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A new look at local maps on algebraic
structures of matrices and operators

Lajos Molnár

Abstract. In a very general setting, we introduce a new type of local maps,
a new sort of re�exive closure of a given class of transformations relative to a
given operation that we call operational re�exive closure, and a correspond-
ing concept of re�exivity. We calculate the operational re�exive closures of
some important classes of transformations and signi�cantly strengthen for-
mer 2-re�exivity results concerning the automorphism groups of various op-
erator structures. A typical new result is this: if � is a map from the unitary
group over a separable in�nite dimensional Hilbert space into itself with the
property that for any pair V,W of unitaries there is a group automorphism
�V,W of the unitary group such that �(V)�(W) = �V,W(VW), then either �
itself or −� is a group automorphism. This result substantially generalizes
a former one on the 2-re�exivity of the automorphism group of the unitary
group. We also present open problems and questions for further study.
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1. Introduction
The study of linear maps on linear spaces of matrices or, more generally, on

linear spaces of Hilbert (or Banach) space operators which locally belong to a
given class of transformations has a long history started with the seminal works
of Kadison [14], and Larson and Sourour [16]. The former paper concerns lin-
ear maps on von Neumann algebras which are so-called local derivations, the
latter one concerns linear maps on full operator algebras over Banach spaces
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which are local derivations or local automorphisms. Important generalizations
of the results in [16] were obtained by Brešar and Šemrl in [5] which is the third
most in�uential paper on that research area.

In [35], Šemrl introduced the concept of 2-local maps (speci�cally, 2-local
automorphisms and 2-local derivations) in order to drop the linearity assump-
tions in the previously mentioned results. Roughly speaking, his de�nition of
2-local automorphisms is as follows. For a given algebra A, a map � (impor-
tantly, the linearity of � is not assumed) onA is called a 2-local automorphism
if for any two elements in A, � can be interpolated at those two elements by
an algebra automorphism of A. More precisely, this means that for any pair
A, B ∈ A of points we have an automorphism �A,B of A (depending on A, B)
such that

�(A) = �A,B(A), and �(B) = �A,B(B). (1)
It was proved in [35] that, quite surprisingly, every 2-local automorphism of
the full operator algebra B(H) over a separable in�nite dimensional complex
Hilbert space H is necessarily an algebra automorphism and a similar result
was presented for derivations, too. In short, one can describe this phenomenon
by using the expression of 2-re�exivity, in particular, saying that the automor-
phism group of the algebra B(H) is 2-re�exive. These remarkable results at-
tracted serious attention and motivated a number of further investigations, for
a highly incomplete list of references, see, e.g., the introduction in [26].

In the paper [26], we observed that the group of all algebra *-automorphisms
of B(H) has a much stronger property. Namely, we proved the following. If � ∶
B(H) → B(H) is a map which either has the property that for any A, B ∈ B(H)
there is an algebra *-automorphism of B(H) such that

�(A) + �(B) = �A,B(A + B),
or has the property that for anyA, B ∈ B(H) there is an algebra *-automorphism
of B(H) such that

�(A)�(B) = �A,B(AB),
then � is “more or less" an algebra *-automorphism. Indeed, in the former
case, we proved that � is an algebra *-automorphism if dimH ≥ 3 and it is an
algebra *-automorphism or an algebra *-antiautomorphism if dimH = 2, see
Theorem 1 in [26]. In the latter case, we proved that � or −� is an algebra *-
automorphism, see Theorem 2 in [26]. Consequently, the two equations in (1)
de�ning 2-local maps can be squeezed into one equation still producing essen-
tially the same conclusion as before. It is worth mentioning that this observa-
tion turned to be quite useful since that way we could verify the 2-re�exivity of
the group of all isometries of B(H) (not only the subgroup of all linear isome-
tries of B(H)), see Theorem 3 in [26]. (The result for the group of the linear
isometries was obtained quite some time ago in [19]). This application itself
has already motivated further research, see [29] and Section 4 in [30].

Let us point out also the following. In [35], Šemrl referred to a famous result
by Kowalski and Slodkowski [15] as the main motivation for the introduction



LOCAL MAPS ON ALGEBRAIC STRUCTURES OF MATRICES AND OPERATORS 559

of his concept. He writes the following. “In particular, their result shows that
at the cost of requiring the local behaviour like a character at every two points,
the condition of linearity can be dropped [1, Corollary 3.7]. More precisely, if
� ∶ A → ℂ is a function having the property that for every a and b in A there
exists a multiplicative linear functional �a,b on A such that �(a) = �a,b(a) and
�(b) = �a,b(b), then � itself is linear andmultiplicative." But the truly authentic
reformulation of the famous result by Kowalski and Slodkowski, Theorem 1.2
in [15], for a commutative Banach algebra A should, in fact, be the following.
If � ∶ A → ℂ is a function having the property that �(0) = 0 and for every
a and b in A there exists a multiplicative linear functional �a,b on A such that
�(a)−�(b) = �a,b(a−b), then � itself is linear andmultiplicative. Probably one
can agree that the kind of locality that we are proposing in the present paper
is the one which really �ts in spirit to that celebrated result by Kowalski and
Slodkowski.

After having discussed this, we can put the above phenomenon in a much
wider andmore general perspective as follows. LetA,ℬ be algebraic structures,
G,ℱ be given collections of transformations from A into ℬ such that G ⊂ ℱ.
Assume that ◦, ⋄ are (binary) operations on A and ℬ, respectively, and that
the elements of G are homomorphisms with respect to that pair of operations.
Denote byℛ(ℱ, G, ◦, ⋄) the set of all maps � ∈ ℱ with the property that for any
A, B ∈ A there is an �A,B ∈ G such that

�(A) ⋄ �(B) = �A,B(A◦B) = �A,B(A) ⋄ �A,B(B).

Having set this, the basic question we are interested in (and we investigated in
[26] in some particular cases) concerns the description of ℛ(ℱ, G, ◦, ⋄) and the
study of how the collectionℛ(ℱ, G, ◦, ⋄) (which evidently includes G) relates to
G. Is it true that ℛ(ℱ, G, ◦, ⋄) is “more or less" equal to G? In the case where
A = ℬ and ◦ = ⋄, we callℛ(ℱ, G, ◦, ◦) the ◦-re�exive closure or, if the operation
◦what we consider is unambiguous, simply the operational re�exive closure of
G inℱ. Assuming further thatℱ is the collection of all maps fromA into itself,
we call ℛ(AA, G, ◦, ◦) the ◦-re�exive closure or simply the operational re�ex-
ive closure of G. In the case where ℛ(AA, G, ◦, ◦) = G holds, we say that the
collection G is ◦-re�exive or simply operationally re�exive. After this, we can
place the results in [26] into this general frame. Let H be a separable Hilbert
space, A = ℬ = B(H), let G be the group of all algebra *-automorphisms of
B(H), i.e., the group of all unitary similarity transformations, and let ℱ be the
set of all functions from B(H) into itself. Theorem 1 in [26] tells that, in the
case where dimH ≥ 3, the +-re�exive closure of the *-automorphism group
of B(H) equals itself, while in the case where dimH = 2, it coincides with
the larger group consisting of all algebra *-automorphisms together with all al-
gebra *-antiautomorphisms of B(H). Hence, for dimH ≥ 3, we obtain that
the group of all algebra *-automorphisms (the group of all unitary similarity
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transformations) is +-re�exive, while for dimH = 2 (in which case each oper-
ator is unitarily similar to its transpose), the larger group consisting of all alge-
bra *-automorphisms and all algebra *-antiautomorphisms is+-re�exive. If we
change the operation of addition to the operator multiplication but keeping G
unchanged (being the group of all algebra *-automorphisms), by Theorem 2 in
[26] we have that then the operational re�exive closure of G is G ∪ (−G).

