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Split metacyclic actions on surfaces
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ABSTRACT. Let Mod(S,) be the mapping class group of the closed orientable
surface S, of genus g > 2. In this paper, we derive necessary and sufficient
conditions under which two torsion elements in Mod(Sg) will have conju-
gates that generate a non-abelian finite split metacyclic subgroup of Mod(S,).
As applications of the main result, we give a complete characterization of the
finite dihedral and the generalized quaternionic subgroups of Mod(S,) up toa
certain equivalence that we will call weak conjugacy. Furthermore, we show
that any finite-order mapping class whose corresponding orbifold is a sphere
has a conjugate that lifts under certain finite-sheeted regular cyclic covers of
S,. Moreover, for g > 5, we show the existence of an infinite dihedral sub-
group of Mod(S,) that is generated by an involution and a root of a bounding
pair map of degree 3. Finally, we provide a complete classification of the
weak conjugacy classes of the non-abelian finite split metacyclic subgroups
of Mod(S;) and Mod(S;). We also describe nontrivial geometric realizations
of some of these actions.
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Let S, be the closed orientable surface of genus g > 0, Home0+(Sg) be the
group of orientation-preserving homeomorphisms of S¢, and let Mod(S, ) be the

Received October 4, 2021.
2020 Mathematics Subject Classification. Primary 57K20; Secondary 57M60.

Key words and phrases. surface; mapping class; finite order maps; metacyclic subgroups.

ISSN 1076-9803/2022

617


http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2022/Vol28.htm

618 N. K. DHANWANI, K. RAJEEVSARATHY AND A. SANGHI

mapping class group of S,. Given F,G € Mod(S,) of finite order, a pair of con-
jugates F/, G’ (of F, G resp.) may (or may not) generate a subgroup isomorphic
to (F, G). For example, consider the periodic mapping classes F,G € Mod(S,)
represented by homeomorphisms #, G € Homeo " (S,) (see [23] for details), as

shown in the first subfigure of Figure 1 below. From Figure 1, it is apparent that
F2

FIGURE 1. Split metacyclic subgroups of Mod(S;) with conju-
gate generators.

(F,G) = Dg (i.e. the dihedral group of order 8). For 1 < i < 3, we consider the
conjugates G; of G, represented by the §; € Homeo " (S;) and for 1 < j < 2, we
consider the conjugates F; of # indicated in the (second and third) subfigures.
In the second subfigure, we have marked the fixed points of a conjugate F; of ¥
(with the same local rotation angles as ). Also, note that the third subfigure
is different from the first (as an imbedding S; < R?3), since it has four pairs
of tubes connecting the spheres, where in each pair, the tubes are aligned one
behind the other. As it turns out, (F;,G;) = (F,,G,) = Dg, but since #; and
G; commute, we have (Fy,G;3) = Z, X Z,. Considering that the finite abelian
subgroups of Mod(S,) have been extensively studied [9, 11, 14, 20], this exam-
ple motivates the following natural question: Given F’,G" € Mod(S,) of orders
n, m respectively, can one derive equivalent conditions under which there ex-
ist conjugates F, G (of F’, G’ resp.) such that (F, G) is a finite non-abelian split
metacyclic subgroup of order m - n and twist factor k admitting the presentation

(F,G|F"=G"=1,G"'FG =FX) = Z, X\ Z,,,?

The main result in this paper answers this question in the affirmative (see The-
orem 3.3). This result is a generalization of an analogous result from [11] for
two-generator finite abelian subgroups.

Given a finite split (non-abelian) metacyclic subgroup H = (F, G) of Mod(S,)
as above, the Nielsen realization theorem [17, 22] asserts that we may also view
H as a subgroup of Homeo+(Sg) with an associated H-action on S, inducing the
branched cover S; — S,/H. Consider representatives 7, G € Homeo+(Sg) of
F,G € Mod(S,) (resp.) with the same orders. Given a branched cover S, —
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Sg/(F)(=X)and a G € Mod(X) that lifts under this covertoa G € Mod(S,), it
follows from Birman-Hilden theory [2, 3, 4, 5] that there is an exact sequence:

1-(F)—=(F,G) = (G) = 1. @)

A key ingredient in the proof of the main result is the derivation of elemen-
tary number-theoretic conditions under which such a G will have a conjugate
that lifts so that the sequence () splits (see Section 3). The proof integrates
ideas from the theory of group actions on surfaces [17, 19] with elements of
Thurston’s orbifold theory [26, Chapter 13]. Another crucial aspect of the proof
(of the main result) is the analysis of the geometric properties of the automor-
phism G induced by G on S, /(F).

In Section 4, we provide several applications of our main theorem. The
first application concerns the finite dihedral subgroups of Mod(S,). Let D,, =
Z,X_1Z,be the dihedral group of order 2n. We derive the following characteri-
zation of dihedral subgroups of Mod(S,) in Subsection 4.1 (see Proposition 4.2).

Proposition 1. Let F € Mod(S,) be of order n. Then there exists an involution
G € Mod(S,) such that (F,G) = D,, if and only if F and F~! are conjugate in
Mod(S,).

It is worth mentioning here that dihedral actions on Riemann surfaces have
been classified in [10].

For n > 2, the generalized quaternion group Q,:+ is a metacyclic group of
order 2"*1 that admits the presentation

(F,G|F* =G*=1, F*' =G2% G~'FG = F!).

In Subsection 4.2, we obtain the following characterization of generalized quater-
nionic actions on S, (see Proposition 4.7).

Proposition 2. For g > 2, let F € Mod(S,) be of order 2". Then there exists a
G € Mod(S,) such that(F,G) = Qyn+ ifand only if the (F, G)-action on S, lifts to
a ((F,G) =) Z,n X_y Z4-action on Sye—1 under the 2-sheeted regular cyclic cover

Syg—1 = Sg with deck transformation group (G? F2r ).

For a periodic mapping class F € Mod(S,), the corresponding orbifold Oy :=
Sg/{F) ~ Sg,,, Where S, is the surface of genus g, > 0 with r > 0 marked
points. It is known [13] that F is irreducible if and only if O¢yy ~ Sp3. In
Subsection 4.3, we provide a characterization of the split metacyclic subgroups
(F, G) of Mod(S,) when F is irreducible (see Corollary 4.11).

Let LMod,,(S,) be the liftable mapping class group of a finite n-sheeted reg-
ular cyclic cover p : S,g_1)41 — Sg with deck transformation group Z,, = (¥),
and let SMod ,(Sy,(g—1)+1) be the symmetric mapping class group of p (see [21]),
which in this case turns out to be the normalizer of (F) in Mod(S,,g_1)+1)- In
this context, we have the following result.

Proposition 3. For g,n > 2, let p : S,g_1)11 — S be a regular cover with
deck transformation group (¥) = Z,,. Then any involution G' € Mod(S,) has a
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conjugate G € LMod ,(S,) with a lift G € SMod ,(Sy(g—1)+1) Such that (F,G) =
D,,,.

Moreover, we provide sufficient conditions for the liftability of a periodic map-
ping class (under p) whose corresponding orbifold is a sphere (see Proposi-
tions 4.15 - 4.16). As a consequence, we obtain the following corollary.

Corollary 1. For g > 2 and prime n, let p : Sp_1)41 — Sg be a regular n-
sheeted cover with deck transformation group (¥) = Z,. Let G' € Mod(S,) be
of order m such that the genus of Og is zero. Then G’ has a conjugate G €
LMod ,(S,) with a lift G € SMod ,(Sy(g-1)+1) such that (F,G) = Z,, Xy Z, if
there exists k € Z; such that |k| = m.

Consider an infinite metacyclic group [15] that admits a presentation of the
form

e,y 1y =1y xy =x71).

When m = 1, we call such a group an infinite dihedral group. By a root of a
mapping class F € Mod(S,) of degreen, we meana G € Mod(S,) such that G" =
F. In Subsection 4.4, we use the theory developed in [24, 25] to construct roots
of multitwists (i.e. products of powers of commuting Dehn twists) in Mod(S,)
which together with certain mapping classes of order 2m generate infinite split
metacyclic subgroups of Mod(S,) (of the form described above) for g > 5 (see
Proposition 4.21). In particular, for m = 1, we have the following corollary.

