New York Journal of Mathematics

New York J. Math. 28 (2022) 705-772.

Extensions of symmetric operators that are

invariant under scaling and applications

AN

o

7.

to indicial operators

Thomas Krainer

ABSTRACT. Indicial operators are model operators associated to an elliptic
differential operator near a corner singularity on a stratified manifold. These
model operators are defined on generalized tangent cone configurations and
exhibit a natural scaling invariance property with respect to dilations of the
radial variable. In this paper we discuss extensions of symmetric indicial op-
erators from a functional analytic point of view. In the first, purely abstract
part of this paper, we consider a general unbounded symmetric operator that
exhibits invariance with respect to an abstract scaling action on a Hilbert
space, and we describe its extensions in terms of generalized eigenspaces of
the infinitesimal generator of this action. Among others, we obtain a Green
formula for the adjoint pairing, an algebraic formula for the signature, and in
the semibounded case explicit descriptions of the Friedrichs and Krein exten-
sions. In the second part we consider differential operators of Fuchs type on
the half axis with unbounded operator coefficients that are invariant under
dilation, and show that under suitable ellipticity assumptions on the indi-
cial family these operators fit into the abstract framework of the first part,
which in this case furnishes a description of extensions in terms of polyho-
mogeneous asymptotic expansions. We also obtain an analytic formula for
the signature of the adjoint pairing in terms of the spectral flow of the indi-
cial family for such operators.
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1. Introduction

We begin by describing in informal terms the setting for the problems that this
paper addresses. Let M be a singular manifold. A corner singularity is a point
p with an open neighborhood U(p) C M that is modeled on a neighborhood

U(py) € (R, xY)/({0} x Y)

of py = ({0} X Y)/({0} X Y), where the link manifold Y is generally also a
manifold with singularities. If Y is closed and compact this is the setting of
a conical singularity. The inferred splitting of variables can be thought of as
generalized polar coordinates, where the manifold Y represents the domain for
the spherical variables, and the variable x > 0 is the radial (distance) variable
from the corner point. The space R XY is a generalized tangent cone equipped
with a model cone metric dx? + xgy for some metric gy on Y, and locally the
map
U(po) \ {po} = U(p) \ {p}

may be thought of as a generalized exponential map centered at p, from the
tangent cone to the manifold. In particular, an elliptic differential operator A
near p on M can be pulled-back via this map to an elliptic differential operator
near p, on the tangent cone R, X Y, also denoted by A for the moment. Write

m
A=x"" Z aj(x’ yaDy)(XDx)j
=0

near py, where m > 0, and a;(x,y,D,) is a differential operator on Y of order
m — j. We assume that the coefficients a;(x, y, D)) depend continuously on x
up to x = 0. The tangent cone admits an R -action by scaling the variable x,
and pull-back of functions with respect to this action gives rise to

(1,u)(x, ¥) = ulex,y), ¢>0, (1.1)
for functions u(x,y) on R, X Y. Define

Ayu = lim o™k, Ax,u,

e—> 0

where u has compact support in x. In this way we obtain the indicial oper-
ator A,, the model operator associated with A at the corner singularity. The
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operator A, is invariant under scaling in the sense that
Ay = oM ANK Y, 9> 0, (1.2)
by the limit construction; we have
m
Ay=x""m Z a;(xDy), (1.3)
Jj=0

where a; = a;(0,y,Dy).
Our objective here is to describe L2-extensions of the operator A,. The geo-
metric L?-space on R, X Y subject to the model metric dx? + x2gy identifies

with the weighted space x‘“Li(IRJr;LZ(Y; gy)) for a = dim Y+1

, where Li de-

. d e
notes the L2-space on R, with respect to Haar measure =, Multiplication by
X

x* x“"Li - Li is a unitary equivalence, and because the class of operators
A considered here and the construction leading to A, are preserved under con-
jugation by arbitrary powers x* we can base all considerations on the Hilbert
space Li(RJr; L2(Y;gy)). Observe that the scaling action (1.1) is unitary on this
space.

If Y is a stratified manifold with boundary/singular set £ C Y, generalized
ideal boundary conditions along the lateral boundary R, X X are required. Ab-
stractly these are vanishing conditions in the form T,u = 0, where T, ought
to be thought of as the lateral model boundary condition for A, associated to a
lateral boundary condition Tu = 0 for A. The development of a robust analytic
theory of elliptic ideal boundary conditions associated with singular sets at the
implied level of generality remains the subject of ongoing investigations by the
community of researchers working on singular PDEs, and as of yet only exists
for certain configurations or certain specific geometric operators and boundary
conditions (references are discussed below). We will forego this problem by
treating the lateral boundary condition in functional analytic terms and con-
sider the operator (1.3) abstractly as an ordinary differential operator of Fuchs
type on R, as

m
Ay =x" Z aj(XDx)j t CP(REy) C le,(R+;Eo) - Li(R+§E0), (1.4)
j=0

where E; and E; are Hilbert spaces such that E; < E, is continuous and dense,
and the a; : E; — E, are bounded. This matches the setting above with E, =
L%*(Y;gy), and E; the common domain of the indicial family

m
p(0) =D, a0l : E; CEy - E,, (1.5)
j=0
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considered here a family of unbounded operators in E,. The space E; encodes
the (lateral) boundary condition® along = C Y.

The closed extensions of the operator (1.4) in Li(R+; E,) are then expected to
encode boundary conditions as x — 0 at the corner point p, that are associated
with realizations of the model operator A, on R, XY subject to previously cho-
sen lateral boundary conditions, and it is those extensions that we are interested
in here.

We will assume that (1.4) is symmetric. The general case can often be re-
duced to this situation by considering instead

0 A, E, Ey Ey
Ay = A0 CCRIR; @ |CL Ry @ [ LRy @ |,
A E, Ey E,

where

m
AL =X Y bi(xDy) : CR(R 3 Ey) € (R By) — LR, Ey)
j=0

is the formal adjoint operator to A, with indicial family

m
p(G*)* = 2 bjO'] : El C EO g Eo,
j=0

where 0* = o — im is reflection about the line J(c) = —%, and E; < E; is
assumed to be the common domain of the adjoints of (1.5).

Let D,,;, be the domain of the closure of (1.4), and D, be the domain of the
adjoint. The expectation from known cases (particularly conical singularities)
is that each u € D, has a finite polyhomogeneous asymptotic expansion of
the form

u -~ Z €q,.j logj(x)xic0 mod D, asx — 0 (1.6)

00,J

with certain e, ; € E; and characteristic values o, € spec,(A,) C C, the
boundary spectrum of A ,, and the domains of extensions D,;, C D C D, of
A, then correspond to placing vanishing conditions on these asymptotic terms
which establishes an explicit correspondence for such operators between their
functional analytic extensions on the one hand, and an analytic notion of gen-
eralized boundary conditions by prescribing conditions on the asymptotic be-
havior of functions on the other hand.

TAs we consider the space E; to be fixed this does not include all relevant boundary con-
ditions. For example, if Y is a smooth, compact manifold with boundary, the general notion
of lateral boundary conditions ought to include classical Shapiro-Lopatinsky elliptic boundary
conditions on R, XdY, but fixing the space E; in this case means that the lateral model boundary
condition T,u = 0 cannot differentiate in the x-direction.
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The asymptotic expansion (1.6) is to be understood as

U—w ). ey log/ (x)x1% € D,

90,J
where w € C?(@Jr) is a cut-off function with w = 1 near x = 0. Here
spec,(A,) ={o € C; p(0) : E; — E,is not invertible},

and the exponents o, € spec,(A,) that appear in the expansion (1.6) are those
located in the strip —m < J(o) < 0; moreover,

o p(a)M[co Z €, j logj(x)xi%](o)
O0.J
is entire, where
o0 ‘ d
(Mv)(o) = f x790(x) i
b x

is the Mellin transform. Observe that the functions that constitute the asymp-
totic expansion (1.6) for each o, are generalized eigenfunctions of ¢ = xD, with
eigenvalue o, the infinitesimal generator of the radial scaling action x, = ¢'¢
from (1.1) in Li([RJr ; Ey). More precisely, after multiplying by w, these functions
render generalized eigenfunctions of ¢ modulo C{° in Li(lR_g Ey).

In the present paper we investigate indicial operators (1.4) from two points of
view. As only model operators are studied, we are going to shorten notation
and write A instead of A, in the main body of the paper, but stay with A, for
the remainder of the introduction.

In the first, purely abstract part of this paper which spans Sections 2 through
5, we consider a general unbounded symmetric operator A, that exhibits an in-
variance property (1.2) with respect to an abstract unitary R, -action x, = o9 on
a Hilbert space. Assuming finite deficiency indices, we describe its extensions
in terms of generalized eigenspaces of the infinitesimal generator g of this ac-
tion (modulo D,;;,), which furnishes a correspondence between closed exten-
sions of A, on the one hand, and invariants of the underlying dynamics of x,
in relation to the operator A, on the other hand, which can be seen as a gener-
alization of the notion of boundary conditions via asymptotic expansions (1.6).
Among others, we obtain a Green formula for the adjoint pairing, an algebraic
formula for its signature, and if A, is semibounded we find explicit descrip-
tions of the Friedrichs and Krein extensions. Moreover, for extensions that are
invariant under Ko, WE find an equivalent characterization of the order relation
for semibounded extensions solely in terms of the boundary condition. Much
of the analysis in the first part occurs on the quotient space &pax = Pmax/ Pmins
which is finite-dimensional by assumption. The scaling action x, induces an

action g, = 0% on &..,, and the invariance relation (1.2) implies that § + i% is

selfadjoint with respect to the indefinite Hermitian sesquilinear form on &,,,,
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that is induced by the adjoint pairing. Linear algebra for such spaces, in par-
ticular the Canonical Form Theorem in this setting [26], is then applied. We
note that our results for semibounded A, require the sign condition, a tech-
nical property pertaining to the invariants of the canonical form of § on &,
and the adjoint pairing; for semibounded indicial operators the sign condition
is satisfied, see Section 9.

In the second part we consider operators A, that are slight generalizations
of the differential operators of Fuchs type (1.4) in Li(R+; E,) in that the power
of the singular factor and the order of differentiation are allowed to be decou-
pled, and the dilation action x,u(x) = u(¢x) is considered on Lﬁ(RJr;EO). The
precise assumptions on A, and the indicial family (1.5) are formulated in Sec-
tion 6. Our goal has been to impose minimal ellipticity assumptions. Aside
from symmetry, all assumptions on A, are invariant with respect to conjugat-
ing the operator by arbitrary powers x“. In particular, we are not imposing
invertibility assumptions on (1.5) along lines J(o) = y for specific values of
¥, but Fredholmness of (1.5) and invertibility for large |R(o)| > 0 with esti-
mates are needed. The objective is to show that these operators then directly fit
into the abstract framework of the first part, which confirms that extensions are
characterized by the asymptotic behavior (1.6) of functions as x — 0. In par-
ticular, all results of the first part apply and have a direct equivalent in terms
of asymptotic expansions as x — 0. The starting point for the analysis are von
Neumann’s formulas

Diax = Dmin B ker(A, max + 1) ® ker(A, max — i)

One of the key arguments is proving that functions u € ker(A, nax * i) are de-
creasing rapidly as x — oo (intuitively, this implies that describing D . / Pmin
can only be about the behavior of functions as x — 0, asis expected). To achieve
this, left-parametrices for A, .y + i are needed modulo remainders that pro-
duce the required rapid decay as x — oo, and we will obtain these parametrices
by constructing in actuality right-parametrices for A, i, F i and then passing
to adjoints. The parametrix construction requires a pseudodifferential calculus
which we develop in Appendix A. In Section 7 we lay groundwork for weighted
function spaces associated with A,, in particular in relation to D,,;,, while the
main result for indicial operators that explicitly describes D ,,, modulo D,
in terms of asymptotic expansions is proved in Section 8 (see Theorem 8.1).
Finally, in Section 9 we prove that the signature of the adjoint pairing of the
indicial operator A, is given by the spectral flow of the indicial family (1.5)

along the line (o) = —%, where p(o) is selfadjoint and Fredholm by assump-

tion. More precisely, each indicial root along J(o) = —% contributes a term
to the signature that is described algebraically in the first part of the paper in
terms of invariants of the canonical form for the generator § of the induced
scaling action %, on Erax = Dimax/ Dimin and the adjoint pairing, and this term
is shown to coincide with the contribution of the spectral flow of p(c) across
that indicial root. The proof is based on local arguments in analytic Fredholm
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and perturbation theory to bring p(o) into a normal form near an indicial root
oo with S(op) = —% from which these relations follow. The details of these

arguments are relegated to Appendix B and C. As previously mentioned, we
also prove here that semibounded indicial operators A, always satisfy the sign
condition.

This paper addresses problems that have a long history, going back to seminal
contributions by Kondrat’ev [31], who investigated Fredholm solvability of clas-
sical boundary value problems in domains with isolated conical singularities on
the boundary, and Cheeger [15, 16] who initiated geometric and global analysis
on singular manifolds. Both contributions seeded independent developments
(e.g. [18, 33, 48] are rooted in Kondrat’ev’s theory, [3, 4, 14] draw their inspi-
ration from Cheeger’s works), which have increasingly been merging since the
1990s [7, 6, 12, 24, 36, 37, 39, 43, 44, 47, 45, 50, 51, 52, 53], influenced by Mel-
rose and Schulze. An analytic theory of solvability, regularity in Sobolev spaces
with weights, and asymptotics for differential equations with unbounded op-
erator coefficients with applications to partial differential equations in general-
ized cones and cylinders is developed in [32].

