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Split metacyclic actions on surfaces

Neeraj K. Dhanwani, Kashyap Rajeevsarathy
and Apeksha Sanghi

Abstract. LetMod(Sg) be the mapping class group of the closed orientable
surface Sg of genus g ≥ 2. In this paper, we derive necessary and su�cient
conditions under which two torsion elements in Mod(Sg) will have conju-
gates that generate a non-abelian �nite split metacyclic subgroup ofMod(Sg).
As applications of the main result, we give a complete characterization of the
�nite dihedral and the generalized quaternionic subgroups ofMod(Sg)up to a
certain equivalence that we will call weak conjugacy. Furthermore, we show
that any �nite-order mapping class whose corresponding orbifold is a sphere
has a conjugate that lifts under certain �nite-sheeted regular cyclic covers of
Sg. Moreover, for g ≥ 5, we show the existence of an in�nite dihedral sub-
group ofMod(Sg) that is generated by an involution and a root of a bounding
pair map of degree 3. Finally, we provide a complete classi�cation of the
weak conjugacy classes of the non-abelian �nite split metacyclic subgroups
ofMod(S3) andMod(S5). We also describe nontrivial geometric realizations
of some of these actions.
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1. Introduction
Let Sg be the closed orientable surface of genus g ≥ 0, Homeo+(Sg) be the

group of orientation-preserving homeomorphisms of Sg, and letMod(Sg) be the
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mapping class group of Sg. Given F, G ∈ Mod(Sg) of �nite order, a pair of con-
jugates F′, G′ (of F, G resp.) may (or may not) generate a subgroup isomorphic
to ⟨F, G⟩. For example, consider the periodic mapping classes F, G ∈ Mod(S7)
represented by homeomorphisms ℱ, G ∈ Homeo+(S7) (see [23] for details), as
shown in the �rst sub�gure of Figure 1 below. FromFigure 1, it is apparent that
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Figure 1. Split metacyclic subgroups of Mod(S7) with conju-
gate generators.

⟨F, G⟩ ≅ D8 (i.e. the dihedral group of order 8). For 1 ≤ i ≤ 3, we consider the
conjugates Gi of G, represented by the Gi ∈ Homeo+(S7) and for 1 ≤ j ≤ 2, we
consider the conjugatesℱj ofℱ indicated in the (second and third) sub�gures.
In the second sub�gure, we havemarked the �xed points of a conjugateℱ1 ofℱ
(with the same local rotation angles as ℱ). Also, note that the third sub�gure
is di�erent from the �rst (as an imbedding S7 ↪ ℝ3), since it has four pairs
of tubes connecting the spheres, where in each pair, the tubes are aligned one
behind the other. As it turns out, ⟨F1, G1⟩ ≅ ⟨F2, G2⟩ ≅ D8, but since ℱ1 and
G3 commute, we have ⟨F1, G3⟩ ≅ ℤ4 × ℤ2. Considering that the �nite abelian
subgroups ofMod(Sg) have been extensively studied [9, 11, 14, 20], this exam-
ple motivates the following natural question: Given F′, G′ ∈ Mod(Sg) of orders
n,m respectively, can one derive equivalent conditions under which there ex-
ist conjugates F, G (of F′, G′ resp.) such that ⟨F, G⟩ is a �nite non-abelian split
metacyclic subgroup of orderm ⋅ n and twist factor k admitting the presentation

⟨F, G | Fn = Gm = 1, G−1FG = Fk⟩ ≅ ℤn ⋊k ℤm?

Themain result in this paper answers this question in the a�rmative (see The-
orem 3.3). This result is a generalization of an analogous result from [11] for
two-generator �nite abelian subgroups.

Given a�nite split (non-abelian)metacyclic subgroupH = ⟨F, G⟩ ofMod(Sg)
as above, the Nielsen realization theorem [17, 22] asserts that wemay also view
H as a subgroup ofHomeo+(Sg)with an associatedH-action on Sg inducing the
branched cover Sg → Sg∕H. Consider representatives ℱ, G ∈ Homeo+(Sg) of
F, G ∈ Mod(Sg) (resp.) with the same orders. Given a branched cover Sg →
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Sg∕⟨ℱ⟩(= X) and a Ḡ ∈ Mod(X) that lifts under this cover to a G ∈ Mod(Sg), it
follows from Birman-Hilden theory [2, 3, 4, 5] that there is an exact sequence:

1 → ⟨F⟩ → ⟨F, G⟩ → ⟨Ḡ⟩ → 1. (†)

A key ingredient in the proof of the main result is the derivation of elemen-
tary number-theoretic conditions under which such a Ḡ will have a conjugate
that lifts so that the sequence (†) splits (see Section 3). The proof integrates
ideas from the theory of group actions on surfaces [17, 19] with elements of
Thurston’s orbifold theory [26, Chapter 13]. Another crucial aspect of the proof
(of the main result) is the analysis of the geometric properties of the automor-
phism Ḡ induced by G on Sg∕⟨ℱ⟩.

In Section 4, we provide several applications of our main theorem. The
�rst application concerns the �nite dihedral subgroups ofMod(Sg). Let D2n =
ℤn⋊−1ℤ2 be the dihedral group of order 2n. We derive the following characteri-
zation of dihedral subgroups ofMod(Sg) in Subsection 4.1 (see Proposition 4.2).

Proposition 1. Let F ∈ Mod(Sg) be of order n. Then there exists an involution
G ∈ Mod(Sg) such that ⟨F, G⟩ ≅ D2n if and only if F and F−1 are conjugate in
Mod(Sg).

It is worth mentioning here that dihedral actions on Riemann surfaces have
been classi�ed in [10].

For n ≥ 2, the generalized quaternion group Q2n+1 is a metacyclic group of
order 2n+1 that admits the presentation

⟨F, G | F2n = G4 = 1, F2n−1 = G2, G−1FG = F−1⟩.

In Subsection 4.2, we obtain the following characterization of generalized quater-
nionic actions on Sg (see Proposition 4.7).

Proposition 2. For g ≥ 2, let F ∈ Mod(Sg) be of order 2n. Then there exists a
G ∈ Mod(Sg) such that ⟨F, G⟩ ≅ Q2n+1 if and only if the ⟨ℱ, G⟩-action on Sg lifts to
a (⟨ℱ̃, G̃⟩ ≅)ℤ2n ⋊−1 ℤ4-action on S2g−1 under the 2-sheeted regular cyclic cover
S2g−1 → Sg with deck transformation group ⟨G̃2ℱ̃2n−1⟩.

For a periodic mapping class F ∈ Mod(Sg), the corresponding orbifoldO⟨ℱ⟩ ∶=
Sg∕⟨ℱ⟩ ≈ Sg0,r, where Sg0,r is the surface of genus g0 ≥ 0 with r ≥ 0 marked
points. It is known [13] that F is irreducible if and only if O⟨ℱ⟩ ≈ S0,3. In
Subsection 4.3, we provide a characterization of the split metacyclic subgroups
⟨F, G⟩ ofMod(Sg) when F is irreducible (see Corollary 4.11).

Let LModp(Sg) be the liftable mapping class group of a �nite n-sheeted reg-
ular cyclic cover p ∶ Sn(g−1)+1 → Sg with deck transformation groupℤn = ⟨ℱ⟩,
and let SModp(Sn(g−1)+1) be the symmetric mapping class group of p (see [21]),
which in this case turns out to be the normalizer of ⟨F⟩ in Mod(Sn(g−1)+1). In
this context, we have the following result.

Proposition 3. For g, n ≥ 2, let p ∶ Sn(g−1)+1 → Sg be a regular cover with
deck transformation group ⟨ℱ⟩ ≅ ℤn. Then any involution G′ ∈ Mod(Sg) has a
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conjugate G ∈ LModp(Sg) with a lift G̃ ∈ SModp(Sn(g−1)+1) such that ⟨F, G̃⟩ ≅
D2n.

Moreover, we provide su�cient conditions for the liftability of a periodic map-
ping class (under p) whose corresponding orbifold is a sphere (see Proposi-
tions 4.15 - 4.16). As a consequence, we obtain the following corollary.

Corollary 1. For g ≥ 2 and prime n, let p ∶ Sn(g−1)+1 → Sg be a regular n-
sheeted cover with deck transformation group ⟨ℱ⟩ ≅ ℤn. Let G′ ∈ Mod(Sg) be
of order m such that the genus of O⟨G′⟩ is zero. Then G′ has a conjugate G ∈
LModp(Sg) with a lift G̃ ∈ SModp(Sn(g−1)+1) such that ⟨F, G̃⟩ ≅ ℤn ⋊k ℤm if
there exists k ∈ ℤ×

n such that |k| = m.

Consider an in�nite metacyclic group [15] that admits a presentation of the
form

⟨x, y | y2m = 1, y−1xy = x−1⟩.

When m = 1, we call such a group an in�nite dihedral group. By a root of a
mapping classF ∈ Mod(Sg) of degreen, wemean aG ∈ Mod(Sg) such thatGn =
F. In Subsection 4.4, we use the theory developed in [24, 25] to construct roots
of multitwists (i.e. products of powers of commuting Dehn twists) inMod(Sg)
which together with certain mapping classes of order 2m generate in�nite split
metacyclic subgroups ofMod(Sg) (of the form described above) for g ≥ 5 (see
Proposition 4.21). In particular, form = 1, we have the following corollary.

Corollary 2. For g ≥ 5, there exists an in�nite dihedral subgroup of Mod(Sg)
that is generated by an involution and a root of a bounding pair map of degree 3.

