ Mn(L
1(X)) and T∗ =

(fj,i)
n
i,j=1

then F(n,n)' (T, T∗) ∈ M+
n .

Proof. Note that, if ' is a positive Schur multiplier, by virtue of [16], one may
write ' =

∑∞

i=1
ai⊗ai, where (ai)∞i=1 is a bounded row operator with entries in

L∞(X). It thus su�ces to prove the statement in the case where ' = a ⊗ a, for
some a ∈ L∞(X). However, then we have

F
(n,n)
' (T, T∗) = (

n∑

k=1

⟨fi,k, a⟩⟨fj,k, a⟩)

n

i,j=1

=

n∑

k=1

(
⟨fi,k, a⟩⟨fj,k, a⟩

)n

i,j=1
,

and the conclusion follows. �

Theorem 3.13. Let ' ∶ X × X × Z → ℂ be a bounded measurable function,
continuous in the Z-variable. The following are equivalent:
(i) ' is a positive central Schur C0(Z)-multiplier;
(ii) there exist a Hilbert space ℒ and an essentially bounded, weakly measurable

function v ∶ X × Z → ℒ such that '(x, y, z) = ⟨v(x, z), v(y, z)⟩ for almost
all (x, y, z) ∈ X × X × Z ;

(iii) for each z ∈ Z the function 'z is a positive Schur multiplier, and

sup
z∈Z

‖'z‖S < ∞.

Moreover, if the space X is discrete and � is the counting measure the above con-
ditions are equivalent to:
(iv) for any x1, … , xn ∈ X and z ∈ Z the matrix ('(xi, xj, z))i,j is positive inMn.
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Proof. (i) ⟹ (ii) Suppose that ' is a positive central Schur C0(Z)-multipli-
er. We have seen in the proof of Theorem 3.6 that ' ∈ L∞(Z) ⊗ (L∞(X) ⊗w∗ℎ

L∞(X)). With'weassociate the completely bounded bilinearmapΦ' ∶ L1(X)×
L1(X) → L∞(Z) given by

Φ'((f, g))(ℎ) = ⟨', ℎ ⊗ (f ⊗ g)⟩ , f, g ∈ L1(X), ℎ ∈ L1(Z).

We obtain

Φ'((f, g))(ℎ) =∭
X×X×Z

'(x, y, z)ℎ(z)f(x)g(y)dx dy dz

= ∫
Z

(∫
X×X

'z(x, y)f(x)g(y)dxdy) ℎ(z)dz

(8)

and

Φ'((f, g))(z) = ∫
X×X

'z(x, y)f(x)g(y)dxdy almost everywhere.

Set
Φ'z((f, g)) = Φ'((f, g))(z), z ∈ Z.

By Lemma 3.5, 'z is a positive Schur multiplier and, by Lemma 3.12,

Φ
(n,n)
'z

(((fi,j), (f
∗
i,j
))) ∈ M+

n

for any (fi,j) ∈ Mn(L
1(X)). By [40, Theorem 4.4, Remark 4.5(iii)], there exists

a family ( i)i∈Λ ⊆ CB(L1(X), L∞(Z)) such that ‖
∑

i∈I
| i(a)|

2‖∞ ≤ C‖a‖2
1
,

a ∈ L1(X), for some constant C > 0, and

Φ'((a, b)) =
∑

i∈Λ

 i(a) i(b
∗)∗, a, b ∈ L1(X).

Identifying each  i with an element  i of L∞(X × Z) via

 i(f)(ℎ) = ∫
X

∫
Z

 i(x, z)f(x)ℎ(z)dx dz, f ∈ L1(X), ℎ ∈ L1(Z),

letting ℒ = l2(Λ) and v(x, z) ∶= ( i(x, z))i∈Λ gives (ii).
(ii)⟹ (i) De�ne

V(x) ∶ L2(Z) → ℒ⊗ L2(Z);
(
V(x)�

)
(z) ∶= v(x, z)�(z), � ∈ L2(Z).

Then
'(x, y)(a) = V(y)∗

(
id ⊗Ma

)
V(x), a ∈ C0(Z)

for almost all (x, y) (see the proof of Theorem 3.6 (iv) ⟺ (i)). Therefore '
is a central Schur C0(Z)-multiplier, and (as in the proof of [28, Theorem 2.6])
writing � for the representation a ↦ id ⊗Ma of C0(Z) on ℒ⊗ L2(Z) we have

S'(T) = V∗(id ⊗ �)(T)V, T ∈ K(L2(X)) ⊗ C0(Z).

Hence S' is completely positive.
(i)⟺ (iii) follows from the following two facts: (a) since ' is a SchurC0(Z)-

multiplier, we have that S'(K)(z) = S'z(K(z)), z ∈ Z for anyK ∈ C0(Z,K), and
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(b) an element K ∈ C0(Z,K) is positive if and only if K(z) ≥ 0 as an operator
inK for all z ∈ Z.

Now assume that � is the countingmeasure on the discrete spaceX. Observe
that (iv) is equivalent to ('(xi, xj)) being a positive element ofMn(C0(Z)).

(i)⟹ (iv) Let x1, … , xn ∈ X. By [27, Theorem 2.6], thematrix ('(xi, xj)(a))
∈ Mn(C0(Z)) is positive when a ∈ C0(Z) is positive. For a �xed z0 ∈ Z, let
a ∈ C0(Z) be such that a(z0) = 1. It follows that ('(xi, xj, z0))i,j ∈ M+

n .
(iv) ⟹ (i) For a positive (ai,j) ∈ Mn(C0(Z)), the matrix ('(xi, xj)(ai,j)) is

the Schur product of ('(xi, xj)) and (ai,j) inMn(C0(Z)). Since (iv) ensures the
positivity of ('(xi, xj)), and the Schur product of two positive matrices over a
commutative C∗-algebra is positive, (i) follows from [27, Theorem 2.6]. �

In thenext corollarywe assumeA acts nondegenerately on a separableHilbert
spaceℋ.

Corollary 3.14. Let' ∶ X×X → Z(ℳ(A)) ⊆ CB(A) be a pointwise-measurable
function, and assume that Z(A)A = A. The following are equivalent:
(i) ' is a positive central Schur A-multiplier;
(ii) there exist an index set I and V ∈ C!

I
(L∞(X, Z(A)′′)) such that

'(x, y) =
∑

i∈I

Vi(y)
∗Vi(x), for almost all (x, y) ∈ X × Y.

Moreover, if ' ∶ X × X → Z(ℳ(A)) is weakly measurable then the above condi-
tions are equivalent to:
(iii) ' is a positive central Schur B-multiplier for any C∗-algebra B ⊆ ℬ(ℋ) with

Z(A) ⊆ Z(B).

Proof. Follows from Theorem 3.13 in the same way as Corollary 3.7 follows
from Theorem 3.6. �

We recall the following de�nition from [27].

De�nition 3.15. A Herz–Schur (A, G, �)-multiplier F ∶ G → CB(A) is called
completely positive if SF is completely positive on A⋊�,r G.

Theorem 3.16. Let (A, G, �) be a C∗-dynamical system such that Z(A)A = A,
and F ∶ G → Z(ℳ(A)) be a pointwise-measurable function. The following are
equivalent:
(i) F is a completely positive central Herz–Schur (Z(A), G, �)-multiplier;
(ii) F is a completely positive central Herz–Schur (A, G, �)-multiplier;
(iii) N(F) is a positive central Schur Z(A)-multiplier;
(iv) N(F) is a positive central Schur A-multiplier.

Proof. (ii)⟹ (iv) Assume that F ∶ G → Z(ℳ(A)) is a positive central Herz–
Schur (A, G, �)-multiplier. By the proof of [28, Theorem 3.8], using the Stine-
spring dilation theorem in place of the Haagerup–Paulsen–Wittstock theorem,
we have SF(T) = V∗�(T)V, T ∈ A⋊�,r G. The representation �◦(� ⋊ �) of the



CENTRAL AND CONVOLUTION MULTIPLIERS 23

full crossed productA⋊�G has the form �A⋊�G , where (�A, �G) is a covariant
pair. Let V(s) ∶= �G(s

−1)V�s; as in [28, page 408], we have N(F)(s, t)(a) =

V(t)∗�A(a)V(s), so SN(F) = V∗(�A ⊗ id)(⋅)V is completely positive. Therefore
N(F) is a positive Schur A-multiplier, and it is clearly central.