This paper is motivated by recent works [2, 4, 27, 28, 37, 38, 44] that con-
tribute towards developing elliptic theory for operators on incomplete strati-
fied manifolds. The long-term goal is a robust elliptic theory of ideal boundary
conditions associated with the singular strata, and the model operator level is
essential for this. Specifically, our goals for this paper align with Lesch’s book
[39], and with the papers by Gil and Mendoza [24] and Coriasco, Schrohe, and
Seiler [17]. Both [24, 39] investigate extensions of elliptic operators on com-
pact manifolds with isolated conical singularities, and both consider fully gen-
eral elliptic operators of any order which distinguish them from other investi-
gations that center on operators of Dirac or Laplace type that near singulari-
ties are amenable to separation of variables and special function methods; [17]
extends these ideas to conic manifolds with boundary and classical boundary
value problems that satisfy the Shapiro-Lopatinsky condition. In [24, 39] meth-
ods from functional analysis, operator theory, and microlocal analysis rooted in
the Mellin transform are systematically used and developed. One of the main
results in [24] is an explicit description of the domain of the Friedrichs exten-
sion for general semibounded cone operators on compact manifolds, and we
obtain an analogous result for the Friedrichs extension for indicial operators
here, but with a different approach.

Compactness of the manifold and harnessing the standard local elliptic the-
ory away from the singularities are essential in both [24, 39]; arguments near
the singularities are local as x — 0 and generally do not transfer to noncom-
pact tangent cone configurations R, X Y as x — oo. However, for conical
singularities where Y is closed and compact it is easy to see that uniform el-
liptic estimates on complete manifolds [54] are applicable to A, as x — oo
(and likewise is elliptic theory for scattering manifolds [46, 49]), and therefore
no contributions to the extensions of A, can originate from x — oo, and the
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results from [24, 39] apply in this setting. This point of view does not easily
generalize to more complicated link manifolds Y, and since analyzing the be-
havior as x — oo is essential for understanding general operators we take a
different approach to this problem that leads to the pseudodifferential calculus
in Appendix A.

Our approach towards extensions in the first part is rooted in operator the-
ory. Scaling invariance of unbounded operators under sets of unitary transfor-
mations has been used for example in singular perturbation theory; we refer to
[1, 29, 42] for additional information.

The spectral flow formula for the signature of the adjoint pairing for indi-
cial operators appears to be new also for conical singularities. Generally, the
spectral flow is related to the signature of crossing forms, and for real-analytic
crossings this relationship has been investigated in [19, 22, 23]. Our proofs in
Appendix B and C are not reliant on these references.

2. Preliminaries
Let H be a separable complex Hilbert space, and let
A:D.cH—-H

be unbounded, densely defined, and symmetric. Then A is closable with clo-
sure A = A**. Let D,,;, denote the domain of the closure. Let A* be the adjoint

of A, and let D, be its domain. The closed extensions of A are the closed
unbounded operators given by
A¥ » :DCH—-H
with domains Dy,;, C D C D. that are closed with respect to the graph norm
induced by the graph inner product
(U, )4 = (U, L)y + (A*u, A*V)y, U,V € Dy

In the sequel we will abuse notation and write

Apax = A" : Dy CH — H,

Apin =A : Dyin CH - H,

AD=A*9 . DCH—>H

for these operators. When the domain is not explicitly specified we will simply
write A. While this does not align with standard functional analytic conven-

tions, it is consistent with defining extensions of (formally) symmetric differ-
ential operators A in L2, initially given on a space of test functions®. We will

2From a functional analytic point of view, we could have instead started from a densely de-
fined closed operator A = A, : Dnax — H such that A* C A, and defined A,;, = A*. Then
Apin is symmetric with A*. = A, and all intermediate closed operators arise as restrictions of
A.
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assume throughout that A has finite deficiency indices, which is equivalent to
dim Dypax / Din < 0.
In particular Ay, is closed for every domain D,;, C€ D C Dppax-
We furthermore assume that H is equipped with a scaling action, namely, a
strongly continuous and unitary R -actionx, : H — H, ¢ > 0. Specifically:

(1) For every ¢ > 0 we have x, € Z(H) with ;" = 1
(2) We have x,, = x,x forall g, ¢’ > 0,and x; = Id.
(3) We have limx,u = uforallu € H.

9—)

*
0

¢
1
Moreover, A is supposed to be invariant under the scaling action in the follow-
ing sense:
4) % : D, — D, forall ¢ > 0;
(5) there exists m > 0 such that

A =M At 1 D, —> H
forall¢ > 0.

Lemma 2.1. Thegroup actionx, : H — H restricts to strongly continuous group
actions , * Dyax = Dax and 1, Dy = Diyin. We have
Amax = 0" Ko Amax®; " @ Dmax = H, >0, (2.1)
and likewise for A;,. Moreover, we have
el (D) < max{l, o™}, ¢ > 0.
Proof. Letu € D, and w € D, be arbitrary. Then
(Au, x,w) = (x; ' Au, w) = o"™(Ax; ' u, w)
= ¢"(ic; u, A*w) = (u, " K, A*w).
This proves that k,w € Dy,,y, and A%k, w = ¢"x,A*w for ¢ > 0. Consequently,

if U € Doy, then w = 1,0 = 7,0 € Dy, and

AV = A%, = 9", AW = MK, AN, .
This proves (2.1). We next prove the strong continuity of x, on Dy,,,. To that

end, let v € Dy, be arbitrary. Then x,v — v in H as ¢ — 1 because of the
strong continuity of x, on H. Likewise,

3

— om
AmaxKQU =9 KgAmaxv — AmaxV

as¢ — 1in H, again because of the strong continuity of x, on H. Both combined
now imply that x,0 — v as ¢ — 1in the graph norm on D, proving strong
continuity of x, on Dy,,y. For u € Dy, we have

||K9u||,24 = ”Kgulli] + ”AmaXKeu”%[ = ||K9u||f1 + sz”KeAmaxu”?{
= |lullf; + o> | Amaxellf; < max{l, " |lul%

which implies the asserted norm estimate for x..
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Finally, starting from the invariance of Dp,,, under x, and (2.1), we obtain
with the same reasoning as in the first part of this proof that the domain of the
functional analytic adjoint A,y = Ap;y is invariant under the action of x,, and
that A,;, satisfies the analogue of (2.1). O

Definition 2.2. A closed extension Ay : D C H — H with D, €D C Doy
is called stationary or invariant (with respect to x,) if x, : D — D for all ¢ > 0.
In that case

Ap = 9"k, Apk;' 1 D — H, ¢ >0.
By Lemma 2.1, both A, and A,;, are invariant.

Letg : D(g) C H — H be the infinitesimal generator of the group action %, on
H. We will make the convention here that

K, =¢% 1 H—H, ¢>0,
where
D(g) = {u € H; R, 3 ¢ ~ x,u € H is differentiable},
g(u) = (¢D,)x,u - for u € D(g).

Note that references about 1-parameter semigroups, including [20] referenced
below, generally consider additive rather than multiplicative semigroups, and,
in our notation, these references generally consider ig to be the generator rather
than g.

Since %, is unitary, g* = g is selfadjoint by Stone’s Theorem. In particular,
spec(g) C R. The restrictions

Ko - 2)max - Dmax’ and Kg : ﬂmin - Dmin

3

are generated by the part of g in D, or D, respectively, i.e., the operators
that act like g with domains

{u € D(Q) N Dmax; qgu € ﬂmax} and {u € D(g) N ﬂmin; qu € Dmin}s

see [20, I1.2.3].

The norm estimate for x, in Lemma 2.1 (both for 1 < ¢ < oo and for 0 <
¢ < 1)in conjunction with the Hille-Yosida Generation Theorem (see [20, I.3])
implies conclusions about the resolvent of the parts of the generator g in various
subspaces of H. In particular, we get the following:

Remark 2.3. (1) For every 0 € C with (o) # 0 and every v € H the
equation (g — o)u = v has a unique solution u € D(g).
(2) For every o € C with §(o) ¢ [-m,0] and every v € D, the unique
solution u € D(g) to the equation (g — o)u = v belongs to D,,,,. More-
over, if v € Dy, then so is u.

Let
gmax = ﬂmax/Dmin = {ﬂ =u+ ﬂmin; ue ﬂmax}
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be the quotient space. We will generally utilize hat-notation for objects that
are associated with the quotient space. This is a Hilbert space, canonically iso-
metric to the orthogonal complement &},x of Dpin in Dppay With respect to the
graph inner product induced by A, The group x, induces an R -action on
the quotient

7%9 : éamax - éamax’ 9 > 0’

729[“. + Dmin] = Kg,u + ﬂmin-
The action %, is strongly continuous on &rax With generator

@(u + LDmin) =gqu+ ﬂmin for u + 2)min € 2)(@)’
D(@) = {u + Dmin; ue D(g) N l)max’ qu € l)max}’

see [20, I1.2.4]. Because we assume dim &,,,, < oo we in fact have D(§) = &,ax
and &, = 0" : &ux = Eiax is uniformly continuous.

Proposition 2.4. We have spec(§) C {o € C; —m < §(0) < 0}. If oy € spec(§)
with S(o,) = 0 or S(oy) = —m, then o, is semisimple.
Moreover, ifx, : H — H is such that

lim{(x,u,v)y =0
9_)()( 0 >H

for all® u,v € H, then spec(§) C {o € C; —m < J(o) < O}

Proof. Let m;, € Z(Dmax) be the A-orthogonal projection onto D,;,, and
let 7, = 1 — 7y, be the A-orthogonal projection onto &, = D:. . For

min’
0 =u+ Dpin € Enax We have

”72912”(? = ||7rmaxkg77:maxu”A

max

< ol 2D T maxtlla < max{l, o™ 3|2l 4

max

by Lemma 2.1. Thus ||%,|| < max{1, ¢"}, which implies the first claim regarding
the eigenvalues of g§.

We next prove the second claim regarding the absence of eigenvalues of § on
the lines 3(o) = 0 and §(0) = —m under the stated additional assumption on
k- To this end, observe that the unitarity of x, implies that in fact both

lim(x,u, v)y = lim (xu, v)y =0
=0 90

31t suffices to check that 1im<1<§,u, u)y = 0 for u in a dense subspace of H, e.g., foru € D,. To
00

see thisnote that T : HxXH 3 (u,v) = {R, 3 ¢ — i[(xgu, O+, 5,0) ]} € (Co(RL), [l i
sesquilinear, Hermitian, and continuous. We have T'(u,u) € Cy(R,) for u € D, by assumption
and the unitarity of x,, and by polarization T(u, v) € Co(R,) forallu,v € D,. Because Co(R,) C
(Cp(R,), || - o) is closed we obtain T'(u,v) € Cy(R, ) for all u,v € H by density and continuity.
The same argument shows that L(u,v) = %[(Kg,u, vy — (u, K9U>H] € Cy(R,) for all u,v € H,

and so (x,u, V)y = T(u,v) + iL(u,v) € Co(R,) forallu,v € H.
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for all u,v € H. Moreover, for u,v € D,,,, we have

ég%(xg’u’ U>A = ég%[(xg’u’ U)H + <AmaxK9u’Amaxv>H]

= lim|(x,u, v)y + Qm<K§,AmaXu,AmaXU>H] =0,
0—0

lim ¢™"(x,u,v)4 = lim [9_m<1<9u, L)y + <K9Amaxu’Amaxv>H] =0.
9—00 9—00

For i = u + Dy and U = v + Dy, in & We have
<7€9ﬁ: O)é%max = <7TmaxK§>7Tmaxu’ TmaxV)a = (Kgﬂmaxu: TmaxV)As
and thus

lim(®, 2, 0) »

9_)0 max

=0and lim ¢™"(%,%,0), =0.
o—00
Consequently, if §i = ot with §(o) = 0, then £,i = 0911 and thus
A 112 _ NN
||u||()@max = ‘(Kgu,u>gmax| — 0asg — 0.
Likewise, if it = ot with (o) = —m, then Rl = 9“’12 and

alP, = |e™&o0,0)z, | > 0ase — oo.
“max

3. A Green formula for the adjoint pairing

We next consider the adjoint pairing
['s ']A : ﬂmax X Dmax - C,

[u, U]A = %[(Amaxu’ v)H - <uaAmaxv>H]-

This is a Hermitian sesquilinear form (the extra --term renders it Hermitian

L
rather than skew-Hermitian), and [u,v]4, = 0 for all v € D,,,, if and only if
U € Dyin- Thus [+, -], induces a nondegenerate Hermitian sesquilinear form

[" ‘]gmax
[ﬁ’ ﬁ]fmax = [u’ U]A

ford = u+ Dy, and U = v + Dy, Every domain Dy, C D C Dppax i

determined by its projection

Ep={l=u+ Dpin; U € D} C oy 3.1)

: éamax X @@max - C’

We have (AD)* = Ap), where

pu = EP = (0 € b (0,01, =0Va € &p}.

max

In particular, A5 = A7 is selfadjoint if and only if

@&}g—] = é%D C (@&}maxa [" ]é’ )

“max
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is a Lagrangian subspace.

Remark 3.1. We will use several results about finite-dimensional complex vec-
tor spaces (V, [+, -]) equipped with indefinite Hermitian sesquilinear forms [ -, -] :
V xV — C below. We refer to [11, 21, 26] as general references. The invariants
of (V,[-,-]) are (mg, m,,m_) € N3, where

my = dim{v € V; [v,w] =0 Vw € V},

m, = max[{dimU,; U, CV, [u,u] >0V0#u e U,}u{0}],

m_ =max[{dimU_; U_ CV, [u,u] <0V0#ue U_}u{o}]
We have my + m, + m_ = dim V. The signature of (V, [, -]) is

Sgn(V, [" ]) =m,—m_.

For any basis {v;, ..., v,} of V consider the matrix G = ([v;, vj])?j:1 e M, (O).

Then G* = G, and m, is the multiplicity of the eigenvalue 0 of G, while m,_is the
total number (including multiplicities) of the positive and negative eigenvalues
of G, respectively. (V,[-,]) is nondegenerate if m, = 0.