In Section 5, we classify the non-abelian �nite split metacyclic subgroups of
Mod(S3) andMod(S5) up to a certain weaker notion of conjugacy that we call
weak conjugacy (see De�nition 2.10), which arises naturally in our setting. It
may be noted that similar classi�cations for 2 ≤ g ≤ 4 can also be obtained
through the techniques developed in [6, 8, 18]. Finally, we apply the results
in [23] to provide an algorithm for determining the hyperbolic structures that
realize split metacyclic subgroups as groups of isometries. We conclude the pa-
per by giving nontrivial geometric realizations of some non-abelian �nite split
metacyclic subgroups ofMod(S3) andMod(S5).

2. Preliminaries
2.1. Fuchsian groups. We let Homeo+(Sg) denote the group of orientation-
preserving homeomorphisms of Sg, and letH < Homeo+(Sg) be a �nite group.
A faithful and properly discontinuous H-action on Sg induces a branched cov-
ering

Sg → OH ∶= Sg∕H
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with l cone points x1, … , xl on the quotient orbifold OH ≈ Sg0 (which we will
call the corresponding orbifold) of orders n1, … , nl, respectively. Then the orb-
ifold fundamental group �orb1 (OH) of OH has a presentation given by

⟨
�1, �1, … , �g0 , �g0 , �1, … , �l | �

n1
1 , … , �

nl
l ,

l∏

j=1
�j

g0∏

i=1
[�i, �i]

⟩
. (1)

In classical parlance, �orb1 (OH) is also known as a Fuchsian group [16, 19] with
signature

Γ(OH) ∶= (g0; n1, … , nl),

and the relation
∏l

j=1 �j
∏g0

i=1[�i, �i] appearing in its presentation is called the
long relation. From Thurston’s orbifold theory [26, Chapter 13], we obtain an
exact sequence

1 → �1(Sg) → �orb1 (OH)
�H,,→ H → 1. (*)

In this context, we will require the following result due to Harvey [14].

Lemma 2.1. A �nite groupH acts faithfully on Sg with Γ(OH) = (g0; n1, … , nl)
if and only if it satis�es the following two conditions:

(i)
2g − 2
|H|

= 2g0 − 2 +
l∑

i=1
(1 − 1

ni
), and

(ii) there exists a surjective homomorphism �H ∶ �orb1 (OH) → H that preserves
the orders of all torsion elements of �orb1 (OH).

2.2. Cyclic actions on surfaces. For g ≥ 1, let F ∈ Mod(Sg) be of order
n. The Nielsen-Kerckho� theorem [17, 22] asserts that F is represented by a
standard representative ℱ ∈ Homeo+(Sg) of the same order. We refer to both
ℱ and the group it generates, interchangeably, as aℤn-action on Sg. Each cone
point xi ∈ O⟨ℱ⟩ lifts to an orbit of size n∕ni on Sg, and the local rotation induced
by ℱ around the points in each orbit is given by 2�c−1i ∕ni, where gcd(ci, ni) =
1 and cic−1i ≡ 1 (mod ni). Further, it is known (see [14] and the references
therein) that the exact sequence in (*) takes the following form

1 → �1(Sg) → �orb1 (O⟨ℱ⟩)
�⟨ℱ⟩
,,,→ ⟨ℱ⟩ → 1,

where �⟨ℱ⟩(�i) = ℱ(n∕ni)ci , for 1 ≤ i ≤ l. We will now introduce a tuple of
integers that encodes the conjugacy class of a ℤn-action on Sg.

De�nition 2.2. A data set of degree n is a tuple

D = (n, g0, r; (c1, n1), … , (cl, nl)),

where n ≥ 2, g0 ≥ 0, and 0 ≤ r ≤ n − 1 are integers, and each ci ∈ ℤ×
ni such

that:
(i) r > 0 if and only if l = 0 and gcd(r, n) = 1, whenever r > 0,
(ii) each ni ∣ n,
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(iii) lcm(n1, … , n̂i, … , nl) = N, for 1 ≤ i ≤ l, where N = n if g0 = 0, and

(iv)
l∑

j=1

n
nj
cj ≡ 0 (mod n).

The number g determined by the Riemann-Hurwitz equation

2 − 2g
n = 2 − 2g0 +

l∑

j=1
(
1
nj

− 1) (2)

is called the genus of the data set, denoted by g(D).

Note that quantity r (in De�nition 2.2) will be non-zero if and only if D rep-
resents a free rotation of Sg by 2�r∕n, in which case, D will take the form
(n, g0, r; ). We will not include r in the notation of a data set, whenever r = 0.

By the Nielsen-Kerckho� theorem, the canonical projectionHomeo+(Sg) →
Mod(Sg) induces a bijective correspondence between the conjugacy classes of
�nite-ordermaps inHomeo+(Sg) and the conjugacy classes of �nite-ordermap-
ping classes in Mod(Sg). This leads us to the following lemma (that follows
from [25, Theorem 3.8] and [14]), which allows us to use data sets to describe
the conjugacy classes of cyclic actions on Sg.

Lemma 2.3. For g ≥ 1 and n ≥ 2, data sets of degree n and genus g correspond
to conjugacy classes of ℤn-actions on Sg.

We will denote the data set corresponding to the conjugacy class of a periodic
mapping class F by DF . For compactness of notation, we also write a data set
D (as in De�nition 2.2) as

D = (n, g0, r; ((d1, m1), �1), … , ((dl′ , ml′), �l′)),

where (di, mi) are the distinct pairs in the multiset S = {(c1, n1), … , (cl, nl)},
and the �i denote the multiplicity of the pair (di, mi) in the multiset S. Further,
we note that every cone point [x] ∈ O⟨ℱ⟩ corresponds to a unique pair in the
multiset S appearing in DF , which we denote by Px ∶= (cx, nx).

Given u ∈ ℤ×
m and G ∈ H ≤ Homeo+(Sg) be of orderm, let FG(u,m) denote

the set of �xed points of G with induced rotation angle 2�u∕m. Let CH(G) be
the centralizer of G ∈ H and ∼ denote the conjugation relation between any
two elements inH. We conclude this subsection by stating the following result
from the theory of Riemann surfaces [7], which we will use in the proof of our
main theorem.

Lemma 2.4. LetH < Homeo+(Sg) of �nite order with Γ(OH) = (g0; n1, … , nl),
and let G ∈ H be of orderm. Then for u ∈ ℤ×

m, we have

|FG(u,m)| = |CH(G)| ⋅
∑

1≤i≤l
m∣ni

G∼�H(�i)niu∕m

1
ni
.
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2.3. Hyperbolic structures realizing cyclic actions. For a �nite subgroup
H < Mod(Sg), let Fix(H) denote the subspace of �xed points in the Teichm̈uller
space Teich(Sg) under the action of H. When H is cyclic, a method for con-
structing thehyperbolicmetrics representing the points inFix(H)was described
in [1] and [23], thereby yielding explicit solutions to the Nielsen realization
problem [17, 22]. This method involved the construction of an arbitrary peri-
odic element inMod(Sg) (that is not realizable as a rotation of Sg) by the “com-
patibilities" of irreducible periodic components, which are uniquely realized as
rotations of certain special hyperbolic polygons with side-pairings.

A mapping class that is not reducible is called irreducible. Let F ∈ Mod(Sg)
be of order n. Gilman [13] showed that F is irreducible if and only if Γ(O⟨ℱ⟩)
has the form (0; n1, n2, n3) (i.e. the quotient orbifoldO⟨ℱ⟩ is a sphere with three
cone points.) Following the nomenclature in [1, 23], F is rotational if ℱ is ei-
ther of order 2, or ℱ has at most 2 �xed points. A non-rotational F is said to
be of Type 1 if Γ(O⟨ℱ⟩) = (g0; n1, n2, n), otherwise, it is called a Type 2 action.
The following result describes the unique hyperbolic structure that realizes an
irreducible Type 1 action.

Theorem 2.5. For g ≥ 2, consider a irreducible Type 1 action F ∈ Mod(Sg)with

DF = (n, 0; (c1, n1), (c2, n2), (c3, n)).

Then F can be realized explicitly as the rotation �F =
2�c−13
n of a hyperbolic poly-

gon PF with a suitable side-pairing W(PF), where PF is a hyperbolic k(F)-gon
with

k(F) ∶= {
2n, if n1, n2 ≠ 2, and
n, otherwise,

and for 0 ≤ m ≤ n − 1,

W(PF) =

⎧
⎪

⎨
⎪
⎩

n∏

i=1
a2i−1a2i with a−12m+1 ∼ a2z, if k(F) = 2n, and

n∏

i=1
ai with a−1m+1 ∼ az, otherwise,

where z ≡ m + qj (mod n) with q = (n∕n2)c−13 and j = n2 − c2.

Further, it was shown [23] that the process of realizing an arbitrary non-
rotational actionF of order n using these unique hyperbolic structures realizing
irreducible Type 1 components involved two broad types of processes.
(a) k-compatibility. In this process, for i = 1, 2, we take a pair of irreducible

Type 1 mapping classes Fi ∈ Mod(Sgi ) such that the ⟨ℱi⟩-action on Sgi
induces a pair of compatible orbits of size k (where the induced local ro-
tation angles add upto 0 modulo 2�). We remove (cyclically permuted)
⟨ℱi⟩-invariant disks around points in the compatible orbits and then iden-
tify the resulting boundary components realizing a periodic mapping class
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F ∈ Mod(Sg1+g2+k−1). An analogous construction can also be performed
using a pair of orbits induced by a single ⟨ℱ′⟩-action on Sg to realize a peri-
odic mapping class F ∈ Mod(Sg+k).