Corollary 2. For g > 5, there exists an infinite dihedral subgroup of Mod(S,)
that is generated by an involution and a root of a bounding pair map of degree 3.

In Section 5, we classify the non-abelian finite split metacyclic subgroups of
Mod(S;) and Mod(Ss) up to a certain weaker notion of conjugacy that we call
weak conjugacy (see Definition 2.10), which arises naturally in our setting. It
may be noted that similar classifications for 2 < g < 4 can also be obtained
through the techniques developed in [6, 8, 18]. Finally, we apply the results
in [23] to provide an algorithm for determining the hyperbolic structures that
realize split metacyclic subgroups as groups of isometries. We conclude the pa-
per by giving nontrivial geometric realizations of some non-abelian finite split
metacyclic subgroups of Mod(S;) and Mod(Ss).

2. Preliminaries

2.1. Fuchsian groups. We let Homeo+(Sg) denote the group of orientation-

preserving homeomorphisms of Sy, and let H < Homeo+(Sg) be a finite group.
A faithful and properly discontinuous H-action on S, induces a branched cov-
ering

Sg s OH = g/H
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with ¢ cone points x, ..., X, on the quotient orbifold Oy ~ S, (which we will
call the corresponding orbifold) of orders ng, ..., ng, respectively. Then the orb-
ifold fundamental group ﬂ‘l’rb(OH) of Oy has a presentation given by

8o

¢
<Of1u31, s Qg Bgys §15 5 8 | 5?1, e Zf’ H §j H[ai’ﬁi]> . 1)
j=1 =1
In classical parlance, nfrb(OH) is also known as a Fuchsian group [16, 19] with
signature
I'(On) 1= (8o N1, - > Ne),
and the relation szl §; ‘l.gol [a;, B;] appearing in its presentation is called the

long relation. From Thurston’s orbifold theory [26, Chapter 13], we obtain an
exact sequence

1 - m(Sy) = ni’rb(OH) SN H - 1. ™
In this context, we will require the following result due to Harvey [14].

Lemma 2.1. A finite group H acts faithfully on S, with T'(O) = (o5 1y, -, Ne)
if and only if it satisfies the following two conditions:

¢

2g —2 1

@) =2g,—2+ (1——>,and

H| o0 Z} n;

(ii) there exists a surjective homomorphism ¢y : ng’rb(OH) — H that preserves
the orders of all torsion elements of n‘frb(OH).

2.2. Cyclic actions on surfaces. For g > 1, let F € Mod(S,) be of order
n. The Nielsen-Kerckhoff theorem [17, 22] asserts that F is represented by a
standard representative ¥ € Homeo+(Sg) of the same order. We refer to both
F and the group it generates, interchangeably, as a Z,-action on S,. Each cone
point x; € O lifts to an orbit of size n/n; on Sy, and the local rotation induced
by F around the points in each orbit is given by 27rci_1 /n;, where ged(c;, n;) =
1 and c,-ci_1 = 1 (mod n;). Further, it is known (see [14] and the references
therein) that the exact sequence in (*) takes the following form

)
1 = 71(Sg) = 7O(Or)) —> (F) = 1,

where @5y (&) = FO/M< for 1 < i < ¢. We will now introduce a tuple of
integers that encodes the conjugacy class of a Z,-action on S,.

Definition 2.2. A data set of degree n is a tuple

D = (na 80,7, (CI’ n’l)’ cee sy (Cf, nf))a
wheren > 2,8, > 0,and 0 < r < n — 1 are integers, and each ¢; € Zﬁi such
that:
(i) r > 0if and only if £ = 0 and gcd(r, n) = 1, whenever r > 0,
(ii) each n; | n,
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(iii) lem(ny,...,7;,...,ne) = N,for1 <i < ¢, where N = nif g, = 0, and
‘n
iv —c; =0 (mod n).
() 3, 76 =0 (mod )

The number g determined by the Riemann-Hurwitz equation

t
=2—2g0+2(%—1) (2)

2-2g

is called the genus of the data set, denoted by g(D).

Note that quantity r (in Definition 2.2) will be non-zero if and only if D rep-
resents a free rotation of Sg by 2zr/n, in which case, D will take the form
(n, gy, ;). We will not include r in the notation of a data set, whenever r = 0.
By the Nielsen-Kerckhoff theorem, the canonical projection Homeo+(Sg) -
Mod(S,) induces a bijective correspondence between the conjugacy classes of

finite-order maps in Homeo+(Sg) and the conjugacy classes of finite-order map-
ping classes in Mod(S,). This leads us to the following lemma (that follows
from [25, Theorem 3.8] and [14]), which allows us to use data sets to describe
the conjugacy classes of cyclic actions on S.

Lemma 2.3. Forg > 1 and n > 2, data sets of degree n and genus g correspond
to conjugacy classes of Z,-actions on S,.

We will denote the data set corresponding to the conjugacy class of a periodic
mapping class F by Dg. For compactness of notation, we also write a data set
D (as in Definition 2.2) as

D= (n: 8o, 15 ((dl’ m1)5 0(1), eeey ((df” mf’)? O(f/)),

where (d;, m;) are the distinct pairs in the multiset S = {(c;, n;), ..., (cg, 1)},
and the a; denote the multiplicity of the pair (d;, m;) in the multiset S. Further,
we note that every cone point [x] € Oy corresponds to a unique pair in the
multiset S appearing in D, which we denote by P, := (cy, ny).

Givenu € Z,and Ge H < Homeo+(Sg) be of order m, let Fg(u, m) denote
the set of fixed points of G with induced rotation angle 27u/m. Let Cy(9) be
the centralizer of G € H and ~ denote the conjugation relation between any
two elements in H. We conclude this subsection by stating the following result
from the theory of Riemann surfaces [7], which we will use in the proof of our
main theorem.

Lemma 2.4. Let H < Homeo+(Sg) of finite order with T'(Og) = (g¢; Ny, .- s Np);
and let G € H be of order m. Then for u € ZJ,, we have

1
[Fgu,m)| = Cx(DI- 2, =
1<i<t L
mln,-

G (&)™
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2.3. Hyperbolic structures realizing cyclic actions. For a finite subgroup
H < Mod(S,), let Fix(H) denote the subspace of fixed points in the Teichrhuller
space Teich(S,) under the action of H. When H is cyclic, a method for con-
structing the hyperbolic metrics representing the points in Fix(H) was described
in [1] and [23], thereby yielding explicit solutions to the Nielsen realization
problem [17, 22]. This method involved the construction of an arbitrary peri-
odic element in Mod(S,) (that is not realizable as a rotation of S,) by the “com-
patibilities” of irreducible periodic components, which are uniquely realized as
rotations of certain special hyperbolic polygons with side-pairings.

A mapping class that is not reducible is called irreducible. Let F € Mod(S,)
be of order n. Gilman [13] showed that F is irreducible if and only if I'(O))
has the form (0; n, n,, n3) (i.e. the quotient orbifold Oy is a sphere with three
cone points.) Following the nomenclature in [1, 23], F is rotational if & is ei-
ther of order 2, or F has at most 2 fixed points. A non-rotational F is said to
be of Type 1if I'(O(#)) = (go; 11, Ny, 1), otherwise, it is called a Type 2 action.
The following result describes the unique hyperbolic structure that realizes an
irreducible Type 1 action.

Theorem 2.5. For g > 2, consider a irreducible Type 1 action F € Mod(S,) with
Dp = (n,0;(c1, my), (c2, n3), (¢35, n)).

27Tc3

1
Then F can be realized explicitly as the rotation O =

of a hyperbolic poly-
gon Pr with a suitable side-pairing W(Pr), where P is a hyperbolic k(F)-gon
with
K(F) := 2n, ifnl,n.z # 2, and

n, otherwise,

andfor0<m<n-1,

n
H Upi_q @y With a3, | ~ Gy, IfK(F) = 21, and
o
W(?F) = ln
H a; with a;qlﬂ ~a,, otherwise,
i=1

wherez = m + qj (mod n) with g = (n/nz)c;1 and j = n, — c,.