(iv)⟹ (ii) As in the proof of [28, Theorem 3.8], we have SF = SN(F)|A⋊�,rG
,

so SF is completely positive.
(iv)⟹ (iii) Follows from Remark 3.1.
(iii)⟹ (iv) LetN(F) be a positive central SchurZ(A)-multiplier. Following

the proof of the implication (i) ⟹ (ii) of Corollary 3.7 and applying [40, Re-
mark 4.5(iii)], we see that there exists an index set I and an essentially bounded
function V ∈ C!

I
(L∞(G, Z(A)′′)) such that N(F)(s, t) =

∑

i∈I
Vi(t)

∗Vi(s) al-
most everywhere on G ×G (the series converges weakly). Hence for a ∈ A and
s, t ∈ G we have

N(F)(s, t)(a) =
∑

i∈I

Vi(t)
∗Vi(s)a =

∑

i∈I

Vi(t)
∗aVi(s) = V(t)∗�(a)V(s),

where V(r) ∶= (Vi(r))i∈I and �(a) = id⊗ a. As in the proof of the implication
(ii) ⟹ (i) of [28, Theorem 2.6], it follows that SN(F) = V∗(id ⊗ �)(⋅)V is
completely positive, soN(F) is a positive central Schur A-multiplier.

(i)⟺ (iii) This is a special case of (ii)⟺ (iv). �

Using Theorem3.13, similarly toCorollary 3.10, one can obtain the following
description of completely positive centralHerz–Schur (C0(Z), G, �)-multipliers.

Corollary 3.17. Let (C0(Z), G, �) be aC∗-dynamical system, andF ∶ G×Z → ℂ

a measurable function, continuous in the Z-variable. The following are equiva-
lent:
(i) F is a completely positive central Herz–Schur (C0(Z), G, �)-multiplier;
(ii) there exist aHilbert spaceℒandaweaklymeasurable function v ∶ G×Z → ℒ

such that F(ts−1, xt−1) = ⟨v(s, x), v(t, x)⟩ almost everywhere on G × G × Z.

3.4. Connections with other types of multipliers. Let Z be a locally com-
pact Hausdor� space, equipped with an action of a locally compact group G;
thus, we are given a map Z × G → Z, (x, s) → xs, jointly continuous and such
that x(st) = (xs)t for all x ∈ Z and all s, t ∈ G. We consider the crossed prod-
uct C0(Z) ⋊�,r G, where � is the corresponding action of G on C0(Z). The set
G = Z × G is a groupoid, where the set G2 of composable pairs is given by

G2 = {[(x1, t1), (x2, t2)] ∶ x2 = x1t1},

and if [(x1, t1), (x2, t2)] ∈ G2, the product (x1, t1)⋅(x2, t2) is de�ned to be (x1, t1t2),
while the inverse (x, t)−1 of (x, t) is de�ned to be (xt, t−1). The domain and
range maps are given by
d((x, t)) ∶= (x, t)−1 ⋅ (x, t) = (xt, e), r((x, t)) ∶= (x, t) ⋅ (x, t)−1 = (x, e).

The unit space G0 of the groupoid, which is by de�nition equal to the common
image of the maps d and r, can therefore be canonically identi�ed with X. We
refer to [37] for background on groupoids (see also [28, Section 5.2]).
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Let ∶ Z×G → ℂ be a bounded continuous function. LetF (s) ∈ CB(C0(Z))

be given by F (s)(f)(x) ∶=  (x, s)f(x), f ∈ C0(Z), s ∈ G. In [28, Section 5]
it was shown that such a function  is a Herz–Schur (C0(Z), G, �)-multiplier
if and only if  is a completely bounded multiplier of the Fourier algebra of G
in the sense of Renault [38]. In the terminology of this paper such functions
 are central Herz–Schur (C0(Z), G, �)-multipliers. The following is therefore
immediate from [28, Proposition 5.3] and Corollary 3.10.

Corollary 3.18. Let (C0(Z), G, �) be a C∗-dynamical system, and write G for the
underlying groupoid. Let  ∶ Z × G → ℂ be a bounded continuous function and
write F (r)(f)(x) ∶=  (x, r)f(x), f ∈ C0(Z). The following are equivalent:

(i) F is a central Herz–Schur (C0(Z), G, �)-multiplier;
(ii)  is a completely bounded multiplier of the Fourier algebra of G;
(iii) there exist aHilbert spaceℒand essentially bounded functions v, w ∶ G×Z →

ℒ such that

 (xt−1, ts−1) = ⟨v(s, x), w(t, x)⟩ , s, t ∈ G, almost all x ∈ X.

If the conditions hold then we can choose v and w such that

‖ ‖HS = esssup
(s,x)∈G×Z

‖v(s, x)‖ esssup
(t,x)∈G×Z

‖w(t, x)‖.

We next link central multipliers to the multipliers studied by Dong–Ruan
in [9]. Let (A, G, �) be a C∗-dynamical system with A unital and G discrete.
Dong–Ruan de�ne a function ℎ ∶ G → A to be a multiplier with respect to � if
there is an A-bimodule map Φ on A ⋊�,r G such that Φ(�r) = �r�(ℎ(r)). The
A-bimodule requirement forces ℎ(r) ∈ Z(A) for all r ∈ G. Hence Φ = SF for
the central (A, G, �)multiplier given by F(r)(a) = ℎ(r)a.

In [9, Section 6], the authors use the fact that classical (positive) Schurmulti-
pliers on a discrete group G give rise to (positive) central Herz–Schur multipli-
ers of (l∞(G), G, �) (here � denotes the left translation action). This connection
is also utilised by Ozawa [33]. We formalise this connection in the next propo-
sition.

Proposition 3.19. LetG be a discrete group. Consider a function ' ∶ G×G → ℂ

and a family a = (ar)r∈G ⊆ Cb(G). De�ne

a
'
r (p) ∶= '(r−1p−1, p−1) and 'a(s, t) ∶= ats−1(t

−1).

The assignments ' ↦ a' and a ↦ 'a are mutual inverses, and give a one-to-
one correspondence between the classical Schur multipliers and the central Herz–
Schur (C0(G), G, �)-multipliers. This bijection is an isometric algebra isomor-
phism which preserves positivity.

Proof. It is easy to check that 'a' = ' and a'a = a and that these assignments
are linear and multiplicative.
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Nowsuppose thata = (ar)r∈G is a centralHerz–Schur (C0(G), G, �)-multiplier.
By Corollary 3.10, there exist a Hilbert space ℒ and weakly measurable func-
tions v, w ∶ G × G → ℒ, such that

'a(s, t) = ats−1(t
−1) = ⟨v(s, e), w(t, e)⟩ , s, t ∈ G.

It follows from [5] that 'a is a Schur multiplier and ‖'a‖S ≤ ‖a‖HS.
Conversely, suppose ' ∶ G × G → ℂ is a Schur multiplier, and take v, w ∶

G → ℋ are such that '(s, t) = ⟨v(s), w(t)⟩ and

‖'‖S = sup
s∈G

‖v(s)‖ sup
t∈G

‖w(t)‖.

Then, for s, t, x ∈ G,

a
'

ts−1
(xt−1) = '(st−1tx−1, tx−1) = '(sx−1, tx−1) =

⟨
v(sx−1), w(tx−1)

⟩
.