A subspace U c (V, [, -]) is isotropic if U ¢ UM, where

Ul ={veV; [v,u] =0Vu e U},

and Lagrangian if U = UMl If (V,[-,-]) is nondegenerate then Lagrangian

subspaces U exist if and only if sgn(V, [-,-]) = 0. In particular, V must then be
dimV

even-dimensional and dim U =

Lemma 3.2. We have

(%2, %,01; = ¢™[0,0], , 0> 0,

and
A M A A ~ A LM A
@ +12)a,015, = [8,@+i2)0]z

i[Reh, RoU] 2 = (AmaxKolh, KoU) — (KU, Apax V)
= 0"[(koAmaxth, KoU) — (KoU, g Amax V)]
= 0" [(Amaxtt, V) — (U, Apyax V)]
=i"[a, 0]z
proving the first claim. Consequently,
[2,0], = lo~ '"/2K i, 0 m/zkeﬁ]é%m, >0,
and thus
0= (eDy)[n, 0], =
[(§+ i)™ Rotto ™ *Ro0] s — 07/ R, (§ + 1)~ *Ro0] 5,

Evaluation at ¢ = 1 proves the second claim. O
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iR
R
[ Xoral L y
° L] L]
——————————————— - -0 -—----F(0)=——
O L] L]
[ You ° .
S(o)=-m

FIGURE 1. Eigenvalues of §

By Lemma 3.2,
s m A .
b=g+l; ! Smax = Smax
is selfadjoint with respect to the (indefinite) inner product [, -] &, on & s

and consequently the triple (éamax, [-,-] & f)) has a canonical form (see [26,
Theorem 5.1.1]) that furnishes a complete description of the adjoint pairing in
terms of the generalized eigenspaces of § as stated below. We will refer to these
statements as the Canonical Form Theorem in the sequel, and it plays the role
of an abstract Green formula for the adjoint pairing:

(1) The eigenvalues of § are symmetric about the line J(o) = —%. Let
Cooro*=0-imeC (3.2)
denote the reflection about the line J(o) = —%. Then

spec(d) 2 o — o* € spec(§g),

see Figure 1.
(2) For o € spec(d) let &, be the generalized eigenspace for the eigenvalue

o. Then
gamax = @ gao' 7] @ [(?U@éaa*],
oespec(§) o€espec(§)
S(0)=—"2 S@)<-%

and this direct sum is orthogonal with respect to [-, -] ¢, - More pre-
cisely, if & € &, and 6 € &, with o, # o) then [#,0], = 0,and

[., -]é';,max : g)o-o x (’)ﬁ)g(‘;' g C

is nondegenerate.
(3) For every o € spec(g§) with (o) < —% there exist decompositions

mO’ mU
bo =P &, and &y = P &or
Jj=1 Jj=1
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such that for every 4; € é"a and 0, € é"c,* x wWe have [}, 0], =0
whenever j # k. Furthermore, foreach j € {1, ..., m,}, both spaces 5"0, j
and fc*, jareinvariantunder g, and there exist ordered bases {#i;, ..., ﬁnj}
of &.j and {0y, ..., G, } of &+ ; such that the matrix representation of §
in these bases is given by a single Jordan block of size njxn; with eigen-

value o and o*, respectively, and we have*

1 ,u+v=nj+1,

i,,0 .
[“ V]‘@ 0 otherwise.

°max

a,u,nj+1—v =

(4) For every o € spec(§) with S(o) = —% there exists a decomposition
Mg
-
j=1

such that for every i; € é"g and 0, € éagk we have [;,0c], =0
whenever j # k. Furthermore, foreach j € {1,...,mg}, 50, jis 1nvar1ant
under §, and there exists an ordered basis {1, ..., itnj} of <§"G, j such that

the matrix representation of § is given by a single Jordan block of size
n; X n; with eigenvalue o, and we either have

o 1 u+v=n;+1,
a0, = _ ' 3.3
[ " v]é‘max Mo +1=v {0 otherwise, ( )
or
-1 u+v=n;+1,
PN -5 = j 3.4
[ Mm2 ]éamax M’nj+1 v %0 OtherWiSe- ( )

The resulting collection of signs +1, associated to the canonical form
(3.3), or —1, associated to the canonical form (3.4), for &, is unlque
in the sense that different decompositions of &, into subspaces éaa

above that result in Jordan blocks for §, are orthogonal with respect to
[-,-] & and furnish the canonical forms (3.3) or (3.4) for [ -, -] . asso-
ciated w1th each Jordan block, yield the same total collection of plus and
minus signs for Jordan blocks of equal sizes. Following [26], this col-
lection of signs is referred to as the sign characteristic of § with respect
to[-,-]z . Note that the sign characteristic is associated to eigenvalues

with §(o) = —% only.

N
4The matrix (6 “ N“*”)u - is called SIP matrix in [26], where the acronym stands for standard

involutary permutation.
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We further elaborate on the sign characteristic for eigenvalues located on the
line §(o) = —% and proceed to describe it invariantly: Let n, € N be such that

PN

&y =ker(g — U)na 2 ker(§ — a)na_l 2..2ker(§ —o) 2 {0}
For each ¢ € {1, ..., n,} consider
[,-]¢ @ ker(§ — o)f x ker(§ — a)f - C,

[,0] = [(@ — o) .01,

“max

(3.5)

This is a Hermitian sesquilinear form. Let (m, m,, m_) be its invariants.
Proposition 3.3. We have
) . e+1 . e . -1
my = dimker(§ —o)  —dimker(§ —o) +dimker(§—o0)
and

m, + m_ = Number of Jordan blocks of size ¢ X ¢ for the eigenvalue o.

The sign characteristic associated with the eigenvalue o and Jordan blocks of size
¢ X € is then given by (m,., m_), where m,_ is the number of +1 signs, and m_ is
the number of —1 signs.

Proof. The proposition can be deduced from [26, Theorem 5.8.1], but we will
give a direct proof here.
We first show the claim regarding m,. To that end, we are going to prove

¢ ¢
that if 0 € ker(§ — o) such that [@,0], = O forall 4 € ker(§ — o) then
-1 ¢
veker(§—o) +ran(§—o)nker(§ —o) ,and vice versa. Indeed, if
[2,0]p = [(§ —0) ', 0], =[2,(§—0)""0], =0
R ) ¢ NV R £.1L] R ¢
foralla € ker(§ — o) , then (§ — 0)~10 € [ker(§ —0) | =ran(§ — o) .
Consequently, there exists 0 € &, such that (§ — o)/ 10 = (§ — 0)’w, so

-1
0—(§—o)w =1y €ker(§—o) . Thus

0 =1+ (§ — o) € ker(§ — a)f_l +ran(g — o) nker(g§ — o)f.

Conversely, if

U

-1 ¢
g+ (@ —o)w eker(§—o) +ran(§—o)nker(g—o) ,
then (§ — o)/ ~10 = (§ — o)’ w and so
[@,0]p = [0,(§ - o) "0l =[0,@-0)wl, =[@-0)fauwl; =0

max

¢
forall i € ker(§ — o) . Now

dim[ran(§ — o) N ker(§ — J)f] = dimker(§ — a)fﬂ — dimker(§ — o)
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A . £+1 . . (2 ..
asg—o : ker(§—o) —ran(§—o)nker(§—o) issurjective. So

my = dim|ker(g — a)f_l +ran(§ — o) nker(§ — a)f]
= dimker(§ — G)f—l + dim[ran(§ — o) N ker(§ — a)f]

— dim[ran(§ — o) N ker(§ — 0)5_1]
. t+1 . ¢ . -1
= dimker(§ —o) —dimker(§ —o) +dimker(§—o0c) .
Furthermore,
¢
m, +m_ =dimker(§ —o) —my

= [dim ker(§ — O’)f — dimker(§ — a)f_l]

¢ ¢
— [dimker(§ — o) ! _dim ker(§ —o) |
= Number of Jordan blocks of size ¢ X ¢ for the eigenvalue o.

Now apply the Canonical Form Theorem from [26, Theorem 5.1.1] as previ-
ously described, and write

my+m_

R ¢
@ é”ij Cker(§—o) ,
j=1

where this direct sum is orthogonal with respect to [, -] 8o and the éAﬁj are as-
sociated to £ x¢ Jordan blocks for § with eigenvalue o. Moreover, letd; i, ..., % ¢
be a Jordan basis of éij foreach j = 1, ..., (m, 4+ m_) as described in the canon-
ical form, such that for each j we either have i, ¢l = 1 or [d; ¢, 0], =
—1. Let

U, =span{llj¢; [A, 0] = 1}
U_ =span{ilj.; [0, h¢]p = -1}

Because [ ¢, Uk ¢]p = O for j # k we then have [d,%], > Oforall0 # 2 €
U,,and [@,@], < Oforall0 # &# € U_. Thus m, > dimU,, but because
m, +m_ =dimU, +dim U_ we have m, = dim U, proving the claim about
the sign characteristic associated to Jordan blocks of size ¢ x¢ for the eigenvalue
o. (]

In the sequel we will also write my(o, ¢) and m,(o, ¢) for the invariants of the
Hermitian sesquilinear form (3.5) when the context warrants specific reference
to the eigenvalue o and the size £. The Canonical Form Theorem implies the
following algebraic signature formula and results about the existence of selfad-
joint extensions of the operator A (see also [26, Corollary 5.2.1]).
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Theorem 3.4. (1) The signature of (éyax. [,-14 ) is given by
sgn(bman [5712, )= 2, 2, (mulo,6)—m_(0,0)).

oespec(§) ¢ odd
S(@)=-7

In particular, the operator A admits selfadjoint extensions Ap = Al if
and only if

> Y (mye. ) —m_(0.6)) = 0.

oespec(gd) ¢ odd
S(0)=-7

(2) The operator A admits an invariant selfadjoint extensions if and only if

Z (my(o,6) —m_(c,¢)) =0

£ odd
for every o € spec(g) with (o) = —%.
Proof. Let (0, M, M_) be the invariants of the form |-, -] & We have

gomaxz @ ga@ @ [éoUQéAag*]:

oespec(d) o€espec(d)

S(a)z—% S(a)<—%
where this direct sum is orthogonal with respect to |-, -] 8o and the restriction
of [-,-] & 10 each of the direct summands is nondegenerate by the Canonical
Form Theorem [26, Theorem 5.1.1]. Consequently,

M, -M_= Z (M_._(é%g) _M_(f’a))+

oespec(§)
S(0)=-7
Z (M+(£AG 52 @&}cr*) - M—(é%cr 2] go-*))’
oespec(d)
S(a)<—%

where M, (U) are the invariants of the restriction [-, -] o U x U - C to the
indicated subspace U. For each o € spec(§) with J(o) < —% the Canonical

Form Theorem implies that &, C (&, @ &;+,[-,-]2_ ) is Lagrangian, and thus
M+(£00' 52 Cg}cr*) - M—(éAaU S?) é}a*) =0.

For o € spec(g) with 3(o) = —% we prove next that
M, (&) -M_(&) = Y, (my(0,6) = m_(0,0)).
£ odd

By the Canonical Form Theorem we have

mO'
bo =P,
Jj=1
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which is orthogonal with respect to [-, -] . the restriction of [ -, -] s 1o each of

the direct summands is nondegenerate, and each égc,’ j is associated to a Jordan
block that either contributes a +1 or a —1 to the sign characteristic. We have

M+((9@cr) - M—((?o) = ZU(M+(£AG,J') - M—((gga,j))-
j=1

If dim éADU, j is even and spanned by {2, ..., 1 } with either (3.3) or (3.4), then
U = span{iy, ..., i} C (&, [ 14 )

is Lagrangian and consequently M. +(éA"U’ —M _(é%c,’ j) = 0. Ifdim é}c,’ jisodd and
spanned by {#ly, ..., @ly 41 } With either (3.3) or (3.4), then

X . 1  incase of (3.3),
M, (&, ) —M_(&,;) =
+(¢5.1) (. —1 incase of (3.4).

2k+1
This is because the matrix (& M,2k+2—v)ﬂ ,_, has (k + 1)-times the eigenvalue +1

and k-times the eigenvalue —1. Consequently,
M, (&) -M_(&) = Y, (my(0,6) —m_(0,0))
¢ odd

as desired, proving the first claim.

We next prove the second claim regarding the existence of invariant selfad-
joint extensions. Note that A5, = A is an invariant selfadjoint extension if and
only if U = &p C (&ax [ -2, ) from (3.1) is Lagrangian and invariant under
d. We thus have to show that invariant Lagrangian subspaces exist if and only
if

> (my(o,6) = m_(0,6)) =0
¢ odd
holds for every o € spec(g§) with (o) = —%.

Suppose first that U C &, is Lagrangian and invariant under §. Then

U= @ [4nU]

oespec(g)
= P Lnl]le @ (é&n0]e[é4-n0)).
oespec(d) o€spec(d)
S(0)=—" S(0)<-2
Every subspace
4,00l (40.ls,), S@=-7,

be®bril)y,), S <=7,
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is isotropic, and for dimensional reasons must be Lagrangian. In particular, for

every o € spec(§) with J(o) = —% we must have
M, (&) —M_(&) = Y, (my(o,£)—m_(o,6)) =0.
¢ odd

Conversely, assume that M, (&,) — M_(&,) = 0 for every o € spec(§) with
S(o) = —%. We proceed to prove that each space admits a Lagrangian subspace

U, c &, that is invariant under §. Then

D o @ 4
oespec(d) oespec(§)
S(o)=—2 S(0)<-7%

is a Lagrangian subspace of (é"max, [-,-] é%max) that is invariant under § as desired.

Write
Mgy
b _ @ 2
j=1
according to the Canonical Form Theorem with mutually [-,-]» -orthogonal
direct summands, where each éA"G, jis associated to a single Jordan block, and
pick bases for each &, ,j with either (3.3) or (3.4). By assumption, the odd-
dimensional blocks (if any) equally distribute among the signs +1 and —1. Now
divide the odd-dimensional spaces &, ,j up in pairs of the form (V,W), where V
contributes +1 and W contributes —1, and set
U(V,W) = span{ﬁw + L@M},
2 2

where the two vectors Ugimv+1 and Wamw4: are the middle vectors in the Jordan
2 2
bases for V' and W, respectively, and define

My [ dim &, J
UU:EB[é”U,jnker(@—a 2 ] ® @ Uw -
j=1 VA%
Then U, has the desired properties, and the proof is complete. O

4. Semibounded operators and the Friedrichs extension

Suppose that A, is semibounded from below in the sense that there exists a
constant ¢ € R such that
(Au,u) > c{u, u)

holds for all u € D,;,. By Lemma 2.1 and Lemma 4.1 below we in fact must
have A,;, > 0 which we are going to assume for the remainder of this sec-
tion. Since we assume A,;, to have finite deficiency indices, we note that ev-
ery selfadjoint extension Ap = A7 is semibounded from below, see [10, Theo-
rem 9.3.7].
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Lemma4.1. Let Ay : D C H — H be invariant and bounded from below, i.e.,
(Au,u) > c(u,u)
forallu € D for some c € R. Then

inf _(Au,u) =0
oue?d (u,u)

b

i.e., Ap has lower bound 0.