Further, it was shown [23] that the process of realizing an arbitrary non-
rotational action F of order n using these unique hyperbolic structures realizing
irreducible Type 1 components involved two broad types of processes.

(a) k-compatibility. In this process, for i = 1,2, we take a pair of irreducible
Type 1 mapping classes F; € Mod(S,,) such that the (¥;)-action on Sg,
induces a pair of compatible orbits of size k (where the induced local ro-
tation angles add upto 0 modulo 27). We remove (cyclically permuted)
(#F;)-invariant disks around points in the compatible orbits and then iden-
tify the resulting boundary components realizing a periodic mapping class
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F € Mod(Sg, 1g,+k-1)- An analogous construction can also be performed
using a pair of orbits induced by a single (F”)-action on Sg to realize a peri-
odic mapping class F € Mod(Sg.)-

(b) Permutation additions and deletions. The addition of a permutation compo-
nent involves the removal of (cyclically permuted) invariant disks around
points in an orbit of size n induced by an (¥)-action on S, and then past-
ing n copies of S;, (i.e. Sy with one boundary component) to the resultant
boundary components. This realizes an action on S, ,,» With the same fixed
point and orbit data as F. The reversal of this process is called a permutation
deletion.

Thus, in summary, we have the following:

Theorem 2.6. [23, Theorem 2.24| For g > 2, a non-rotational periodic mapping
class in Mod(S,) can be realized through finitely many k-compatibilities, permu-
tation additions, and permutation deletions on the unique structures of type Pr
realizing irreducible Type 1 mapping classes.

A final but yet vital ingredient in the realization of split metacyclic actions is the
following elementary lemma, which is a direct generalization of [11, Lemma
6.1].

Lemma 2.7. Let H = (F, G) be a finite metacyclic subgroup of Mod(S,). Then
Fix(H) = Fix((F)) N Fix((G)).

2.4. Split metacyclic actions on surfaces. Given integers m,n > 2, and

k € Z} such that k™ = 1 (mod n), a finite split metacyclic action of order mn
(written as m - n) on S is a tuple (H, (9, F)), where H < Homeo+(Sg), and
H=(F,G|F"=G6"=1,G15G=FF).

The multiplicative class k will be called the twist factor of the split metacyclic
action (H,(G,%)). As we are only interested in non-abelian split metacyclic
subgroups, we will assume from here on that k # 1. Note that in classical
notation H = Z,, Xy Z,,.- As (¥) < H, it is known [7, 27] that G would induce
age Homeo+(0<¢>) that preserves the set of cone points in O along with

their orders. We will call G, the induced automorphism on Osy by G, and we
formalize this notion in the following definition.

Definition 2.8. Let H < Home0+(Sg) be a finite cyclic group with |H| = n. We
say a G € Homeo' (Oy) is an automorphism of Oy if for [x],[y] € Oy, k € 7y
and G([x]) = [y], we have:

(i) n, = n,, and

(i) ¢, = kcy.
We denote the group of automorphisms of Oy by Aut, (Og).

We note that the concept of an induced orbifold automorphism in Definition 2.8
is more general than the one that was used in the abelian case ([11]), which
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required a more rigid condition that ¢, = ¢,. The following lemma, which
provides some basic properties of the induced map G, is a split metacyclic analog
of [11, Lemma 3.1].

Lemma29. Let G, F € Homeo+(Sg) be maps of orders m, n, respectively, such
that G1FG = F¥, and let H = (F). Then:
(i) Ginduces a G € Aut, (Oy) such that
On/(9) = S /(F.,9),
(ii) |G| divides |§|, and
(iii) |G| < m if and only ifﬂ-’l =G4 forsome0<l<nand0<u < m.

We will now formalize the notion of weak conjugacy from Section 1.

Definition 2.10. We say that two finite split metacyclic actions (Hy, (G;, %1))
and (H,, (G,, F,)) of order m - n and twist factor k are weakly conjugate if there
exists an isomorphism

[ ”?rb(OHl) = ﬂ?rb(OHz)
and an isomorphism y : H; — H, such that the following conditions hold.
@) 1(G1.FD) = (G2, F2).

(i) Fori = 1,2, let ¢y, : ﬂi’rb(OHl_) — H; be the surface kernel (in the exact
sequence (*) in Section 2). Then (yo¢y, )(g) = (¢n,0¥)(g), whenever g €
n;’rb(OHl) is of finite order.

(iii) The pair (G;, F;) is conjugate (component-wise) to the pair (G,,F,) in
Homeo ™ (S,).

The notion of weak conjugacy defines an equivalence relation on split meta-

cyclic actions on S, and the equivalence classes thus obtained will be called

weak conjugacy classes.

Remark 2.11. By virtue of the Nielsen-Kerckhoff theorem, the notion of weak
conjugacy in Definition 2.10 naturally extends to an analogous notion in Mod(S,)
via the natural association

(F,9),(9. %)) < (F,G),(G,F)).
For simplicity, we will now introduce the following notation.

Definition 2.12. Let F,G € Mod(S,) be a finite order map of orders n,m,
respectively. Then for some k € Z \ {1}, we say (in symbols) that [F,G]; = 1
if there exists conjugates F/, G’ (of F, G resp.) such that (F',G') = Z, Xy Zn
satisfying the relation (G)"'F'G’ = (F")x.

We conclude this subsection with the following crucial remark.

Remark 2.13. Let H < Mod(S,) be a finite split metacyclic subgroup, and let
I(H) denote the isomorphism class of H (in Mod(S,)). By Remark 2.11, we have

I(H)={H' : H' ¥ H and (H’, (G’, F')) represents a weak conjugacy class
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for some F’,G' € H' such that H' = (F',G")}.

Consequently, periodic mapping classes F,G € Mod(S,) satisty [F,G] = 1 if
and only if there exists conjugates F’,G’ (of F,G resp.) such that the triple
(F’,G"),(G',F")) represents a weak conjugacy class associated with a finite
split metacyclic subgroup (of twist factor k) of Mod(S,).

3. Main theorem

In this section, we establish the main result of the paper by deriving equiv-
alent conditions under which torsion elements F,G € Mod(S,) would satisfy
[F,G]r = 1. We will introduce an abstract tuple of integers that will capture
each weak conjugacy class associated with a finite split metacyclic subgroup of
Mod(S,).

Definition 3.1. A split metacyclic data set of degree m - n, twist factor k, and
genus g > 2 is a tuple

((m - n, k), go; [(c11,m11)s (€12, 112)s 1 ], oo, [(Cp15 e, (G2, Re2)s M ]),

where m,n > 2, the n;; are positive integers for 1 < i < ¢, 1 < j < 2, and
k € Z such that k™ =1 (mod n), satisfying the following conditions.

) 282 =2g0—2+g<1—l'>.

mn ;

(ii) (a) Foreach i, j, ny | m, ny | n, either ged(c;j, n;j) = 1 or¢;; = 0, and
¢;j = 0ifand only if n;; = 1.
(b) For each i, n; = n;; - 8;, where ; is least positive integer such that

niBi—1 o My
L
Cip— Z k"m |=0 (mod n).
Ni2 | 2

¢
(iii) Zcilﬁ =0 (mod m).
i M

¢ ¢ m
(iv) Defining A := Z cizi H k% and d ;= ged(n, k — 1), we have
-1 2o
_\0 (mod n), if gy =0, and

A=
d® (mod n), for6 € 7Z,, ifg,>1.

(v) If g = 0, there exists (py, ..., Peu)s (G1s > Qep) € (NU{ODP and v € N
such that the following conditions hold.
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(a) Z Pucu =1 (mod m) and
i'=1 iy

tv m
chz (Z PRl ~ (py s)) H K | = o (mod ).

i'=1 t'=i'+1

(b) Z ql,cll =0 (mod m) and

i’=1

tv m
Z Clz (Z kcll (ql’ S)) H kqtlctla =1 (mod n), where

t'=i'+1

i

i’ (mod ¢), ifi’#0 (mod ?¢),
14 otherwise,

[ = t' (mod ¢), ift’#20 (mod ¢), and
e, otherwise.