Asmentioned before, the above results signi�cantly strengthen the 2-re�exi-
vity of the group of all *-automorphisms of B(H) that follows from the state-
ments in [35]. In the recent paper [11], we presented several results of simi-
lar spirit concerning the automorphism groups of certain quantum structures
formed by Hilbert space operators which also substantially extend existing 2-
re�exivity results for those automorphism groups. Namely, in [11], A = ℬ
was either the set of all bounded observables, i.e., the collection of all bounded
self-adjoint operators on a separable complex Hilbert space H, or the set of all
projections onH, or the set of all density operators (positive semide�nite oper-
ators with unit trace) onH, or the collection of all Hilbert space e�ects (positive
semide�nite operators majorized by the identity I) on H, or the set of all pos-
itive de�nite operators on H. Each of those collections is equipped with some
binary operations, and we considered Gs to be the corresponding groups of au-
tomorphims. We computed their operational re�exive closures and, in several
cases, we obtained the operational re�exivity of the automorphism groups in
questions.

In the present paper we continue and broaden our investigations along this
line, we present several results in this new spirit that concern the automor-
phism groups of various important algebraic structures of operators and matri-
ces and propose open problems and questions for further study.

2. Results
We begin withmentioning the not surprising fact that operational re�exivity

is a much stronger property than 2-re�exivity. Indeed, consider the following
example. Take any C∗-algebra A, its positive de�nite cone A++ (i.e., the set of
all positive invertible elements ofA) equipped with the usual addition making
it a commutative semigroup. Then an arbitrary map � ∶ A++ → A++ has the
property that for any A, B ∈ A++, there exists an additive bijection (i.e., semi-
group automorphism) �A,B ofA++ such that �(A)+�(B) = �A,B(A+B) holds.
Indeed, this follows from the apparent observation that for any C,D ∈ A++
we have an invertible T ∈ A such that D = TCT∗ (take, e.g., T = D1∕2C−1∕2).
Clearly, the congruence transformation A ↦ TAT∗ is an additive bijection of
A++. (Let us mention that the precise structure of all additive semigroup au-
tomorphisms of A++ is known: those maps are exactly the above congruence
transformations composed by the (linear) Jordan *-automorphisms of the un-
derlying algebra A, see Lemma 8 in [3]. In the case of the algebra B(H), the
corresponding automorphism group of the positive de�nite cone is generated
by the congruence transformations togetherwith the transposition.) Therefore,
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the operational re�exive closure of the automorphism group of A++ equipped
with addition is not small, just the opposite, it is the collection of all functions
on A++, the largest possible collection of maps. On the other hand, as for the
property of 2-re�exivity, we have that for any separable Hilbert space H, that
automorphism group of the positive de�nite cone of B(H) is 2-re�exive. To
verify this, we mention the following. The group of all Thompson isometries
of the positive de�nite cone of B(H) is known to be 2-re�exive. (For the de�-
nition of the Thompson metric and for the structure of the corresponding sur-
jective isometries, we refer to the papers [23, 13, 24]. What is important for
us is that the surjective Thompson isometries of the positive de�nite cone of
B(H) are exactly the transformations A ↦ TAT∗ and A ↦ TA−1T∗, where
T is an invertible bounded either linear or conjugate linear operator on H). In
the in�nite dimensional separable case this 2-re�exivity property was proved in
Theorem 3.1 in [4], while in the �nite dimensional case it immediately follows
from Theorem 1 in [25] which, in particular, implies that, in �nite dimension,
any map preserving the Thompson distance is automatically surjective. Now,
one can see that the group of the bijective additive maps of the positive de�-
nite cone of B(H) is a subgroup (of index 2) of the Thompson isometry group.
Indeed, as mentioned above, the Thompson isometry group in the considered
case is generated by the group of all additive bijections and the operation of the
(multiplicative) inverse. It follows that any 2-local semigroup automorphism �
of the positive de�nite cone of B(H) is a surjective Thompson isometry, from
which it is not di�cult to conclude that � is necessarily an additive bijection.
(Actually, what we need to check in order to prove this is that themapA ↦ A−1

is not a 2-local additive automorphism, i.e., there is a pair A, B of positive de�-
nite operators onH for which there is no invertible bounded linear or conjugate
linear operator T onH such that A−1 = TAT∗ and B−1 = TBT∗ hold. This can
easily be done by �nding A, B such that A−1B is not similar to AB−1.)

To sum up, above we have given an example for such a situation where we
have that the set what one could call the 2-re�exive closure of an automorphism
group is the smallest possible (in fact, we have the 2-re�exivity property of that
automorphismgroup) but the corresponding operational re�exive closure is the
largest possible set, the collection of all maps. Therefore, from the re�exivity
point of view, operational re�exivity seems to be a very special, rather extreme
type of re�exivity meaning a particularly strong rigidity property of the con-
sidered automorphism group (or, more generally, of a collection of transforma-
tions).

In what follows, we present our new results on operational re�exive closures
and operational re�exivity. Recalling again the results in [26], one can immedi-
ately and very naturally ask what the operational closures of the group of all al-
gebra automorphisms, i.e., all similarity transformations on B(H) are. The sad
fact is that we have an answer only in the �nite dimensional case, for thematrix
algebra Mn(ℂ). Namely, by Theorem 1 in [20] (or see Theorem 3.4.1 in [22]),
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which describes the nonlinear maps on matrix algebras preserving the eigen-
values of products, we immediately have Proposition 2.1 below. (Let us men-
tion here that the next three results are also valid for matrix algebras over �elds
more general thanℂ but in this paper we are not interested in extensions of our
investigations into that direction.) Recall that the algebra automorphisms of
Mn(ℂ) (and also of B(H)) are exactly the similarity transformations and the al-
gebra antiautomorphisms are exactly the similarity transformations composed
by the transposition.

Proposition 2.1. Let � ∶ Mn(ℂ) → Mn(ℂ) be a map with the property that for
any A, B ∈ Mn(ℂ) there is an algebra automorphism �A,B ofMn(ℂ) such that

�(A)�(B) = �A,B(AB).
Then � or −� is an algebra automorphism ofMn(ℂ).

Proof. By the above mentioned result in [20] onmaps preserving the eigenval-
ues of products, it follows that �(A) = �TAT−1 for all A ∈ Mn(ℂ) or �(A) =
�TAtT−1 for all A ∈ Mn(ℂ), where � = ±1 and T ∈ Mn(ℂ) is invertible. Here
t denotes the transposition. Assuming that we have the second case, it follows
that AtBt is similar to AB for any A, B ∈ Mn(ℂ). But this is not true as we can
easily see already in the 2 × 2 case. Indeed, just take

A = [1 1
0 1] , B = [1 0

1 2] (2)

and observe that the set of the eigenvalues of AtBt is di�erent from the set of
the eigenvalues of AB. This proves the statement. �

Observe that the converse statement in Proposition 2.1 is trivially true and
hencewehave that the operational re�exive closure of the group of all similarity
transformations onMn(ℂ)with respect tomatrixmultiplication consists exactly
of all similarity transformations and their negatives.