Therefore, byCorollary 3.10, a' = (a
'
r )r∈G is a centralHerz–Schur (C0(G), G, �)-

multiplier with ‖a'‖HS ≤ ‖'‖S.
If a is a positive centralmultiplier (resp.' is a positive Schurmultiplier) then

applying Corollary 3.17, taking v = w in the above calculations, shows'a (resp.
a') is also positive. �

4. Convolution multipliers
In this section, we give a characterisation of Herz–Schur convolution multi-

pliers �rst studied in [28, Section 6]. We will use the notion of a Herz–Schur
�-multiplier of a C∗-dynamical system (A, G, �), introduced in [28, De�nition
3.3]. Let � ∶ A → ℬ(ℋ�) be a faithful representation of (the separable C∗-
algebra) A on the separable Hilbert space ℋ�, and let (��, ��) be the regular
covariant pair associated to this representation (see Subsection 2.1.4). A func-
tion F ∶ G → CB(A) will be called a Herz–Schur �-multiplier of (A, G, �) if the
map

��(a)��r ↦ ��
(
F(r)(a)

)
��r

extends to a completely bounded, weak*-continuous map on A ⋊w∗

�,�
G. As be-

fore we assume that G is either second countable or discrete.

4.1. Abelian case. Let G be an abelian locally compact group equipped with
a Haar measure and Γ be its dual group. We denote by �Γ the left regular rep-
resentation on L2(Γ). We shall identify each element s ∈ G with a character on
Γ, and use � to denote the natural action of G on C∗r (Γ) by letting

�s
(
�Γ(f)

)
∶= �Γ(sf), s ∈ G, f ∈ L1(Γ);

thus, (C∗r (Γ), G, �) is a C∗-dynamical system.
Given a bounded measurable function  ∶ G × Γ → ℂ and t ∈ G (resp. x ∈

Γ), let the function  t ∶ Γ → ℂ (resp.  x ∶ G → ℂ) be given by  t(y) ∶=  (t, y)

(resp.  x(s) ∶=  (s, x)). We call  admissible if  t ∈ B(Γ) for every t ∈ G and
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sup
t
‖ t‖B(Γ) < ∞. Assuming that  is admissible, let F (t) ∶ C∗r (Γ) → C∗r (Γ)

be the map given by

F (t)(�
Γ(g)) = �Γ( tg), g ∈ L1(Γ).

We de�ne theHerz–Schur convolution multipliers ofG to be the elements of the
set

Sconv(G) = { ∶ G × Γ → ℂ ∶  is admissible and F is
a Herz–Schur (C∗r (Γ), G, �)-multiplier},

and write
Sid
conv(G) = { ∶ G × Γ → ℂ ∶  is admissible and F is

a Herz–Schur id-multiplier of (C∗r (Γ), G, �)}.

Here we write id for the canonical representation of C∗r (Γ) on L2(Γ). Clearly,
the space Sconv(G) is an algebra with respect to the operations of pointwise
addition andmultiplication, andSid

conv(G) is a subalgebra ofSconv(G). For  ∈
Sconv(G), let ‖ ‖HS = ‖F ‖HS, and use S to denote the map SF .

We identify an elementary tensor u⊗ℎ, where u ∈ B(G) and ℎ ∈ B(Γ), with
the function (s, x) → u(s)ℎ(x), s ∈ G, x ∈ Γ. LetF(B(G), B(Γ)) be the complex
vector space of all separately continuous functions  ∶ G×Γ → ℂ such that, for
every s ∈ G (resp. x ∈ Γ), the function  s ∶ Γ → ℂ (resp.  x ∶ G → ℂ) belongs
to B(Γ) (resp. B(G)). By [28, Section 6], we have the following inclusions:

B(G) ⊙ B(Γ) ⊆ Sid
conv(G) ⊆ F(B(G), B(Γ)).

We now answer [28, Question 6.6] by identifyingSid
conv(G).

Theorem 4.1. Let G be a locally compact abelian group and  ∶ G × Γ → ℂ be
an admissible function. The following are equivalent:
(i)  ∈ Sid

conv(G);
(ii)  ∈ B(G × Γ).
The identi�cation is an isometric algebra homomorphism.

Proof. (i) ⟹ (ii) Let  ∈ Sid
conv(G) and let F ∶ G → CB(C∗r (Γ)) be the

corresponding Herz–Schur multiplier of (C∗r (Γ), G, �). By [28, Theorem 3.8],
N(F )(s, t) is a Schur C∗r (Γ)-multiplier and hence there exist a Hilbert space
ℋ�, operators V,W ∈ L∞(G,ℬ(L2(Γ),ℋ�)), a continuous unitary representa-
tion � ∶ Γ → ℬ(ℋ�) and a subset N ⊆ G × G with (mG × mG)(N) = 0, such
that

N(F )(s, t)
(
�Γ(f)

)
= W(t)∗�(f)V(s), f ∈ L1(Γ),

for all (s, t) ∉ N, and

‖ ‖S = esssup
s∈G

‖V(s)‖ esssup
t∈G

‖W(t)‖. (9)

As
N(F )(s, t)(�

Γ(f)) = �t−1(F (ts
−1)(�t(�

Γ(f)))) = �Γ( ts−1f),
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we obtain
�Γ( ts−1f) = W(t)∗�(f)V(s), f ∈ L1(Γ),

for all (s, t) ∉ N. As  ts−1 ∈ B(Γ), we have that  ts−1 is a completely bounded
multiplier of A(Γ), and the map S ts−1 can be extended to a weak*-continuous
linear operator on vN(Γ); we have

 (ts−1, x)�Γx = W(t)∗�(x)V(s), x ∈ Γ, (s, t) ∉ N.

Thus, for � ∈ L2(Γ) with ‖�‖2 = 1, we have

 (ts−1, xy−1)
⟨
�, �

⟩
=

⟨
�Γ
x−1
W(t)∗�(x)�(y)∗V(s)�Γy�, �

⟩

=
⟨
�(y)∗V(s)�Γy�, �(x)

∗W(t)�Γx�
⟩
.

Letting v(s, y) ∶= �(y)∗V(s)�Γy� and w(t, x) ∶= �(x)∗W(t)�Γx�, we obtain

 
(
(t, x)(s, y)−1

)
= ⟨v(s, y), w(t, x)⟩ , (s, t) ∉ N.

By [5],  is equal almost everywhere to a completely bounded multiplier of
A(G × Γ), and hence to an element u ∈ B(G × Γ) [21, Theorem 5.1.8]. To see
that  (t, x) = u(t, x) for all (t, x), for each t ∈ G we let

Nt = {x ∈ Γ ∶  (t, x) = u(t, x)}.

By Fubini’s Theorem, the set {t ∈ G ∶ mΓ(N
c
t
) > 0} has measure zero, that is,

for almost all t ∈ G, we have that  (t, x) = u(t, x) almost everywhere. As  is
separately continuous, the last equality holds for all x ∈ Γ. Using again the sep-
arate continuity of  we obtain that  (t, x) = u(t, x) for all (t, x). Furthermore,
by (9),

‖ ‖B(G×Γ) ≤ esssup
(s,y)∈G×Γ

‖�(y)∗V(s)�Γy�‖ esssup
(t,x)∈G×Γ

‖�(x)∗W(t)�Γx�‖

≤ esssup
s∈G

‖V(s)‖ esssup
t∈G

‖W(t)‖ = ‖ ‖S.

(ii) ⟹ (i) Assume that  ∈ B(G × Γ). By [5], there exist a Hilbert spaceℋ
and continuous v, w ∶ G × Γ → ℋ such that

 (ts−1, xy−1) = ⟨v(s, y), w(t, x)⟩ , s, t ∈ G, x, y ∈ Γ,

and
‖ ‖B(G×Γ) = sup

(s,y)

‖v(s, y)‖ sup
(t,x)

‖w(t, x)‖.

Choose an orthonormal basis {ei}i∈I in ℋ and let vi(s, y) ∶= ⟨v(s, y), ei⟩ and
wi(t, x) ∶= ⟨ei, w(t, x)⟩. Then

 (ts−1, xy−1) =
∑

i∈I

vi(s, y)wi(t, x), s, t ∈ G, x, y ∈ Γ.