(vi) If gy = 1, there exists (py, ..., Peo)s (Q1s - > @y) € (NU{ODEY and m', n’ €
Z,v e N such that m’ | m and n’ | n, satisfying the following conditions.

m
(a) Z pl/clln—l =m’ (mod m) and

i’=1

tv m
chz (Z K o s)) H K% | =0 (mod n).

i'=1 t=i'+1

(b) Z q,,cll =0 (mod m) and
i’=1 i1

tv m
Z Clz (Z kcu (g S)) H k‘]nma =n' (mod n), where

i'=1 P41

1

i’ (mod ¢), ifi’#0 (mod ?),
t otherwise,

[ = t' (mod ¢), ift’ #0 (mod ¢), and
e, otherwise.

(c) A= —-Bk%+ f (mod n) for some non-negative integers a, 3, where

Icm E,L = m and Icm n n
m’” ged(m, a) ged(n, B)

Furthermore, we set &« = 1, when m’ = 0, and 8 = 1, when n’ = 0.
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We will now show that the split metacyclic data sets of genus g are in one-to-one
correspondence with the weak conjugacy classes of split metacyclic subgroups
of Mod(S,).

Proposition 3.2. Forintegers n,m, g > 2, the split metacyclic data sets of degree
m - n with twist factor k and genus g correspond to the weak conjugacy classes of
Zy Ny Zpy-actions on S,.

Proof. Let D be asplit metacyclic data set of degree m-n with twist factor k and
genus g (as in Definition 3.1 above). We need to show that D corresponds to the
weak conjugacy class of a Z,, X Z ,-action on S, represented by (H, (9, F)). To
this effect, we first establish the existence of an epimorphism ¢ : n‘l”b(OH) -
H which preserves the order of torsion elements. Let the presentations of H and
nf’b (Op) be given by

H=(F,G|F"=9"=1,G'9G=5%>7, X Z,, and

¢ 8o
(al’ﬁl"“’agouggo’gl’""gf | g;’ll == ggf = ng H[ai’ﬁi] = 1>’
-

respectively. We consider the map

n

Py G ,
£ Gl F P for1 <i<€.

As |90’.1 ni | = ny and |F i | = n;,, condition (ii) of Definition 3.1 would imply
that ¢y is a map which preserves the order of torsion elements. For clarity, we
break the argument for the surjectivity of ¢z into three cases.

First, we consider the case when g, = 0. Conditions (iii) and (iv) show that

¢x satisfies the long relation Hl.il & = 1 and the surjectivity of ¢y follows
from condition (v).

When g, > 2, nfrb (Og) has additional hyperbolic generators (viewing them
as isometries of the hyperbolic plane), namely the «; and the §;. Extending ¢

by mapping a; »¢—H> G, B »¢—H> F yields an epimorphism. Moreover, by carefully
choosing the images of the «; and the ; under ¢y, for i > 2, conditions (iii)
and (iv) would together ensure that the long relation Hj=1 §; ‘igil[oci, Bil=1
is satisfied.

When g, = 1, 7}’ ®(©y) has two additional hyperbolic generators, namely

the a; and the ;. We extend ¢ by defining o, |¢—H> G% and 3, r¢—H> FB, and
apply conditions (iii), (iv), and (vi) to obtain the desired epimorphism.

It remains to show that D determines ¥, 3 € Homeo+(Sg) up to conjugacy
(i.e. condition (iii) of Definition 2.10). Let Dz = (m, go; (¢11, 111)5 -+ » (Cp1, 1))
represent the conjugacy class of the action G induced on the orbifold O+, by
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the action G € Homeo+(Sg). We note that by Lemma 2.9, I'(O ) has the form
ny ny ne ne

(gl; 9 0oy 9 0oy yeees — )
nn nn Rey Neq
2 times 2 times
mi ney

where if n; /n;; = 1, for some 1 < i < ¢, then we exclude it from the signature,
and g, = g(Dg) is determined by Equation (2) of Definition 2.2. So, we get
ne¢ ne¢

! !
DF = (n’ gl;(dlla )’"'s(dlia ),"- ’(dt’la )a ""(dfiﬁ ))a
N ny o P11 Ney ngy Ne1
where
nj1 m .
n; cn—('-1)
dilnil = Ciz—l Z k . i1 (mOd I’ll‘) and
L) j'=1

dij = dpkUD  (mod —)1<i<l 1<) <—.

l N1 ni1
Moreover, by applying Lemma 2.4, we see that
ml€ m (u;5, my)l

1

m

Dg = (m,gz;((ui‘jl,mi), )t wij € Zy, and m; | m),

where
| %(uijami)l = |F %(uij;mi)l - Z Z | mi(ui'jumi'”
g™ g™ my eN (ui/j/,mir)Zl g
my #m; w;i=uy j(mod m;)
m;|my |m
and g, is determined by Equation (2) of Definition 2.2.
Conversely, consider the weak conjugacy class of Z,, X Z,,-actions on S,
represented by (H, (G, ¥)), where H = (¥, G). So, Lemma 2.1 would imply that
there exists a surjective homomorphism ¢y : ni”b (Oy) — H defined by

m
LI
g2 ¢ e for1 <i <€,

n

which is order-preserving on the torsion elements. This yields a split metacyclic
data set of degree m - n with twist factor k and genus g as in Definition 3.1. By
Lemma 2.1, this tuple satisfies condition (i) of Definition 3.1, while condition
(ii) follows from the fact that ¢ is order-preserving on torsion elements. Con-
ditions (iii)-(iv) follow from the long relation satisfied by 7] b(©y), and con-
dition (v)-(vi) are implied by the surjectivity of ¢;. Thus, we obtain the split
metacyclic data set of degree m - n with twist factor k and genus g, and the
result follows. U

We denote the data sets Dr and D (representing the cyclic factors of H) derived
from the split metacyclic data set D appearing in the proof of Proposition 3.2
by D; and D,, respectively. Thus, our main theorem will now follow from Re-
mark 2.13 and Proposition 3.2.
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Theorem 3.3 (Main theorem). Let F,G € Mod(S,) be of orders n, m, respec-
tively. Then [F,G]; = 1if and only if there exists a split metacyclic data set D of
degree m - n, twist factor k, and genus g such that D, = Dp and D, = Dg.

We conclude this section with an example of a split metacyclic action of order
16 on Ss.

Example 3.4. The split metacyclic data set D = ((4 - 4,-1),1;[(0, 1), (1, 2),2])
encodes the weak conjugacy class of a Z, X_; Z4-action on S5 represented by
(7, 9),(G,5)), where

Dr =(4,1;(1,2),(1,2),(1,2),(1,2)) and Dg = (4,2,1;).

The geometric realization of this action is illustrated in Figure 2 below.
1,2)

(1,2) a,2)

FIGURE 2. Realization ofa Z, X_; Z4-action on Ss.

Note that the pairs of integers appearing in Figure 2 represent the compatible
orbits involved in the realization of . Here, the action ¥ is realized via two
1-compatibilities between the action &/ on two copies of S, with

Dpr = (4,0;((1,2),2),(1,4), (3,4)).

Furthermore, the action F” is realized by a 1-compatibility between the actions
F'" and (") on two copies of S; with

Dpn = (4,0;(1,2), (1,4), (1, 4)).

4. Applications

4.1. Dihedral groups. Let D,, = Z, X_; Z, be the dihedral group of order
2n. We will call a split metacyclic data set of degree 2 - n and twist factor —1 a
dihedral data set. A simple computation reveals that a dihedral data set

((2 R, _1)’ 8o5 [(CII’ nll)’ (012’ n12)’ nl]’ ) [(Cfls né’l)a (052’ an)’ Vlf]),
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would have the property that (cj;,nj;) € {(0,1),(1,2)}, for 1 < j < ¢. The
following is an immediate consequence of Proposition 3.2.

Corollary 4.1. Forg > 2 and n > 3, dihedral data sets of degree 2 - n and genus
g correspond to the weak conjugacy classes of D,,-actions on S,.

The following proposition provides an alternative characterization of a D,,-
action in terms of the generator of its factor subgroup of order n.