(b) Permutation additions and deletions. The addition of a permutation compo-
nent involves the removal of (cyclically permuted) invariant disks around
points in an orbit of size n induced by an ⟨ℱ⟩-action on Sg and then past-
ing n copies of S1g′ (i.e. Sg′ with one boundary component) to the resultant
boundary components. This realizes an action onSg+ng′ with the same�xed
point and orbit data asF. The reversal of this process is called a permutation
deletion.

Thus, in summary, we have the following:

Theorem 2.6. [23, Theorem 2.24] For g ≥ 2, a non-rotational periodicmapping
class inMod(Sg) can be realized through �nitely many k-compatibilities, permu-
tation additions, and permutation deletions on the unique structures of type PF
realizing irreducible Type 1 mapping classes.

A�nal but yet vital ingredient in the realization of splitmetacyclic actions is the
following elementary lemma, which is a direct generalization of [11, Lemma
6.1].

Lemma 2.7. LetH = ⟨F, G⟩ be a �nite metacyclic subgroup ofMod(Sg). Then

Fix(H) = Fix(⟨F⟩) ∩ Fix(⟨G⟩).

2.4. Split metacyclic actions on surfaces. Given integers m, n ≥ 2, and
k ∈ ℤ×

n such that km ≡ 1 (mod n), a �nite split metacyclic action of order mn
(written asm ⋅ n) on Sg is a tuple (H, (G,ℱ)), whereH < Homeo+(Sg), and

H = ⟨ℱ, G |ℱn = Gm = 1, G−1ℱG = ℱk⟩.

The multiplicative class k will be called the twist factor of the split metacyclic
action (H, (G,ℱ)). As we are only interested in non-abelian split metacyclic
subgroups, we will assume from here on that k ≠ 1. Note that in classical
notation H ≅ ℤn ⋊k ℤm. As ⟨ℱ⟩ ⊲ H, it is known [7, 27] that G would induce
a Ḡ ∈ Homeo+(O⟨ℱ⟩) that preserves the set of cone points in O⟨ℱ⟩ along with
their orders. We will call Ḡ, the induced automorphism on O⟨ℱ⟩ by G, and we
formalize this notion in the following de�nition.

De�nition 2.8. LetH < Homeo+(Sg) be a �nite cyclic groupwith |H| = n. We
say a Ḡ ∈ Homeo+(OH) is an automorphism of OH if for [x], [y] ∈ OH , k ∈ ℤ×

n
and Ḡ([x]) = [y], we have:
(i) nx = ny, and
(ii) cx = kcy.
We denote the group of automorphisms of OH by Autk(OH).

We note that the concept of an induced orbifold automorphism inDe�nition 2.8
is more general than the one that was used in the abelian case ([11]), which
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required a more rigid condition that cx = cy. The following lemma, which
provides somebasic properties of the inducedmap Ḡ, is a splitmetacyclic analog
of [11, Lemma 3.1].

Lemma 2.9. Let G,ℱ ∈ Homeo+(Sg) be maps of ordersm, n, respectively, such
that G−1ℱG = ℱk, and letH = ⟨ℱ⟩. Then:
(i) G induces a Ḡ ∈ Autk(OH) such that

OH∕⟨Ḡ⟩ = Sg∕⟨ℱ, G⟩,

(ii) |Ḡ| divides |G|, and
(iii) |Ḡ| < m if and only ifℱl = Gu, for some 0 < l < n and 0 < u < m.

We will now formalize the notion of weak conjugacy from Section 1.

De�nition 2.10. We say that two �nite split metacyclic actions (H1, (G1, ℱ1))
and (H2, (G2, ℱ2)) of orderm ⋅ n and twist factor k are weakly conjugate if there
exists an isomorphism

 ∶ �orb1 (OH1
) ≅ �orb1 (OH2

)

and an isomorphism � ∶ H1 → H2 such that the following conditions hold.
(i) �((G1, ℱ1)) = (G2, ℱ2).
(ii) For i = 1, 2, let �Hi

∶ �orb1 (OHi
) → Hi be the surface kernel (in the exact

sequence (*) in Section 2). Then (�◦�H1
)(g) = (�H2

◦ )(g), whenever g ∈
�orb1 (OH1

) is of �nite order.
(iii) The pair (G1, ℱ1) is conjugate (component-wise) to the pair (G2, ℱ2) in

Homeo+(Sg).
The notion of weak conjugacy de�nes an equivalence relation on split meta-
cyclic actions on Sg and the equivalence classes thus obtained will be called
weak conjugacy classes.

Remark 2.11. By virtue of the Nielsen-Kerckho� theorem, the notion of weak
conjugacy inDe�nition 2.10 naturally extends to an analogous notion inMod(Sg)
via the natural association

(⟨ℱ, G⟩, (G,ℱ)) ↔ (⟨F, G⟩, (G, F)).

For simplicity, we will now introduce the following notation.

De�nition 2.12. Let F, G ∈ Mod(Sg) be a �nite order map of orders n,m,
respectively. Then for some k ∈ ℤ×

n ⧵ {1}, we say (in symbols) that JF, GKk = 1
if there exists conjugates F′, G′ (of F, G resp.) such that ⟨F′, G′⟩ ≅ ℤn ⋊k ℤm
satisfying the relation (G′)−1F′G′ = (F′)k.

We conclude this subsection with the following crucial remark.

Remark 2.13. Let H < Mod(Sg) be a �nite split metacyclic subgroup, and let
I(H) denote the isomorphism class ofH (inMod(Sg)). By Remark 2.11, we have

I(H) = {H′ ∶ H′ ≅ H and (H′, (G′, F′)) represents a weak conjugacy class
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for some F′, G′ ∈ H′ such thatH′ = ⟨F′, G′⟩}.

Consequently, periodic mapping classes F, G ∈ Mod(Sg) satisfy JF, GKk = 1 if
and only if there exists conjugates F′, G′ (of F, G resp.) such that the triple
(⟨F′, G′⟩, (G′, F′)) represents a weak conjugacy class associated with a �nite
split metacyclic subgroup (of twist factor k) ofMod(Sg).

3. Main theorem
In this section, we establish the main result of the paper by deriving equiv-

alent conditions under which torsion elements F, G ∈ Mod(Sg) would satisfy
JF, GKk = 1. We will introduce an abstract tuple of integers that will capture
each weak conjugacy class associated with a �nite split metacyclic subgroup of
Mod(Sg).

De�nition 3.1. A split metacyclic data set of degree m ⋅ n, twist factor k, and
genus g ≥ 2 is a tuple

((m ⋅ n, k), g0; [(c11, n11), (c12, n12), n1], … , [(cl1, nl1), (cl2, nl2), nl]),

where m, n ≥ 2, the nij are positive integers for 1 ≤ i ≤ l, 1 ≤ j ≤ 2, and
k ∈ ℤ×

n such that km ≡ 1 (mod n), satisfying the following conditions.

(i)
2g − 2
mn = 2g0 − 2 +

l∑

i=1
(1 − 1

ni
) .

(ii) (a) For each i, j, ni1 ∣ m, ni2 ∣ n, either gcd(cij, nij) = 1 or cij = 0, and
cij = 0 if and only if nij = 1.

(b) For each i, ni = ni1 ⋅ �i, where �i is least positive integer such that

ci2
n
ni2

⎛
⎜
⎝

ni1�i−1∑

i′=0
k
ci1

m
ni1
i′⎞
⎟
⎠
≡ 0 (mod n).

(iii)
l∑

i=1
ci1

m
ni1

≡ 0 (mod m).

(iv) De�ning A ∶=
l∑

i=1
ci2

n
ni2

l∏

s=i+1
k
cs1

m
ns1 and d ∶= gcd(n, k − 1), we have

A ≡ {
0 (mod n), if g0 = 0, and
d� (mod n), for � ∈ ℤn, if g0 ≥ 1.

(v) If g0 = 0, there exists (p1, … , plv), (q1, … , qlv) ∈ (ℕ ∪ {0})lv and v ∈ ℕ
such that the following conditions hold.
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(a)
lv∑

i′=1
pi′ci1

m
ni1

≡ 1 (mod m) and

lv∑

i′=1
ci2

n
ni2

(
pi′∑

s=1
k
ci1

m
ni1
(pi′−s))

⎛
⎜
⎝

lv∏

t′=i′+1
k
pt′ ct1

m
nt1
⎞
⎟
⎠
≡ 0 (mod n).

(b)
lv∑

i′=1
qi′ci1

m
ni1

≡ 0 (mod m) and

lv∑

i′=1
ci2

n
ni2

(
qi′∑

s=1
k
ci1

m
ni1
(qi′−s))

⎛
⎜
⎝

lv∏

t′=i′+1
k
qt′ ct1

m
nt1
⎞
⎟
⎠
≡ 1 (mod n), where

i ≡ {
i′ (mod l), if i′ ≢ 0 (mod l),
l otherwise,

t ≡ {
t′ (mod l), if t′ ≢ 0 (mod l), and
l, otherwise.

(vi) If g0 = 1, there exists (p1, … , plv), (q1, … , qlv) ∈ (ℕ ∪ {0})lv and m′, n′ ∈
ℤ, v ∈ ℕ such thatm′ ∣ m and n′ ∣ n, satisfying the following conditions.

(a)
lv∑

i′=1
pi′ci1

m
ni1

≡ m′ (mod m) and

lv∑

i′=1
ci2

n
ni2

(
pi′∑

s=1
k
ci1

m
ni1
(pi′−s))

⎛
⎜
⎝

lv∏

t′=i′+1
k
pt′ ct1

m
nt1
⎞
⎟
⎠
≡ 0 (mod n).