Let S be the completely bounded operator on ℬ(L2(G × Γ)), given by S(T) ∶=
∑

i∈I
Mwi

TMvi
. Clearly,

‖S‖cb = ‖ ‖B(G×Γ). (10)
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To complete the proof, it su�ces to show that the restriction of the operator S
to C∗r (Γ) ⋊w∗

�,id
G is given by

S
(
�id(�Γx)�

id
s

)
= �id

(
 (s, x)�Γx

)
�ids . (11)

First note that

(�id(�Γx)�)(t) = �t−1(�
Γ
x)�(t) = t(x)�Γx�(t), � ∈ L2(G, L2(Γ)). (12)

Writing vi(t)(⋅) and wi(t)(⋅) for vi(t, ⋅) and wi(t, ⋅), respectively, for t ∈ G and
y ∈ Γ, and �xing �, � ∈ L2(G, L2(Γ)), we have

⟨
S(�id(�Γx)�

id
s )�, �

⟩

=
∑

i∈I

⟨
Mwi

�id(�Γx)�
id
s Mvi

�, �
⟩

=
∑

i∈I

∫
(
Mwi(t)

t(x)�ΓxMvi(s
−1t)�(s

−1t)
)
(y)�(t, y)dtdy

=
∑

i∈I

∫ wi(t, y)vi(s
−1t, x−1y)t(x)�(s−1t, x−1y)�(t, y)dtdy

= ∫  (tt−1s, yy−1x)t(x)�(s−1t, x−1y)�(t, y)dtdy

= ∫  (s, x)
(
�id(�Γx)�

id
s �

)
(t, y)�(t, y)dtdy.

Together with (12), this establishes (11). In addition,

‖ ‖S =

‖‖‖‖‖‖‖‖
S
||||C∗r (Γ)⋊

w∗

�,id
G

‖‖‖‖‖‖‖‖cb

≤ ‖S‖cb = ‖ ‖B(G×Γ),

which together with (10) gives the desired equality.
To see that the identi�cation ismultiplicative, observe that if , � ∈ Sid

conv(G)

then SF SF� = SF � . �

In Theorem 4.4 below we will show that the identi�cation in Theorem 4.1 is
in fact a complete isometry.

4.2. General case. Now let G be an arbitrary locally compact group. In order
to de�ne convolution multipliers, we replace C∗r (Γ) with the quantum group
dual of C∗r (G), namely C0(G), equipped with its natural action of G. Similarly
we replaceB(Γ) byM(G), the Banach algebra of all complex-valuedRadonmea-
sures on G with the convolution multiplication, given by

(� ∗ �)(f) ∶= ∫
G

∫
G

f(st)d�(s) d�(t), f ∈ C0(G), �, � ∈ M(G).

We identify L1(G) with the norm-closed ideal inM(G) consisting of absolutely
continuous measures with respect to left Haar measure. We have that L1(G)
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is an M(G)-bimodule in the natural way. Using the identi�cation L1(G)∗ =

L∞(G), we arrive at anM(G)-bimodule structure on L∞(G), given by

⟨� ⋅ f, ℎ⟩ = ⟨f, ℎ ∗ �⟩ and ⟨f ⋅ �, ℎ⟩ = ⟨f, � ∗ ℎ⟩ ,

for ℎ ∈ L1(G), f ∈ L∞(G), � ∈ M(G). In particular,

(� ⋅ f)(s) = ∫
G

f(st)d�(t) and (f ⋅ �)(t) = ∫
G

f(st)d�(s).

Let � be the right regular representation of G on L2(G); thus,

(�s�)(t) = ∆(s)1∕2�(ts).

For � ∈ M(G), de�ne a bounded linear operator �(�)(a), a ∈ ℬ(L2(G)), by

�(�)(a) ∶= ∫
G

�sa�
∗
s d�(s).

By [31, Theorem 3.2] (see also [30, Theorem 4.5]), the map � above is a weak∗-
weak∗ continuous completely isometric homomorphism fromM(G) to the space
CB

�
(ℬ(L2(G))) of all completely bounded weak* continuous linear maps on

ℬ(L2(G)) and ‖�(�)‖cb = ‖�(�)‖ = ‖�‖. We have

�(�)(f) = � ⋅ f ∈ L∞(G), f ∈ L∞(G).

Moreover, �(�) is a vN(G)-bimodule map.
For each t ∈ G, let �t ∶ L∞(G) → L∞(G) be given by �t(f) ∶= �G

t
f�G

t−1
= ft,

where ft(x) = f(t−1x). Then

�t◦�(�) = �(�)◦�t, t ∈ G. (13)

For Λ = {�t}t∈G ⊆ M(G), de�ne FΛ ∶ G → CB(C0(G)) by

FΛ(t)(f) ∶= �(�t)(f), t ∈ G, f ∈ C0(G).

De�nition 4.2. A familyΛ = {�t}t∈G ⊆ M(G) is called a convolutionmultiplier
if FΛ is a Herz–Schur (C0(G), G, �)-multiplier.

If Λ = {�t}t∈G is a convolution multiplier, we set ‖Λ‖HS = ‖FΛ‖HS.
Let id denote the representation of C0(G) on L2(G) by multiplication opera-

tors andSid
conv(G) be the collection of familiesΛ = {�t}t∈G ⊆ M(G) such thatFΛ

is a Herz–Schur id-multiplier of (C0(G), G, �), endowed with the algebra struc-
ture coming from pointwise operations on the maps FΛ. When G is abelian,
the identi�cations C0(G) ≡ C∗r (Γ) andM(G) ≡ B(Γ) show that this usage of the
notationSid

conv(G) agrees with that from Subsection 4.1.
Consider the operator space projective tensor product

L1(G) ⊗̂ A(G) = (L∞(G) ⊗ vN(G))∗.

We note that, when equipped with the product given on elementary tensors by

(f ⊗ u)(g ⊗ v) = (f ∗ g) ⊗ (uv), f, g ∈ L1(G), u, v ∈ A(G),
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the operator space L1(G) ⊗̂A(G) is a completely contractive Banach algebra. A
map T ∈ ℬ(L1(G) ⊗̂ A(G)) will be called a right multiplier of L1(G) ⊗̂ A(G) if

T(ab) = aT(b), a, b ∈ L1(G) ⊗̂ A(G).

If, in addition, T is completely bounded, we write T ∈ Mr
cb
(L1(G) ⊗̂A(G)), and

call T a right completely boundedmultiplier of L1(G)⊗̂A(G). WhenG is abelian
we have the identi�cations

Mr
cb
(L1(G) ⊗̂ A(G)) = Mcb(A(Γ × G)) = B(Γ × G).

Our goal is to generalise Theorem 4.1, identifying Sid
conv(G) with the space of

right completely bounded multipliersMr
cb
(L1(G) ⊗̂ A(G)).

IfM is any of the von Neumann algebras L∞(G), vN(G) or L∞(G) ⊗ vN(G),
T ∈ M and f ∈ M∗, we write f ⋅ T and T ⋅ f ∈ M for the operators given by

⟨f ⋅ T, g⟩ ∶= ⟨T, gf⟩ , ⟨T ⋅ f, g⟩ ∶= ⟨T, fg⟩ , g ∈ M∗,

where ⟨⋅, ⋅⟩ is the pairing betweenM andM∗. We recall [12] that the support of
T ∈ vN(G) is the closed set of all t ∈ G such that u ⋅ T ≠ 0 whenever u ∈ A(G)

and u(t) ≠ 0.

Lemma4.3. IfT ∈ Mr
cb
(L1(G)⊗̂A(G)) then there exists a unique family {�t}t∈G ⊆

M(G) such that

T∗(f ⊗ �G
t
) = �(�t)(f) ⊗ �G

t
, f ∈ L∞(G), t ∈ G.