Proposition 4.2. Let F € Mod(S,) be of order n. Then there exists an involution
G € Mod(S,) such that (F,G) = D,, if and only if Dy has the form

(l’l, 8o, 15 ((cls nl)a (_Cl’ nl)a ) (Csa ns)’ (_CS’ ns))- (**)
Proof. Suppose that Dy has the form (#*). Then O, is an orbifold of genus
go with 2s cone points [x1], [y1], ..., [x,], [ys], where P, = (c;,n;) and P, =
(—c;,my), for 1 < i <'s. Up to conjugacy, let G € Aut(O,#)) be the hyperelliptic
involution so that G([x;]) = [y;], for 1 <i < s. To prove our assertion, it would
suffice to show the existence of an involution G € Homeo+(Sg) that induces
G. This amounts to showing that there exists a split metacyclic data set D of
degree 2 - n with twist factor —1 encoding the weak conjugacy class (H, (G, ¥))
so that D has degree 2. Consider the tuple

D= ((2 - n, _1)’ 0; [(1’ 2)’ (Oa 1)’ 2]’ ey [(L 2)’ (0’ 1)’ 2]’ [(1’ 2)’ (C(t—l)Z’ n(t—l)Z)’ 2]

t—2 times
[(1, 2)3 (0[25 n[Z), 2]5 [(Os 1)5 (019 nl)a nl]’ eeey [(0’ 1)’ (CS5 ns)’ ns])’
where t = 2g, + 2,

(0, — Zle cl-ni(mod n)), ifgy =0, and

(cti—1o/i—1)0, Cot [ Ryy) = i .
(=121 Ne-1y2> €2/ Mz (l,l—Zlecinii(modn)), ifgy > 0.

It follows immediately that D satisfies conditions (i)-(iv) of Definition 3.1. As
t > 2, by taking v = 1, we may choose (py, ..., Pr4s) = (1,0, ...,0) to conclude
that D also satisfies condition (v)(a). Sincet =2 < g, = 0,andwheng, = 0,
we have that lcm(n,, ..., ng) = n, from which condition (v)(b) follows. Finally,
for the case when g, # 0, (v)(b) follows by choosing (q, ..., @r—2, Qt—1, -+ » Qr4s) =
(0,...,1,1,...,0). Thus, it follows that D is a split metacyclic data set. Further, a
direct application of Theorem 3.3 would show that D indeed encodes the weak
conjugacy represented by (H, (G, F)), as desired.
The converse follows immediately from Remark 2.11 and Proposition 3.2.
O

We now provide a couple of examples of dihedral actions along with their
realizations.

Example 4.3. Consider the Z3X_, Z,-action (¥, G) on S; illustrated in Figure 3
below, where

Dr =(3,1;(1,3),(2,3)) and D = (2,1;(1,2),(1,2),(1,2),(1,2)).
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The weak conjugacy class of the action 9((9-“ ,9),(G,F)) is encoded by

T

FIGURE 3. Realization of a D¢-action on Ss.

D =((2-3,-1),0;[(1,2),(0,1),2],[(1,2),(0,1),2],[(1,2),(0,1),2],
[(1,2),(1,3),2],[(0,1),(2,3), 3D.

Example 4.4. Consider the Z, X_, Z,-actions (¥, G) and (¥, G') on S5 illus-
trated in Figure 4 below, where Dr = (4,0;(1,4),(3,4),(1,4),(3,4)), Dg =
(25 1; (15 2)’ (1’ 2)5 (1’ 2)5 (15 2))’ and DG’ = (25 2, 1; )'

FIGURE 4. Realization of a Dg-action on Ss.
The weak conjugacy classes (¥, G), (G, F)) and ((F,G'),(F,F)) are encoded
by
((2-4,-1),0;[(1,2),(0,1), 2], [(1,2),(0,1), 2], [(0, 1), (1,4),4], [(0, 1), (3,4),4])
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and

((2-4,-1),0;[(1,2),(1,4),2],[(1,2),(1,4),2],[(0,1),(1,4),4],[(0, 1), (3,4), 4]),
respectively.

4.2. Generalized quaternions. For n > 2, the generalized quaternion group
Q1 is a metacyclic group of order 2"*! that admits the presentation

(x,y[x¥ =y =1,x"" =% ylxy = x71).

Remark 4.5. Let D be a split metacyclic data set of genus g, degree 4 - 2" and
twist factor —1 (as in Definition 3.1) encoding a weak conjugacy class repre-
sented by (H, (G, ¥)). Suppose that D has the property that

[(le’ njl)’ (Cj2’ an)! n]] = [(15 2)7 (1’ 2)’ 2]

for some 1 < j < ¢. Then it follows from the proof of Proposition 3.2 that
under the epimorphism ¢y : ﬂfrb(OH) — H which preserves the order of
torsion elements, the tuple [(1,2), (1, 2), 2] would correspond to an involution
22" € H which defines a non-free action on S,

Remark 4.5 motivates the following definition.

Definition 4.6. A quaternionic data set is a split metacyclic data set of degree
4 . 2" that has the form

D =((4-2",-1),80; [(c11, 111, (€12, R12), M, e, [(Cors Me1), (Cn, ga), e D),
such that [(cjy, nj1), (¢cj2, nj2), ;] # [(1,2),(1,2),2], for1 < j < €.

Proposition 4.7. For g,n > 2, quaternionic data sets of genus 2g — 1 and degree
4 - 2" correspond to Qyn+1-actions on S,.

Proof. Suppose that there exists an action of H = Q;n+1 0n S,. By Lemma 2.1,
there exists an epimorphism ¢z : n‘l’rb (Oyg) > H

¢

&i '¢—H> v
that is order-preserving on torsion elements. Let H' = Z,. X_; Z,4. Since the
canonical projection q : H' — H(= H'/Z,) preserves the order of torsion ele-
ments on H' \ ker g, the map ¢;; naturally factors via q. Thus, as there are ex-
actly two possible choices for ¢y |i¢,.1<i<¢} that preserves the order, at least one
of which yields an action H' on S, (for some g’ > g). A weak conjugacy class
associated with this action is encoded by a split metacyclic data set of genus g’
and degree 2"*2 = 4 . 2", which has one of the following forms

m n
mo.n
mix Cmx for1 <i<é€,

((4-2",-1),80; [(c11, n11), (€12, M12), M1, .., [(Ce1, 1), (Coas ), B ])
or

(4 : 2’"’ _1)’ 8os [(Cll’ n’ll)a (CIZ’ n12)’ nl]’ ey [(C,fla n:fl)’ (C;z, l’l,fz), nf])’
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where cf1 2 = c,gl— +2 (mod 4) and ¢, = = ng— +2"~! (mod 2"). Fur-

ther, since kerq = Zz and g preserves the orders of all x € H' \ kergq, it fol-
lows that ker g acts freely on S,/. Hence, it follows that g’ = 2g — 1 and fur-
ther by Remark 4.5, both (possible) tuples cannot contain a triple of the type
[(1,2),(1,2),2].

Conversely, if there exists a quaternionic data set D of genus g’ = 2g — 1
as in Definition 4.6. Then we obtain an epimorphism ¢y @ 7" °(Oy) - H
which preserves the order of torsion elements, when composed with canonical
projection g : H' — H, yields an epimorphism ¢ : 79"°(0) — H which
preserves the order of torsion elements, where n‘l"b (O) = n‘l”b (Op). Further,
as D does not contain a triple of type [(1,2), (1, 2), 2], ker g acts freely on St
thereby yielding an action of Q,n+1 on Sy, where g =2g-1. O

Remark 4.8. A crucial step in the proof (of Proposition 4.7) is the establish-
ment of the fact that the canonical projection q : Zy X_; Z4 — Q1 is order-
preserving on (Z,. X_; Z,) \ ker q. However, it is interesting to note that this
fact does not generalize to arbitrary metacyclic groups [15] arising as quotients
of split metacyclic groups. This motivates the study of finite non-split meta-
cyclic actions on surfaces, which we plan to undertake in future works.

Example 4.9. The split metacyclic data set in Example 3.4 is quaternionic.
Hence, this represents the weak conjugacy class of an induced Qg-action on
Ss.