If, in Proposition 2.1, we replace the operation of matrix product by addition,
using a result on adjacency preservingmaps, we obtain the following statement.

Proposition 2.2. Let n ≥ 3. Assume � ∶ Mn(ℂ) → Mn(ℂ) is a map with the
property that for any A, B ∈ Mn(ℂ) there is an algebra automorphism �A,B of
Mn(ℂ) such that

�(A) + �(B) = �A,B(A + B).
Then � is an algebra automorphism or an algebra antiautomorphism ofMn(ℂ).
The converse statement also holds.

Proof. First observe that �(0) = 0 and for any A ∈ Mn(ℂ) we have �(A) +
�(−A) = 0 implying that �(−A) = −�(A). Therefore, �(A) − �(B) = �(A) +
�(−B) is similar to A − B for any A, B ∈ Mn(ℂ). It immediately follows that
� ∶ Mn(ℂ) → Mn(ℂ) is an adjacency preservingmap, i.e., for anyA, B ∈ Mn(ℂ)
such that A − B has rank 1, we have that �(A) − �(B) also has rank 1. We
can apply the deep result Theorem 4.1 in [36] due to Šemrl on the description
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of such transformations. To formulate it, we need the following notation. If
� ∶ ℂ → ℂ is a ring endomorphism, then for any A ∈ Mn(ℂ), A� denotes
the matrix obtained from A by applying � on every entry of it. Šemrl’s theorem
states that we have the following three possibilities for �:

(i) either there exist invertible matrices T, S ∈ Mn(ℂ), a nonzero ring en-
domorphism � ∶ ℂ → ℂ, and a matrix L ∈ Mn(ℂ) with the property that
I + A�L ∈ Mn(ℂ) is invertible for every A ∈ Mn(ℂ) such that

�(A) = T(I + A�L)−1A�S, A ∈ Mn(ℂ), (3)

(ii) or there exist invertible matrices T, S ∈ Mn(ℂ), a nonzero ring endomor-
phism � ∶ ℂ → ℂ, and a matrix L ∈ Mn(ℂ)with the property that I + (A�)tL ∈
Mn(ℂ) is invertible for every A ∈ Mn(ℂ) such that

�(A) = T(I + (A�)t L)−1(A�)tS, A ∈ Mn(ℂ),
(iii) or � is degenerate, it is of some special form described in Examples 3.4,

3.5 and De�nition 3.6 in [36].
First, we can exclude the degenerate case. Indeed, inspecting the corre-

sponding parts of [36], in that case we would obtain that for all rank-one idem-
potents P,Q ∈ Mn(ℂ), the linear combinations of �(P), �(Q) were all rank at
most 1 elements which is clearly not true for our transformation �.

Assume now that (i) holds for �. Since, as it can be easily seen, our transfor-
mation � maps scalar multiplies of the identity to themselves, we obtain from
(3) that

�(I + �(�)L)T−1 = �(�)S, � ∈ ℂ.
Linearizing this identity in �, i.e., writing � + � in the place of �, we can easily
conclude that

(��(�) + ��(�))LT−1 = 0, �, � ∈ ℂ.
Since � is nonzero, we deduce that L = 0. It follows that �(A) = TA�S,
A ∈ Mn(ℂ). Again, using the property that � �xes the scalar multiples of the
identity, it follows easily that � is the identity and TS = I. Consequently, � is a
similarity transformation, hence an algebra automorphism ofMn(ℂ).

In a similar manner, in the case where (ii) holds for �, we obtain that �(A) =
TAtT−1, A ∈ Mn(ℂ), i.e., � is an algebra antiautomorphism ofMn(ℂ).

The converse statement follows from the fact that every element ofMn(ℂ) is
similar to its transpose. �

As far as we know, although it is suspected that Šemrl’s result which we have
used in the above proof holds also in the case n = 2, it has not yet been proved.
Therefore, it would be interesting to know if our statement above holds in the
2-dimensional case, too.

The previous proposition tells us that, for dimH ≥ 3, the +-re�exive clo-
sure of the group of all algebra automorphisms (similarity transformations)
of Mn(ℂ) consists exactly of all algebra automorphisms together with all al-
gebra antiautomorphisms. Therefore, we can also obtain that the group of all
similarity transformations onMn(ℂ) together with their compositions with the
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transposition is operational re�exive with respect to the operation of addition
(recall again that every matrix is similar to its transpose). Moreover, one can
see that both Proposition 2.1 and Proposition 2.2 signi�cantly strengthen the
2-re�exivity property of the group of all algebra automorphims of Mn(ℂ) (see
Remark in [35] or Corollary 2 in [20]).

We alsomention at this point that Proposition 2.2 can be used to give a (hope-
fully somewhat interesting) characterization of similarity transformations and
their compositions with the transposition. In fact, one can say that (in the case
n ≥ 3) a map � ∶ Mn(ℂ) → Mn(ℂ) (no linearity is assumed) is a similarity
transformation or a similarity transformation composed with transposition if
and only if for every A, B ∈ Mn(ℂ), the matrix �(A) + �(B) is similar to A + B.
We point out that the other results in the present paper can also be used for
similar characterizations of some speci�c collections of transformations.

Let us proceed with mentioning that above we have considered algebras of
matrices but the general frame introduced in the paper makes it possible to
consider other algebraic structures, too. In what follows we examine impor-
tant (multiplicative) groups of matrices or operators, namely, the general lin-
ear group and the unitary group. The next proposition tells that for the group
G of all inner automorphisms of the general linear groupGLn(ℂ) (all similarity
transformations on GLn(ℂ)), its operational re�exive closure for matrix multi-
plication is the smallest possible, it is just G ∪ (−G).
Proposition 2.3. Let � ∶ GLn(ℂ) → GLn(ℂ) be a map. Assume that for every
A, B ∈ GLn(ℂ) we have TA,B ∈ GLn(ℂ) such that

�(A)�(B) = TA,B(AB)T−1A,B. (4)

Then � or −� is an inner automorphism of GLn(ℂ). The converse statement is
also true.

Proof. Assume that � ∶ GLn(ℂ) → GLn(ℂ) has the above property described
in (4). Clearly, it follows that Tr �(A)�(B) = TrAB, A, B ∈ GLn(ℂ). (Tr de-
notes the usual trace functional.) Choose a Hamel base (Aij) inMn(ℂ) whose
elements belong to GLn(ℂ). For example, let Aij = I + Eij, i, j = 1, … , n. The
elements �(Aij) are also linearly independent. Indeed, if

∑

i,j
�ij�(Aij) = 0

holds for the scalars �ij, then

0 =
∑

i,j
�ij Tr �(Aij)�(A) =

∑

i,j
�ij TrAijA = Tr(

∑

i,j
�ijAij)A

for all A ∈ GLn(ℂ) which implies that
∑

ij �ijAij = 0. We conclude that all
�ij’s are 0 meaning that the system (�(Aij)) is linearly independent.

