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Direct products of null semigroups and
rectangular bands in gN

Yevhen Zelenyuk and Yuliya Zelenyuk

ABSTRACT. We show that, for every m € N, the direct product of the m-
element null semigroup and the 2° X 2¢ rectangular band has copies in SN. In
particular, the direct product of the 2-element null semigroup and the 2 x 2
rectangular band has copies in SN. We also point out a Ramsey theoretic
consequence of the latter fact.

The addition of the discrete semigroup N of natural numbers extends to the
Stone-Cech compactification BN of N so that for each a € N, the left translation
BN > x — a+x € fNis continuous, and for each g € SN, the right translation
BN 3 x = x + q € BN is continuous.

We take the points of SN to be the ultrafilters on N, identifying the principal
ultrafilters with the points of N. Forevery A C N, A = {p € AN : A € p}
and A* = A \ A. The subsets A, where A C N, form a base for the topology of
BN, and A is the closure of A. For p,q € 8N, the ultrafilter p + g has a base
consisting of subsets of the form J_ ca(Xx + By), where A € p and for each
x €A, B, €q.

Being a compact Hausdorff right topological semigroup, SN has a smallest
two sided ideal K(8N) which is a disjoint union of minimal right ideals and a
disjoint union of minimal left ideals. Every right (left) ideal of SN contains a
minimal right (left) ideal, the intersection of a minimal right ideal and a min-
imal left ideal is a group, and the idempotents in a minimal right (left) ideal
form a right (left) zero semigroup, thatis, x +y =y (x +y = x) for all x, y.

The semigroup SN is interesting both for its own sake and for its applications
to Ramsey theory and to topological dynamics. The first application to Ramsey
theory was the proof of Hindman’s theorem: whenever N is finitely colored,
there is an infinite subset all of whose sums are monochrome. An elementary
introduction to 8N can be found in [1].

In [3] D. Strauss showed that if ¢ is a continuous homomorphism from SN
to N*, then ¢(BN) is finite and ¢(N*) is a group. In 1996 the author proved that
AN contains no nontrivial finite groups (see [1, Theorem 7.17]). In contrast, it
does contain bands (= semigroups of idempotents). For example, apart from
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mentioned already left (right) zero semigroups, it contains chains of idempo-
tents (x < yifand onlyif x + y = y + x = x). A large enough class of finite
bands that have copies in SN was constructed in [4]. It includes, in particu-
lar, all finite rectangular bands (= direct products of a left zero semigroup and
a right zero semigroup, so (x;,y;) + (x2,¥,) = (x1,,)). In [2] it was shown
that SN contains even 2¢ X 2¢ rectangular bands. The question of whether there
are finite semigroups in BN distinct from bands is equivalent to asking whether
there exist nontrivial continuous homomorphisms from SN to N* and it was an
open problem since 1992. It was solved in [6] by constructing a 2-element null
semigroup (x+x = y+y = x+y = y+x = y)in fN. In [7] it was shown that all
finite null semigroups have copies in 8N and a connection of finite semigroups
in BN with Ramsey theory was established.
In this paper we modify construction in [7] and show that

Theorem 1. Foreverym € N, the direct product of the m-element null semigroup
and the 2° X 2° rectangular band has copies in SN.

In particular, by Theorem 1, the direct product of the 2-element null semi-
group and the 2x2 rectangular band has copiesin SN. This factand [7, Theorem
4.4] give us the following Ramsey theoretic consequence.

Definer : N - {1,2,3,4} by n = r(n) (mod 4).

Corollary 2. There exists a partition {A, ..., Ag} of N with the following property:
for any finite partitions B; of A;, there exist B; € B; and a sequence (x,),_; such
that x,, € B,y N 2"N for each n € N and for each finite F C N with |F| > 2, if

j =r(minF) and k = r(max F), then ZneF X, € B;, where

ifjef{l,4tand k € {1, 2}
ifje{2,3tand k € {1,2}
ifje{2,3tand k € {3,4}
ifje{l,4;and k € {3,4}.

o N O W

Proof. Let S be a subsemigroup of N* splitting into the direct product of a null
semigroup {a,, ap} and a rectangular band {by¢, byg, bg1, b11}. Enumerate S as

S ={qq, .., qs} = {a1 b0, a1bog, a1 boy, a1 b1, apbyg, agbgo, apbor, agby1}.

Then for any j, k € {1,2,3,4}, one has q; + g, = q;, where i is as in statement
of Corollary 2. Pick a partition {A;, ..., Ag} of N such that A; € g;. Let (z,,)7" ,
be a sequence guaranteed by [7, Theorem 4.4] and take the subsequence

215235235 245 29, 2105 2115 2125 217> 218> 2195 220> *+
as (x,)p> ;- O
Notice that it is not true that if each of two finite semigroups has copies in
BN, so does their direct product. Indeed, the direct product of the 2-element

chain of idempotents with itself contains a 3-element semilattice which has no
copy in BN [5, Lemma 3].
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In the rest of the paper we prove Theorem 1. In fact, we prove a bit stronger
result.