4.3. Lifting cyclic subgroups of mapping classes to split metacyclic
groups. For n,g > 2,let p : S; — S, be a covering map (that is possibly
branched) with deck transformation group (¥) = Z,. Let LMod,(S,) (resp.
SMod,(Sz)) denote the liftable (resp. symmetric) mapping class groups of S,
(resp. Sg) under p.

Remark 4.10. From Birman-Hilden theory [2], we have the exact sequence
1 — (F) — SMod,(Sg) — LMod,(S,) — 1. (B)

Let G € Mod(S,) be of finite order. Then G € LMod,(S,) if and only if G has a
lift G € SMod,,(Sy) of finite order so that the sequence (B) yields a sequence of
the form

1 - (F)—=(F,G)—> (G) > 1.
Thus, G € LMod,(S,) if and only if for any lift G of G, (G) lifts under p to a
metacyclic group (F, G).

In the following corollary, we characterize the finite cyclic subgroups in Mod(S 3)
that lift to finite split metacyclic groups under branched covers induced by ir-
reducible cyclic actions.

Corollary 4.11. Forg,n > 2, let p : S; — S 3 be a cover with deck transforma-
tion group (F) with Dr. = (n, 0; (c1, ny), (c3, ny), (c3,13)). Then a G' € Mod(Sy 3)



SPLIT METACYCLIC ACTIONS ON SURFACES 635

of order m has a conjugate G € LMod (S 3) with a lift Ge SMod,(S,) such that
(F,G) = Z, Xy Z,, if and only if one of the following conditions hold.

(@) Dp = (n,0;(cy,ny),(cy,n), (c2k, n)) for some k € Z) such that k* = 1
(mod n).

(b) D = (n,0;(cy,n),(cik, n), (c;k?,n)) for some k € Z) such that k® = 1
(mod n).

Proof. Suppose that G’ € Mod(S, ;) has a conjugate G € LMod (S, ;) with a
lift G € SMod,(S,) such that H = (F,G) = Z,, X Z,,. First, we claim that the
n;, for 1 <i < 3, are not distinct. Suppose that we assume on the contrary that
the n;, for 1 <i < 3, are indeed distinct. Since §' € Aut;(O#)) and |G| > 1, it
would have to fix all three cone points of O, which contradicts the fact that
any nontrivial automorphism of the sphere has exactly two fixed points. Thus,
the following two cases arise.

Case 1: n, = n; = n # ny. In this case, G fixes the cone point, say of
order n;, and should permute the remaining 2 cone points of orders n, and
n;. This implies that Dy takes the form in condition (a) in our hypothesis (by
Definition 2.8), and hence H = (F,G) =~ Z,, Xy Z,.

Case 2: n; = n,1 < i < 3. In this case, if § permutes all the three cone
points cyclically, then Dy takes the form in condition (b) in our hypothesis, and
hence H =~ Z,, X, Z5. Alternatively, G’ could also fix a cone point of order n
and permute the remaining 2 cone points, in which case, Dr will take the form
in condition (a).

Conversely, let D = (n,0;(cy, 1), (¢, 1), (ck, n)) for some k € Z such
that k> =1 (mod n). Up to conjugacy, let §’ € Auty(Os) be an involution so
that G’ maps the cone point represented by (c,, n) to the cone point represented
by (c,k, n). To prove our assertion, it would suffice to show the existence of an
involution G € Homeo+(Sg) that induces §’. This amounts to showing that
there exists a split metacyclic data set D of degree 2 - n with twist factor k en-
coding the weak conjugacy class (H, (9, ¥)) so that D has degree 2. Consider
the tuple ((2 - n, k), 0;[(1,2),(0, 1), 2], [(1,2),(n — ¢y, n),2n,], (0, 1), (¢c5, ), n]).
A simple computation would reveal that conditions (i) - (iv) of Definition 3.1
hold true. Condition (v) is true by taking v = 1, (p1, p2, p3) = (1,0,0) and
(91,92, 93) = (0,0, w) such that we, =1 (mod n), which proves our claim.

For the case when D = (n,0;(c;, n), (c;k, n), (c;k?,n)) for some k € Z}
such that k*> = 1 (mod n), let § € Aut(Osy) be of order 3 so that for 1 <
i < 2, §"" maps the cone point represented by (c;,n) to the cone point repre-
sented by (c; k3%, n). By similar argument as above, we can show that the tuple
((3-n,k),0;[(1,3),(0,1),3],[(2,3), (n—cq,n),3],[(0,1), (cq, n), n]) forms a split
metacyclic data set of degree 3 - n with twist factor k. 0

Example 4.12. For i = 1,2, consider the branched cover p : S3 = O5)(~
So3), where D, = (8,0;(1,4),(1,8),(5,8)) and Dr, = (8,0;(3,4),(3,8),(7,8)).
Then (up to conjugacy) the order-2 mapping class G € LMod(Sy3) repre-
sented by an automorphism G € Auts(Sy3), that permutes two cone points
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of order 8 and fixes order 4 cone point, lifts toa G € SMod,,(S;) with Dg =
(2,1;((1,2),4)) such that (F;,G) = Zg X5 Z,. Moreover, the weak conjugacy
class of ((F;, §),(G, F))), for i = 1,2, is encoded by

((2-8,5),0;[(1,2),(0,1),2],[(1,2),(7,8),8],[(0,1), (1, 8), 8]) and
((2-8,5),0;[(1,2),(0,1),2],[(1,2),(1,8),8],[(0,1),(7,8), 8]),
respectively. The geometric realization of these actions is illustrated in Figure 5

below, where for each i, the action #; is realized by the rotation of a polygon of
type Pr, described in Theorem 2.5.

(1,8) (7,8)

FIGURE 5. The realizations of two distinct Zg X5 Z,-actions on Ss.

Proposition 4.13. Forg,n > 2, let p @ S,,_1)41 — Sq be a regular cover with
deck transformation group (¥) = Z,. Then any involution G’ € Mod(S,) has a
conjugate G € LMod ,(Sy) with a lift G € SMod ,(Sy(g—1)+1) Such that (F,G) =
D,,,.

Proof. Let G’ € Mod(S,) be an involution. When G’ generates a free action
on Sg, it is easy to see that ((F, G), (G, F)) represents a weak conjugacy class in
Mod(Syg—1)+1) with (F, G) = D,,. Now, we assume that G’ generates a non-
free action with Dy = (2, g9;((1,2),t)). By Theorem 3.3 and Remark 4.10, it
suffices to show that there exists a dihedral data set 2 of degree 2 - n and genus
n(g — 1) + 1 representing the weak conjugacy class of ((F,G),(G,F)). When
go = 1, we take D to be the tuple

((2-n,-1),80:1(1,2),(0,1),2],...,[(1,2),(0,1), 2]),

t times

and when g, = 0, t > 4, and so we take D to be the tuple

((2-n,-1),0;[(1,2),(0,1),2], ..., [(1,2),(0,1), 2],

t—2 times

[(1,2),(1,n),2],[(1,2),(1,n),2]).
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It is an easy computation to check that D satisfies conditions (i)-(iv) of Defini-
tion 3.1 in both cases. When g, = 0, takingv =1,

(p1,--»>p1) =(1,0,...,0), and (qy, ..., q;) = (0, ...,0,1,1,0)
we obtain condition (v). Moreover, when g, = 1, we take v = 1,

(py,..-»pr) = (1,0,...,0), and (qy, ..., q;) = (0, ..., 0),

thereby verifying condition (vi). Thus, we have shown that D is a dihedral data
set as desired. Finally, it follows from Theorem 3.3 that D encodes the weak
conjugacy class of ((F, G), (G, F)). O

Note that the same Z,-action can lift to multiple non-isomorphic groups under
aregular cyclic cover. We illustrate this phenomenon in the following example.

Example 4.14. Let p : S5 — S, be a regular 4-sheeted cover with deck trans-
formation group (¥) = Z, as illustrated in Figure 6 below.
Fx

q

F 9~1 ’/‘ -

FIGURE 6. Two distinct lifts G;,G, € SMod(Ss) of an involu-
tion G € Mod(S,). Note that G, has four fixed points, while G,
has eight fixed points.