Proof. Let f1, f2 ∈ L1(G), a1, a2 ∈ A(G). The equality

T((f1 ⊗ a1)(f2 ⊗ a2)) = (f1 ⊗ a1)T(f2 ⊗ a2)

implies that, if g ∈ L∞(G) then
⟨
T∗(g ⊗ �G

t
), (f1 ⊗ a1)(f2 ⊗ a2)

⟩
= a1(t)

⟨
T∗(g ⋅ f1 ⊗ �G

t
), f2 ⊗ a2

⟩
. (14)

Taking the limit along an approximate identity {f�}�∈A of L1(G), we obtain

⟨T∗(g ⊗ �G
t
), f2 ⊗ a1a2⟩ = ⟨a1(t)T

∗(g ⊗ �G
t
), f2 ⊗ a2⟩. (15)

For ! ∈ L1(G), let R! ∶ L∞(G) ⊗ vN(G) → vN(G) be the slice map, de�ned by

⟨R!(S), a⟩ ∶= ⟨S, ! ⊗ a⟩, S ∈ L∞(G) ⊗ vN(G), a ∈ A(G).

After taking a limit along an approximate unit for L1(G), equation (15) implies
that

a1 ⋅ R!
(
T∗(g ⊗ �G

t
)
)
= a1(t)R!

(
T∗(g ⊗ �G

t
)
)
.

It follows that R!(T∗(g ⊗ �G
t
)) ∈ vN(G) has support in {t}. By [12, Théorème

4.9], R!(T∗(g ⊗ �G
t
)) = c(!, t)�G

t
for some constant c(!, t) and

R!(T
∗(g ⊗ �G

t
)(1 ⊗ �G

t−1
)) ∈ ℂI.

By [23], T∗(g ⊗ �G
t
)(1 ⊗ �G

t−1
) ∈ L∞(G) ⊗ ℂI and hence T∗(g ⊗ �G

t
) = gt ⊗ �G

t

for some gt ∈ L∞(G).
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The map Φt ∶ g ↦ gt is completely bounded, normal, and T∗(g ⊗ �G
t
) =

Φt(g) ⊗ �G
t
, t ∈ G. By (14),

Φt(g ⋅ f1) = Φt(g) ⋅ f1, f1 ∈ L1(G),

showing that (Φt)∗(f1 ∗ f2) = f1 ∗ ((Φt)∗(f2)). Thus (Φt)∗ is a right com-
pletely bounded multiplier of L1(G). By [31, Theorem 3.2] (see also [30, Theo-
rem 4.5]), there exists {�t}t∈G such that Φt(g) = �(�t)(g). �

In what follows we will speak of a family Λ = {�t}t∈G ⊆ M(G) being a con-
volutionmultiplier or a (completely bounded) right multiplier. For a right mul-
tiplier Λ of L1(G) ⊗̂ A(G) we denote by RΛ the mapping on L∞(G) ⊗ vN(G),
given by

RΛ(f ⊗ �Gr ) ∶= �(�r)(f) ⊗ �Gr . (16)

Theorem 4.4. Let Λ = {�t}t∈G ⊆ M(G). The following are equivalent:
(i) Λ ∈ Sid

conv(G);
(ii) Λ ∈ Mr

cb
(L1(G) ⊗̂ A(G)).

The identi�cation RΛ ↦ SFΛ is a completely isometric algebra isomorphism.

Proof. (i) ⟹ (ii) We identify C0(G) ⋊w∗

�,id
G with the von Neumann algebra

crossed product L∞(G) ⋊vN

�
G, and let Λ = {�t}t∈G be a convolution multiplier.

For f ∈ L∞(G), using (13) we have

N(FΛ)(s, t)(f) = �t−1
(
FΛ(ts

−1)(�t(f))
)

= �t−1
(
�(�ts−1)(�t(f))

)
= �(�ts−1)(f).

Following similar arguments as in the proof of [28, Theorem 3.8], we obtain
that there exist a normal ∗-representation � of L∞(G) onℋ� and

V,W ∈ L∞(G,ℬ(L2(G),ℋ�))

such that
�(�ts−1)(f) = W∗(t)�(f)V(s)

and ‖Λ‖S = esssup
s∈G

‖V(s)‖ esssup
t∈G

‖W(t)‖.
De�ne a map RΛ ∶ L∞(G) ⊗ vN(G) → ℬ(L2(G) ⊗ L2(G)) by

RΛ(f ⊗ �G
t
) ∶= W∗(�(f) ⊗ �G

t
)V,

whereV,W ∈ ℬ(L2(G,ℋ�⊗L
2(G))) are given by (V�)(t) = V(t)�(t), (W�)(t) =

W(t)�(t). Then

RΛ(f ⊗ �G
t
)�(s) = W∗(s)�(f)V(t−1s)�(t−1s) = �(�s(s−1t))(f)�(t

−1s)

= (�(�t)(f) ⊗ �G
t
�)(s).

In particular, RΛ(f ⊗ �G
t
) ∈ L∞(G) ⊗ vN(G), and hence RΛ is a normal com-

pletely bounded map on L∞(G) ⊗ vN(G). Moreover, if f1, f2 ∈ L1(G), a1, a2 ∈
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A(G), g ∈ L∞(G), and (RΛ)∗ is the predual of RΛ, we have
⟨
g ⊗ �G

t
, (RΛ)∗((f1 ⊗ a1)(f2 ⊗ a2))

⟩
=

⟨
�(�t)(g) ⊗ �G

t
, f1 ∗ f2 ⊗ a1a2

⟩

= ⟨�t ⋅ g, f1 ∗ f2⟩
⟨
�G
t
, a1a2

⟩
= ⟨g, (f1 ∗ f2) ∗ �t⟩

⟨
a1 ⋅ �

G
t
, a2

⟩

= ⟨g ⋅ f1, f2 ∗ �t⟩
⟨
a1 ⋅ �

G
t
, a2

⟩
= ⟨�t ⋅ (g ⋅ f1), f2⟩

⟨
a1(t)�

G
t
, a2

⟩

=
⟨
RΛ(g ⋅ f1 ⊗ a1(t)�

G
t
), f2 ⊗ a2

⟩
=

⟨
g ⋅ f1 ⊗ a1(t)�

G
t
, (RΛ)∗(f2 ⊗ a2)

⟩

=
⟨
g ⊗ �G

t
, (f1 ⊗ a1)(RΛ)∗(f2 ⊗ a2)

⟩
,

i.e.
(RΛ)∗((f1 ⊗ a1)(f2 ⊗ a2)) = (f1 ⊗ a1)(RΛ)∗(f2 ⊗ a2).

Hence (RΛ)∗(ab) = a(RΛ)∗(b) for any a, b ∈ L1(G) ⊗̂A(G) and therefore (RΛ)∗
is a right completely bounded multiplier of L1(G)⊗̂A(G). In addition,

‖RΛ‖cb ≤ esssup
s∈G

‖V(s)‖ esssup
t∈G

‖W(t)‖ = ‖Λ‖S. (17)

(ii) ⟹ (i) Assume now that Λ = {�t}t∈G ∈ Mr
cb
(L1(G) ⊗̂ A(G)), i.e. the

map f⊗�G
t
↦ �(�t)(f)⊗�G

t
extends to a normal right L1(G) ⊗̂A(G)-modular

completely boundedmap RΛ on L∞(G)⊗vN(G). By [20, Proposition 4.3], there
exists a unique vN(G) ⊗ L∞(G)-bimodule map R̃Λ ∈ CB

�
(ℬ(L2(G × G))) such

that R̃Λ|L∞(G)⊗vN(G) = RΛ and ‖R̃Λ‖cb = ‖RΛ‖cb. We have, in particular,

R̃Λ(g ⊗ f�G
t
) = �(�t)(g) ⊗ f�G

t
, f, g ∈ L∞(G). (18)

Note that L2(G × G) ≡ L2(G, L2(G)) and let � ∶ L∞(G) → ℬ(L2(G × G)) be
the *-representation, given by

�(f)�(t) = �t−1(f)(�(t)), � ∈ L2(G × G), f ∈ L∞(G).

Let f ∈ L∞(G) and note that �(f) ∈ L∞(G × G). Thus, there exists a net
{!�}�∈A ⊆ span{g ⊗ ℎ ∶ g, ℎ ∈ L∞(G)}, with !� →�∈A �(f) in the weak*
topology. Write !� =

∑n�

i=1
gi,� ⊗ ℎi,�. Using (13) and (18), we have

(
R̃Λ(�(f)(1 ⊗ �Gr )

)
= lim

�∈A

n�∑

i=1

�(�r)(gi,�) ⊗ ℎi,��
G
r = �

(
�(�r)(f)

)
(1 ⊗ �Gr ).