Any x € Ncanbe uniquely writtenas x = » _. 2" for some finite nonempty
F C w. Letsupp x = F, ¢(x) = max F, and 6(x) = min F. We shall need the
continuous extension SN — Sw of the function ¢ and we denote it by the same
letter ¢. If x,y € N and ¢(x) < 6(y), then ¢p(x + y) = ¢(»). If p(x) < d(»),
then ¢(x + y) € {¢(y),¢(y) + 1}}, and if ¢(x) + 1 < ¢(y), then ¢(y — x) €
{¢(y), $(y) — 1}}. It then follows that for any v € N* and w € Z, ¢(w + v) €
{p(v) — 1,¢(v), $(v) + 1}, and if v € H, where H = (], _ 2"N, and w € N,
then ¢(w+v) = ¢(v) (see [1, Lemma 6.8 and Lemma 13.4]). The last statement
implies that for every u € w*, $~1(u) N H is a left ideal of H (since $(2") = n,
$(H) = w®).

Pick an increasing sequence U, C U; C ... C U,, = w of infinite subsets of w
such that U;,; \U; is infinite for each i € {0, ... ,m—1}. Define a function & from
N onto the decreasing (m + 1)-element chain 0 > 1 > ... > m of idempotents
(with the operation i A j = max{i, j}) by

h(x) = min{i € {0,1, ...,m} : supp x C U;}
(here max and min refer to the usual order, and A is the operation induced by
the order 0 > 1 > ... > m) and let the same letter & denote its continuous
extension BN — {0,1,...,m}. If x,y € N and ¢(x) < 6(y), then h(x +y) =
h(x) A h(y). Consequently, for any v € H and w € SN, h(w + v) = h(w) A
h(v), in particular, the restriction of h to H is a homomorphism. For each i €
{0,1,..,m}, letT; = h='({0,...,i})) N H.

Lemma 3. Foreachi € {0,1,...,m}, h(K(T;)) = {i}, and K(T,,,) = K(BN)N T,,,.
Proof. Thisis [7, Lemma 3.1]. O

We thus have that T, € T; C ... C T,, = H is an increasing sequence of
closed subsemigroups of H such that T; N K(T;,,) = @ foreach i € {0, ..., m — 1}
and K(T,,) = K(BN) N T,,, and for every u € U*, $~'(u) N T, is a left ideal of
T.

Pick an injective sequence (u4,),,, in Uj. Choose a minimal right ideal R;, of
T,, and for every n < w, aminimal left ideal L(n) of T, contained in ¢~ (u,,)NT,,
and let p(n) be the identity of the group Ry N L(n). Then {p(n) : n < w}isa
right zero semigroup. Let py = p(0).

Enumerate {2" : n € U; \ Uy}* without repetitions as {r, : a < 2}

Lemmad. (py+7r,+Tp)N(po+rg+Ty)=0ifa #p.
Proof. Thisis [7, Lemma 3.2]. O

For every a < 2¢, choose a minimal right ideal R, , of T; contained in p, +
ro + T1, and choose a minimal left ideal L, of T; contained in T; + p,, and let
D1« denote the identity of the group R, , N Ly and p; = p; . Then by Lemma

4,p1o # P1gifa # B, P1a+ Po = Po+ P1a = Pra> and {p1 4 : @ <2}isaleft
Zero semigroup.
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Inductively, for each i € {2,...,m}, choose a minimal right ideal R; of T;
contained in p;_; + T; and a minimal left ideal L; of T; contained in T; + p;_;,
let p; denote the identity of the group R; N L;, and for every a < 2%, let p; , =
D1+ pi- Then p; + p;_y = p;_1 + p; = p;, SO py > p; > ... > p; is a chain, and
Dio = pi- By Lemma 4, p; . # p; g if a # 8, and since p; , € K(T;), it follows
that all elements p; ,, where i € {1,...,m} and a < 2¢, are distinct.

We then obtain that p; , + py = pg + pi o = Di and

Pia +Pjpg=DPratPi+Pig+Pj=DPra+Pi+p)+pip+p;
= Pia+ Di+(P1+ P1g) + Pj = Pia + Di + D1+ Pj = Pra + Dinj
= Dinja-

Foreveryi € {1,..,m}and a < 2%, letD; , = {p; , + p(n) : n < w}and pick
Qia € m \ D; . Notice that ¢(p; o + p(n)) = ¢(p(n)) = u,,. (It is easy to see,
although it is not directly important to us, that D, , is a right zero semigroup.)
Lemmas5. q;, + py = pjq and so giq + Pjg = Dinja
Proof. Since the right translation by p, is continuous and

(Pia + P(M)) + po = Pig + (P(N) + Po) = Pia + Po = Pias
one has q; , + py = p; . Then

Qia + Pjg = qia + (Po+ Pjg) = (Qiw + Po) + Pj g = Piw + Pjg = Dinja
O

Define Q C N* by

Q=1{pi«+qjp:ijeEl,..,mband o, < 2%
Using Lemma 5, we obtain that

(Pia +4j,8) + (Piy + A16) = Piw +(qjp + Picy) + dis = Piw + Pjakg + dis
= DPinjaka T Q-
Now we shall show that all elements p; , + gq; g of the semigroup Q are dis-
tinct.
An ultrafilter p € Z* is
(i) primeifp & Z* + 7*, and
(ii) right cancelable if the right translation of SZ by p is injective.