The involution G € Mod(S,) with D; = (2,1;(1,2),(1,2)) has two distinct
lifts G1,G, € SMod,(Ss) (as indicated) such that (F,G;) = Dg and (F,G,) =
7, X Z,. Note that the weak conjugacy class of ((F, G,), (G;, F)) is represented
by ((2-4,-1),1;[(1,2),(0,1),2],[(1,2),(0,1), 2]).

The following proposition provides a sufficient condition for the liftability of
Z,,-actions whose corresponding orbifolds are spheres with a cone point of or-
der m.

Proposition 4.15. For g,n > 2,let p : Sy_1)41 — Sq be a regular n-sheeted
cover with deck transformation group (¥) = Z,. Let G' € Mod(S,) be of order
m such that Dg = (m,0;(cy, my), ..., (cp, my)) with my = m (say). Then G’
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has a conjugate G € LMod,(Sg) with a lift G € SMod,(Sp(g—1)+1) such that
(F,G) = Z, Xy Z,, if the following conditions hold.
(a) There exists aj, ...,ap_; € Z,and k € Z), k™ =1 (mod n) such that

-1 o -1 m

i Cs—

Zai(k m —1) H k’ms =0 (mod n).

i=1 s=i+1
(b) For1 <i < ¢ — 1, there exists d;,n; € Z such that gcd(d;,n;) = 1, n; | n,

di% = a;(k"™ —1) (mod n), and

lem(ny, ny, ..., np_y) = K.
Proof. By Theorem 3.3 and Remark 4.10, it suffices to show that the tuple
D= ((m - n, k)a 03 [(cl’ ml)’ (d17 nl)a ml]a see s
[(Cf—ls mé’—l)a (dt’—l’ nf—l)’ mf—l]a [(Cf’ mt’)a (0’ 1), mt’])
forms a split metacyclic data set of genus n(g — 1) + 1 that represents the weak
conjugacy class of ({(F, G), (G, F)) for some lift G of G under p. It can be verified
easily that D satisfies conditions (i)-(iii) of Definition 3.1, and further, condition
(iv) follows from condition (a) in our hypothesis. By takingv = 1, (py, ..., p¢) =
(0, ...,0,w) such that wc, = 1 (mod m), we see that condition (v)(a) holds.

Finally, condition (v)(b) follows from condition (b) in our hypothesis, and our
assertion follows. O

Using similar arguments, we can show the following.

Proposition 4.16. For g,n > 2,let p : Sy_1)41 — Sg be a regular n-sheeted
cover with deck transformation group () = Z,. Let G' € Mod(Sg) be of order
m such that Dgr = (m, 0; (¢, My), ..., (Co, Mp)) With m; # m, for1 <i < €. Then
G’ h~as a conjugate G € LMod ,(S,) with a lift G e SMod ,(Sy(g—1)+1) Such that
(F,G) = Z, Xy Z,, if the following conditions hold.

(i) There exists aj,...,a, € Z,and k € Z}, k™ =1 (mod n) such that

¢ m ¢ m
Sak'm —1) J[ k™ =0 (mod n).
i=1 s=i+1
(ii) There exists (py, ..., Pev) (Q1s > Gey) € ZE° and v € N such that condition
(v)(b) of Definition 3.1 holds, where for 1 <i < ¢, we have

ciln—il = ci% (mod m) and cizniiz =q(k"™ —1) (mod n).
A consequence of Propositions 4.15-4.16 is the following.

Corollary 4.17. For g > 2 and prime n, let p : Syg_1)41 — Sq be a regular
n-sheeted cover with deck transformation group (¥) = Z,,. Let G' € Mod(S,)
be of order m such thatfhe genus of O(q is zero. Then G’ ha~s a conjugate G €
LMod,(S,) with a lift G € SMod (S, g—1)+1) such that (F,G) = Z, Xy Z,, if
there exists k € Z} such that |k| = m.
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Proof. Let Dy = (m,0;(c;, m,y), ..., (cp, my)). First, let us assume (without loss
of generality) that m, = m. By choosing

m

@y, s Q) = (0,0, 0,1, —(k ez —1) -k et (K e — 1)),
we see that condition (i) of Proposition 4.15 holds true. Moreover, since |k| =

m, we have gcd((kcmm —1),n) = 1, and so condition (ii) also holds, and our
assertion follows.

Similarly, for the case when each m; < m for 1 <i < ¢, the result follows by
taking

(@, s ag) = (0,...,0,1, (k™ memt —1) ke (K me — 1)),
1 ¢
and applying Proposition 4.16.
O

4.4. Infinite split metacyclic subgroups of Mod(S,). An infinite split meta-
cyclic group that is isomorphic to Z X_; Z,,, admits a presentation of the form

(x,yly* =1y xy=x7"). 3)
In this subsection, we give an explicit construction of an infinite metacyclic
subgroup isomorphic to Z X_; Z,, of Mod(S,). Let T, € Mod(Sy) denote
the left-handed Dehn twist about a simple closed curve ¢ in Sg. A root of T,
of degree s is an F € Mod(S,) such that F* = T,. In the following lemma, by
using some basic properties of Dehn twists [12, Chapter 3], we show that a root
of Dehn twist cannot generate an infinite split metacyclic group that admits a
presentation as in (3).

Lemma4.18. Forg > 2, norootof T, is a generator of any infinite split metacyclic
subgroup of Mod(S,) that is isomorphic to Z X_y Zyp,.

Proof. Let F bearootof T, of degree s. Suppose we assume on the contrary that
forsome g > 2, there exists an infinite split metacyclic subgroup H = ZX_,Z,,
of Mod(S,) that admits the presentation

H=(F,G|G* =1,G"'FG = F~!).
First, we consider the case when s = 1, that is, F = T,.. Then we have that
GIT.G=T;' = Tg=T:",
which is impossible. Thus, we have that H # (G, T,), which contradicts our
assumption.
For s > 1, suppose that H = (F, G). Then the subgroup (F%, G) of H would

also be a split metacyclic group. Since F’ = T,, this would contradict our con-
clusion in the previous case, and so our assertion follows. O

By a multitwist in Mod(S,), we mean a finite product of powers of commuting
Dehn twists. In view of Lemma 4.18, a natural question that arises is whether
a multitwist in Mod(S,) can generate an infinite split metacyclic group. In the
following examples, we answer this question in the affirmative.
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Example 4.19. Let F/ € Mod(S,) be of order 3 with

D = (3,0;((1,3),2),((2,3),2)).

First, we note that ¥/ has four fixed points on S,. Further, it induces a local
rotation angle of 277 /3 around two of these points (corresponding to the two
(1, 3) pairs in Dg/) and rotation angle of 477 /3 around the remaining two points
(corresponding to the two (2, 3) pairs in Dg/), as indicated in Figure 7. Consid-
ering this action on two distinct copies of S,, we remove invariant disks around
a distinguished (1, 3)-type fixed point and a distinguished (2, 3)-type fixed point
in each of the two copies. We now attach two annuli connecting the resulting
boundary components across the two surfaces so that:

(a) each annulus connects a pair of boundary components where the induced
rotation angle is the same, as shown in Figure 7 below, and further,

(b) the annulus connecting the boundary components with rotation 477 /3 (with
the nonseparating curve c) has a 1/3"? twist, while the other (with the non-
separating curve d) has a —1/3"% twist.

(2,3)

(2,3)

1,3) 1,3)

FIGURE 7. Realization of an infinite dihedral subgroup of Mod(Ss).

Thus, by applying the theory developed in [25], we obtain an F € Mod(Ss),
which is a root of the bounding pair map Tchl of degree 3. Now, we consider
the hyperelliptic involution G € Mod(S;) with D; = (2,0;((1,2),12)) (also
indicated in Figure 7). By our construction, it follows that GFG™! = F~1, and
sowe have (F,G) = 7 X_, Z,.