Proof. Let
L= inf (Au,u).
ozued (U, u)

For 0 # u € D we have
(Au, u) = g™k A, u, u) = ¢"(Api; u, k; ' u),
and thus
(Apu,u)y <ADK9_1U'3 K?“)
(wuy (TR T '
using the fact that x, is unitary. Consequently, passing to the infimum over all

0 # u € D on both sides, we get L = ¢"'L for all ¢ > 0. This leaves only L = 0
or L = —o0, and since L > —oo by assumption we must have L = 0. (]

Proposition 4.2. Let Hr < H be the completion of D,;, with respect to the
norm

[ul2 = (u,u) + (Au,u), u € Dyp.
Then x, restricts to a strongly continuous group action x, € Z(Ir) with
1%l 27,y < max{l,¢™/2}, ¢ > 0.

In particular, the Friedrichs extension

AF=A* :pFCH—>H,
Dp
2)F = 2)max N Hp,
is invariant.
Proof. We show that

Ke : (Dmin’l . |F) - (Dmin’l : IF)
is continuous, and consequently extends by continuity to a bounded operator

in Z(3p). Because Hp < H and x, € Z(H) this bounded extension is nec-
essarily the restriction of x, to Hp. Indeed, for u € Dy, we have

|7<§,u|127 = (KU, KoU) + (AxoU, K u) = (U, u) + " (K, Au, K, u)
= (u,u) + o™ (Au, u) < max{l, o™} - [uf?,

proving the desired continuity as well as the asserted norm estimate. This im-
plies that Ay is invariant.
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It remains to show the strong continuity of x, on the Hilbert space J(r. Be-
cause x, is a group and {x,; % < ¢ <2} C Z(Hp) is bounded, it suffices to

show that x,u — u with respect to | - [p as ¢ — 1 just for u € Dy, (see [20,
L.5.3]). Because x,u — u with respect to || - ||; we thus have to prove that

(A(gu —u), xu —u)y - 0asg — 1.

But this follows because A(k,u —u) = ¢"x,Au—Au — 0as¢ — 1 with respect
to | - [l O

The restriction x, : Hp — Jp of the group action is generated by the part of
the generator g in HF, i.e., the operator that acts like g with domain

{u € D(g) N Kp; gu € Hg},

see [20, I1.2.3]. The norm estimate for Ko in Proposition 4.2, both for 1 < ¢ < o
and for 0 < ¢ < 1, in conjunction with the Hille-Yosida Generation Theorem
[20, I1.3] now implies that for every o € C with (o) & [—m/2,0] and everyv €
Hp the unique solution u € D(g) to the equation (g — o)u = v belongs to Hp.
This is in addition to the properties for g previously discussed in Remark 2.3.

Our next goal is to give an explicit description of the domain of the Friedrichs
extension Ag in terms of the generalized eigenspaces of §. In this context, con-
sider the following definition derived from [26].

Definition 4.3. We say that A satisfies the sign condition if for every o € spec(§)
with (o) = —% the following two conditions hold:

« my(0,¢) = m_(0,¢) = 0forall odd ¢ € N. Thus g does not have
odd-sized Jordan blocks associated with the eigenvalue o.
 Either m(0,¢) = 0or m_(o,¢) = 0 for all even ¢ € N. Thus the sign
characteristic associated with the eigenvalue o is entirely negative or
positive for all Jordan blocks of g.
Here m, (o, ¢) are the invariants of the Hermitian sesquilinear form (3.5), see
Proposition 3.3. Note that the sign condition is trivially fulfilled if spec(§)n{c €
C; (o) = —%} = 0.

We note that the sign condition holds for semibounded indicial operators
considered in the later sections, see Theorem 9.2.

If the sign condition holds, [26, Theorem 5.12.4] implies that for each o €

spec(§) with S(o) = —% there exists a unique Langrangian subspace éA"G 1 C
72

(1] 4) that is invariant under §. More precisely, write

mO'
be =D,
Jj=1

according to the Canonical Form Theorem with mutually [-,-]» -orthogonal
direct summands, where each éi,, j is associated to a single Jordan block of size
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(21’1}) X (2”1}) Then

é
a,

SRR

My
= @[é%g,j N ker(g — o),
j=1

o} 5’0 1 is spanned by the first halves of the Jordan basis elements associated to
2

each Jordan block in the canonical form for the triple (&, [+, -] P o).

Theorem 4.4. Let &y = {il € Epy; U = U+ Dy, u € D} Then

oespec(d) oespec(d)
S(@)=-"2 S(0)<-3

If A satisfies the sign condition, then &, N ép = & 1 forall o € spec() with
’2

S(0) = -7

Proof. By Proposition 4.2 the Friedrichs extension is invariant. This implies
that & is invariant under %,, and consequently & is also invariant under the
generator §. Hence

= P [&nérl
oespec(d)
We will next prove that if J(o) < —%, and il € &, with (§ — o)t € &, then
il € &r. Indeed, by assumption there exists u € D,,,x ND(g) With 11 = u+D i,
and v € Dp such that (g—o)u = v. Because v € H we have u € Hp, and thus

U € Hp N Dpay = Dy, 50 0L € &y as stated. Consequently, if (§ — o)ka = 0 for
some k € N, we have & € &5, showing that &, c & for J(o) < —%. Because
the adjoint pairing

[s i éexéoe = C
is nondegenerate and &5 is Lagrangian we must necessarily have &,+ N &y = {0}
for S(o) < —%.

Finally, note that &, N &y C (&, [, 1) is Lagrangian and invariant under

g for (o) = —%. Consequently, if A satisfies the sign condition, we must
necessarily have &; N & = & 1. The theorem is proved. O

’2

5. The Krein extension and the order relation for invariant
selfadjoint extensions

We continue to assume that A;; > 0. The Friedrichs extension Ay and the
Krein extension Ag are distinguished in the sense that Ay < Ay < Ap for all
nonnegative selfadjoint extensions Ay = Aj > 0. Recall that for two selfad-
joint operators T; = T;.k > 0 the order relation T; < T, holds if and only if
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1 1 1 1 1
D(T;) € D(T;) and ||T{ully < ||T,ully foru € D(T;). The latter is an in-
equality for the quadratic forms associated with the T;, while the domain of
the nonnegative square root in each case coincides with the domain of the qua-
dratic form. We refer to [5, 9, 8] for information on the Krein-von Neumann
extension (but note that A, is not strictly positive by Lemma 4.1, which is
compensated for by the invariance of A under scaling in our investigation).
Our goal in this section is to prove the following two theorems.

Theorem 5.1. Let & = {6l € &pay; 1 = U+ Dyyin, U € Dy = D(Ag)}. Then

(?K = @ [(fé\oo- N é"oK] @ @ (fé\ao-.

oespec(§d) oespec(d)
S(@)=-7 S@)>-%

If A satisfies the sign condition, then &, N &y = éA"G 1 for all o € spec(§) with
2
S(o) = —%.

Theorem 5.2. Suppose A satisfies the sign condition, and let

b= @ 4
oespec(§)
S0)<-3

(1) Forevery subspace U C &_ thatis invariant under K, there exists a unique
selfadjoint invariant extension Ap : D € H — H of A such that &5 N
& =1U.

2) LetA@j = A;j, j = 1,2, be invariant selfadjoint extensions. Then Ap <

Ap, if and only ifé%@1 né. c 5"@2 N &_, or equivalently if and only if
D,NDr CDyN Dy.

We note that the first part of Theorem 5.2 is just [26, Theorem 5.12.4] when
applied to the present context.

Given Ap = A}, > Owelet #(p < H be the domain of the quadratic form as-
1

sociated with Ag. We have Hy, = D(Azz)), which equivalently can be described
as the completion of D with respect to the norm

|u|i) = (u,u)y +(Apu,u)y, u € D.
Because |u|p = |ulp for u € Dy, the embedding (Hp, | - ) < (Hp,| - |p)
is an isometry. Moreover, the codimension of Hr in Hy, is finite, where more
precisely dim F/Hp < % dim &,,.«, see [10, Theorem 10.3.7]. We write #(x
for the domain of the quadratic form associated with the Krein extension Ag =
A%
K

Lemma 5.3. Let Ap = A} 2 0. Then 3y = D + I, and this sum is direct
modulo D N Dy.
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Proof. Because D C (Hp,| - |p) is dense we have that (D + Hp)/FHp C

J{p/Hp is dense, and by finite dimensionality we must have (D + Hp)/Hp =
Hqp/Hp. This shows that Hy = D + Hp, and because D, N Hp = Dy the
sum is direct modulo D N Dp. U

Lemma 5.4. The Krein extension Ay . Dy C H — H is invariant.

Proof. This follows from a result by Makarov and Tsekanovskii [42], but we

give an independent proof here. We have Ay = A* . where the domain of
K
the Krein extension is given by

1
Dy ={u € Dpax; Iy € Dpiny : (Apug)i € H is Cauchy,

lim Apinty = Amax},
k—o

see Ando and Nishio [8]. We need to show that if u € Dy, then also x,u € Dy.
1

Let u, € D, such that kh_)rglo ApinU = Amaxt, and such that (Azuy)y is a
Cauchy sequence in H. Now x,uy € Dy, and we have
kh—glo Aminkguk = kh—glo QmKQAminuk = QmKQAmaxu = Amaxkgu-

Moreover, we have
1 1 1 1

| Ag K u, — Aliou|I7, = (Afxo(u — up), Alxco(uy — )y
= (Amin¥o(Ur — up), ko (U — Uy
= (0" Ko Amin (i — up), (U — Uy
= " (Amin(ug — Up), w — Uy

1 1
= o"||Aju — AfullF,
1
and thus (Azx,uy) C H is Cauchy. This shows that x,u € Dy and finishes the
proof of the lemma. O

Lemma 5.5. Suppose spec(§) N{o € C; F(o0) = —%} = (. Then the inclusion

map Dy © Hy is well-defined and continuous. We have D,y = D + Dp,
and this sum is direct modulo D;y,.

Proof. We have D C Hyp C Hg. Moreover, let Dy, € D C Dy, be such

that
b= P é.
oespec(§d)
S(0)>-%
Then Ap = A7, is selfadjoint by the Canonical Form Theorem and our present
assumption that § does not have eigenvalues on J(o) = —2. Moreover, Ap

is also invariant, and therefore A5 > 0 by Lemma 4.1. Thus Ay < Ay by the
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fundamental property of the Krein extension which shows that D C H5 C Hk.
Consequently, Dr + D = D« C K. Continuity of the embedding D, <
Hy follows from the Closed Graph Theorem.

By Lemma 5.3, every u € D, ,, now has a representation u = ug + @ with
Ug € Dy and ii € Hp. Butii = u — ug € Doy N Hy = Dy, which shows that
Dinax = Dx + Dp. We thus have &, = &x + &r, and for dimensional reasons
this sum must be direct. The lemma is proved. O

Proof of Theorem 5.1. We first consider the case that
spec(§) N{o € C; J(o) = —%} =0

By Lemma 5.5 we have a direct sum &, = &x @ &r. Now let

e @
oespec(d)
3(0)>—%

be arbitrary, and write 1 = g + 0y with fix € & and i € &5. Then
D 4|

ol
oespec(§) crespec(g) l
S(0)>~7 S(0)<—3

g =0+ (—ip) €

see Theorem 4.4, but because & is invariant under i, by Lemma 5.4 we have

éAaK = [ l [ (?K ]l
aespec(g) o ESPeC(Q)

\s(cr)>—; \s(cr)<—;

Consequently both #, @i € &, and so necessarily iy = 0 and i = g € &.