An ultrafilter p € Z* is right cancelable if and only if p & Z* + p (see [7,
Lemma 3.5]). Thus, every prime ultrafilter is right cancelable.

Lemma 6. Let D be a countable subset of H and suppose that ¢ is injective on D.
Then every q € D \ D is prime.

Proof. Assume the contrary. Then g € Z* + v for some v € Z*. Since —N*
is a left ideal of 3Z, onehasv € N*. LetZ ={n € Z : n+ v ¢ H} and let
D' ={peD: ¢(p) ¢ {p(v) —1,¢(), () + 1}}. Notice that |Z \ Z| < 1 and
|D\ D'| < 3. We then have that g € D’ N Z + v, so by [1, Theorem 3.40], either
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n+veD forsomeneZorpeZ+v=2+vforsome p € D'. In the first
case, n + v € H. In the second, p = w + v for some w € Z, so

¢(p) = p(w +v) € {p(v) — 1,¢(v), p(v) + 1}
In either case we have a contradiction. O

Statement (3) of the next lemma tells us that all elements p; ., + g; g of the
semigroup Q are distinct.

Lemma 7. (1) All subsets m wherei € {1, ..., m}and a < 2°, are pairwise
disjoint.
(2) All elements q; o, wherei € {1, ..., m} and a < 2¢, are distinct.
(3) All elements p; , + q; g, wherei, j € {1,...,m} and a, § < 2°, are distinct.

Proof. (1) Assume on the contrary that m N m # @ for some (i, ) # (j, B).

Then either D; , N m # f or m ND;z # @. It suffices to consider the first
case. Since D; , N D; g = @, it follows that p; , + p(n) = g for some n < w and
qE m \ Dj 3. But by Lemma 6, q is prime, a contradiction.

(2) is immediate from (1).

(3) Suppose that p; , + qj g = Pky + qi5- Then by [1, Corollary 6.21], either
gj8 € BN+ qis0rqs € BN + g;g. In either case q;5 = g4, since both of
them are prime and in H, so by (2), (j,8) = (I,6). We thus have that p; , +
4j8 = Pky +qjp- Butthen p;, = py,, since q; g is right cancelable, and so
(i,a) = (k, ). 0

We have constructed Q as a subsemigroup of N*. We now describe it without
mentioning ultrafilters.

Given a semilattice I and a cardinal x, let S = S(I, x) denote the semigroup
whose underlying set is I X k¥ X I X x and the operation is defined by

(,a,j,B)+ (k,y,1,6) =(AjAk,,l0).
The semigroup S decomposes into the semilattice I of the subsemigroups
Si={(,a,j,f)ES 1 iNj=1t},
where t € I (thatis, S; + S; C S;,;)- Forevery (i,a, j, 8) € S;, if i = ¢, then
(t,a,j, )+t j, B) = (t,a, j, B),
so (¢, a, j, ) is an idempotent, and if i # ¢, then
(Lo, j,B) + (. j,8) = (t,a. j, B)

=0,a,j,0)+taj,p)=(ta,j,p)+ (U aj,p),

so {(i,a, j,pB),(t,a, j, B)} is a null semigroup.

If I is a decreasing chain 1 > ... > m, we write S(m, x) instead of S(I, x).
For each t € {1,...,m}, the component S; of S = S(m, x) is the union of x X
({1, ..., t} X x) rectangular band

B, ={(t,a,j,B) : je€{l,..,t}tand a, 8 < x},
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which is the smallest ideal of S;, and the subsemigroup
S =1{G,a,t,p) i €{l,...,t}and o, B < x}.
The intersection of B; and S, ; is x X x rectangular band
By ={(t,a,t,B) . a,B <x},

which is the smallest ideal of S, ;, and S, ; is a disjoint union of ¢-element null
subsemigroups {(i,a, t,8) : i €{1,...,t}}, where a, § < x, s0 S;, is isomorphic
to the direct product of ¢-element null semigroup and B, ;.

Define ¢ : S(m,2%) — Q by

E(i’ CC,j, I@) = Dia + q],ﬁ
Then ¢ is an isomorphism. Furthermore,
e(m,a, j,B) = Pmat4jp € K(BN)
because p,, , € K(BN), and
E(i5 C(, m7 :8) = pl',Ot + qm,ﬁ € K(ﬁN)

because g, 3 € Dy, g € K(BN) and K(BN) is an ideal of SN [1, Theorem 4.44].
Thus, we have established the following result.

Theorem 8. Let m € Nand S = S(m,2°). Then there is an isomorphic em-

bedding ¢ : S — N*. Furthermore, ¢ can be chosen so that (S,,) C K(BN) and
e(K(Sp)) € K(BN).

Since S,, ,, is isomorphic to the direct product of the m-element null semi-
group and the 2¢ X 2¢ rectangular band, Theorem 1 is a partial case of Theorem
8.
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