(b)
lv∑

i′=1
qi′ci1

m
ni1

≡ 0 (mod m) and

lv∑

i′=1
ci2

n
ni2

(
qi′∑

s=1
k
ci1

m
ni1
(qi′−s))

⎛
⎜
⎝

lv∏

t′=i′+1
k
qt′ ct1

m
nt1
⎞
⎟
⎠
≡ n′ (mod n), where

i ≡ {
i′ (mod l), if i′ ≢ 0 (mod l),
l otherwise,

t ≡ {
t′ (mod l), if t′ ≢ 0 (mod l), and
l, otherwise.

(c) A ≡ −�k� + � (mod n) for some non-negative integers �, �, where

lcm(
m
m′ ,

m
gcd(m, �)

) = m and lcm(
n
n′ ,

n
gcd(n, �)

) = n.

Furthermore, we set � = 1, whenm′ = 0, and � = 1, when n′ = 0.
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Wewill now show that the splitmetacyclic data sets of genus g are in one-to-one
correspondence with the weak conjugacy classes of split metacyclic subgroups
ofMod(Sg).

Proposition 3.2. For integers n,m, g ≥ 2, the split metacyclic data sets of degree
m ⋅ n with twist factor k and genus g correspond to the weak conjugacy classes of
ℤn ⋊k ℤm-actions on Sg.

Proof. LetD be a splitmetacyclic data set of degreem⋅nwith twist factor k and
genus g (as in De�nition 3.1 above). We need to show thatD corresponds to the
weak conjugacy class of aℤn⋊kℤm-action on Sg represented by (H, (G,ℱ)). To
this e�ect, we �rst establish the existence of an epimorphism �H ∶ �orb1 (OH) →
Hwhich preserves the order of torsion elements. Let the presentations ofH and
�orb1 (OH) be given by

H = ⟨ℱ, G |ℱn = Gm = 1, G−1ℱG = ℱk⟩ ≅ ℤn ⋊k ℤm and

⟨�1, �1,⋯ , �g0 , �g0 , �1,⋯ , �l | �
n1
1 = ⋯ = �nll =

l∏

j=1
�j

g0∏

i=1
[�i, �i] = 1⟩,

respectively. We consider the map

�i
�H↦,→ G

ci1
m
ni1ℱ

ci2
n
ni2 , for 1 ≤ i ≤ l.

As |G
ci1

m
ni1 | = ni1 and |ℱ

ci2
n
ni2 | = ni2, condition (ii) of De�nition 3.1would imply

that �H is a map which preserves the order of torsion elements. For clarity, we
break the argument for the surjectivity of �H into three cases.

First, we consider the case when g0 = 0. Conditions (iii) and (iv) show that
�H satis�es the long relation

∏l
i=1 �i = 1 and the surjectivity of �H follows

from condition (v).
When g0 ≥ 2, �orb1 (OH) has additional hyperbolic generators (viewing them

as isometries of the hyperbolic plane), namely the �i and the �i. Extending �H
by mapping �1

�H↦,→ G, �1
�H↦,→ ℱ yields an epimorphism. Moreover, by carefully

choosing the images of the �i and the �i under �H , for i ≥ 2, conditions (iii)
and (iv) would together ensure that the long relation

∏l
j=1 �j

∏g0
i=1[�i, �i] = 1

is satis�ed.
When g0 = 1, �orb1 (OH) has two additional hyperbolic generators, namely

the �1 and the �1. We extend �H by de�ning �1
�H↦,→ G� and �1

�H↦,→ ℱ�, and
apply conditions (iii), (iv), and (vi) to obtain the desired epimorphism.

It remains to show that D determines ℱ, G ∈ Homeo+(Sg) up to conjugacy
(i.e. condition (iii) of De�nition 2.10). Let DḠ = (m, g0; (c11, n11), … , (cl1, nl1))
represent the conjugacy class of the action Ḡ induced on the orbifold O⟨ℱ⟩ by
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the action G ∈ Homeo+(Sg). We note that by Lemma 2.9, Γ(O⟨ℱ⟩) has the form

(g1;
n1
n11

, … ,
n1
n11

⏟⎴⎴⏟⎴⎴⏟
m
n11

times

, … ,
nl
nl1

, … ,
nl
nl1

⏟⎴⎴⏟⎴⎴⏟
m
nl1

times

),

where if ni∕ni1 = 1, for some 1 ≤ i ≤ l, then we exclude it from the signature,
and g1 = g(DḠ) is determined by Equation (2) of De�nition 2.2. So, we get

DF = (n, g1; (d11,
n1
n11

), … , (d1 m
n11
,
n1
n11

), … , (dl1,
nl
nl1

), … , (dl m
nl1

,
nl
nl1

)),

where

di1ni1 ≡ ci2
ni
ni2

ni1∑

j′=1
k
ci1

m
ni1
(j′−1)

(mod ni) and

diji ≡ di1k(ji−1) (mod
ni
ni1

) 1 ≤ i ≤ l, 1 ≤ ji ≤
m
ni1

.

Moreover, by applying Lemma 2.4, we see that

DG = (m, g2; ((u−1ij , mi),
mi|f

G
m
mi
(uij, mi)|

m ) ∶ uij ∈ ℤ×
mi

andmi ∣ m),

where

|f
G
m
mi
(uij, mi)| = |F

G
m
mi
(uij, mi)| −

∑

mi′∈ℕ
mi′≠mi
mi|mi′ |m

∑

(ui′j′ ,mi′ )=1
uij≡ui′j′ (modmi)

|f
G

m
mi′
(ui′j′ , mi′)|

and g2 is determined by Equation (2) of De�nition 2.2.
Conversely, consider the weak conjugacy class of ℤn ⋊k ℤm-actions on Sg

represented by (H, (G,ℱ)), whereH = ⟨ℱ, G⟩. So, Lemma 2.1 would imply that
there exists a surjective homomorphism �H ∶ �orb1 (OH) → H de�ned by

�i
�H↦,→ G

ci1
m
ni1ℱ

ci2
n
ni2 , for 1 ≤ i ≤ l,

which is order-preserving on the torsion elements. This yields a splitmetacyclic
data set of degreem ⋅ n with twist factor k and genus g as in De�nition 3.1. By
Lemma 2.1, this tuple satis�es condition (i) of De�nition 3.1, while condition
(ii) follows from the fact that �H is order-preserving on torsion elements. Con-
ditions (iii)-(iv) follow from the long relation satis�ed by �orb1 (OH), and con-
dition (v)-(vi) are implied by the surjectivity of �H . Thus, we obtain the split
metacyclic data set of degree m ⋅ n with twist factor k and genus g, and the
result follows. �

Wedenote the data setsDF andDG (representing the cyclic factors ofH) derived
from the split metacyclic data set D appearing in the proof of Proposition 3.2
byD1 andD2, respectively. Thus, our main theorem will now follow from Re-
mark 2.13 and Proposition 3.2.
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Theorem 3.3 (Main theorem). Let F, G ∈ Mod(Sg) be of orders n,m, respec-
tively. Then JF, GKk = 1 if and only if there exists a split metacyclic data setD of
degreem ⋅ n, twist factor k, and genus g such thatD1 = DF andD2 = DG .

We conclude this section with an example of a split metacyclic action of order
16 on S5.

Example 3.4. The split metacyclic data setD = ((4 ⋅ 4, −1), 1; [(0, 1), (1, 2), 2])
encodes the weak conjugacy class of a ℤ4 ⋊−1 ℤ4-action on S5 represented by
(⟨ℱ, G⟩, (G,ℱ)), where

DF = (4, 1; (1, 2), (1, 2), (1, 2), (1, 2)) and DG = (4, 2, 1; ).

The geometric realization of this action is illustrated in Figure 2 below.

(1, 2)

(1, 2)

(1, 2)

(1, 2)

G
�

2

(1, 2)(1, 2) (1, 2) (1, 2)

(1, 4)(1, 4)

(1, 4)(1, 4)

(3, 4) (3, 4)

(3, 4) (3, 4)

Figure 2. Realization of a ℤ4 ⋊−1 ℤ4-action on S5.

Note that the pairs of integers appearing in Figure 2 represent the compatible
orbits involved in the realization of ℱ. Here, the action ℱ is realized via two
1-compatibilities between the action ℱ′ on two copies of S2 with

DF′ = (4, 0; ((1, 2), 2), (1, 4), (3, 4)).

Furthermore, the actionℱ′ is realized by a 1-compatibility between the actions
ℱ′′ and (ℱ′′)3 on two copies of S1 with

DF′′ = (4, 0; (1, 2), (1, 4), (1, 4)).

4. Applications
4.1. Dihedral groups. Let D2n = ℤn ⋊−1 ℤ2 be the dihedral group of order
2n. We will call a split metacyclic data set of degree 2 ⋅ n and twist factor −1 a
dihedral data set. A simple computation reveals that a dihedral data set

((2 ⋅ n, −1), g0; [(c11, n11), (c12, n12), n1],⋯ , [(cl1, nl1), (cl2, nl2), nl]),
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would have the property that (cj1, nj1) ∈ {(0, 1), (1, 2)}, for 1 ≤ j ≤ l. The
following is an immediate consequence of Proposition 3.2.

Corollary 4.1. For g ≥ 2 and n ≥ 3, dihedral data sets of degree 2 ⋅ n and genus
g correspond to the weak conjugacy classes of D2n-actions on Sg.

The following proposition provides an alternative characterization of a D2n-
action in terms of the generator of its factor subgroup of order n.