Thus
@ & c éx,
oespec(d)
S(a)>—§

and for dimensional reasons these two spaces must be equal which proves the
theorem in the present case.
We next consider the general case. Let D;, C Dy C Dppax be such that

Ep, = @ [£, nék],
oespec(d)
S@)=—7

and consider the operator By, = Ap, : Dy C H — H. Note that D, =
D(Bpin) is invariant under %,, By, is symmetric, and satisfies all the general
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assumptions imposed on A;,. We have B, = A*DO, where

@(A;,O>/Dmm<A>=[ ay) ] ¢ ]eao%o

oEspec(§) oespec(§)
3(o)>—§ 3(a)<—§

by the Canonical Form Theorem, and consequently

l)(BmaX)/D(Bmin) =

aespec(g) laespec(g)
o(a)>—— «S(U)<——

is the spectral decomposition of the quotient D(B.x)/ D(Bnin) associated with
the generator of the induced group action. By what we have shown above, the
Krein extension Bg of B;, has domain given by

DB)/DBuin) = P &
oespec(d)
S’(o’)>—%

and we have Ay = By as both extend A,,;, and B,,;,, and are each minimal
among the nonnegative selfadjoint extensions of these operators. In conclu-

sion,
b= @ lndle @ 4
oespec(§) oespec(§)
S(o)=—2 S(@)>-7

as desired. Lastly, it A satisﬁes the sign condition, we necessarily must have
be N éx = &1 for F(0) = —= because é.1 ¢ (&,[-1z,,) is the unique

Lagrangian subspace that is 1nvar1ant under Kg, O

Proof of Theorem 5.2. For every invariant extension Ay, = A}, we have

&p = @ [£, N &p] @ [&n&;]l@[ @ [cﬁgné"p]l,
oespec(d) oespec(d) o€espec(d)
S(0)>-% S(o)<-2 S(o)=—"2

and because A satisfies the sign condition we have &, n &y = & 1 for every
72

o € spec(g) with S(o) = —Z. Thus ) éA”‘a 1 is part of every invariant
2 oespec(§) 2
S@)=-%
selfadjoint extension. Consequently, by replacing the minimal extension Amln

with Ay asin the proof of Theorem 5.1 if necessary, where é”l) &b £)a 1,
oespec(§) 2
S@)=-%

we may without loss of generality assume that

spec(§) N{o € C; J(o) = —%} =0
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As previously mentioned, the first part of Theorem 5.2 follows from [26, The-
orem 5.12.4]. It is in fact an immediate consequence of the Canonical Form
Theorem. Given an invariant subspace U C &_ as stated in the assumptions,
the domain D of the unique selfadjoint extension with &, N &_ = U must nec-
essarily be

2= [ D [4n UUJ]l o] @ 14n w]l.

oespec(d) oespec(d)

S(0)>-= (o)<-=

2 2
We now proceed to prove the second part of the theorem. Let Ap = A7) be
invariant. According to Lemma 5.3 we have 7y = D + H, and because D is
invariant we conclude from Theorem 4.4 and Theorem 5.1 that 55, = DN Dy +
J, and this sum is direct modulo D,;,,. We also note that DNDy C (Hp, |-|p)
is dense. Consequently, for invariant extensions Ap, = A}, J =1,2, we have

J
Hp, C Hyp, ifand only if D, N Dg C Dy N Dk, which by the Canonical Form
Theorem is equivalent to Dy N Dr C D, N Dg. Moreover, whenever 5, C
H p, the embedding (Hop,, | - |p,) < (Hp,,| - |p,) is continuous by the Closed
1 1

Graph Theorem, and ||Aé)lu|| = ||Aé)2u|| u foru € JHp,. To see the latter

norm identity note that it is true for u € D; N D, O D, N Dy, which is dense in
FHp,, and so it extends by continuity to all of 75, . Consequently, Ay, < Ap,
if and only if #;, C Hyp, if and only if D; N Dp C D, N Dg. The theorem is
proved. O

6. Indicial operators

In the remaining sections we will discuss applications of the previous results to
indicial operators. As discussed in the introduction, indicial operators arise as
model operators associated with singularities of corner type. Taking an opera-
tor theoretical point of view, we consider indicial operators of the form

M
A=xTmY"a;(xDy) 1 CR(RyE)) CLA(R,; Ep) » LAREy),  (6.1)
j=0

where m, u € N and E, and E; are Hilbert spaces such that E; & E, is continu-
ous and dense, and the operators a; : E; — E, are continuous for j = 0, ..., u.
The (vector-valued) space Lﬁ is the L2-space with respect to the Haar measure

%x on the half-line. The indicial family of A

u
p(a)=Zajaj :E,—>E),, oceC
j=0

is a holomorphic family of Fredholm operators in .Z(E;, E;) and satisfies suit-
able ellipticity assumptions, detailed below. When considered an unbounded
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operator acting in E, with domain E; we require
p(c*)* = p(o) : E; CEy — E

to hold for the Hilbert space adjoints for each o € C, where 0* = o—im denotes
reflection about the line (o) = —%, see also (3.2). The latter assumption

ensures that the operator A as given in (6.1) is symmetric in H = Li(RJr;EO)
with dense domain D, = C°(R,;E;). On H = LZZ)(R+;EO) we consider the
R, -action given by

Kou(x) = u(px), ¢ >0, u € L. (6.2)

This is a strongly continuous and unitary group action on Li that leaves C° in-
variant, and we have A = ¢"'x,Ax, 1. D. — Hforall ¢ > 0. The infinitesimal
generator of this group action is g = xD,.

For indicial operators associated with cone or corner singularities we typi-
cally have u = m in (6.1), but we allow these parameters to be decoupled here
to include more general singular behavior; this requires anisotropic estimates.
We fix the following notation:

t = t5) = (u.m) 63
: : 6.3
(A,0)z = (1+ 2% + 0%1)*102 = (1 4+ 127" + g%)

for (1,0) € R?, see also Appendix A.
The following standing assumptions are imposed on the indicial family p(o):

(A-1) p(o) : E; C E; — E,is closed, densely defined, and Fredholm for
o € C,and the map C o o — p(o) € Z(E;, Ey) is holomorphic.

(A-2) We have p(c*)* = p(o) : E; C E, — E, as unbounded operators in E,,,
where o* =0 — im.

(A-3) For (1,0) € R?and |4,0| > R > Osufficiently large p(c) +il™ : E; —
E, is invertible, and the inverse satisfies

sup {(/1, a)}"”

RS 1
Sup |(p(cr)il/1m) HX(EO)+”(p(a)ilem) ||$<E0,E1)}<°°'

(A-4) For (1,0) € R? and R > 0 as in (A-3) and every k € {1, ..., u} we have

sup (1,0)7|[85p(@)] (p(@) £ ia™)

|4,01=R

0.

<
Z(Ep)

Note that we are not imposing assumptions regarding the deficiency indices of
the operator (6.1), and neither do we place any assumptions on the invertibil-
ity of p(o) along a line (o) = y for any specific value of y € R, nor on the
embedding of the spaces E; < E, other than continuity and density.

Assumptions (A-3) and (A-4) are ellipticity conditions on p(c). To illustrate
this we briefly discuss conical singularities in Example 6.1 below.
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Example 6.1. Let Y be a closed compact Riemannian manifold and consider
an indicial family of the form

u
p(@) = Y, a;(y.Dy)al 1 CX(Y) = C2(Y),
j=0

where a;(y,D,) € Diff* ™/ (Y)for j = 0,..., u. We assume that the parameter-
dependent principal symbol

u

o(p)y.n;0) = ), o(a;)(y.n)o’
=0

is invertible for (y,7;0) € (T*Y X R) \ 0, and that

a(p)y,n;0) = a(p)(y,n;0)*.
Then the family p(c) satisfies both assumptions (A-3) and (A-4) with E, =
L*(Y) and E; = HX(Y).
To see this note that a(y,n;1,0) := a(p)(y,n; o) + iA™ satisfies
a(y,e"™n;¢#4,9™M0) = ¢™a(y,n;1,0), >0,

and is invertible for (y,7;4,0) € (T*Y x R?) \ 0 by the symmetry and in-
vertibility assumptions on o(p)(y,n; o). Thus p(c) + il™ is an elliptic family
of order mu that depends anisotropically on the parameters (1,0) € R?, and
the standard parametrix construction with anisotropic parameters furnishes a
parametrix b(4, o) of order —mu such that

(p(0) £iA™)b(4,0) — 1, b(A,0)(p(0) £id™) — 1 € L(REP°(Y)). (6.4)

Locally, b(4, o) is quantized from symbols b(y, n; 1, o) that satisfy anisotropic
symbol estimates of order t = —mu of the form

—— t=m|By|~pfy~mp
IDgA5 b A0 S [+ | 4+ 22m 4+ g2y | TR (6.5)

fora € Ngimy and 8 = (B, P2, B3) € Ngimy XNy XNy, while p(c) +iA™ is based
on such symbols with ¢t = mu and principal symbol a(y, n; 1, o) above.
The symbol estimates (6.5) for b(y, n; 1, o) with t = —mu imply

VRIS by, 9 4, )| § (A, 00 ™,
B DL b(y, 734, 0)] S 1,
and so

sup{(/l, a):;“

|b(/1’ U)||$(HS(Y)) + “b(/l’ G)Hf(m

for every s € R, in particular for s = 0, and because of (6.4) we can replace

(Y),HW(Y»} <

b(4,0) by ( p(o) + i/l'”)_1 for |4, 0| > 0 large enough in these estimates, show-
ing (A-3).
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The composition
814 (p(0) = iA™)|(p(0) £ iA™) " : C=(Y) = C=(Y)

is an anisotropic family of pseudodifferential operators depending on (4, o) of
order t = (mu — ul — mk) + (—mu) = —ul — mk by the composition theorem,
and so locally is based on symbols that satisfy the estimates (6.5) with this value
of t. Consequently,

sup {(2,0)4*™ |[8185(p() + i2™))(p(e) = i4™)

l< oo
I0,0|>R>0

1
HZ(HS(Y))
for every s € R, showing (A-4).

We proceed to further discuss the assumptions in the abstract setting:
First observe that (A-3) and (A-4) imply that

sup {(2,0)*™ (8405 (p(0) = i™)](p(0) £ i2™)

|A,0|>R>0

1

et <
holds for all k,1 € Ny, which at first sight may appear stronger than (A-4). In
the abstract setting, assumption (A-4) serves a dual purpose as an ellipticity
assumption and as a replacement for the notion of order for the coefficients q;
in (6.1).

Next note that for every y € R we can conclude that p(o+iy)+il™ : E; — E,
is invertible for large enough |4,0| > 0, (1,0) € R2, and the estimates stated
for p(o) in (A-3) and (A-4) are equally valid for p(c + iy). This means that the
ellipticity conditions (A-3) and (A-4) are invariant with respect to shifting p(o)
in the complex plane, or, on the operator level, that these conditions are invari-
ant with respect to conjugating the operator A in (6.1) by weights x” Ax™7 for
any y € R. Only the symmetry assumption (A-2) depends on weights. More-
over, the lower bound R > 0 for the invertibility, and the estimates in (A-3)
and (A-4) for p(c +iy) in place of p(o), are uniform as y € R varies in compact
intervals’.

In particular, for 1 = 0, we see that the indicial family p(c) : E; — E; is
invertible for sufficiently large |$R(o)|, and the lower bounds for invertibility
can be chosen locally uniformly with respect to J(o). Let as usual

spec,(A) ={o € C; p(0) : E; — Ej is not invertible}

be the set of indicial roots of A. Each strip in the complex plane of the form
—T < 3(o) < T then contains only finitely many indicial roots by (A-1) and

>These statements are not immediately obvious. For a proof we refer to Lemma A.7 in
Appendix A. In the terminology of this appendix, assumptions (A-3) and (A-4) imply that
p(o) xix™ € Sp* *(R x C; Z(E,, E,)) is right-hypoelliptic of order (mu, 0) in the sense of Def-
inition A.6. The symbolic parametrix g(x, o) defined there via the kernel cut-off construction
belongs to Sg;f(lR x C; Z(Ey,E))) N S;m‘“g(R x C; . Z(E,)). We have (p(0) + ix™)q(x,0) —1 €
S5=(R x C; Z(E,)) and q(x,0)(p(0) £ ix™) — 1 € S;°(R x C; £(E,)), and combined with the
estimates for the derivatives in Part (b) of Lemma A.7 we obtain all stated properties.
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analytic Fredholm theory. We also note that spec, (A) is symmetrical about the

line 3(o) = —% by (A-2).
In order to describe the extensions of A we will use von Neumann’s formulas
Dinax = Dmin © ker(Apax + 1) © ker(Apax — ) (6.6)

as a starting point. One of the main ingredients needed for proving the Classifi-
cation Theorem 8.1 for extensions is showing that the functions in ker(A . i)
decay rapidly as x — oo, which will be accomplished via the construction of
parametrices for both A + i and is largely relegated to Appendix A. In particu-
lar, we will need to use Mellin pseudodifferential operators. To fix notation we
are going to write

(Mu)(o) = f X" Ou(x) cic_x’ o €R,
0

(M~v)(x) = % L x%v(o)do, x>0,

for the Mellin transform and its inverse. Mellin pseudodifferential operators,

in most general form, are written as
= Y at oy
[op,,(@u](x) = zﬂjﬂ;/o. ( ) a(x, x’, ou(x") 7 do

x/

for a compound symbol a(x, x’, o).

7. The space 77 (R, ;E,) and the minimal domain

Lemma 7.1. (a) Along every line (o) = y in the complex plane the operator
p(o+iy) : E; —» Ey, 0 € R, isinvertible for || > 0 sufficiently large, and the
corresponding lower bounds for invertibility can be chosen locally uniformly
with respect toy € R. We have

(o +iy)™! € STH(Ry; L(Ey)) N S°Ry; L (Ey, Ey))

for |a| > 0 with locally uniform symbol estimates with respecttoy € R.

(b) Fory; €R, j = 1,2, we have
(65p)(o +iy)p~'(0 +ir1) € STH(Ry; L (Ey))

for|o| >0, k € N,.

(c) Thereis a holomorphic family (o) : C —» Z(E,, E,) such that
q(o +iy) € STH(Ry; L(E)) 1 S*(Ry; L(Eo, Ey)
with locally uniform symbol estimates with respect to y € R such that
r(o) = p(o)™ —q(0) : C - Z(Ey, Ey)

is meromorphic on C with at most finitely many poles in each strip of the form
{ceC; —T <S(0) <T}foreveryT € N, and if y € C*®(C) is an excision
function for the poles we have (yr)(c +iy) € ./ (R,; Z(E,, E;)) with locally
uniform estimates with respecttoy € R.
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Proof. This follows from Lemma A.7 in Appendix A. To apply that lemma
observe that

a(x,0) = p(0) £ ix™ € Sp¥’ (R x C; Z(Ey, Ey))

is right-hypoelliptic of order (mu, 0) by our standing assumptions, and

q(x,0) € SYY (R X C; Z(Eo, E1)) N S;™ (R x C; L (Ey)).
All assertions follow when restricting to x = 0. ]

Definition 7.2. Fix y, € R such that p(o + iy,) : E; — E, is invertible for all
o € R and define

A (R,; Ep) = Range of op,,(p(o + iye)™") : L} (Ry; Eg) = LRy Ey).
Note that p(c + iyy)~! € SU(R,; Z(Ey, E;)), so
opy(p(a +iye)™) 1 Ly(Ry; Eg) = Ly (R4 Ey)

is bounded. This operator is also injective, and consequently we can describe
A (R,; Ep) equivalently as

u e ARy Ey) < u € L)(Ry; Ep) and op,,(p(o + iyo)u € LY (R,; Ey).
Note that op,,(p(c + iyy)) H;°°(R+;E1) - Hb_°°([R+;E0) is bijective with
inverse op,,(p(c + iyp) ™).