Since
(S̃FΛ(�(f)(1 ⊗ �G

t
)) = (�(�(�t)(f))(1 ⊗ �G

t
),

the restriction of R̃Λ to the crossed product C0(G) ⋊�,r G coincides with SFΛ ,
implying the converse statement. Note, in addition, that

‖SFΛ‖cb ≤ ‖R̃Λ‖cb = ‖RΛ‖cb. (19)
By (17), ‖RΛ‖cb ≤ ‖SFΛ‖cb, and together with (19) this shows that ‖RΛ‖cb =

‖SFΛ‖cb. Moreover, by Lemma 2.7 themapFΛ ↦N(FΛ) is a complete isometry,
and by [20, Proposition 4.3] the map RΛ ↦ R̃Λ is a complete isometry, therefore
the norm inequalities hold on all matrix levels, implying that the identi�cation
SFΛ ↦ RΛ is a complete isometry.
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The homomorphism claim follows from Lemma 2.7 and the fact that the
identi�cation in [20, Proposition 4.3] is a homomorphism. �

We observe that the product of the convolution multipliers Λ = {�t}t∈G and
Ξ = {�t}t∈G is given by ΛΞ = {�t ∗ �t}t∈G . We write Scent(A, G, �) for the
central Herz–Schur (A, G, �)-multipliers.

Proposition 4.5. We haveSconv(G) ∩ Scent(C0(G), G, �) = McbA(G).

Proof. Suppose that F ∶ G → CB(C0(G)) is a central multiplier which is also
a convolution multiplier. Then for each r ∈ G there is ar ∈ Cb(G) such that
F(r)(a) = ara. Also, since F is a convolution multiplier, by (13) F(r) satis�es

�t
(
F(r)(a)

)
= F(r)

(
�t(a)

)
, r, t ∈ G, a ∈ C0(G).

Combining these two identities, and allowing a to vary, gives ar(st) = ar(t) for
all s, t ∈ G, so ar is a scalar multiple of the identity. The conclusion follows
from [28, Proposition 4.1]. �

5. Idempotent multipliers
Given standard measure spaces (X, �) and (Y, �), a well-known open prob-

lem asks for the identi�cation of the idempotent Schur multipliers on X × Y.
A characterisation of the contractive idempotent Schur multipliers, based on a
combinatorial argument, combined with an observation of Livshitz [25], was
given by Katavolos–Paulsen in [22].

In a similar vein, for a general locally compact group G, there is no known
characterisation of the idempotent Herz–Schur multipliers. Some partial re-
sults are known: the idempotent measures inM(G) of norm one were charac-
terised by Greenleaf [13] — a measure � has the properties � ∗ � = � and
‖�‖ = 1 if and only if � = 
mH , where mH is the Haar measure on a compact
subgroup H and 
 is a character of H. Such � is positive if and only if 
 above
is equal to 1. Dually, the idempotent elements of B(G) were characterised by
Host [18]; using Host’s method, Ilie and Spronk [19] characterised contractive
idempotents — a function u ∈ B(G) has the properties u2 = u and ‖u‖ = 1 if
and only if u = �C , where C is an open coset of G. Such u is positive if and only
if C is a subgroup of G. Stan [41] extended this characterisation to norm one
idempotent elements ofMcbA(G).

In this section we use the aforementioned results of Katavolos–Paulsen and
Stan to study the idempotent central and the idempotent convolution multipli-
ers.

5.1. Central idempotentmultipliers. We�x standardmeasure spaces (X, �)
and (Y, �) and a separable, non-degenerate C∗-algebra A ⊆ ℬ(ℋ). Suppose
' ∈ L∞(X × Y) is an idempotent Schur multiplier, so the map k ↦ ' ⋅ k on
L2(Y × X) gives rise to a bounded idempotent map S' on the space of compact
operators; we have that '2(x, y)k(y, x) = '(x, y)k(y, x) almost everywhere for
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all k ∈ L2(Y × X), which implies that '2 = '. By [22, Proposition 11], ' = �E
almost everywhere for some !-open and !-closed E ⊆ X × Y.

Recall from [22] that a subset E ⊆ X × Y is said to have the 3-of-4 property
provided that given any distinct pair of points x1 ≠ x2 in X and any pair of
distinct pairs y1 ≠ y2 in Y, whenever 3 of the 4 ordered pairs (xi, yj) belong to
E then the fourth one also belongs to E.

For a subsetW ⊆ C×Z, where C is a set (which will below be equal to either
X or Y), and an element z ∈ Z, we write Wz = {t ∈ C ∶ (t, z) ∈ W}. The
following result generalises [22, Theorem 10].

Proposition 5.1. Let (X, �) and (Y, �) be standard measure spaces and Z a lo-
cally compact Hausdor� space. Let ' ∶ X×Y×Z → ℂ be ameasurable function,
continuous in the Z-variable. The following are equivalent:
(i) ' is a contractive idempotent central Schur C0(Z)-multiplier;
(ii) for each z ∈ Z, there exist families (Az

i
)i∈ℕ and (Bz

i
)i∈ℕ of pairwise disjoint

measurable subsets of X and Y, respectively, such that

'(x, y, z) =

∞∑

i=1

�Az
i
(x)�Bz

i
(y)

almost everywhere.

Proof. (i) ⟹ (ii) By Theorem 3.6, 'z is a contractive idempotent Schur mul-
tiplier for every z ∈ Z. By [22, Theorem 10], there exist families (Az

i
)∞
i=1

and
(Bz

i
)∞
i=1

of pairwise disjoint measurable subsets of X and Y, respectively, such
that 'z(x, y) =

∑∞

i=1
�Az

i
(x)�Bz

i
(y) almost everywhere.

(ii) ⟹ (i) By [22, Theorem 10], 'z is a contractive idempotent Schur mul-
tiplier for every z ∈ Z; thus, by Theorem 3.6, ' is a central C0(Z)-multiplier,
which is easily seen to be idempotent. Since each 'z is contractive we have ' is
contractive by Theorem 3.6. �

Remark 5.2. The statement holds when the standard measure spaces are re-
placed by discrete spaces X and Y with counting measures, but in this case the
families (Az

i
)i, (Bzi )i might be uncountable if X or Y is uncountable. In this

case (i) is also equivalent to ' = �W , whereWz has the 3-of-4 property for each
z ∈ Z, see [22, Lemma 2].

Let Z be a locally compact Hausdor� space equipped with an action � of a
locally compact group G. In the subsequent results, we view the set Z × G as
a groupoid as in Section 3.4. We provide a combinatorial characterisation of
the contractive central Herz–Schur (C0(Z), G, �)-multipliers. It is easy to see
that in this case  (x, t) = �V(x, t) for some subset V ⊆ Z × G. Theorem 5.3
generalises the result of Stan [41, Theorem 3.3].

Theorem 5.3. Assume that V ⊆ Z × G is a subset that is both closed and open.
The following are equivalent:
(i) F�V is a contractive central Herz–Schur (C0(Z), G, �)-multiplier;
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(ii) if (x, t), (x, s), (xr, r−1s) ∈ V then (xr, r−1t) ∈ V; equivalently, if (x, t),
(y, s), (z, p) ∈ V and the product (z, p)(y, s)−1(x, t) is well de�ned then
(z, p)(y, s)−1(x, t) ∈ V.

In particular, if V = Z × A for some A ⊆ G then A is an open coset of G.

Proof. Let
W = {(x, s, t) ∈ Z × G × G ∶ (xt−1, ts−1) ∈ V}.