Proposition 4.2. Let F ∈ Mod(Sg) be of order n. Then there exists an involution
G ∈ Mod(Sg) such that ⟨F, G⟩ ≅ D2n if and only if DF has the form

(n, g0, r; ((c1, n1), (−c1, n1), … , (cs, ns), (−cs, ns)). (**)

Proof. Suppose that DF has the form (∗∗). Then O⟨ℱ⟩ is an orbifold of genus
g0 with 2s cone points [x1], [y1], … , [xs], [ys], where Pxi = (ci, ni) and Pyi =
(−ci, ni), for 1 ≤ i ≤ s. Up to conjugacy, let Ḡ ∈ Autk(O⟨ℱ⟩) be the hyperelliptic
involution so that Ḡ([xi]) = [yi], for 1 ≤ i ≤ s. To prove our assertion, it would
su�ce to show the existence of an involution G ∈ Homeo+(Sg) that induces
Ḡ. This amounts to showing that there exists a split metacyclic data set D of
degree 2 ⋅ n with twist factor −1 encoding the weak conjugacy class (H, (G,ℱ))
so that DG has degree 2. Consider the tuple
D = ((2 ⋅ n, −1), 0; [(1, 2), (0, 1), 2], … , [(1, 2), (0, 1), 2]

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
t−2 times

, [(1, 2), (c(t−1)2, n(t−1)2), 2]

[(1, 2), (ct2, nt2), 2], [(0, 1), (c1, n1), n1], … , [(0, 1), (cs, ns), ns]),

where t = 2g0 + 2,

(c(t−1)2n∕n(t−1)2, ct2n∕nt2) =
⎧

⎨
⎩

(0, −
∑s

i=1 ci
n
ni
(modn)), if g0 = 0, and

(1, 1 −
∑s

i=1 ci
n
ni
(modn)), if g0 > 0.

It follows immediately that D satis�es conditions (i)-(iv) of De�nition 3.1. As
t ≥ 2, by taking v = 1, we may choose (p1, … , pt+s) = (1, 0, … , 0) to conclude
thatD also satis�es condition (v)(a). Since t = 2 ⟺ g0 = 0, andwhen g0 = 0,
we have that lcm(n1, … , ns) = n, from which condition (v)(b) follows. Finally,
for the casewhen g0 ≠ 0, (v)(b) follows by choosing (q1, … , qt−2, qt−1, … , qt+s) =
(0, … , 1, 1, … , 0). Thus, it follows thatD is a split metacyclic data set. Further, a
direct application of Theorem 3.3 would show thatD indeed encodes the weak
conjugacy represented by (H, (G,ℱ)), as desired.

The converse follows immediately from Remark 2.11 and Proposition 3.2.
�

We now provide a couple of examples of dihedral actions along with their
realizations.

Example 4.3. Consider theℤ3⋊−1ℤ2-action ⟨ℱ, G⟩ on S3 illustrated in Figure 3
below, where

DF = (3, 1; (1, 3), (2, 3)) and DG = (2, 1; (1, 2), (1, 2), (1, 2), (1, 2)).
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The weak conjugacy class of the action (⟨ℱ, G⟩, (G,ℱ)) is encoded by

ℱ

G

2�
3

�

Figure 3. Realization of a D6-action on S3.

D = ((2 ⋅ 3, −1), 0; [(1, 2), (0, 1), 2], [(1, 2), (0, 1), 2], [(1, 2), (0, 1), 2],
[(1, 2), (1, 3), 2], [(0, 1), (2, 3), 3]).

Example 4.4. Consider the ℤ4 ⋊−1 ℤ2-actions ⟨ℱ, G⟩ and ⟨ℱ, G′⟩ on S3 illus-
trated in Figure 4 below, where DF = (4, 0; (1, 4), (3, 4), (1, 4), (3, 4)), DG =
(2, 1; (1, 2), (1, 2), (1, 2), (1, 2)), and DG′ = (2, 2, 1; ).

ℱ

G

�
2

�
G′

�

Figure 4. Realization of a D8-action on S3.

The weak conjugacy classes (⟨ℱ, G⟩, (G,ℱ)) and (⟨ℱ, G′⟩, (G′, ℱ)) are encoded
by
((2 ⋅ 4, −1), 0; [(1, 2), (0, 1), 2], [(1, 2), (0, 1), 2], [(0, 1), (1, 4), 4], [(0, 1), (3, 4), 4])
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and

((2 ⋅ 4, −1), 0; [(1, 2), (1, 4), 2], [(1, 2), (1, 4), 2], [(0, 1), (1, 4), 4], [(0, 1), (3, 4), 4]),

respectively.

4.2. Generalized quaternions. For n ≥ 2, the generalized quaternion group
Q2n+1 is a metacyclic group of order 2n+1 that admits the presentation

⟨x, y | x2n = y4 = 1, x2n−1 = y2, y−1xy = x−1⟩.

Remark 4.5. LetD be a split metacyclic data set of genus g, degree 4 ⋅ 2n and
twist factor −1 (as in De�nition 3.1) encoding a weak conjugacy class repre-
sented by (H, (G,ℱ)). Suppose thatD has the property that

[(cj1, nj1), (cj2, nj2), nj] = [(1, 2), (1, 2), 2]

for some 1 ≤ j ≤ l. Then it follows from the proof of Proposition 3.2 that
under the epimorphism �H ∶ �orb1 (OH) → H which preserves the order of
torsion elements, the tuple [(1, 2), (1, 2), 2] would correspond to an involution
G2ℱ2n−1 ∈ H which de�nes a non-free action on Sg.

Remark 4.5 motivates the following de�nition.

De�nition 4.6. A quaternionic data set is a split metacyclic data set of degree
4 ⋅ 2n that has the form

D = ((4 ⋅ 2n, −1), g0; [(c11, n11), (c12, n12), n1], … , [(cl1, nl1), (cl2, nl2), nl]),

such that [(cj1, nj1), (cj2, nj2), nj] ≠ [(1, 2), (1, 2), 2], for 1 ≤ j ≤ l.

Proposition 4.7. For g, n ≥ 2, quaternionic data sets of genus 2g−1 and degree
4 ⋅ 2n correspond to Q2n+1-actions on Sg.

Proof. Suppose that there exists an action of H = Q2n+1 on Sg. By Lemma 2.1,
there exists an epimorphism �H ∶ �orb1 (OH) → H

�i
�H↦,→ y

ci1
m
ni1 x

ci2
n
ni2 , for 1 ≤ i ≤ l,

that is order-preserving on torsion elements. Let H′ = ℤ2n ⋊−1 ℤ4. Since the
canonical projection q ∶ H′ → H(≅ H′∕ℤ2) preserves the order of torsion ele-
ments on H′ ⧵ ker q, the map �H naturally factors via q. Thus, as there are ex-
actly two possible choices for �H|{�i∶1≤i≤l} that preserves the order, at least one
of which yields an action H′ on Sg′ (for some g′ > g). A weak conjugacy class
associated with this action is encoded by a split metacyclic data set of genus g′
and degree 2n+2 = 4 ⋅ 2n, which has one of the following forms

((4 ⋅ 2n, −1), g0; [(c11, n11), (c12, n12), n1], … , [(cl1, nl1), (cl2, nl2), nl])
or

(4 ⋅ 2n, −1), g0; [(c11, n11), (c12, n12), n1], … , [(c′l1, n
′
l1), (c

′
l2, n

′
l2), nl]),
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where c′l1
4
n′l1

≡ cl1
4
nl1

+ 2 (mod 4) and c′l2
2n

n′l2
≡ cl2

2n

nl2
+ 2n−1 (mod 2n). Fur-

ther, since ker q ≅ ℤ2 and q preserves the orders of all x ∈ H′ ⧵ ker q, it fol-
lows that ker q acts freely on Sg′ . Hence, it follows that g′ = 2g − 1 and fur-
ther by Remark 4.5, both (possible) tuples cannot contain a triple of the type
[(1, 2), (1, 2), 2].

Conversely, if there exists a quaternionic data set D of genus g′ = 2g − 1
as in De�nition 4.6. Then we obtain an epimorphism �H′ ∶ �orb1 (OH′) → H′

which preserves the order of torsion elements, when composed with canonical
projection q ∶ H′ → H, yields an epimorphism �H ∶ �orb1 (OH) → H which
preserves the order of torsion elements, where �orb1 (OH′) = �orb1 (OH). Further,
as D does not contain a triple of type [(1, 2), (1, 2), 2], ker q acts freely on Sg′ ,
thereby yielding an action of Q2n+1 on Sg, where g′ = 2g − 1. �

Remark 4.8. A crucial step in the proof (of Proposition 4.7) is the establish-
ment of the fact that the canonical projection q ∶ ℤ2n ⋊−1 ℤ4 → Q2n+1 is order-
preserving on (ℤ2n ⋊−1 ℤ4) ⧵ ker q. However, it is interesting to note that this
fact does not generalize to arbitrary metacyclic groups [15] arising as quotients
of split metacyclic groups. This motivates the study of �nite non-split meta-
cyclic actions on surfaces, which we plan to undertake in future works.

Example 4.9. The split metacyclic data set in Example 3.4 is quaternionic.
Hence, this represents the weak conjugacy class of an induced Q8-action on
S3.

4.3. Lifting cyclic subgroups of mapping classes to split metacyclic
groups. For n, g ≥ 2, let p ∶ Sg̃ → Sg be a covering map (that is possibly
branched) with deck transformation group ⟨ℱ⟩ ≅ ℤn. Let LModp(Sg) (resp.
SModp(Sg̃)) denote the liftable (resp. symmetric) mapping class groups of Sg
(resp. Sg̃) under p.

Remark 4.10. From Birman-Hilden theory [2], we have the exact sequence

1 → ⟨F⟩ → SModp(Sg̃) → LModp(Sg) → 1. (B)

Let G ∈ Mod(Sg) be of �nite order. Then G ∈ LModp(Sg) if and only if G has a
lift G̃ ∈ SModp(Sg̃) of �nite order so that the sequence (B) yields a sequence of
the form

1 → ⟨F⟩ → ⟨F, G̃⟩ → ⟨G⟩ → 1.
Thus, G ∈ LModp(Sg) if and only if for any lift G̃ of G, ⟨G⟩ lifts under p to a
metacyclic group ⟨F, G̃⟩.