De�ne a map  ∶ Mn(ℂ) → Mn(ℂ) as follows. Let
 (A) =

∑

i,j
�ij�(Aij) for any A =

∑

i,j
�ijAij.
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Clearly,  is a bijective linear transformation on Mn(ℂ). Furthermore, it ob-
viously satis�es Tr (A) (B) = TrAB for all A, B ∈ Mn(ℂ). We assert that
 (A) = �(A) holds for any A ∈ GLn(ℂ). Indeed, selecting an arbitrary B ∈
Mn(ℂ) with B = ∑

i,j �ijAij, we compute

Tr �(A) (B) =
∑

i,j
�ij TrAAij =

∑

i,j
�ij Tr (A) (Aij) = Tr  (A) (B)

which implies that  (A) = �(A).
Consequently,  ∶ Mn(ℂ) → Mn(ℂ) is a bijective linear map preserving in-

vertible elements. By the result Theorem 2.1 in [18] due to Marcus and Purves,
we have that there are invertible matrices M,N ∈ Mn(ℂ) such that either
 (A) = MAN, A ∈ Mn(ℂ) or  (A) = MAtN, A ∈ Mn(ℂ).

Since the composition of the original map � with any similarity transfor-
mation on Mn(ℂ) also has the property described in (4), we can assume that
 (A) = AN, A ∈ Mn(ℂ) or  (A) = AtN, A ∈ Mn(ℂ) for some N ∈ GLn(ℂ).
By (4), �(I) is an involution, hence we have thatN is necessarily an involution.

In the �rst case where  (A) = AN, A ∈ Mn(ℂ), it follows that TrANBN =
TrAB holds for all A, B ∈ GLn(ℂ) implying that NBN = B, i.e., NB = BN
holds for all B ∈ GLn(ℂ). Therefore,N commutes with every invertible matrix
and thus also with every element of Mn(ℂ). This gives us that N is a scalar
multiple of the identity and since it is also an involution, we deduce that N is
either I or −I. Consequently, in the present case we obtain that � or −� is an
inner automorphism of GLn(ℂ).

In the second case where  (A) = AtN, A ∈ Mn(ℂ), we obtain in a similar
way that N = ±I. This implies that �(A) = At, A ∈ GLn(ℂ) or �(A) = −At,
A ∈ GLn(ℂ). Therefore, AtBt is similar to AB for any A, B ∈ GLn(ℂ) which is
untenable, see the proof of Proposition 2.1.

The converse statement is obviously true also. �

It should bementioned that the group of all inner automorphisms (i.e., simi-
larity transformations) is only a proper subgroup of the automorphism group of
GLn(ℂ). In fact, there is a classical result usually attributed to Schreier and van
der Waerden [32] saying that the generators of the full automorphism group of
GLn(ℂ) are the following maps: the inner automorphisms A ↦ TAT−1, the
automorphisms A ↦ A� induced by ring isomorphisms � of the underlying
�eld ℂ, the contragredient automorphism A ↦ (A−1)t, and the radial auto-
morphisms A ↦ 
(A)A corresponding to the characters 
 of GLn(ℂ). (For a
more general result concerning general linear groups of matrix rings over com-
mutative rings, see [38].)

The followingnatural questions arise. In the�nite dimensional case, itwould
be interesting to see if the operational re�exive closure of the full automorphism
group (or at least some of its subgroups strictly larger than the group of inner
automorphisms) is as small as that of the group of all inner automorphisms (i.e.,
it equals the group itself together with the collection of the negatives of its el-
ements). The second natural question concerns the in�nite dimensional case.
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In fact, the automorphism group of the general linear group over an in�nite di-
mensional complex Hilbert space is much simpler than it is in the �nite dimen-
sional case. For the precise result see Theorem 3.1 in [27]. Roughly speaking,
we can tell that in the in�nite dimensional case the ring isomorphisms � of ℂ,
the abundance of which appear above in the �nite dimensional case, are only
the identity and the conjugation on ℂ, and the only possible radial automor-
phism is the identity. In the same paper it was proved that the full automor-
phism group is 2-re�exive in in�nite dimension. Hence, a natural problem to
investigate is the following.

Problem 2.4. Let H be a separable in�nite dimensional Hilbert space. What
is the operational re�exive closure of the automorphism group of the general
linear group over H? And, referring back to Propositions 2.1 and 2.2, do those
statements remain valid for the automorphismgroupof thewhole algebraB(H)?

Of course, one could be even more demanding and ask what happens in the
case of, say, general vonNeumann algebras but to answer such a question seems
to be out of reach at the moment.

We now turn to the unitary group and we primarily deal with the in�nite
dimensional case. Let us recall that it was proved in [31] that any norm contin-
uous group isomorphism between the unitary groups of two AW∗-factors ex-
tends to a linear or conjugate-linear *-isomorphism of the factors themselves.
In the cases of von Neumann factors not of type In, n < ∞, combining the
results Theorem 2 in [10] and Theorem 1 in [6], we obtain the same conclu-
sion without imposing the continuity assumption, see Theorem 1.2 in [1]. As a
particular case, concerning the unitary group U(H) in B(H), we have that any
norm continuous group automorphism � ∶ U(H) → U(H) is of the form

�(V) = UVU−1, V ∈ U(H) (5)

with some either unitary or antiunitary operator U on H. Moreover, if H is in-
�nite dimensional, the same holds even without the assumption of continuity.

The next theorem tells that, in the case of a separable in�nite dimensional
Hilbert space, the operational re�exive closure of the automorphism group of
U(H) is as small as it is in Proposition 2.3, i.e., it consists exactly of the automor-
phisms and their negatives. (This may provide additional motivation to study
Problem 2.4.)

Theorem 2.5. Let H be a separable in�nite dimensional Hilbert space and let
� ∶ U(H) → U(H) be a map with the property that for every V,W ∈ U(H) there
is an automorphism �V,W of U(H) such that

�(V)�(W) = �V,W(VW). (6)

Then � or −� is an automorphism of U(H). The converse statement is also true.

Proof. It follows from the assumption that for anyV,W ∈ U(H), there is a uni-
tary or antiunitary operatorU onH (depending onV,W) such that�(V)�(W) =
UVWU−1.
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Observe the following. For each V ∈ U(H) we have �(V)�(V−1) = I imply-
ing that �(V)−1 = �(V−1). It follows that for any pair V,W ∈ U(H) there is a
unitary or antiunitary operator U onH such that

�(V)�(W)−1 = �(V)�(W−1) = U(VW−1)U−1.
Easy calculation shows that

�(V) = UV(V−1U−1�(V))
and

�(W) = UW(V−1U−1�(V)).
It implies, in particular, that � is a 2-local isometry ofU(H) (relative to the met-
ric coming from the operator norm). We know that the isometry group ofU(H)
is 2-re�exive, see Theorem 2.1 in [4], and hence we have that � is a surjective
isometry. By Theorem 8 in [12] describing the structure of all surjective isome-
tries of U(H), we infer that there are U,U′ both unitary or both antiunitary
operators onH such that either

�(V) = UVU′, V ∈ U(H)
or

�(V) = UV−1U′, V ∈ U(H).
We call a selfadjoint unitary, i.e., unitary involution, a symmetry. Clearly,

by (6), � maps symmetries to symmetries. Consequently, for any symmetry
S ∈ U(H) we have USU′USU′ = I implying SU′US = (U′U)−1. In particular,
U′U is a symmetry and then we obtain that S(U′U)S = U′U holds for each
symmetry S ∈ U(H). This implies that U′U commutes with every symmetry
S ∈ U(H) from which we can infer that U′U is a central symmetry in B(H).
This gives us thatU′U = I orU′U = −I. Therefore, we have the following four
possibilities for �:
�(V) = UVU−1, �(V) = −UVU−1, �(V) = UV−1U−1, �(V) = −UV−1U−1

(7)
in each case the equality holding for all V ∈ U(H). We assert that the last
two possibilities cannot occur. Indeed, in the third case we have UV−1U−1 =
�(V) = �(V)�(I) which, by (6) is unitarily or antiunitarily similar to V. Con-
sequently, we would get that V,V−1 were unitarily or antiunitarily similar for
every V ∈ U(H) which is a clear contradiction. In the remaining, fourth case,
a similar argument applies and this �nishes the proof of the statement.