Proposition 7.3. (a) 77 (R, ;E,)isa Hilbert space with respect to the inner prod-
uct

(u, U>jf = <OpM(p(G + iYO))us OpM(p((j + iYO))U>LI2)(R+;E0)'

(b) Lety € R be any other value such that p(c + iy) : E; — E| is invertible for
allo € R. Then 5¢(R,; E,) can equivalently be defined as

H(R; Ey) = Range of op,(p(o + iy)™) : Li(R+§E0) - Li(R+§E1),
and the inner product
(u,v)’,, = (0py(P(a + iy)u, 0py(p(0 + iY V)12, 15y

induces an equivalent Hilbert space structure on 7 (R, ; E;) (i.e. the norms
| - Ilw and || - 1I',, are equivalent).

(¢0) CP(R,;Ey) € (R, ; Ey) is dense and continuously embedded.

(d) Hy(Ry;Ep) & ARy Ey) & Hy (Ry;E) N L (R Ey), and

AR Ey) = Hy (R Eo) N LA(R ;5 Ey)
if and only if op,,(p(o + iy)) : Hg(R+;E0) N Li(R+;E1) - Li(RJr;Eo)-
Proof. Assertion (a) follows at once from the boundedness and injectivity of
opy(p(o +iy) ™) : le,(R+;E0) - le,(R+;E1) < le,(R+;E0)-
As both
plo +iy)p(o +iye)™, plo +iyo)p(o +iy)™ € SRy L (Ep))
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by Lemma 7.1 we have that
opy(p(o +iy)p(o +iye)™) : Li(R4; Eg) = Li(R,; Ep)

is bounded and invertible with inverse op,,(p(c + iyo)p(c + iy)~!). Conse-
quently, the operators op, (p(o +iy)™") : L}(R4; Eo) = Ly (R,; E;) and

0py(P(o +i¥9)™") = 0py(p(o + i¥)™)opy,(p(o + iy)p(o +iye)™)

: Li(R+§E0) - Li(R+§E1)
have the same range, proving (b).
For (c) note that
op,(p(o +iyp) : T (R4 Er) —» T (R, Ep)

is continuous and invertible with inverse op,,(p(c + iyy)™"). Here .7 denotes
the space of functions u(x) on R, such that u(e’) is a Schwartz function on R.
Thus 7 (R,;E;) < (R,;E;), and the density of .7 (R,;E,) C Li([RJr;EO)
implies the density of .7 (R, ;E;) in (R ,;E;). So (c) follows from the fact
that the embedding CZ®°(R,; E;) & 7 (R,; E;) is dense.

Lastly, (d) follows because

0P, (P(0 +iyo)) 1 Hy (Ry; Er) — L (Ry; Ep),
0Py (P(0 + 7o) ™) 1 Li(R 1 Eo) = Hy(Ry;Ep) N Ly(Ry; Ey)
are bounded by Lemma 7.1. O
Remark 7.4. A typical situation in applications is that
A (Ry;Ey) = Hy (R, Eo) N LR Ey). (7.1)
Let A : E; C E, — E, be selfadjoint and invertible®, and define for 0 € R
(o) =(o)* +iA : E; > E,.

Then (o) € S*(R; Z(E,, Ey)) is invertible for all ¢ € R, and by the Spectral
Theorem we have that t(c)™! € S™#(R; Z(E,)) N S%(R; £(E,, E;)). Thus

0Py (1) : Hy(Ry:Eo) N Ly(Ry: By) — Ly(Ry; Eo)
is an isomorphism with inverse opM(r_l). It follows from our assumptions on
p(o) and Lemma 7.1 that
t(0)p(o +iye) " = (oW p(o +iyo) ™! +iAp(o +iye) ™ € SUR; L (Ey)).
If the latter happens to be an elliptic operator valued symbol then
plo +iypr(o)™ € SUR; L(Ep)),
and therefore the identity (7.1) holds in this case.

The space 77 (R, ; E;) naturally arises from an unbounded operator perspec-
tive.

bFor example, we may choose o, € C with §(g,) = —% such that A = p(o,) : E; = E, is
invertible and selfadjoint by (A-2).
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Proposition 7.5. For every y € R the operator
opy(p(o +1y)) : CE(R4;Ey) C LA(R,; Ep) = Ly (R4 Ey)

is closable, and the closure is op,,(p(c +iy)) : ' (Ry;Ey) — LZZJ(R+;EO). More-
over, the adjoint of this operator as an unbounded operator acting in Li(RJr; Ey)
is 0y (p(0 — iy + M) : A (R, Ey) = LA(R,; Ey).

Proof. We note first that op,,(p(c + iy)) : (R, E;) — LIZJ(R+;EO) is well-
defined and continuous because p(c + iy)p(c + iyy)™' € SUR;.Z(E,)) by
Lemma 7.1. Writing H = L}(R,; E,) we have

luller + llopy(p(o + iy)ulla S [lopy(p(o + ivo)ully = [lull -

foru € #(R,;E;) in view of u = op,,(p(c + i) )op,,(p(c + iy))u. On the
other hand, with g(c) from Lemma 7.1 we have

p(o +iyo) = p(o +iyo)q(o +iy)p(c + iy) — p(o + iyo)l(o + iy),
where
p(o +iyp)q(o + iy) € S%(R; Z(Ey)) and
plo +iyo)l(a +iy) € ' (R; Z(Ey)),
and therefore
lull s = llopy,(p(o + iyo)ully < llopy,(plo + iy)ully + llully

for u € (R, ; E;). This proves the first part of the proposition.
To prove the claim about the adjoint we consider
E E
0 p(o+ iy)] ! 0 0
Z,(0) = ; & C & - .
¥ —
po—ily+m) 0 5 5 L

Then £,(0) = #,(0)* by (A-2), and

H(Ry;Ey) E, Ey
op,(Z)) : @ CLi(R+; <) >_>L§<R+; @ )
H (R, Ey) E, Ey

is symmetric and closed. We need to show that this operator is selfadjoint,
which follows if we show that both

H (R Ey) Ey
op(Z) i : ® —>L§<R+; ® )
H(Ry;E) Ey

are invertible. In case y = y, the operator op,,(, ) is invertible by choice
of yo and (A-1) with inverse op, (Z;, 1), and so op,(Z,,) is selfadjoint. For
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general y the operators &2, (o) i : Ef - Eg are invertible for all o € R, and

‘|[<@y(a) +i 1 by the Spectral Theorem. Writing

-1
] “J(Eé) <
[2,(0) + i]_l = @y(a)—1(1 Fi[2,(0) £ i]_l)

for large |o| > 0 and Lemma 7.1 show that
[2,(0)+i] | € SUR; Z(E2,E?) 0 SH(R; Z(E2)),
-1
@yo(a)[yy(a) +i] € SO(IR;.X(Eg)).
Thus
AN 2 2 .2
op,([Z,(0) xi] ): L}(Ry;EY) —» A (R, E)

inverts op,,(£?,) £ i and the proposition is proved. O

We next prove that the space 57 (R,; E;) allows localization and microlo-
calization and has good approximation properties. The latter is based on the
following familiar continuity criterion for the strong operator topology in Li-
spaces:

Let S%(R, X R;.Z(F, G)) denote the space of global operator-valued Mellin
symbols of order 0, where F and G and Hilbert spaces, i.e., a(x,0) € C®(R, X
R; Z(F,G))belongs to S°(R, XR; Z(F,G)) ifand only if for all a, € N, there
exists a constant C, g > 0 independent of (x, o) such that

I(xD)*85a(x, o)l 2.y < Caplo)P.

The best constants in these estimates give rise to the seminorms for the symbol
topology on S°(R, X R; Z(F,G)).

If {a;(x, O')};il c SR, x R; Z(F,G)) is a sequence that is bounded in the
symbol topology and converges pointwise on R, X R to a(x,0) € S°(R, X
R; Z(F,G)), then op,(a;) — op,,(a) strongly as j — oo, i.e., op,,(aju —
opy(@)uin L} (R,;G) as j — oo for every u € L} (R, F).

We quickly review the steps of the proof of this criterion (without loss of
generality assume that a(x,o0) = 0):

« Letu € 7(R,;F) (recall that this means that u(e') € . (R; F)):

- From the boundedness of {a;(x,c)} and dominated convergence
we first get that [op,,(a;)u](x) — 0in G pointwise on R,.

- As SR, x R; Z(F,G))  a — opy(a)u € J(Ry;G) is con-
tinuous we can bound any continuous seminorm of op,,(a;)u on
Z(R,; G) by a constant independent of j. This observation gives
rise to an integrable majorant of the form F(x) = K{logx)™2 €
LY(R,; i—x) such that ||opM(aj)u(x)||é < F(x), and in conclusion

opy(aj)u = 0in Li(R+; G) as j — oo by dominated convergence.
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 Continuity of the map
SR, X R; Z(F,G)) 2 a - op,(a) € X(Li(RJF;F),Li(RJr;G))

shows that {op,,(a;)}?2, is bounded in L(L;(R;F),L;(R,;G)), and
opy(aj)u — 0as j — oo for u in the dense subspace 7 (R, ; F). Thus
op,,(a;) — 0strongly as j — co.
The relevant application of this criterion for us are mollifiers in the case F =
G and scalar symbols a;(x, o), where we specifically choose

a)(x.0) = p(x) exp(~25) (7.2)

with¢ € C°(R,)such that$ = 1 near x = 1. Note that a;(x, o) is holomorphic
ino, {a;(x,c +1iy); j €N, |y| < K} c %R, x R,) is bounded for every
K >0,and aj(x,0) — 1 as j — oo pointwise on R, X C. An application of the
above continuity criterion combined with the analyticity and estimates on the
symbols with respect to o yield that for every « € R and every u € x“Li([R; F)

we have op,(aj)u — uas j — oo in x“le)([R;F). Note that the extensions by
continuity of op,,(a;) to weighted Li-spaces for different values of o, ' € R are

consistent on the intersection x“Li nx“’Li, and thus op,(a;) is unambiguously
defined. Observe also that op,(a;)u € C°(R,; F) for every j € N.

Proposition 7.6. Let a(x,0) € S°(R, x R) be a global scalar Mellin symbol.
Then
opy(a) 1 (R E) = A (R Ey)

is continuous. Moreover, if{a;(x,c)} C SR, x R) is a sequence of such symbols
that is bounded in the global symbol topology, and such that a;(x,c) converges
pointwise to the global Mellin symbol a(x,0) € S°(R, X R), then opy(a;) —
op,,(a) strongly in Z((R,; Ey)), Le., op,(a;)u — op,(a)uin 7 (R,; E;) for
eachu € (R, ; Ey).

Proof. To prove the first claim we need to show by definition of 7 (R_; E;)
that

0Py (P(0 + iye)op,(a)op,,(p(a +iyp)™") : Li(R4; Eg) = Li(R,; Ey)
is bounded. Now
op,(P(a + iyg)op,(a)op,(p(c + iye)™) = op,,([p(e + iyel#lap(o +iye) '),
where
[p(o + iyo)l#lap(o + iye) ']

u
=3 L@ p(o + i) (D < alpo + ir) )
DN (7.3)

u
=2, %([aé‘p(o +iyo)p(o +iye) ™) ((xD,)ra(x, 0)).
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Lemma 7.1 now implies that
[p(o +iyo)l#lap(o +iye) '] € SRy X R; ZL(Ey)),
and consequently the Mellin pseudodifferential operator

opy([p(o + iyo)#lap(o +iye) 1) : Ly(Ry; Ey) = Li(R,; Eo)

is bounded.

To prove the convergence statement note that boundedness of the a;(x, o)
in the symbol topology implies, in particular, that the {a;} form a bounded se-
quence with respect to the standard Fréchet topology of C*°(R, XR). The Mon-
tel property of C*(R . x R) together with the pointwise convergence of the q;
then implies that a; — a in C*(R, X R). Then

{[p(o +iyo)l#la;p(o +iyo) ' B2, C S° Ry x R; L(Ep))
is bounded and
[p(o + iyo)|#la;p(o +iyo) '] = [p(o + iye)|#lap(o + iyo) ']
pointwise by (7.3), and so
opy([p(o + iyo)l#la;p(o +iye)™1) = opy,([p(c + iyo)#lap(o +iye) 1)
strongly in .,%(Li([R{Jr;EO)), thus proving that op,,(a;) — op,,(a) strongly in
LA R E). 0
Corollary 7.7. C°(R,; E,) isdensein xV%(R+;E1)ﬂx“L§(R+;Eo)foralloc,y S
R.
Proof. Let a;(x, o) be the sequence of mollifying symbols from (7.2). For ev-
ery u € x? ' (Ry;Ey) N x*L(R,; Eg) we have op,(aj)u — uas j — oo in
x“Li(RJr;EO), and op,,(aj)u = x’op,(a;(x,0 —iy))(x7u) - uas j - oo in
x¥ 7 (R,; E;) by Proposition 7.6. O
Theorem 7.8. We have
X" A (R4 E1) N LR Eg) < Dinin,s

and Dy, = X" A (R E)) N Li(RJr;EO) ifand only if p(c —im) : E; - E, is
invertible forall o € R.
Proof. The operator A : C°(R,;E;) C Li(IRJr;EO) - Li(IRJr;EO) extends to a
bounded operator A : x" ' (R,; E;) = LY(R,; Ey) via

Au = op,,(p(c — im))(x™"u) (7.4)
for u € x™ (R, ; E,) by Proposition 7.5. Consequently, with H = Li(R+;Eo),
we have

lulle + lAullg S [lully + [[wllme

for u € C(R,; E;) which proves that x™ (R, ; E;) N Li(IRJr;EO) S Doin by
Corollary 7.7.
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If p(c —im) : E; — E, is invertible for all o € R, Proposition 7.3 and (7.4)
imply that ||Au||y is an equivalent norm on x™ 7 (R, ; E;). Consequently, the
graph norm ||u||g + ||Au||g and the norm ||u||g + ||u||xm are equivalent on
CZ(R,; Ey), and therefore

Diin = xmf%p(R+;E1) N le,(R+;Eo)

by the density of C°(R,; E;) in both spaces.