By Corollary 3.18, F�V is a Herz–Schur (C0(Z), G, �)-multiplier if and only if
the mapN(F�V ), given by

N(F�V )(s, t)(a)(x) = �V(xt
−1, ts−1)a(x) = �W(x, s, t)a(x),

is a Schur C0(Z)-multiplier.
We �rst show that condition (ii) is equivalent to Wz ∶= {(s, t) ∈ G × G ∶

(z, s, t) ∈ W} having the 3-of-4 property for all z ∈ Z. Suppose that (z, t1, s1),
(z, t1, s2) and (z, t2, s2) ∈ W, which is equivalent to (zt−1

1
, t1s

−1
1
), (zt−1

1
, t1s

−1
2
),

(zt−1
2
, t2s

−1
2
) ∈ V. Writing zt−1

1
= x, t1s−11 = t, t1s−12 = s and t1t−12 = r, we get

zt−1
2

= xr, t2s−11 = r−1t and t2s−12 = r−1s and hence (x, t), (x, s), (xr, r−1s) ∈
V. The condition (z, t2, s1) ∈ W is equivalent to (xr, r−1t) ∈ V, giving the
statement. We note that (z, p)(y, s)−1(x, t) = (z, p)(ys, s−1)(x, t) is well de�ned
if and only if y = x and z = xsp−1; letting r = sp−1, we have (z, p) = (xr, r−1s).
We have shown that condition (ii) is equivalent to the 3-of-4 property for each
Wz.

Assume �rst that G is a locally compact second countable group and hence
(G,mG) is a standard measure space.

(i)⟹ (ii) If (i) holds thenN(F�V ) is a contractive idempotent Schur C0(Z)-
multiplier. By Theorem 3.6, 'z = �Wz

is a contractive idempotent Schur multi-
plier for each z ∈ Z. By [22, Theorem 10], there exist countable collections {Im}
and {Jm} of mutually disjoint Borel subsets of G, such that, if E = ∪mIm × Jm,
then �Wz

= �E almost everywhere.
As �Wz

is continuous and hence !-continuous and �E is !-continuous, by
[39, Lemma2.2],�Wz

= �Emarginally almost everywhere. Hence there exists a
null setNz such that�Wz

= �E onNc
z×N

c
z. In particular,Wz∩(N

c
z×N

c
z) has the

3-of-4 property. To see that the wholeWz has the property, take t1, t2, s1, s2 such
that (t1, s1), (t1, s2), (t2, s2) ∈ Wz, but someof t1, s1, t2, s2 belong toNz. Using the
fact thatWz is open and m(Nz) = 0 we can �nd sequences (tn

1
)n, (sn1 )n, (t

n
2
)n,

(sn
2
)n of elements in Nc

z such that (tn
1
, sn
1
), (tn

1
, sn
2
), (tn

2
, sn
2
) ∈ Wz and tni → ti,

sn
i
→ si, i = 1, 2. Hence (tn

2
, sn
1
) ∈ Wz, and as 1 = �Wz

(tn
2
, sn
1
) → �Wz

(t2, s1), we
obtain that (t2, s1) ∈ Wz. Hence (ii) holds.

(ii)⟹ (i) AsWz is open and hence !-open,Wz is marginally equivalent to
a countable union of Borel rectangles. HenceWz ∩ (N

c
z ×N

c
z) = ∪∞

m=1
Az
m ×B

z
m,

wheremG(Nz) = 0 and eachAz
m×B

z
m is Borel. By [22, Lemma 2] and the second

paragraph in the proof,Wz and henceWz ∩ (N
c
z × N

c
z) has the 3-of-4 property

for each z ∈ Z and there exist families {Xz
i
}i∈I and {Yz

i
}i∈I of pairwise disjoint

sets of G, such thatWz ∩ (N
c
z × N

c
z) = ∪i∈IX

z
i
× Yz

i
. Arguing as in the proof of
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[22, Theorem 10] one shows that the index set I can be chosen countable and
each Xz

i
×Yz

i
is a Borel rectangle. Hence �Wz

is a contractive Schur multiplier.
By Proposition 5.1 �W is a contractive idempotent central Schur multiplier, so
�V is a contractive idempotent central Herz–Schur (C0(Z), G, �)-multiplier.

If G is discrete, the statement follows from Remark 5.2. Finally, if V = Z×A

then �V(x, t) = �A(t) which is a Herz–Schur (C0(Z), G, �)-multiplier if and
only if �A is a Herz–Schur multiplier. It is of norm at most 1 if and only if A is
an open coset of G. �

Remark 5.4. It follows from Theorem 5.3 that if F�V is a contractive Herz–
Schur (C0(Z), G, �)-multiplier and the points

(x, t), r((x, t)) = (x, e), d((x, t)) = (xt, e)

all belong to V then (x, t)−1 = (xt, t−1) ∈ V. Moreover, if (x, t), d((x, t)) =
(xt, e) and (xt, s) ∈ V then (x, t)(xt, s) = (x, ts) ∈ V.

The following corollary is an immediate consequence of Remark 5.4.

Corollary 5.5. With the notation of Theorem 5.3, assume that G0 ⊆ V. We have
that F�V is a contractive Herz–Schur (C0(Z), G, �)-multiplier if and only if V is a
subgroupoid of G.

5.2. Positive central idempotentmultipliers. The following description of
positive contractive Schur multipliers can be obtained in a similar manner to
[22, Theorem 10], and we omit its proof.

Proposition 5.6. Let (X, �) be a standard measure space and E ⊆ X × X. The
following are equivalent:
(i) �E is a positive contractive Schur multiplier;
(ii) E is equivalent to a subset of the form ∪∞

m=1
Im × Im with respect to product

measure, where {Im}∞m=1 is a collection of disjoint Borel subset of X.

Remark 5.7. The standard measure space (X, �) can be replaced by discrete
space X with counting measure. In this case the collection of disjoint subsets
of X might be uncountable.

The following positive version of Proposition 5.1 and its discrete version can
be proved using similar ideas, and we omit the detailed argument.

Proposition 5.8. Let (X, �) and (Y, �) be standard measure spaces and Z a lo-
cally compact Hausdor� space. Let ' ∶ X ×Y×Z → ℂ be a measurable function
which is continuous in the Z-variable. The following are equivalent:
(i) ' is a positive contractive idempotent central Schur C0(Z)-multiplier;
(ii) for each z ∈ Z, there exists a family (Az

i
)i of pairwise disjoint measurable

subsets of X, such that '(x, y, z) =
∑∞

i=1
�Az

i
(x)�Az

i
(y) almost everywhere.

Proposition 5.1 and the transference theorem of [28] give an implicit charac-
terisation of the positive central idempotentHerz–Schur (C0(Z), G, �)-multipliers.
In Theorem 5.9 below, we give a more direct description of the positive central
idempotent Herz-Schur multipliers of norm not exceeding 1.
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Theorem 5.9. Let (C0(Z), G, �) be a C∗-dynamical system and V ⊆ Z × G be a
closed and open subset. The following are equivalent:
(i) F�V is a positive, contractive Herz–Schur (C0(Z), G, �)-multiplier;
(ii) V is a subgroupoid of Z × G.

Proof. We will prove the theorem for G a locally compact second countable
group. The case when G is discrete can be treated in a similar but simpler way.

(i)⟹ (ii) Let

W = {(z, s, t) ∈ Z × G × G ∶ (zt−1, ts−1) ∈ V}.

If F�V is a positive contractive Herz–Schur (C0(Z), G, �)-multiplier then the
function N(F�V ), given by N(F�V )(s, t)(a)(z) = �W(z, s, t)a(z), is a positive
SchurC0(Z)-multiplier. By Theorem 3.13, �Wz

is a positive Schurmultiplier for
each z ∈ Z. Note also that, as it is continuous, it is !-continuous. Using [39,
Lemma 2.2], we see that there exist a weakly measurable function vz ∶ G → l2

and a null set Nz ⊆ G such that

�Wz
(s, t) = ⟨vz(s), vz(t)⟩ , s, t ∉ Nz.

Let (x, t) ∈ V; as in Remark 5.4, it su�ces to show that (x, e) and (xt, e) ∈ V.
Assume that (x, e) ∉ V, and note that

�V(x, e) = �V((xt)t
−1, tt−1) = �W(xt, t, t) and �V(x, t) = �W(xt, e, t).