The validity of the converse statement is just obvious. �

Let us remark that in the �nite dimensional case, the same conclusion as
in Theorem 2.5 holds for the group of all norm continuous automorphisms of
U(H). In fact, we can follow the same argument as above. Wemention that the
2-re�exivity of the isometry group of U(H) in that case is apparent, it follows
from the fact that any distance preserving map of any compact metric space
is automatically surjective. It is, of course, quite a natural question that what
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happens to the full automorphism group of the unitary group in the �nite di-
mensional case? We recall that the structure of that group is complicated like
the structure of the automorphism group of the general linear group, see [9].

Above we have considered full matrix and operator algebras and two of their
multiplicative subgroups. We next turn to another type of structure, namely,
to positive de�nite cones. In fact, if we consider the additive structure of A++
for any C∗-algebra A then, as we have already seen at the beginning of this
section, the operational re�exive closure of the automorphism group of A++
is the largest possible, the set of all functions on A++. Now let us consider
multiplicative structures on A++. We list three important multiplication-like
operations on A++. The �rst one is the Jordan triple product (A, B) ↦ ABA,
which plays important role in general ring theory. The second one is what we
call the inverted Jordan triple product (A, B) ↦ AB−1A. This is important for
the following reason: for a quite large family ofmetrics (or even generalized dis-
tance measures or divergences) de�ned on the positive de�nite cone including
the Thompson metric, the corresponding surjective isometries are necessarily
automorphisms with respect to that operation. This follows from our work on
generalized Mazur-Ulam theorems, see [24]. The third operation is the natu-
ral K-loop operation (A, B) ↦ A1∕2BA1∕2 which one can meet, for example, in
the quantum theory of measurements under the name “sequential product" in-
troduced by Gudder and Nagy, and which has connections also to hyperbolic
geometry and other parts of physics (Einstein’s velocity addition in the special
theory of relativity), see the introduction in [3].

Let us brie�y examine the automorphism groups corresponding to the pre-
vious three operations which are in fact closely related. Indeed, one can eas-
ily see that for a general C∗-algebra A, a map � ∶ A++ → A++ is an auto-
morphism with respect to the Jordan triple product if and only if it is an au-
tomorphism with respect to the natural K-loop operation. Moreover, it is an
automorphism with respect to the inverted Jordan triple product if and only if
�(I)−1∕2�(.)�(I)−1∕2 is an automorphismwith respect to the Jordan triple prod-
uct. This means that it is su�cient to determine only the Jordan triple auto-
morphisms (i.e., the bijective maps respecting the operation of Jordan triple
product). The continuous Jordan triple isomorphisms were completely char-
acterized in Theorem 5 in [24] for the case of factor von Neumann algebras.
Since we do not have re�exivity results for the automorphism groups in that
generality, we instead refer to Theorem 1 in [21] for the case of the full operator
algebra over a Hilbert space. So, ifH is a separable in�nite dimensional Hilbert
space, then a bijective map � ∶ B(H)++ → B(H)++ is a continuous Jordan
triple automorphism (equivalently, a continuous automorphism with respect
to the natural K-loop operation) if and only if there is a unitary or antiunitary
operator U onH such that either

�(A) = UAU∗, A ∈ B(H)++
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or
�(A) = UA−1U∗, A ∈ B(H)++.

As a consequence, we obtain that a bijective map � ∶ B(H)++ → B(H)++ is
a continuous automorphims with respect to the inverted Jordan triple product
if and only if there is an invertible bounded either linear or conjugate linear
operator T onH such that either

�(A) = TAT∗, A ∈ B(H)++
or

�(A) = TA−1T∗, A ∈ B(H)++.
Arguing in the same way as at the beginning of this section, we see that the
operational re�exive closure of the automorphism group with respect to the in-
verted Jordan triple product is the largest possible, it consists of all maps on
the positive de�nite cone. As the other extreme, in [11] we proved that the
group of all continuous automorphisms of B(H)++ equipped with the natural
K-loop operation is operationally re�exive. The key idea in the proof was the
use of Thompson metric. However, that idea is not applicable concerning Jor-
dan triple automorphisms. Therefore, we need to modify the argument signif-
icantly in order to verify the following statement.

Theorem 2.6. Let H be a separable in�nite dimensional Hilbert space. Let � ∶
B(H)++ → B(H)++ be amapwith the property that for anyA, B ∈ B(H)++ there
is a continuous Jordan triple automorphism �A,B of B(H)++ such that

�(A)�(B)�(A) = �A,B(ABA).
Then � itself is a continuous Jordan triple automorphism of B(H)++.

Proof. For any operator A ∈ B(H)++, denote A[−1] either A or A−1. We know
that for any A, B ∈ B(H)++ there is a unitary or antiunitary operator U on H
depending on A, B such that

�(A)�(B)�(A) = U(ABA)[−1]U∗.
We observe the following. First, �(I)3 = I which implies that �(I) = I. It fol-

lows that for any A ∈ B(H)++ we have that �(A) = �(I)�(A)�(I) = UA[−1]U∗

holds for some unitary or antiunitary operator U on H. In particular, for any
positive real number t we have that �(tI) is either tI or (1∕t)I. Assume that
for some positive numbers t, s di�erent from 1, �(tI) = tI and �(sI) = (1∕s)I.
Considering (t2∕s)I = �(tI)�(sI)�(tI) = (t2s)[−1]I we arrive at a contradiction.
Therefore, we have either �(tI) = tI for all positive t or we have �(tI) = (1∕t)I
for all positive t.

In what followswe can assume that �(tI) = tI, t > 0 (otherwise, we consider
the map A ↦ �(A)−1). Select any operator A ∈ B(H)++ for which I ≤ A,
A ≠ I. Take any t > 1. We have that t2�(A) = �(tI)�(A)�(tI). The left hand
side is unitarily or antiunitarily congruent to t2A[−1] while the right hand side
is unitarily or antiunitarily congruent to (t2A)[−1]. This can happen only if �(A)
is unitarily or antiunitarily congruent to A.
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Pick any rank-one projection P on H. It follows that �(I + P) is unitarily or
antiunitarily congruent to I + P meaning that �(I + P) = I +  (P) for some
rank-one projection  (P). This induces a map  on the set ℙ1(H) of all rank-
one projections on H. Pick any two rank-one projections P,Q ∈ ℙ1(H). We
have that there is a unitary or antiunitary operator U onH such that

�(I + P)�(I + Q)�(I + P) = U((I + P)(I + Q)(I + P))[−1]U∗.
Since the triple product on the left hand side is greater than or equal to I, it
follows that on the right hand side the inverse does not show up. Therefore, we
have that