Conversely, if there exists o, € C with (o) = —m such that p(oy) : E; —
E, is not invertible, we will show in the proof of Theorem 8.1 in Section 8 that
Dpmin contains elements of the form u = we;x%, where 0 # e; € E; and w €
CZ(R,)isafunction withw = 1 near x = 0. Such functions u are not contained
in xlez)(R+;E0) and thus u ¢ x" 7 (R,; E;), and so Dy, # x" (R E1) N
Lﬁ(R+; Ey). U

8. The maximal domain
Fixw € Cf(@Jr) with w = 1 near x = 0. For each o, € spec,(A) let

k
& ={u= cuz e;log/(x)x'%; k € Ngand e; € Ey,

" ot 8.1)

and p(o)(Mu)(o) is holomorphic at o = g}.

By analytic Fredholm theory this space is finite-dimensional. Theorem 8.1 de-
scribes the structure of the maximal domain.

Theorem 8.1. We have
Dax = Dmin © @ éao'o-

opEspec, (A)
—m<S3(0()<0
In particular, dim &,,,, < o0. Foreach o, € spec, (A) with —m < J(0) < 0 the
space @ﬁ% = (@@GO + Dmin) / Drnin is the generalized eigenspace to the eigenvalue o
of the generator § of the induced action &, from (6.2) on Ernax-
Ifugj S éi,j for g; € spec,(A) with —m < J(o;) < 0 for j = 0,1, then the
adjoint pairing between these functions is given by

[thgy> Uo, 14 = T€S5—5,(P(0)[MUy 1(0), [Mu,, 1(6™))g,» (8.2)
where o* = o — im is reflection about the line J(o) = —%.

This means that every u € D,,,, has an asymptotic expansion of the form

k

a0 A
u~ Y Y e log()x asx » 0 mod Dy,
opEspec, (A) j=0
—-m<S3(0()<0
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and vanishing conditions placed upon these asymptotic terms are boundary

conditions as x — 0 that determine extensions. In particular, the abstract the-

ory of the first part of this paper is applicable to the indicial operator (6.1).
The proof of Theorem 8.1 requires some auxiliary results.

Lemma 8.2. We have
H(RyE1) N Doy = {u € (RS EY);
opy(P)u € x™LA(R; Eg) N LA(R,; Eo)},
and Apaxtt = x~"op,,(plu foru € (R ; E1) N Dpyy.

Proof. Letu € (R, ;E;)andv € C°(R,; E;) be arbitrary. Using Plancherel
and our standing assumptions we get

(Av,u) = (op,,(p(- — im))(x~™v), u)

= % /(p(cr — im)[M(x~™v)](0), [Mu](0))g, do
R

= % f([M(x_mv)](U),p(G)[Mu](o»EO do
R

= (. 0p (o) = [ (000, Lo (I, 5
0

Consequently, if x™™op,,(p)u € Li(RJr;EO), then u € D, and the last in-
tegral can be rewritten as the pairing (v, Ap,cu) with Apu = x~™op,,(p)u.
Conversely, if u € D4, We have (Av, u) = (v, Apaxld), and so

[ (w6l mop pulots, S = [ (060, Apauons,
0 0

forallv € C°(R; Ey). This shows x™"op, (p)u = Ayt € L2 (R,;E,), and

loc

thus x~"op,(p)u = Apaxtt € L7 (R,; Ep). O

Lemma 8.3. We have &, C J(R;E,) N Dy, for every oy € spec,(A) with
S(og) < 0.

Proof. We have &, C H°(R,;E;) C #(R,;E,), and for every u € &, we
have
opy(P)u € CE(R4; Ep) € X"LA(R,; Eg) N LA(R,; Ey).

The claim now follows from Lemma 8.2. O

The following proposition is one of the main ingredients for the proof of The-
orem 8.1. It relies on the pseudodifferential calculus in Appendix A.

Proposition 8.4. We have

ker(Apax i) € (R E)DN m x"Hp* (R4 Ep).
<0
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Proof. We consider ker(A,,, +1), the case of ker(A,,x —i) is analogous. Using
the pseudodifferential calculus in Appendix A we will show that there exists a
continuous operator Q : L} (R; Eg) = Dpin & Li(R,; Ey) such that
(Amin —DQ =1+G : L(R,;Ep) - L} (R, Ey) (8.3)
with G € ¥ (R ; Z(Ey)), i.e.,
G, G* : x*H5(Ry; Eo) — x¥ HS (R, Ep)

for all a,s,s" € R, and all a’ < a, where the adjoints refer to the L}(R,; Ey)-
inner product. Passing to adjoints in (8.3) then shows that

Q*(Amax +1) =1+ G* : Dy C Li(R,; Eg) = Li(R,; Bp).

In particular, if u € ker(Ap,y + i), then u = -G*u € () x"H°(Ry; Ep) by the
<0
mapping properties of G*. We proceed with the construction of Q.
Consider

a(x,0) = p(o) — ix™ € Sp¥’ (R x C; Z(Ey, Ey)),
where the anisotropy vector £is given by (6.3). By our standing assumptions,

a(x, o) is right-hypoelliptic of order (mu, 0) in the sense of Definition A.6. Thus

there exists b(x,o0) € Sg;f(lR X C; Z(Ey, E;)) with a#b ~ 1, see Theorem A.8.
Now define

Q = 0py,(b(x,0)x™ : C®(R,;Eg) » C¥(R; Ey),

where as in Appendix A we denote by C® the space of functions on R, that
vanish to infinite order at x = 0 and are rapidly decreasing as x — oo. Because
Amin * Dmin C L} (R4; Eg) = LA(R,; Ep) is symmetric we have

. 2 2 2
e = D0l = WMAmintl g+ Wl s € D

Now Q : C®(R,; Ey) —» C®(R,;E;) and C®(R; E;) & Dy With
Amintt = x7"opy,(p)u
for u € C®*(R,; E;) by Theorem 7.8. Thus
(Amin — DQ = x7"(op,,(alx, 0))op,,(b(x, o))x™
=x""1+G)x"=1+G : C®(R,;Ey) - C®(R;Ey)

by Theorem A.8, and because this operator extends to a continuous operator
L}(Ry;Eg) — L} (Ry;Eo) we obtain that Q : LY (R,;Eg) — D,y is bounded
with (8.3) as asserted.

It remains to prove that ker(A,., + i) C (R, ; Eq). Let u € ker(Ap.x + 1)
be arbitrary. Then

X" Amaxtt = —ix™u € L} (R, Ey)



746 THOMAS KRAINER

by what we have already shown. For all v € C°(R,; E;) we have
(v, xmAmaXu> = (me,AmaXu> = (A(x"™v),u) = <OPM(p(U —im))v, u).

Consequently, u is in the domain of the adjoint of the closure of op,,(p(c —
im)) : C®(Ry;Ey) € LRy Ey) = Li(Ry; Ep), and thus u € (R, E;) by
Proposition 7.5. The proposition is proved. O

Lemma 8.5. Let u € ker(Apyy + ). Then there exist u, € &;, 0 € spec,(A)
with —m < (o) < 0, such that

u-— Z Us, € Diin-
opEspec, (A)
—mSS(00)<O
Proof. This follows via the standard argument to establish asymptotic expan-
sions utilizing the Mellin transform. Without loss of generality we consider
u € ker(Apax — i) in this proof. By Lemma 8.2 and Proposition 8.4,

opy(pu = ix™u € ﬂ X" LR 5 Ep) C ﬂ XML (R Ep).
a>0 a>0

In particular, the Mellin transform M (ix™u)(c) extends to an analytic E,-valued
function in the half-plane S(c) > —m, and the function R 3 ¢ —» M(ix"u)(c+
iy) belongs to L*(R,; Ey) NCy(R,; E,) with continuous dependence ony > —m.
Now

Mu(o) = p(o)~'M(ix"u)(0),
which is a priori analytic in (o) > 0 and via this identity extends meromor-
phically to 3(c) > —m with possible locations of poles at points in spec, (A),
and because Mu(o) € L*(R;E,) this function cannot have poles on R. Con-
sequently, there exists ¢ > 0 such that Mu(o) is analytic in (o) > —e with
Mu(o + iy) € L*(Ry;Ey) N Cy(Ry; Ep) fory > —g,sou € () xE_“Li([RJr;EO)

a>0

and therefore

op,(pu = ix"u € ﬂ XM LR Ey) C ﬂ XMHECLI(R ;).
a>0 a>0

This shows that Mu(o) extends meromorphically further to §(o) > —m—e¢, and
by choosing ¢ > 0 small enough we can assume that spec,(A)n{c € C; —m —
e < §(o) < —m} = @, so all possible poles for Mu(o) in F(o) > —m — ¢ are
located in —m < (o) < 0. Note also that Mu(o) is an E;-valued meromorphic
function in (o) > —m —e. Consequently, there exist u,, € &, 0y € spec,(A)
with —m < §(oy) < 0, such that both

M[u — Z uao](o) and p(U)M[u — Z uUO](G)
gpEspec, (A) opEspec, (A)
—m<S3(0()<0 —m<S3(0()<0
are holomorphic in §(o) > —m — ¢, and along every line (o) = y these func-
tions are L? N C, with values in E; and E,, respectively, with continuous depen-
dence on y > —m — €. Now choose —m — ¢ < y; < —m < 0 < y, such that
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p(o) : E, = Ejisinvertible along (o) = ¥, j = 1, 2. From the above we then
obtain that

u— Z Ug, € X NA (R E)Nx T2 (R, Ey)
opEspec, (A)
—m<S3(0()<0

= ﬂ x! A (R Ey).

=725r<—n

Note that the last equality is true because of Proposition 7.6. Thus

u— Y Uy €X"HA(Ry;E)NLARLE)) C Dyyin
opEspec, (A)
—m<S3(0()<0
by Theorem 7.8. The lemma is proved. (]

Proof of Theorem 8.1. By von Neumann’s formulas (6.6) and Lemmas 8.3 and
8.5 we have

Dimax = Dmin + Z @@cro'

opEspec,(A)
—mSS(UO)<0

In particular dim &,,,, < co and A has finite deficiency indices, so the abstract
theory from the first part of the paper is applicable.
Let ¢ = xD, be the generator of the scaling action %, from (6.2). We have

g &, +CORGE) = &5, + CP(R;Ey)
for every o, € spec, (A) per the defining relation (8.1), and
(=0 : &, + CO(Ry;Ey) —» CX(Ry; Ey)

for N large enough’. This shows that &, = (&, + Dmin)/Pmin C Emax i
the generalized eigenspace associated with the eigenvalue o, € spec,(A) for
the generator § : &pnax — Emax- In particular, § has no real eigenvalues, and
by the Canonical Form Theorem from Section 3 then also has no eigenvalue
with §(o) = —m. This shows that &, C Dy, for every o, € spec,(A) with
S(og) = —m, and we get

Diax = Pin + D, &, (8.4)
opEspec,(A)
-m<S(0()<0

Note that the action of g corresponds to multiplication by o on the Mellin transform side.
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We next show that this sum is direct. The argument is based on formula (8.2)
for the adjoint pairing. To prove this formula we use Plancherel and write

L Ao ) = f (p(o — im)[ My |(0 — im), My, [(0)s, do
l 0 1 27Tl R 0 1 0

= % 5(G):_m<p(o)[Muc,0](a), [Mu,, 1(6*))g, do
1 N .
== (IMug,1(0), p(a®)[Mu, 1(*))g, do,

S(o)=—m

1 1 . .
o At = 7 [ (M1 @), 2 = im0 = i)y, do

1 N .
= omi fR ([Mug,1(9), p(6*)[Mug, 1(6™))E, do-

The function {[Mu,, |(c), p(c*)[Mu, 1(c*))g, is meromorphic on C with a pos-
sible pole only at o = 0y, and it is rapidly decreasing as |R(c)| — oo locally
uniformly with respect to S(co). Consequently,

1
[udo’ Ug, la= 7 [(Amaxucro’ uz:rl) - (uaoa Amaxucrl >]

1

= o0 CE(UO)<[M ug,1(0), p(6®)[Mug 1(*))g, do
1

" 2mi cs(ao)<p(o)[MuU°](g)’ [Mug, 1(6™))g, do

= 1es;—g,(P(0)[Mug, 1(0), [Mug 1(0™))E,
after shifting the integration contour from the two lines R and S(o) = —m

to a small positively oriented circle C.(o,) centered at o,, showing (8.2). In
particular, [u, ,us |4 = 0 for o, # a(’; .Incaseo; = cf(’; consider

E E

_ 0 plog+o)| . ! 0
‘@(U)_lp(03+o) 0 ) ga - g?
1 0

near o = 0. By Theorem B.2 the pairing on the space .#(%?) of meromorphic
germs at o = 0 that are annihilated by £7(0) modulo holomorphic germs dis-
cussed in Appendix B is nondegenerate, but we have 2 (&) = @“’05 ® &, and

by what we have just shown the pairing on .# (%) under this isomorphism is
expressed by
[(uag ) vO'())’ (va(’;’ Us, ] = [Uao’ Uox la+ [uo-g ) MUO]A-

Consequently, [-,-]4 @ &, X éaog — C is nondegenerate. Using these pairings

and their nondegeneracy for o; = o} and orthogonality for o; # o} then shows
that the sum (8.4) must be direct. The theorem is proved. O
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9. The signature of the adjoint pairing and the sign condition

By Theorem 8.1 the abstract theory from the first part of the paper applies to
indicial operators (6.1). In particular, the Canonical Form Theorem implies
an algebraic Green formula for the pairing [, -] & as discussed in Section 3.
For indicial operators the Mellin transform and indicial family provide an ad-
ditional analytic counterpart that is not available in the operator theoretical
setting of the first part of this paper that we can harness to prove an analytic
formula for the signature of the pairing |-, -] ¢, interms of the spectral flow of
the indicial family p(o) : E; C Ey — Ej, 3(0) = —%. By our standing assump-
tions this is a family of selfadjoint unbounded Fredholm operators, invertible
everywhere except at finitely many indicial roots. It therefore makes sense to
consider the spectral flow across each indicial root separately. We refer to the
survey by Lesch [40] for general information about the spectral flow, see also
[13] and Appendix B. For an indicial operator we therefore obtain both an alge-
braic formula for the signature of the adjoint pairing as in Theorem 3.4 in terms
of the invariants of the generator on generalized eigenspaces with (o) = —%,
and an analytic formula in terms of the indicial family.