If t ∉ Nxt and e ∉ Nxt then

�W(xt, t, t) = ‖vxt(t)‖
2
2
= 0 and �W(xt, e, t) = ⟨vxt(e), vxt(t)⟩ = 0,

giving a contradiction. If one or both of e or t are inNxt, say t ∈ Nxt but e ∉ Nxt,
then, asm(Nxt) = 0 there exists a sequence sn ∉ Nxt such that sn → t. As �W
is continuous, we obtain

‖vxt(sn)‖
2
2
= �W(xt, sn, sn) → �W(xt, t, t) = 0,

while
⟨vxt(e), vxt(sn)⟩ = �W(xt, e, sn) → �W(xt, e, t),

forcing �W(xt, e, t) = 0, a contradiction. The other cases are treated similarly.
To see that (xt, e) ∈ V observe that

�V(xt, e) = �W(x, t
−1, t−1) and �V(x, t) = �W(x, t

−1, e)

and apply similar analysis.
(ii) ⟹ (i) Let now V be an open subgroupoid. Arguing as in the proof of

Theorem 5.3we see thatWz has the 3-of-4 property for each z ∈ Z. Moreover, if
(x, s, t) ∈ Wwehave that (xt−1, ts−1) ∈ V andhence r(xt−1, ts−1) = (xt−1, e) ∈

V and d(xt−1, ts−1) = (xs−1, e) ∈ V, implying (x, t, t) ∈ W and (x, s, s) ∈
W. Therefore the projections W1

z and W2
z of Wz on the �rst and the second

coordinates are equal and {(s, s) ∶ s ∈ W1
z} ⊆ Wz. It follows easily now that

for each z ∈ Z there exists disjoint sets {Xz
t
}t∈T such thatWz = ∪t∈TX

z
t
× Xz

t
.

Arguing as in [22, Theorem 10], there is a Borel subset Nz, mG(Nz) = 0 such
that (Xz

t
∩Nc

z)×(X
z
t
∩Nc

z) is a Borel rectangle andWz∩(N
c
z×N

c
z) is a countable
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union of (Xz
t
∩Nc

z) × (X
z
t
∩Nc

z). By Proposition 5.6 �Wz
is a positive contractive

Schurmultiplier. Therefore�W is a positive contractive SchurC0(Z)-multiplier
by Theorem 3.13. �

5.3. Idempotent convolutionmultipliers. Wenext provide some examples
of idempotent convolution multipliers. The following is immediate from The-
orem 4.1 and [19, Theorem 2.1].

Corollary 5.10. Suppose G is an abelian locally compact group andW ⊆ G × Γ

is a measurable set, such that �W ∈ Sid
conv. Then ‖�W‖S ≤ 1 if and only ifW is

an open coset of G × Γ .

It is clear that if G is abelian, and C and D are open cosets of G and Γ respec-
tively, then C×D is an open coset of G×Γ and therefore �C×D is an idempotent
convolution multiplier of norm 1 by Corollary 5.10. The following example
shows that not all idempotent convolution multipliers of norm 1 are of this
product form.

Example 5.11. Consider the abelian group G = ℝ × ℤ2, and note that G is
isomorphic to its dual group Γ. De�ne

H ∶= {(a, 0, b, 0), (c, 1, d, 1) ∶ a, b, c, d ∈ ℝ}.

It is clear that H is an open subgroup of G × Γ, but H cannot be written as a
product of subgroups of G and Γ.

Remark 5.12. Let G be an abelian locally compact group; by Theorem 4.1, a
contractive idempotent Herz–Schur convolutionmultiplier, say F, corresponds
to a characteristic function �W , for an open cosetW ⊆ G ×Γ. In the following,
we showmore precisely how the family (F(r))r∈G ⊆ CB(C∗r (Γ)) arises. Suppose
that W = xH for an open subgroup H of G × Γ and x ∈ G × Γ. Let � be the
representation of G × Γ on l2((G × Γ)∕H), given by �(z)�yH ∶= �zyH (z, y ∈

G × Γ), {�yH}y be the standard orthonormal basis in l2((G × Γ)∕H)), and write
� for the unitary representation 
 ↦ �(e, 
) of Γ. For r ∈ G, let ur ∈ B(Γ) be
the function given by

ur ∶ Γ → ℂ; ur(
) ∶=
⟨
�(
)�(r,e)H , �W

⟩
.

Then

S�W (�
Γ

 ⊗ �Gr ) = �W(r, 
)(�

Γ

 ⊗ �Gr ) =

⟨
�(r,
)H , �W

⟩
(�Γ
 ⊗ �Gr )

= ⟨�(r, 
)�H , �W⟩ (�Γ
 ⊗ �Gr )

=
⟨
�(
)�(r,e)H , �W

⟩
(�Γ
 ⊗ �Gr )

= ur(
)�
Γ

 ⊗ �Gr ,

so the idempotent element �W ∈ B(G × Γ) corresponds to the Herz–Schur
convolution multiplier F(r) ∶= ur.
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It is immediate from Host’s theorem that if G is a connected locally compact
group then B(G) does not have non-trivial idempotent elements. We observe
that this extends to idempotent convolution multipliers on abelian groups. In-
deed, let  be an idempotent convolution multiplier of the dynamical system
(C∗r (Γ), G, �) and write  = �W for someW ⊆ G × Γ. For x ∈ Γ and s ∈ G, let

Wx ∶= {t ∈ G ∶ (t, x) ∈ W} and Ws ∶= {y ∈ Γ ∶ (s, y) ∈ W}.

Proposition 5.13. Let  = �W ∈ Sid
conv(G) and ‖ ‖S ≤ 1. ThenWx (resp. Ws)

is an open coset of G (resp. Γ) for all x ∈ Γ (resp. s ∈ G).

Proof. Since for any x ∈ Γ, s ∈ G, we have  x = �Wx and  s = �Ws
, the

statement follows from [19, Theorem 2.1], as  x ∈ B(G) and  s ∈ B(Γ). �

If  = �W ∈ Sid
conv(G) is contractive, as  is separately continuous, we

obtain that Ws = Ws′ if s and s′ are in the same connected component of G.
Similarly, we haveWx = Wx′ for x, x′ in the same connected component of Γ.
This implies the following corollary.

Corollary 5.14. If the group G (resp. Γ) is connected then any contractive idem-
potent multiplier  ∈ Sid

conv(G) is given by  = 1⊗�A (resp.  = �A⊗1), where
A is an open coset of Γ (resp. G).

In particular, we have thatC∗r (ℝ)⋊�,rℝ has no non-trivial idempotent Herz–
Schur convolution multipliers, and any idempotent Herz–Schur convolution
multiplier of C(T) ⋊�,r ℤ is given by �A ⊗ 1, where A is a coset of ℤ.

Example 5.15. Let G be a locally compact group. SinceMcbL
1(G) = M(G), we

have that 
mH⊗�C ∈ Mcb(L
1(G) ⊗̂A(G)), where C is an open coset of G,H is

a compact subgroup and 
 is a character of H. The corresponding convolution
multiplierΛ = (�t)t∈G is given by �t = �C(t)
mH . In fact, if R is the completely
bounded map

R(f ⊗ g) = ((
mH) ∗ f) ⊗ �Cg, f ∈ L1(G), g ∈ A(G),

then
R∗(ℎ ⊗ �t) = �(
mH)(ℎ) ⊗ �C�t = �(
mH)ℎ ⊗ �C(t)�t.

Remark 5.16. For a (not necessarily abelian) locally compact group G the al-
gebra C0(G × Ĝ) ∶= C0(G) ⊗ C∗r (G) can be considered as a quantum group
with the comultiplication induced from comultiplications of the factors C0(G)
and C∗r (G). In [32] the authors give a characterisation of contractive idem-
potent functionals on C∗-quantum groups in terms of compact quantum sub-
groups and group-like unitaries of the subgroup. It would be interesting to use
this characterisation to describe contractive convolutionmultipliers in the non-
abelian case. At present, however, a lack of examples of compact quantum sub-
groups ofC0(G×Ĝ) impedes the application of the results of [32] to convolution
multipliers.
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