(I +  (P))(I +  (Q))(I +  (P)) = U(I + P)(I + Q)(I + P)U∗.
Performing the multiplications, subtracting I from both sides and then taking
traces, we easily have Tr (P) (Q) = Tr PQ. Therefore,  is a Wigner transfor-
mation, a map of the set ℙ1(H) of rank-one projections preserving the trace of
products. By the nonsurjective version of Wigner’s famous theorem there is a
linear or conjugate linear isometry J onH such that

 (P) = JPJ∗, P ∈ ℙ1(H), (8)
see, e.g., Section 2.1 in [22]. We show that J is in fact either a unitary or an
antiunitary operator. To verify this, let (Pn) be a sequence of pairwise orthogo-
nal elements of ℙ1(H) whose ranges generate H. Pick a strictly decreasing se-
quence (�n) of positive real numbers with �nite sum. Set K = ∑

n �nPn. Since
�(I+K) is unitarily or antiunitarily congruent to I+K, we have�(I+K) = I+K′

whereK′ is of the formK′ = ∑
n �nP

′
n with some sequence (P′n) inℙ1(H)whose

elements are pairwise orthogonal and their ranges generate H. It follows that
there is a unitary or antiunitary operator U onH such that

(I + JP1J∗)(I + K′)(I + JP1J∗) = �(I + P1)�(I + K)�(I + P1)
= U(I + P1)(I + K)(I + P1)U∗. (9)

If we perform the multiplications, subtract I from both sides, take trace and
simplify, then we arrive at

TrK′JP1J∗ = TrKP1.
By the particular forms of K,K′, one can easily deduce from this equality that
we necessarily have JP1J∗ = P′1. Now, considering the equality similar to (9)
but with P2 in the place of P1, we have

TrK′JP2J∗ = TrKP2.
Since JP2J∗ is orthogonal to JP1J∗ = P′1, one can deduce from this equality
that JP2J∗ is necessarily equal to P′2, and so forth. Consequently, we obtain
that JPnJ∗ = P′n holds for all positive integer n and this gives us that J is a
surjective linear or conjugate linear isometry. Considering the transformation
J∗�(.)J in place of �, for the rest of the proof we can assume that �(I+P) = I+P
holds for all P ∈ ℙ1(H). What remains is to show that � is the identity on the
full positive de�nite cone B(H)++.
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LetT ∈ B(H) be a positive trace class operator. Weknow that�(I+T) = I+T′
where T′ ∈ B(H) is unitarily or antiunitarily congruent to T. On the other
hand, we know that (I +P)(I+T′)(I +P) = �(I+P)�(I+T)�(I+P) is unitarily
or antiunitarily congruent to (I + P)(I + T)(I + P). Just as above, from this fact
we easily derive that

Tr T′P = TrTP
holds for every P ∈ ℙ1(H), which clearly implies that T′ = T, i.e., �(I + T) =
I + T. In particular, we obtain that �(I + tP) = I + tP holds for all P ∈ ℙ1(H)
and nonnegative real number t.

Let nowT ∈ B(H)++ be such thatT ≥ I and set S = �(T). Inwhat followswe
will use the following two facts. First, ifA, B ∈ B(H)++, thenAB2A is unitarily
congruent to BA2B which follows from the polar decomposition of BA. The
second easy fact is that for any nonzero vectors x, y ∈ H, we have that I +x⊗y
is noninvertible if and only if ⟨x, y⟩ = −1.

Pick any nonnegative real number t. Then we know that (I + tP)S(I + tP) =
�(I+tP)�(T)�(I+tP) is unitarily or antiunitarily congruent to (I+tP)T(I+tP).
From this we infer that S1∕2(I + tP)2S1∕2 is unitarily or antiunitarily congruent
to T1∕2(I + tP)2T1∕2 implying that S + (2t + t2)S1∕2PS1∕2 is unitarily or antiuni-
tarily congruent to T + (2t + t2)T1∕2PT1∕2 for each nonnegative real number
t. Let � be a positive number greater than the largest element of the spec-
trum of S, T. Then the operators S − �I, T − �I are negative de�nite and we
know that S − �I + (2t + t2)S1∕2PS1∕2 is unitarily or antiunitarily congruent to
T −�I + (2t + t2)T1∕2PT1∕2 for each nonnegative real number t. Consequently,
for any such t, we have that S−�I+(2t+t2)S1∕2PS1∕2 is invertible if and only if
T−�I+(2t+t2)T1∕2PT1∕2 is invertible and hence I+(2t+t2)(S−�I)−1S1∕2PS1∕2
is invertible if and only if I + (2t + t2)(T − �I)−1T1∕2PT1∕2 is invertible. This
easily gives that

(2t + t2) Tr(S − �I)−1S1∕2PS1∕2 = −1
if and only if

(2t + t2) Tr(T − �I)−1T1∕2PT1∕2 = −1.
It follows that

(2t + t2) Tr(S(S − �I)−1)P = −1
if and only if

(2t + t2) Tr(T(T − �I)−1)P = −1.
Since the operators S(S−�I)−1, T(T−�I)−1 are negative de�nite, (2t + t2) runs
through all positive numbers, we obtain that Tr(S(S − �I)−1)P = Tr(T(T −
�I)−1)P holds for all projections P ∈ ℙ1(H). This gives S(S − �I)−1 = T(T −
�I)−1. Since the function x ↦ x∕(x − �) is injective on the spectrum of S, T,
we can infer that S = T. Therefore, we derive that �(T) = T holds whenever
T ≥ I.

Let now T ∈ B(H)++ be arbitrary. Select any P ∈ ℙ1(H). For any positive
integer n, we have that

((P + nP⟂)�(T)(P + nP⟂))−1 = (�(P + nP⟂)�(T)�(P + nP⟂))−1
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is unitarily or antiunitarily congruent either to ((P + nP⟂)T(P + nP⟂))−1 or to
(P +nP⟂)T(P+nP⟂). Since the sequence ((P +nP⟂)�(T)(P +nP⟂))−1 is norm
bounded while (P+nP⟂)T(P+nP⟂) is not, we deduce that, for large enough n,
the operator ((P+nP⟂)�(T)(P+nP⟂))−1 is unitarily or antiunitarily congruent
to ((P + nP⟂)T(P + nP⟂))−1. Taking norms and letting n tend to in�nity, we
obtain that

‖P�(T)−1P‖ = ‖PT−1P‖
holds for all P ∈ ℙ1(H). From this, one can easily conclude that �(T) = T and
this �nishes the proof of the theorem. �

Asmentioned in the introduction, the research concerning local maps origi-
nally started with the study of local derivations and local automorphisms. The
results above give new information on the rigidity of automorphism groups. We
close the sectionwith an operational re�exivity result concerning the collection
of derivations.