In the following corollary, we characterize the�nite cyclic subgroups inMod(S0,3)
that lift to �nite split metacyclic groups under branched covers induced by ir-
reducible cyclic actions.

Corollary 4.11. For g, n ≥ 2, let p ∶ Sg → S0,3 be a cover with deck transforma-
tion group ⟨ℱ⟩withDF = (n, 0; (c1, n1), (c2, n2), (c3, n3)). Then a G′ ∈ Mod(S0,3)
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of orderm has a conjugateG ∈ LModp(S0,3)with a lift G̃ ∈ SModp(Sg) such that
⟨F, G̃⟩ ≅ ℤn ⋊k ℤm if and only if one of the following conditions hold.
(a) DF = (n, 0; (c1, n1), (c2, n), (c2k, n)) for some k ∈ ℤ×

n such that k2 ≡ 1
(mod n).

(b) DF = (n, 0; (c1, n), (c1k, n), (c1k2, n)) for some k ∈ ℤ×
n such that k3 ≡ 1

(mod n).

Proof. Suppose that G′ ∈ Mod(S0,3) has a conjugate G ∈ LModp(S0,3) with a
lift G̃ ∈ SModp(Sg) such thatH = ⟨F, G̃⟩ ≅ ℤn ⋊k ℤm. First, we claim that the
ni, for 1 ≤ i ≤ 3, are not distinct. Suppose that we assume on the contrary that
the ni, for 1 ≤ i ≤ 3, are indeed distinct. Since G′ ∈ Autk(O⟨ℱ⟩) and |G′| > 1, it
would have to �x all three cone points of O⟨ℱ⟩, which contradicts the fact that
any nontrivial automorphism of the sphere has exactly two �xed points. Thus,
the following two cases arise.

Case 1: n2 = n3 = n ≠ n1. In this case, G′ �xes the cone point, say of
order n1, and should permute the remaining 2 cone points of orders n2 and
n3. This implies that DF takes the form in condition (a) in our hypothesis (by
De�nition 2.8), and henceH = ⟨F, G̃⟩ ≅ ℤn ⋊k ℤ2.

Case 2: ni = n, 1 ≤ i ≤ 3. In this case, if G′ permutes all the three cone
points cyclically, thenDF takes the form in condition (b) in our hypothesis, and
hence H ≅ ℤn ⋊k ℤ3. Alternatively, G′ could also �x a cone point of order n
and permute the remaining 2 cone points, in which case, DF will take the form
in condition (a).

Conversely, let DF = (n, 0; (c1, n1), (c2, n), (c2k, n)) for some k ∈ ℤ×
n such

that k2 ≡ 1 (mod n). Up to conjugacy, let G′ ∈ Autk(O⟨ℱ⟩) be an involution so
that G′ maps the cone point represented by (c2, n) to the cone point represented
by (c2k, n). To prove our assertion, it would su�ce to show the existence of an
involution G ∈ Homeo+(Sg) that induces G′. This amounts to showing that
there exists a split metacyclic data set D of degree 2 ⋅ n with twist factor k en-
coding the weak conjugacy class (H, (G,ℱ)) so that DG has degree 2. Consider
the tuple ((2 ⋅ n, k), 0; [(1, 2), (0, 1), 2], [(1, 2), (n − c2, n), 2n1], [(0, 1), (c2, n), n]).
A simple computation would reveal that conditions (i) - (iv) of De�nition 3.1
hold true. Condition (v) is true by taking v = 1, (p1, p2, p3) = (1, 0, 0) and
(q1, q2, q3) = (0, 0, w) such that wc2 ≡ 1 (mod n), which proves our claim.

For the case when DF = (n, 0; (c1, n), (c1k, n), (c1k2, n)) for some k ∈ ℤ×
n

such that k3 ≡ 1 (mod n), let G′ ∈ Autk(O⟨ℱ⟩) be of order 3 so that for 1 ≤
i ≤ 2, G′i maps the cone point represented by (c1, n) to the cone point repre-
sented by (c1k3−i, n). By similar argument as above, we can show that the tuple
((3 ⋅n, k), 0; [(1, 3), (0, 1), 3], [(2, 3), (n−c1, n), 3], [(0, 1), (c1, n), n]) forms a split
metacyclic data set of degree 3 ⋅ n with twist factor k. �

Example 4.12. For i = 1, 2, consider the branched cover p ∶ S3 → O⟨ℱi⟩(≈
S0,3), where DF1 = (8, 0; (1, 4), (1, 8), (5, 8)) and DF2 = (8, 0; (3, 4), (3, 8), (7, 8)).
Then (up to conjugacy) the order-2 mapping class G ∈ LModp(S0,3) repre-
sented by an automorphism G ∈ Aut5(S0,3), that permutes two cone points
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of order 8 and �xes order 4 cone point, lifts to a G̃ ∈ SModp(S3) with DG̃ =
(2, 1; ((1, 2), 4)) such that ⟨Fi, G̃⟩ ≅ ℤ8 ⋊5 ℤ2. Moreover, the weak conjugacy
class of (⟨ℱi, G̃⟩, (G̃, ℱi)), for i = 1, 2, is encoded by

((2 ⋅ 8, 5), 0; [(1, 2), (0, 1), 2], [(1, 2), (7, 8), 8], [(0, 1), (1, 8), 8]) and
((2 ⋅ 8, 5), 0; [(1, 2), (0, 1), 2], [(1, 2), (1, 8), 8], [(0, 1), (7, 8), 8]),

respectively. The geometric realization of these actions is illustrated in Figure 5
below, where for each i, the actionℱi is realized by the rotation of a polygon of
type PFi described in Theorem 2.5.

G
�

(1, 8)

(1, 4)

(1, 4)

(5, 8)

G
�

(3, 8)
(3, 4)

(3, 4)

(7, 8)

Figure 5. The realizations of two distinct ℤ8 ⋊5 ℤ2-actions on S3.

Proposition 4.13. For g, n ≥ 2, let p ∶ Sn(g−1)+1 → Sg be a regular cover with
deck transformation group ⟨ℱ⟩ ≅ ℤn. Then any involution G′ ∈ Mod(Sg) has a
conjugate G ∈ LModp(Sg) with a lift G̃ ∈ SModp(Sn(g−1)+1) such that ⟨F, G̃⟩ ≅
D2n.

Proof. Let G′ ∈ Mod(Sg) be an involution. When G′ generates a free action
on Sg, it is easy to see that (⟨F, G̃⟩, (G̃, F)) represents a weak conjugacy class in
Mod(Sn(g−1)+1) with ⟨F, G̃⟩ ≅ D2n. Now, we assume that G′ generates a non-
free action with DG′ = (2, g0; ((1, 2), t)). By Theorem 3.3 and Remark 4.10, it
su�ces to show that there exists a dihedral data setD of degree 2 ⋅ n and genus
n(g − 1) + 1 representing the weak conjugacy class of (⟨F, G̃⟩, (G̃, F)). When
g0 ≥ 1, we takeD to be the tuple

((2 ⋅ n, −1), g0; [(1, 2), (0, 1), 2], … , [(1, 2), (0, 1), 2])⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
t times

,

and when g0 = 0, t ≥ 4, and so we takeD to be the tuple

((2 ⋅ n, −1), 0; [(1, 2), (0, 1), 2], … , [(1, 2), (0, 1), 2]
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

t−2 times

,

[(1, 2), (1, n), 2], [(1, 2), (1, n), 2]).
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It is an easy computation to check thatD satis�es conditions (i)-(iv) of De�ni-
tion 3.1 in both cases. When g0 = 0, taking v = 1,

(p1, … , pt) = (1, 0, … , 0), and (q1, … , qt) = (0, … , 0, 1, 1, 0)

we obtain condition (v). Moreover, when g0 = 1, we take v = 1,

(p1, … , pt) = (1, 0, … , 0), and (q1, … , qt) = (0, … , 0),

thereby verifying condition (vi). Thus, we have shown thatD is a dihedral data
set as desired. Finally, it follows from Theorem 3.3 that D encodes the weak
conjugacy class of (⟨F, G̃⟩, (G̃, F)). �

Note that the sameℤ2-action can lift to multiple non-isomorphic groups under
a regular cyclic cover. We illustrate this phenomenon in the following example.

Example 4.14. Let p ∶ S5 → S2 be a regular 4-sheeted cover with deck trans-
formation group ⟨ℱ⟩ ≅ ℤ4 as illustrated in Figure 6 below.

ℱ

G̃2

�
2

�

G̃1
�

ℱG̃1 �

Figure 6. Two distinct lifts G̃1, G̃2 ∈ SMod(S5) of an involu-
tion G ∈ Mod(S2). Note that G̃1 has four �xed points, while G̃2
has eight �xed points.

The involution G ∈ Mod(S2) with DG = (2, 1; (1, 2), (1, 2)) has two distinct
lifts G̃1, G̃2 ∈ SModp(S5) (as indicated) such that ⟨F, G̃1⟩ ≅ D8 and ⟨F, G̃2⟩ ≅
ℤ2 ×ℤ4. Note that the weak conjugacy class of (⟨ℱ, G̃1⟩, (G̃1, ℱ)) is represented
by ((2 ⋅ 4, −1), 1; [(1, 2), (0, 1), 2], [(1, 2), (0, 1), 2]).

The following proposition provides a su�cient condition for the liftability of
ℤm-actions whose corresponding orbifolds are spheres with a cone point of or-
derm.