Example 4.20. Let F/ € Mod(Ss) be of order 3 with

DF’ = (3’ 1’ ((1’ 3)’ 2)5 ((2’ 3)9 2))

First, we note that #' has four fixed points on Ss. Furthermore, it induces a
local rotation angle of 277 /3 around two of these points (corresponding to the
two (1, 3) pairs in Dg/) and rotation angle of 477 /3 around the remaining two
points (corresponding to the two (2, 3) pairs in Dg/), as indicated in Figure 8.
Considering this action on two distinct copies of S5, we remove invariant disks
around all fixed point in each of the two copies. We now attach four annuli
connecting the resulting boundary components across the two surfaces so that:

(a) each annulus connects a pair of boundary components where the induced
rotation angle is the same, as shown in Figure 8 below, and further,
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(b) the annulus connecting the boundary components with rotation 477 /3 (with
the nonseparating curve ¢; and c;) has a 1/3"¢ twist, while the other (with
the nonseparating curve c, and c,) has a —1/3" twist.

1,3) (23

FIGURE 8. Realization of an infinite metacyclic subgroup of Mod(S;3).

Thus, by applying the theory developed in [25], we obtain an F € Mod(S;3),
which is a root of the multitwist T, T, ch3 T, ! of degree 3. Now, we consider
a G € Mod(S,3) with D5 = (4,4, 1;) (also indicated in Figure 8). By our con-
struction, as Z5 X_; Z4 = (F’,G’') < Mod(Ss), where D = (4,2, 1;), it follows
that GFG™! = F~!, and so we have (F,G) &= Z X_, Z,.

Generalizing the above all constructions in Example 4.19 and Example 4.20, we
have the following.

Proposition 4.21. Fori = 1,2, let H; = (F;,G;) < Mod(S,,) with H; = Z,, X_4
Zy, Such that the weak conjugacy class (H;, (G;, F;)) is represented by a split
metacyclic data set Dy containing a tuple [(0, 1), (a;, n), n]. Then there exists an
infinite metacyclic subgroup of Mod(Sg, 1., +2m—1) isomorphic to Z X_y Z,,, that
is generated by a periodic mapping class of order 2m and a root of a multitwist of
degree n.



642 N. K. DHANWANI, K. RAJEEVSARATHY AND A. SANGHI

Proof. As Dy, contains a tuple [(0, 1), (a;, n), n], by Proposition 3.2, we have

Dg, = (n, 8o; (€1, 1), -, (¢, 1), (a1, 1), (n — ay, 1), ..., (a1, n), (n — ay, n))

m times

and

Dp, = (n,gy;(c}, 1)), ..., (c;, n)), (az, n),(n — az, n), ..., (a, n), (n — az, n)).

m times

Taking inspiration from the theory developed in [24, 25] and Examples 4.19-
4.20, we glue 2m annuli connecting the boundary components resulting from
removing invariant disks around the orbit points corresponding to the pairs
(a;,n) and
(ay,n), ifa, #n—ay, or
(n—ay,n), ifa,=n-a.
This yields a degree-n root F of a multitwist of the form
om (_1)i+1(a—l+a—l)
i Te 2

L
2m (D e +(-a)™)
Py , ifa,=n-a,

ifa, #n—q, or

where a;a;' = 1 (mod n) and a;' + a;' € Z,. By considering the action §
obtained by performing a 2m-compatibility on G; and G, (see Section 2), we see
that (F,G) = Z X_; Z,,,, as desired. O

The group for m = 1 in the presentation of the infinite split metacyclic group
of the type in the Equation (3) is known as the infinite dihedral group. Here is
the corollary, which directly follows from Proposition 4.21.

Corollary 4.22. For g > 5, there exists an infinite dihedral subgroup of Mod(S,)
that is generated by an involution and a root of a bounding pair map of degree 3.

5. Hyperbolic structures realizing split metacyclic actions

We begin this section by providing an algorithm for obtaining the hyperbolic
structures that realize finite split metacyclic subgroups of Mod(S,) (up to weak
conjugacy) as groups of isometries.

Step 1. Consider a weak conjugacy class represented by (H, (G, F)).

Step 2. Use Theorem 3.3 to determine the conjugacy classes Dy (resp. Dg) of
the generators F (resp. G).

Step 3. We apply Lemma 2.7, and Theorems 2.5-2.6, to obtain the hyperbolic
structures that realize H as a group of isometries.

We now describe the geometric realizations of some split metacyclic actions on
S5 and S5 represented by the split metacyclic data sets listed in Tables 1 and 2
in Section 6.
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T

>

A

(1,3) (2,3)

FIGURE 9. A realization of a D¢-action (¥, §) on S3, where Dg =
(2,2,1;) and D = (3,1;(1,3),(2,3)). The action F is realized
through two 1-compatibilities between two actions ¥’ and F'’ on S,
with D = (3,0;((1,3),3)) and Dpr = (3,0;((2,3),3))). The weak
conjugacy class of ((F, G), (G, F)) is encoded by the first split meta-
cyclic data set in Table 1.

FIGURE 10. The realizations of two distinct Dg-actions (¥, ;) and
(#,9,) on S3, where D = (4,1;((1,2),2)), Dg, = (2,2,1;),
and Dg, = (2,1;((1,2),4). The action ¥ is realized via two 1-
compatibilities between two actions ¥’ and " on S;, where Dy =
(4,0;((1,4),2),(1,2)) and Dpr = (4,0;((3,4),2),(1,2)). The weak
conjugacy classes of ((F, G;1),(G1,F)) and ({(F, G,),(G,,F)) are en-
coded by split metacyclic data sets nos. 3 and 6, respectively, in Ta-

ble 1.
(1,3)

FIGURE 11. A realization of a Z; X_; Z4-action (¥, G) on S5, where
Dg = (4,2,1;) and Dy = (3,1;((1, 3),2),((2,3),2)). The action ¥ is
realized via two 1-compatibilities between the action 7/ on two copies
of S, with Dy = (3,0;((1, 3),2),((2,3),2)). Furthermore, the action
F' is realized by a 1-compatibility between the actions "' and F'"
on S;, where Dg» = (3,0;((1, 3),3)) and Dpm = (3,0;((2, 3),3)). The
weak conjugacy class of ((F, G), (G, F)) is encoded by the split meta-
cyclic data set no. 14 in Table 2.

643
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FIGURE 12. Realization of Zg X_; Z,-action (¥,G),
Zg X3 Zy-action (F,G,) and Zg X5 Z,-action (¥,G;) on
Ss, where Dg, = Dg, = (2,2;((1,2),4)), Dg, = (2,3,1;)

and D = (8,1;((1,2),2)). The action F is realized
via two 1-compatibilities between two actions F’ and
F" on S, where D = (8,0;(1,2),(1,8),(3,8)) and

Drr = (8,0;(1,2),(5,8),(7,8)). The weak conjugacy class
of (&, G;),(G;,F)) 1 <i < 3isencoded by the split metacyclic
data set nos. 26, 25, and 22, respectively, in Table 2.

6. Classification of the weak conjugacy classes in
Mod(S;) and Mod(S;)

In this section, we will use Theorem 3.3 to classify the weak conjugacy classes
in Mod(S3) and Mod(Ss). For brevity, we will further assume the following
equivalence of the split metacyclic data sets (i.e. the weak conjugacy classes).

Definition 6.1. Two split metacyclic data sets
D = ((m - n, k), go; [(c11, 111), (€12, 112)s 1], -, [(Ce1s 1), (€25 p2)s e ])
D' = ((m-n,k), g [(c);,ny))s (€l np,)snil, oL [(e),m), ), (), 1)), s )
are said to be equivalent if for each tuple [(c],,n},),(c},, n;,), n], there exists a
unique tuple [(cj;, nj1), (¢ja, nj2), 1] satisfying the following conditions:
€y (Cl{l, ”{1 = (le, ”jl),
(ii) n] = n;,and

m

e
(iii) ci’zi, = cjzik“i + b;(k Mg 1) (mod n) for some a;,b; € Z.
C? nj2

Note that equivalent data sets D and 2’ as in Definition 6.1 satisfy l)lf = D,
for i = 1,2. We will now provide a classification of the weak conjugacy classes
of finite split metacyclic subgroups of Mod(S;) and Mod(Ss) (up to this equiva-
lence) in Tables 1 and 2, respectively.
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