Let A,ℬ be algebras, denote byM2(ℬ) the algebra of all 2 × 2matrices with
entries in ℬ. Let D ∶ A → ℬ be a function and consider the map D̃ ∶ A →
M2(ℬ) de�ned by

D̃(A) = [A D(A)
0 A ] . (10)

The multiplicativity of D̃ means exactly that D(AB) = D(A)B + AD(B), A, B ∈
A, i.e., that D satis�es the so-called Leibniz rule. Maps with this property are
called (multiplicative) derivations. When considering derivations on algebras,
it is common to assume that they are also linear. However, by a result of Daif
[8] (also see [34]), multiplicative derivations on algebras with some mild con-
ditions concerning the existence of idempotents are automatically additive. In
particular, if A is a so-called standard operator algebra over a normed space X
(whichmeans thatA is subalgebra of the algebraB(X) of all bounded linear op-
erators onX containing the collection F(X) of all �nite rank elements ofB(X)),
then every multiplicative derivation D fromA into B(X) is additive. Moreover,
if X is an in�nite dimensional Banach space, then D is linear as well, see [33].
By Corollary 3.4 in [7], we know that every linear derivationD on any standard
operator algebra A over a normed space X into B(X) is spatial, i.e., it is of the
form D(A) = TA − AT, A ∈ A with some T ∈ B(X).

In the next result we considermaps� ∶ A → B(H) on a standard operator al-
gebraA over a Hilbert spaceH with the property that for anyA, B ∈ Awe have
a linear derivation DA,B ∶ A → B(H) such that �̃(A)�̃(B) = D̃A,B(AB) holds
and prove that then � is necessarily a linear derivation. The result signi�cantly
generalizes Šemrl’s result Theorem 2 in [35] on 2-local derivations.

Theorem 2.7. Let H be a Hilbert space and A be a standard operator algebra
overH. Consider a map � ∶ A → B(H) with the property that for any A, B ∈ A
we have a linear derivation DA,B ∶ A → B(H) such that

�(A)B + A�(B) = DA,B(AB). (11)
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Then � is a linear derivation.

Proof. Let us �x B ∈ F(H) and consider an arbitraryA ∈ A. Then, by (11) and
the spatiality of derivations, we have

Tr(�(A)B + A�(B)) = 0, A ∈ A. (12)

It follows thatA ↦ Tr(�(A)B) is linear for every B ∈ F(H)which easily implies
the linearity of �.

We assert that for every A ∈ F(H) we have �(A)(kerA) ⊂ rngA. Let x ∈ H
be such that Ax = 0. Select B ∈ F(H) for which rng B ⊂ kerA and x ∈ rngB.
There exists an R ∈ B(H) such that

�(A)B + A�(B) = R(AB) − (AB)R.
Since AB = 0, we easily obtain that �(A)x ∈ rngA. Therefore, the linear map
� ∶ A → B(H) has the following property: for any A ∈ F(H), the operator
�(A)maps the kernel ofA into the range ofA. With this property of � in mind,
following the argument given in the proof of Theorem 3 in [39] to the second
displayed equality on page 1369 (or see the proof of Lemma 2.2 (i) in [17]), one
can verify that we have linear operators T, S onH such that

�(x ⊗ y) = Tx ⊗ y + x ⊗ Sy, x, y ∈ H. (13)

We show that T, S are in fact bounded. To see this, �rst observe that for
A, B ∈ A with AB = 0 we have �(A)B + A�(B) = 0. After that, choosing
nonzero vectors x, y, x′, y′ ∈ H such that ⟨x′, y⟩ = 0 and settingA = x⊗y, B =
x′ ⊗ y′, by (13) we have that

0 = (Tx ⊗ y + x ⊗ Sy)x′ ⊗ y′ + x ⊗ y(Tx′ ⊗ y′ + x′ ⊗ Sy′). (14)

This reduces to
0 = ⟨x′, Sy⟩x ⊗ y′ + ⟨Tx′, y⟩x ⊗ y′

which implies that
⟨x′, Sy⟩ = −⟨Tx′, y⟩

holds for any pair x′, y of orthogonal vectors in H. It is now easy to check that
the image of the unit ball is weakly bounded both under S and T implying that
S, T are bounded linear operators.

We next obtain that the vector (S∗ + T)x′ is orthogonal to y whenever x′
is orthogonal to y. One can deduce that this implies that (S∗ + T) is a scalar
multiple of the identity, S∗ = �I −T holds for some scalar �. Consequently, we
have

�(x ⊗ y) = Tx ⊗ y − x ⊗ yT + �x ⊗ y, x, y ∈ H
and this implies that

�(A) = TA − AT + �A, A ∈ F(H).
Again, we recall that Tr(�(A)B + A�(B)) = 0 holds for all A, B ∈ F(H) from
which we deduce

Tr((TA − AT + �A)B + A(TB − BT + �B)) = 0
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and then obtain that
Tr �AB = 0, A, B ∈ F(H).

It follows that � = 0. Therefore,
�(A) = TA − AT, A ∈ F(H).

It remains to show that the equality above holds not only on F(H) but onA,
too. To see this, consider themap ∶ A ↦ �(A)−(TA−AT) onA. Clearly, this
map also has the property (11) and, furthermore, it vanishes on F(H). Since for
any A ∈ A and F ∈ F(H) we have

Tr( (A)F + A (F)) = 0,
it follows that Tr (A)F = 0 holds for all F ∈ F(H). It obviously implies that
 (A) = 0 for any A ∈ A, and this completes the proof. �

Having proved the previous statement, one can say that the collection of all
linear derivations of a standard operator algebra is operationally re�exive. In
[2] an important result was shown telling that on any von Neumann algebra
any 2-local linear derivation is a linear derivation. Therefore, it is natural to
raise the following

Problem 2.8. Does a statement similar to Theorem 2.7 hold for maps � ∶ A →
A, where A is any von Neumann algebra?

Evidently, an a�rmative answer to this questionwould be a serious strength-
ening of the main result in [2].

3. Concluding remarks, further directions and problems to
study
We make some concluding remarks. We �rst emphasize that there is much

room for further investigations, for the development of our recent observations.
In fact, beside the problems formulated in the previous section, our general
problem described in the introduction can be raised in a much wider variety
of settings which we have not even touched in this paper. Let us mention only
one single direction. Here we have considered mainly noncommutative struc-
tures of matrices and operators. But what about related questions concerning
commutative structures of scalar valued functions? As for semisimple com-
mutative Banach algebras, respectively, commutative C∗-algebras, we have the
following two easy results. The �rst one shows that, for the operation of addi-
tion, the operational re�exive closure of all algebra automorphisms coincides
with the collection of all linear local automorphisms (i.e., the classical re�exive
closure of the group of all algebra automorphisms).

Proposition 3.1. Let A be a semisimple commutative Banach algebra. Let � ∶
A → A be a map with the property that for any f, g ∈ A we have an algebra
automorphism �f,g ofA such that

�(f) + �(g) = �f,g(f + g). (15)



LOCAL MAPS ON ALGEBRAIC STRUCTURES OF MATRICES AND OPERATORS 575

Then � is a linear local automorphism. The converse statement is also true.

Proof. The proof is a simple application of the famous Kowalski-Slodkowski
theorem [15].

First observe that since �(f) + �(−f) = 0, we have �(−f) = −�(f). It
follows that for any f, g ∈ A, we have �(f) − �(g) = �(f − g) for some algebra
automorphism� ofA (depending onf, g). Consider any character' ofA. Then
'(�(.)) is a character of A, hence '(�(f)) − '(�(g)) = '(�(f − g)) ∈ �(f −
g). Since �(0) = 0 obviously holds, by the Kowalski-Slodkowski theorem we
deduce that f ↦ '(�(f)) is a multiplicative linear functional. Since this holds
for any character ' of A, it follows that � is an algebra endomorphism of A,
in particular, � is linear. We then obtain the �rst statement of the proposition.
The converse statement is obvious. �

Therefore, assuming that all linear local automorpisms of our semisimple
commutativeBanach algebra are automorphisms (i.e., the automorphismgroup
is re�exive), we deduce that the collection of all algebra automorphisms of A
is also operationally re�exive with respect to the operation of addition. For ex-
ample, this is the case with the space of all continuous complex functions over
a �rst countable compact Hausdor� space, see Theorem 3.2.1 in [22], or the
original source, [28], Theorem 2.2.