Proposition 4.15. For g, n ≥ 2, let p ∶ Sn(g−1)+1 → Sg be a regular n-sheeted
cover with deck transformation group ⟨ℱ⟩ ≅ ℤn. Let G′ ∈ Mod(Sg) be of order
m such that DG′ = (m, 0; (c1, m1), … , (cl, ml)) with ml = m (say). Then G′
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has a conjugate G ∈ LModp(Sg) with a lift G̃ ∈ SModp(Sn(g−1)+1) such that
⟨F, G̃⟩ ≅ ℤn ⋊k ℤm if the following conditions hold.
(a) There exists a1, … , al−1 ∈ ℤ, and k ∈ ℤ×

n , km ≡ 1 (mod n) such that
l−1∑

i=1
ai(k

ci
m
mi − 1)

l−1∏

s=i+1
k
cs

m
ms ≡ 0 (mod n).

(b) For 1 ≤ i ≤ l − 1, there exists di, ni ∈ ℤ such that gcd(di, ni) = 1, ni ∣ n,

di
n
ni
≡ ai(k

ci
m
mi − 1) (mod n), and

lcm(n1, n2, … , nl−1) = n.
Proof. By Theorem 3.3 and Remark 4.10, it su�ces to show that the tuple

D = ((m ⋅ n, k), 0; [(c1, m1), (d1, n1),m1], … ,
[(cl−1, ml−1), (dl−1, nl−1),ml−1], [(cl, ml), (0, 1),ml])

forms a split metacyclic data set of genus n(g − 1) + 1 that represents the weak
conjugacy class of (⟨F, G̃⟩, (G̃, F)) for some lift G̃ ofG under p. It can be veri�ed
easily thatD satis�es conditions (i)-(iii) of De�nition 3.1, and further, condition
(iv) follows from condition (a) in our hypothesis. By taking v = 1, (p1, … , pl) =
(0, … , 0, w) such that wcl ≡ 1 (mod m), we see that condition (v)(a) holds.
Finally, condition (v)(b) follows from condition (b) in our hypothesis, and our
assertion follows. �

Using similar arguments, we can show the following.
Proposition 4.16. For g, n ≥ 2, let p ∶ Sn(g−1)+1 → Sg be a regular n-sheeted
cover with deck transformation group ⟨ℱ⟩ ≅ ℤn. Let G′ ∈ Mod(Sg) be of order
m such that DG′ = (m, 0; (c1, m1), … , (cl, ml)) withmi ≠ m, for 1 ≤ i ≤ l. Then
G′ has a conjugate G ∈ LModp(Sg) with a lift G̃ ∈ SModp(Sn(g−1)+1) such that
⟨F, G̃⟩ ≅ ℤn ⋊k ℤm if the following conditions hold.
(i) There exists a1, … , al ∈ ℤ, and k ∈ ℤ×

n , km ≡ 1 (mod n) such that
l∑

i=1
ai(k

ci
m
mi − 1)

l∏

s=i+1
k
cs

m
ms ≡ 0 (mod n).

(ii) There exists (p1, … , plv), (q1, … , qlv) ∈ ℤlv and v ∈ ℕ such that condition
(v)(b) of De�nition 3.1 holds, where for 1 ≤ i ≤ l, we have

ci1
m
ni1

≡ ci
m
mi

(mod m) and ci2
n
ni2

≡ ai(k
ci

m
mi − 1) (mod n).

A consequence of Propositions 4.15-4.16 is the following.
Corollary 4.17. For g ≥ 2 and prime n, let p ∶ Sn(g−1)+1 → Sg be a regular
n-sheeted cover with deck transformation group ⟨ℱ⟩ ≅ ℤn. Let G′ ∈ Mod(Sg)
be of order m such that the genus of O⟨G′⟩ is zero. Then G′ has a conjugate G ∈
LModp(Sg) with a lift G̃ ∈ SModp(Sn(g−1)+1) such that ⟨F, G̃⟩ ≅ ℤn ⋊k ℤm if
there exists k ∈ ℤ×

n such that |k| = m.
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Proof. LetDG′ = (m, 0; (c1, m1), … , (cl, ml)). First, let us assume (without loss
of generality) thatml = m. By choosing

(a1, … , al−1) = (0, … , 0, 1, −(k
cl−2

m
ml−2 − 1) ⋅ k

cl−1
m

ml−1 ⋅ (k
cl−1

m
ml−1 − 1)−1),

we see that condition (i) of Proposition 4.15 holds true. Moreover, since |k| =

m, we have gcd((k
cl−2

m
ml−2 −1), n) = 1, and so condition (ii) also holds, and our

assertion follows.
Similarly, for the case when eachmi < m for 1 ≤ i ≤ l, the result follows by

taking

(a1, … , al) = (0, … , 0, 1, −(k
cl−1

m
ml−1 − 1) ⋅ k

cl
m
ml ⋅ (k

cl
m
ml − 1)−1),

and applying Proposition 4.16.
�

4.4. In�nite splitmetacyclic subgroups ofMod(Sg). An in�nite splitmeta-
cyclic group that is isomorphic to ℤ⋊−1 ℤ2m admits a presentation of the form

⟨x, y | y2m = 1, y−1xy = x−1⟩. (3)
In this subsection, we give an explicit construction of an in�nite metacyclic
subgroup isomorphic to ℤ ⋊−1 ℤ2m of Mod(Sg). Let Tc ∈ Mod(Sg) denote
the left-handed Dehn twist about a simple closed curve c in Sg. A root of Tc
of degree s is an F ∈ Mod(Sg) such that Fs = Tc. In the following lemma, by
using some basic properties of Dehn twists [12, Chapter 3], we show that a root
of Dehn twist cannot generate an in�nite split metacyclic group that admits a
presentation as in (3).
Lemma4.18. Forg ≥ 2, no root ofTc is a generator of any in�nite splitmetacyclic
subgroup ofMod(Sg) that is isomorphic to ℤ⋊−1 ℤ2m.
Proof. LetF be a root ofTc of degree s. Supposewe assume on the contrary that
for some g ≥ 2, there exists an in�nite splitmetacyclic subgroupH ≅ ℤ⋊−1ℤ2m
ofMod(Sg) that admits the presentation

H = ⟨F, G |G2m = 1, G−1FG = F−1⟩.
First, we consider the case when s = 1, that is, F = Tc. Then we have that

G−1TcG = T−1c ⟹ TG−1(c) = T−1c ,
which is impossible. Thus, we have that H ≠ ⟨G, Tc⟩, which contradicts our
assumption.

For s > 1, suppose that H = ⟨F, G⟩. Then the subgroup ⟨Fs, G⟩ of H would
also be a split metacyclic group. Since Fs = Tc, this would contradict our con-
clusion in the previous case, and so our assertion follows. �

By a multitwist inMod(Sg), we mean a �nite product of powers of commuting
Dehn twists. In view of Lemma 4.18, a natural question that arises is whether
a multitwist inMod(Sg) can generate an in�nite split metacyclic group. In the
following examples, we answer this question in the a�rmative.
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Example 4.19. Let F′ ∈ Mod(S2) be of order 3 with

DF′ = (3, 0; ((1, 3), 2), ((2, 3), 2)).

First, we note that ℱ′ has four �xed points on S2. Further, it induces a local
rotation angle of 2�∕3 around two of these points (corresponding to the two
(1, 3) pairs in DF′) and rotation angle of 4�∕3 around the remaining two points
(corresponding to the two (2, 3) pairs in DF′), as indicated in Figure 7. Consid-
ering this action on two distinct copies of S2, we remove invariant disks around
a distinguished (1, 3)-type �xed point and a distinguished (2, 3)-type �xed point
in each of the two copies. We now attach two annuli connecting the resulting
boundary components across the two surfaces so that:
(a) each annulus connects a pair of boundary components where the induced

rotation angle is the same, as shown in Figure 7 below, and further,
(b) the annulus connecting the boundary componentswith rotation 4�∕3 (with

the nonseparating curve c) has a 1∕3rd twist, while the other (with the non-
separating curve d) has a −1∕3rd twist.

(1, 3) c

d
(2, 3)

(1, 3)

(2, 3)

(1, 3) (1, 3)

(2, 3) (2, 3)

� G

Figure 7. Realization of an in�nite dihedral subgroup ofMod(S5).

Thus, by applying the theory developed in [25], we obtain an F ∈ Mod(S5),
which is a root of the bounding pair map TcT−1d of degree 3. Now, we consider
the hyperelliptic involution G ∈ Mod(S5) with DG = (2, 0; ((1, 2), 12)) (also
indicated in Figure 7). By our construction, it follows that GFG−1 = F−1, and
so we have ⟨F, G⟩ ≅ ℤ⋊−1 ℤ2.

Example 4.20. Let F′ ∈ Mod(S5) be of order 3 with

DF′ = (3, 1; ((1, 3), 2), ((2, 3), 2)).

First, we note that ℱ′ has four �xed points on S5. Furthermore, it induces a
local rotation angle of 2�∕3 around two of these points (corresponding to the
two (1, 3) pairs in DF′) and rotation angle of 4�∕3 around the remaining two
points (corresponding to the two (2, 3) pairs in DF′), as indicated in Figure 8.
Considering this action on two distinct copies of S5, we remove invariant disks
around all �xed point in each of the two copies. We now attach four annuli
connecting the resulting boundary components across the two surfaces so that:
(a) each annulus connects a pair of boundary components where the induced

rotation angle is the same, as shown in Figure 8 below, and further,
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(b) the annulus connecting the boundary componentswith rotation 4�∕3 (with
the nonseparating curve c1 and c3) has a 1∕3rd twist, while the other (with
the nonseparating curve c2 and c4) has a −1∕3rd twist.