If we change addition tomultiplication, the situation is rather di�erent,more
di�cult. Actually, we have a positive result only under a continuity assump-
tion.

Proposition 3.2. Let X be a �rst countable compact Hausdor� space and A be
the commutativeC∗-algebra of all continuous functions onX (any separable com-
mutative C∗-algebra is isometrically isomorphic to such a function algebra). Let
� ∶ A → A be a map with the property that for any f, g ∈ A we have an algebra
automorphism �f,g ofA such that

�(f)�(g) = �f,g(fg).
If � is continuous, then � is an algebra automorphism multiplied by an element
with square equal to 1. The converse statement also holds.

Proof. Herewe apply amultiplicative version of the Kowalski-Slodkowski the-
orem due to Touré, Schulz and Brits, see Theorem 3.7 in [37]. Observe that
�(1)2 = 1. Hence considering the transformation �(1)�(.) if necessary, we can
assume that �(1) = 1. Since, as it is well known, the algebra automorphisms
of C(X) are the composition operators corresponding to homeomorphisms of
X, it follows that � preserves the ranges of functions. In particular, �maps real
functions to real functions.

Consider any character ' of C(X). Then the map  (.) = '(�(.)) satis�es the
following conditions:  (f) (g) ∈ �(fg) holds for all f, g ∈ C(X),  (1) = 1,
and  is continuous. By the mentioned result in [37], we obtain that f ↦
'(�(f)) is a real linear multiplicative functional on the real algebra Cℝ(X) con-
sisting of all real functions in C(X). From this, we can deduce that � is a unital
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algebra endomorphism ofCℝ(X). It follows that we have a continuous function
� ∶ X → X such that �(f)(t) = f(�(t)), f ∈ Cℝ(X). Since � clearly preserves
the norms of functions, � is necessarily surjective.

By the �rst countability of X, using Urysohn lemma, we can construct a
continuous function f on X such that 0 ≤ f ≤ 1 and f vanishes exactly at
a given point z ∈ X (see, e.g., p. 170 in [22]). Assuming that � takes the
same value at two di�erent points t1, t2 in X, choosing a function f as above
vanishing exactly at �(t1) = �(t2), we would arrive at a contradiction: on the
one hand, �(f) = f◦� vanishes at least two points, and, on the other hand,
�(f) = f◦! holds for some homeomorphism ! of X which vanishes at one
point only. Therefore, � is injective as well.

We have that � is bijective. Therefore, considering �(.)◦�−1, we can assume
that �(f) = f holds for every real function f ∈ C(X). It is now easy to see that
� is the identity on the whole algebra C(X). In fact, to verify this, we �rst check
the following: if f, g ∈ C(X) are such that �(fℎ) = �(gℎ) holds for all real
functions ℎ ∈ C(X), then f = g. Assume that f(t0) ≠ g(t0), |f(t0)| ≥ |g(t0)|
for some t0 ∈ X. Choose a positive number � such that f(t0) does not belong to
the �-neighbourhood of g(t0). LetU be an open set inX containing t0 on which
g takes values in the �-neighbourhood of g(t0). Let ℎ be a continuous function
on X which vanishes outside U, 0 ≤ ℎ ≤ 1 and ℎ(t0) = 1. Then �(fℎ) = �(gℎ)
does not hold since f(t0) ∈ �(fℎ) but f(t0) ∉ �(gℎ), a contradiction. After
this, selecting any f ∈ C(X), for all ℎ ∈ Cℝ(X) we have

�(�(f)ℎ) = �(�(f)�(ℎ)) = �(fℎ).
By the previous observation, this implies �(f) = f and the proof of the �rst
statement in the proposition is complete. The converse statement is apparent.

�

Concerning the continuity assumption in the above proposition we remark
that we conjecture that it can be dropped. In fact, as in the previous proof, one
can see that without loss of generality we can assume that �(1) = 1. Then
we obtain that � sends nowhere zero functions to nowhere zero functions and
�(f)−1 = �(f−1) holds for any such element of C(X). Next, the range of the
function �(f)∕�(g) equals that of f∕g for any nowhere zero g and arbitrary f
in C(X). It follows that ‖�(f)∕�(g) − 1‖ = ‖f∕g − 1‖ holds for any such f, g
from which one can derive that � is continuous at g whenever g ∈ C(X) is
nowhere zero. How to prove continuity at the remaining points in C(X), we
unfortunately do not know.

On the other hand, using a di�erent approach that we do not present here,
we could avoid the use of continuity andwould be able to come to the same con-
clusion as in the proposition above if we knew that the answer to the following
problem was a�rmative.

Problem 3.3. Let X be any compact Hausdor� space and  ∶ Cℝ(X) → Cℝ(X)
be a map with the following property: for any f, g ∈ Cℝ(X) there is an algebra
automorphism �f,g ofCℝ(X) such that (f)+ (g) = �f,g(f+g). Does it follow
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that � is linear (and hence a linear local automorphism)? To formulate it in a
shorter way: Is the real version of Proposition 3.1 for Cℝ(X) true?

This does not seem to be an easy question. And let us formulate an evenmore
di�cult problem to which if we had an a�rmative answer, that would imply
an a�rmative answer to Problem 3.3, too (at least for �rst countable spaces).
For that question which seems to be interesting on its own right, we recall the
following problem raised previously by the author: Is the full isometry group
(the group of all distance preserving bijections without the assumption of lin-
earity) of C(X), X being a �rst countable Hausdor� space, 2-re�exive? Mori in
Theorem 4.6 [29] and Oi in Corollary 4.3 in [30] gave a�rmative answers to
that question.

Problem 3.4. For a �rst countable compact Hausdor� space X, do we have the
2-re�exivity of the full isometry group of the real space Cℝ(X), too?

To see the connection to Problem 3.3, we note that, by the famous Mazur-
Ulam theorem, the surjective isometries of Cℝ(X) are automatically a�ne and
they are linear surjective isometries composed by translations. Therefore, by
Banach-Stone theorem, a map  on Cℝ(X) is a 2-local surjective isometry ex-
actly when it has the following property: for any f, g ∈ Cℝ(X)we have a home-
omorphism �f,g and a continuous function �f,g ∶ X → {−1, 1} such that

 (f) −  (g) = �f,g(f − g)◦�f,g.
It is now apparent to see that any map  ∶ Cℝ(X) → Cℝ(X) in Problem 3.3
has this property. So, if Problem 3.4 has a positive answer then the maps in
Proposition 3.3 (assumingX is �rst countable) are necessarily a�ne and hence
linear.

Obviously, due to the generality of our basic problem, beside the above men-
tioned one particular direction (concerning function algebras), one could start
investigations in very many di�erent directions by considering di�erent alge-
braic structures and/or di�erent collections of transformations and study the
new types of re�exive closures and operational re�exivity what we have intro-
duced in the paper. We hope that several interesting new results will be ob-
tained in the near future.
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