G

�

2

(1, 3)

(1, 3)(1, 3)
(2, 3)

(2, 3)
(2, 3)

(1, 3)

(1, 3)

(1, 3)(2, 3)

(2, 3)

(2, 3)

c1c2

c3 c4

(1, 3)
(1, 3)

(1, 3)

(2, 3)

(2, 3)

(2, 3)

(1, 3)
(1, 3)

(1, 3)
(2, 3)

(2, 3)

(2, 3)

Figure 8. Realization of an in�nite metacyclic subgroup ofMod(S13).

Thus, by applying the theory developed in [25], we obtain an F ∈ Mod(S13),
which is a root of the multitwist Tc1T

−1
c2 Tc3T

−1
c4 of degree 3. Now, we consider

a G ∈ Mod(S13) with DG = (4, 4, 1; ) (also indicated in Figure 8). By our con-
struction, asℤ3⋊−1ℤ4 ≅ ⟨F′, G′⟩ ≤ Mod(S5), where DG′ = (4, 2, 1; ), it follows
that GFG−1 = F−1, and so we have ⟨F, G⟩ ≅ ℤ⋊−1 ℤ4.

Generalizing the above all constructions in Example 4.19 and Example 4.20, we
have the following.

Proposition 4.21. For i = 1, 2, letHi = ⟨Fi, Gi⟩ ≤ Mod(Sgi ) withHi ≅ ℤn ⋊−1
ℤ2m, such that the weak conjugacy class (Hi, (Gi, Fi)) is represented by a split
metacyclic data setDHi

containing a tuple [(0, 1), (ai, n), n]. Then there exists an
in�nite metacyclic subgroup ofMod(Sg1+g2+2m−1) isomorphic toℤ⋊−1 ℤ2m that
is generated by a periodic mapping class of order 2m and a root of a multitwist of
degree n.
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Proof. AsDHi
contains a tuple [(0, 1), (ai, n), n], by Proposition 3.2, we have

DF1 = (n, g0; (c1, n1), … , (cs, ns), (a1, n), (n − a1, n), … , (a1, n), (n − a1, n)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

m times

)

and
DF2 = (n, g′0; (c

′
1, n

′
1), … , (c

′
t , n

′
t), (a2, n), (n − a2, n), … , (a2, n), (n − a2, n)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

m times

).

Taking inspiration from the theory developed in [24, 25] and Examples 4.19-
4.20, we glue 2m annuli connecting the boundary components resulting from
removing invariant disks around the orbit points corresponding to the pairs
(a1, n) and

{
(a2, n), if a2 ≠ n − a1, or
(n − a2, n), if a2 = n − a1.

This yields a degree-n root F of a multitwist of the form

⎧

⎨
⎩

∏2m
i=1 T

(−1)i+1(a−11 +a−12 )
ci , if a2 ≠ n − a1, or

∏2m
i=1 T

(−1)i+1(a−11 +(n−a2)−1)
ci , if a2 = n − a1,

where aia−1i ≡ 1 (mod n) and a−11 + a−12 ∈ ℤn. By considering the action G
obtained by performing a 2m-compatibility on G1 and G2 (see Section 2), we see
that ⟨F, G⟩ ≅ ℤ⋊−1 ℤ2m, as desired. �

The group form = 1 in the presentation of the in�nite split metacyclic group
of the type in the Equation (3) is known as the in�nite dihedral group. Here is
the corollary, which directly follows from Proposition 4.21.

Corollary 4.22. For g ≥ 5, there exists an in�nite dihedral subgroup ofMod(Sg)
that is generated by an involution and a root of a bounding pair map of degree 3.

5. Hyperbolic structures realizing split metacyclic actions
We begin this section by providing an algorithm for obtaining the hyperbolic

structures that realize �nite split metacyclic subgroups ofMod(Sg) (up to weak
conjugacy) as groups of isometries.
Step 1. Consider a weak conjugacy class represented by (H, (G,ℱ)).
Step 2. Use Theorem 3.3 to determine the conjugacy classes DF (resp. DG) of

the generators F (resp. G).
Step 3. We apply Lemma 2.7, and Theorems 2.5-2.6, to obtain the hyperbolic

structures that realizeH as a group of isometries.
We now describe the geometric realizations of some split metacyclic actions on
S3 and S5 represented by the split metacyclic data sets listed in Tables 1 and 2
in Section 6.
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(1, 3)

(1, 3)

(1, 3)

(2, 3)

(2, 3)

(2, 3)

Figure 9. A realization of a D6-action ⟨ℱ, G⟩ on S3, where DG =
(2, 2, 1; ) and DF = (3, 1; (1, 3), (2, 3)). The action ℱ is realized
through two 1-compatibilities between two actions ℱ′ and ℱ′′ on S1
with DF′ = (3, 0; ((1, 3), 3)) and DF′′ = (3, 0; ((2, 3), 3))). The weak
conjugacy class of (⟨ℱ, G⟩, (G,ℱ)) is encoded by the �rst split meta-
cyclic data set in Table 1.

G1

�

(1, 2)

(1, 2)

(1, 4)

(1, 4)

(1, 2)

(1, 2)

(3, 4)

(3, 4)

G2

�

Figure 10. The realizations of two distinct D8-actions ⟨ℱ, G1⟩ and
⟨ℱ, G2⟩ on S3, where DF = (4, 1; ((1, 2), 2)), DG1 = (2, 2, 1; ),
and DG2 = (2, 1; ((1, 2), 4). The action ℱ is realized via two 1-
compatibilities between two actions ℱ′ and ℱ′′ on S1, where DF′ =
(4, 0; ((1, 4), 2), (1, 2)) and DF′′ = (4, 0; ((3, 4), 2), (1, 2)). The weak
conjugacy classes of (⟨ℱ, G1⟩, (G1, ℱ)) and (⟨ℱ, G2⟩, (G2, ℱ)) are en-
coded by split metacyclic data sets nos. 3 and 6, respectively, in Ta-
ble 1.

(1, 3)

(1, 3)

G
�

2

(2, 3) (2, 3)

(1, 3)(1, 3)

(1, 3)(1, 3)

(2, 3) (2, 3)

(2, 3) (2, 3)

Figure 11. A realization of aℤ3⋊−1ℤ4-action ⟨ℱ, G⟩ on S5, where
DG = (4, 2, 1; ) and DF = (3, 1; ((1, 3), 2), ((2, 3), 2)). The action ℱ is
realized via two 1-compatibilities between the actionℱ′ on two copies
of S2 with DF′ = (3, 0; ((1, 3), 2), ((2, 3), 2)). Furthermore, the action
ℱ′ is realized by a 1-compatibility between the actions ℱ′′ and ℱ′′′

on S1, where DF′′ = (3, 0; ((1, 3), 3)) and DF′′′ = (3, 0; ((2, 3), 3)). The
weak conjugacy class of (⟨ℱ, G⟩, (G,ℱ)) is encoded by the split meta-
cyclic data set no. 14 in Table 2.
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G1
�

G2

�

G3

�

(1, 2)(1, 2)

(1, 2)(1, 2)

(1, 2)(1, 2)

(1, 2)(1, 2)

(3, 8)(1, 8)

(5, 8)(7, 8)

Figure 12. Realization of ℤ8 ⋊−1 ℤ2-action ⟨ℱ, G1⟩,
ℤ8 ⋊3 ℤ2-action ⟨ℱ, G2⟩ and ℤ8 ⋊5 ℤ2-action ⟨ℱ, G3⟩ on
S5, where DG1 = DG2 = (2, 2; ((1, 2), 4)), DG3 = (2, 3, 1; )
and DF = (8, 1; ((1, 2), 2)). The action ℱ is realized
via two 1-compatibilities between two actions ℱ′ and
ℱ′′ on S2 where DF′ = (8, 0; (1, 2), (1, 8), (3, 8)) and
DF′′ = (8, 0; (1, 2), (5, 8), (7, 8)). The weak conjugacy class
of (⟨ℱ, Gi⟩, (Gi, ℱ)) 1 ≤ i ≤ 3 is encoded by the split metacyclic
data set nos. 26, 25, and 22, respectively, in Table 2.

6. Classi�cation of the weak conjugacy classes in
Mod(S3) andMod(S5)

In this section, wewill use Theorem3.3 to classify theweak conjugacy classes
in Mod(S3) and Mod(S5). For brevity, we will further assume the following
equivalence of the split metacyclic data sets (i.e. the weak conjugacy classes).
De�nition 6.1. Two split metacyclic data sets

D = ((m ⋅ n, k), g0; [(c11, n11), (c12, n12), n1], … , [(cl1, nl1), (cl2, nl2), nl])
D′ = ((m ⋅ n, k), g0; [(c′11, n

′
11), (c

′
12, n

′
12), n

′
1], … , [(c

′
l1, n

′
l1), (c

′
l2, n

′
l2), n

′
l])

are said to be equivalent if for each tuple [(c′i1, n
′
i1), (c

′
i2, n

′
i2), n

′
i ], there exists a

unique tuple [(cj1, nj1), (cj2, nj2), nj] satisfying the following conditions:
(i) (c′i1, n

′
i1) = (cj1, nj1),

(ii) n′i = nj, and

(iii) c′i2
n
n′i2

≡ cj2
n
nj2
kai + bi(k

cj1
m
nj1 − 1) (mod n) for some ai, bi ∈ ℤ.

Note that equivalent data sets D and D′ as in De�nition 6.1 satisfy D′
i = Di,

for i = 1, 2. We will now provide a classi�cation of the weak conjugacy classes
of �nite split metacyclic subgroups ofMod(S3) andMod(S5) (up to this equiva-
lence) in Tables 1 and 2, respectively.
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