Theorem 9.1. The signature of (&paxs [+ ] 2. ) is given by
Sgn(@@maxy ['a .]gmax) = Z Z (m+(00a f) - m—(605 f))

gp€Espec,(A) ¢ odd
S(op)=—2

For every o € spec, (A) with 3(o) = —% we have

2. (m4(09,€) = m_(0¢,€)) = SFoug, [ P(0) : Ey C Ey = Eg, S(0) = ——].
¢ odd

In particular,

sgn(Enaxs [+ ']gamax) = SF[p(0) : E; CEy — E,, S(0) = —%]

Proof. The algebraic statement follows from Theorem 3.4. The analytic for-
mula for the signature in terms of the spectral flow is based on formula (8.2)
and is discussed in the appendix; specifically, this is Theorem B.2. Note that
the action of § is transformed to multiplication by o on the Mellin transform
side. 0

If (Au,u) > 0 for u € CP(R,;E;) we have seen in Sections 4 and 5 that
the sign condition is needed to give satisfactory classifications of the Friedrichs
and Krein extensions, see Definition 4.3. For indicial operators this condition
is satisfied.

Theorem 9.2. Suppose (Au,u) > 0 foru € CP(R,;E,). Then the invariants
M (00, €) Of (émax, [+ -1, 8) for every o, € spec, (A) with S(a,) = —% satisfy
m,(0y,¢) = 0 for ¢ odd, and m_(cy,¢) = 0 for ¢ even.
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Proof. The assumption (Au,u) > 0foru € C°(R,; E;)isequivalent to p(c) >
0 for (o) = —%. The theorem thus follows from Theorem B.3. O

Appendix A. A pseudodifferential calculus
Let £ = (¢4,¢,) € N?, and define

1
(x,0); = A + x> + g?1)1t2 (A1)
for (x,0) € R2. Note that Peetre’s inequality

(x+x',0 +0")% < 2Ux, o) (!, ")

holds, and there exist ¢, C > 0 such that

1
c{x, o)+ <(x,0)z < C(x, o)f1ttz,

We consider anisotropic symbols ay(x, o) taking values in the bounded opera-
tors between Hilbert spaces that are based on (A.1) such that

—ta—C
ID£85ag(x, 0| < Coplx, @)1 (A2)

for a, B € Ny. Write S¥¢(R?) for these symbol spaces; the Hilbert spaces are
understood from the context and not included in the notation in this section.
Note that the usual rules of symbol calculus are valid for these symbol classes.
These symbols are such that C*-functions that are anisotropic homogeneous
of degree u in the large in the sense that

ao(eflx,gfzo) = otay(x,0)

for ¢ > 1 and large |x, o| belong to S“;g(RZ). In particular, for what follows it
will be relevant that the function x € S?1¥(R2). We also note that (x, c)g €
SHE(R2).

The estimates (A.2) for a,(x, o) imply that

e £ _
IGeD ) ag(, )| 004 < () (@), (Aa3)

Bt
where u, = max{u, 0}. Consequently, restricting to x > 0, (x) ‘1 ay(x,0)isa
U

standard global Mellin symbol of class S*2 (R, x R).
We will need to work with symbols that depend holomorphically on o € C.

By Sg;f([R x C) we denote the symbol class of functions a(x,0) € C®(R X
C) taking values in the bounded operators between Hilbert spaces such that
a(x, o) is holomorphic with respect to o € C, and such that for every y € R the

function R? 3 (x,0) = a(x,o + iy) belongs to S“;g([R{Z) with symbol estimates
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that are locally uniform with respect to v, i.e., for every o, € Nyand R > 0
there are constants C, gz > 0 such that

ID$8Ea(x, o + iy)|| < Ca’ﬁ,R<x,a>l§—€1a—fzﬁ

for all (x,0) € R, and all y € R with |y| <R.
The (real) symbols obtained by restriction of a(x, o) to different lines J(o) =
v, and (o) = y, are related by asymptotic expansion

(o] . . k N

a(x,0+iy) ~ Y W(aga)(x, o +iyy) € SHE(R2). (A4)
k=0 :

This is both an exact pointwise representation via Taylor expansion in view of
analyticity, and an asymptotic expansion with respect to the filtration by order
in the symbol classes. Taylor’s formula shows that the symbol estimates for the
remainder terms of this asymptotic expansion are locally uniform with respect

to (¥1,72) € R%. ) )

Every symbol a, € S*‘(R?) has a representative a € Sg;f(R x C) modulo
S~*(R?). This follows by employing the kernel cut-off construction (this con-
struction is frequently used in the symbol calculus in Schulze’s theory [52]):
Let ¢ € CP(R) with ¢ = 1 neart = 0, and .%, .# ! be the Fourier trans-
form and its inverse on tempered distributions, respectively. Then a(x,0) =
Fiop()F 1 ap. The idea of this construction is that the Schwartz kernel
of the Kohn-Nirenberg quantized pseudodifferential operator with symbol
ay(x, o) is localized near the diagonal using ¢ (which also explains why a — a,
belongs to S™*°), and analyticity of a(x, o) in o then follows from the Paley-
Wiener Theorem. To analyze the kernel cut-off operator in more detail it is
convenient to rewrite it as an oscillatory integral in the form

a(x,o +iy) = % f/ e el ()ay(x, o — 1) dtdr (A.5)

for real x, o, and y. The standard regularization procedure applied to this in-
tegral reveals that a(x, o + iy) depends smoothly on (x,o + iy) € R X C, that
the Cauchy-Riemann equations hold with respect to o + iy € C, and from the
symbol estimates for a;, we obtain the resulting estimates for a. While kernel
cut-off as an operation on symbols only acts on the variable o, the representa-
tion (A.5) shows that if additional parameters are present for a symbol q, that
satisfy suitable joint estimates with o, such as the variable x in our case, then
these joint estimates are typically preserved for the resulting analytic symbol a
along lines parallel to the real axis. Finally, from

ag(x,0) —a(x,0) = i /] e (1 — ¢())ay(x,0 — T) dtdt

/] ¢(t) [6kay)(x, 0 — 1) dtdr, k € N,
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we obtain that a—a, € S~ (R?). Detailed technical proofs of these statements,
albeit for a different symbol class, can be found in [34, Section 3].

Kernel cut-off allows performing real variable symbolic manipulations along
one line (o) = y, such as manipulations that utilize excision functions, and
then pass to a holomorphic representative of the resulting symbol modulo
S~°(R?). An example for this is a proof that asymptotic expansions exist in

. . it .
the analytic category: Given u; — —oo and a; € Sg’ (R x C), there exists

> (oo
a(x,0) € Sg;f(R x C), u = max u;, such that a ~ > a; in the sense that for
j=1

k L
every R > 0 there exists ky € Ny suchthata— )} a; € SgR;f(R x C) for k > k.
j=1

To see this first restrict all a;(x, o) to R2. By the standard Borel argument for
(o]

real symbols there exists ay(x,0) € S”;g(le) with ag(x,0) ~ D) a j(x,0). Now
j=1

use the kernel cut-off construction and define a € Sg;f(R x C) via (A.5). Since
[e¢]

a—ay € S™®(R?) we still have the asymptotic expansion a(x,o) ~ Y a i(x,0)
j=1

as real symbols. Consequently,

k o
a(x,0)— Y. a; € SR (R2) n SE (R x €)
j=1

for k > ko. But STR(R?) n Sg;f(lR xC) = S;R;K(R x C) by (A.4), thus estab-
lishing the desired result.

The following is another closely related application of the kernel cut-off con-
struction.

LemmaA.l. Leta € Sg;f(RxC). Then there exists a sequence a; € S;*(RXC)

such thata; — ain Sgl;f(R X C)as j — oo forevery u’ > u.

1
Proof. Let y € C®(R?)be a function with y = 0 for (|x|*’2 + |g|*/1)>1%2 < 1
1

and y = 1 for (|x|**2 + |o|*1)?1%2 > 2, and define

bj(x,0) = )((j%, J%)a(x,a) € SKI(R?), jeN.

Then b; — 0in SH(R2) as j — oo for every &’ > u, and a — b; € ST°(R?).

Now let¢c; € Sg;f(R X C) be defined by applying the kernel cut-off operator
(A.5)tob;. Thenbj—c; € S~®(R?), and by the continuity of the kernel cut-off

operator we have ¢; — 0in Sg’;f(R x C) for i/ > u. The lemma then follows
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with .
a;=a—c; €S (RXxC)NS™(R?) = S;°(R x C)
and (A.4). O

Givena € Sg;f(R x C) we consider the Mellin pseudodifferential operator
op,(a) : Ce(Ry) —» C¥(R,),

where C® is the space of (Hilbert space valued) smooth functions on R, that
vanish to infinite order at x = 0 and are Schwartz functions as x — o0. Ana-
lyticity of the symbol a(x, o) and the estimates (A.3) along lines parallel to the
real axis ensure that the action of op,,(a) preserves this space. The map

Sg;g(lR X C)x C*(R,) 3 (a,u) ~ op,(@)u € C*(R,)

is continuous.
We assume in the sequel that the reader has some familiarity with standard
(global) Mellin pseudodifferential calculus (see [25, 35, 41, 52]).

Definition A.2. By 11”5"’0 we denote the operators of the form
opy(@) + G : C*(R,) —» C®(R,)

witha € Sg;E(R x C), and the operator G : C*(R,) — C*®(R,) and its formal
adjoint G* : C*®(R,) — C®(R,) with respect to the L} and Hilbert space inner
products in the target and range spaces extend to bounded operators

G, G* : x*HS(R,) — x¥HS (R,)

forall ,s,s' € R, and all @’ < a. Thus G and G* are smoothing and produce
Schwartz behavior as x — oo while maintaining the same order of growth as
x — 0.

Lemma A.3. Leta € Sggf(R XC), u<0. For j € Nywith u+¢1j < 0we have
st

0pp(@), opy(@)* @ xH3(R,) — x%H, * (R,)

foralls,a € R, where op,,(a)* : C®(R,) —» C®(R,) is the (formal) adjoint to

opy(a) : C®(R;) = C*®(R,).

Proof. By assumption on u and j, x/a(x, o) is a standard global Mellin symbol
k1)

ofclass S 2 (R4 xR), which shows the asserted mapping property for op,,(a).

Now

x!fopy(@)]* = [opy(@)x/]* = [xop,(alx,o = ij)]* : C¥(R,) = C¥(R,),
gty
where x/a(x,c —ij) € S 2 (R, x R). Consequently,
gkl

xIopy (@] : x*Hy(R,) — x*H, ? (R,),
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and the lemma is proved. O

Theorem A.4. Letop,,(a)+G € \I’g;f. Then the formal (fdjoint of this operator

with respect to the le) inner product belongs to the class ¥, ;f, where more precisely
(opy(@) + G)* = op,(ah) + G : CX(R,) - CX(R,),

and a* € Sg;f(lR x C) has the asymptotic expansion

a%mﬂ~2%ﬂﬂﬁ%h@jﬂ. (A.6)
k=0 """

Proof. Letfirsta € S;*(RXC). In particular, a € S™* (R, XR) and is analytic,
and from the standard global Mellin pseudodifferential calculus we have an
exact representation of the formal adjoint op,,(a)* = op,,(b) : C*®(R,) —
C*®(R,), where for every N € N,

b(x,0) = [/ “Ma(xy,o +n)* —dn

= Z —(xD Yeokla(x, o) ] + ry(x,0)

= bN(X, o) +ry(x,0)
with

fa-gN!

W= ) N =D

. _ d
ff y(-xD, oY al(xy.F + o) Lndo.

For j € Ny we take advantage of the analyticity of the symbols to shift the
integration into the complex n-plane and write

_ AW-
xIry(x,0) / ;;(NG)_ 1)1' [/y‘i”xj[(—xDx)NaéVa](xy,E + On)* C;—ydnde

= w —i iT(_ N AN — s d_y
- b 27T(N _ 1)| ﬂ y 77(xy)j [( xDx) ao‘ a](xy, o+ 9(77 + l_])) y dnd@
1 (1 _ e)N—l

o _ dy
_ =i xi(=xD. NN ,0+0(n+ij))* —=dndob.
[ S ] D e alien 7 + o + iy Sar

From these formulas we see that for any given ¢’ € R, j, € Ny, and ¢y < 0
there exists Ny € Nsuch thatfor N > Nyand 0 < j < j, the map S;*(RxC) 3

a(x,o) ~ x/ry(x, o) extends to a continuous map Sg ;f([R XC) — S (R XR),
and the same is true for the map a — x/ry(x,o —ij). For these values of the
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parameters we then have
opy(ry) : x*H;(R,) — x“‘leS)_%(RJr),
0py(ry)* = x~Jopy,(xIry(x,0 — ij))* © XTHI(R,) — x*THS (R )
forall a,s € R. )
Now let a € Sg;f(R x C). By Lemma A.1 there exists a sequence a, €

So (R x C) such thata, - ain Sg’;f([R{ x C)asv — oo for &’ > u. Then

<0pM(a)u’ U>L§ — <OpM(av)u’ U>L§ =(u, OpM(av)*'-)>le7

=(u, (OPM(bN,v) + opM(rN,v))U>L§ — (u, (OpM(bN) + OpM(I’N))U>L§
for u,v € CP(R;) and N € N large enough, where the extra v-parameter
indicates that we use the previous formulas for a,, while its absence means
that the formulas are applied to the symbol a(x, o). In particular, op,,(a)* =
op,,(by) + op,,(ry) for N large enough with the above mapping properties for
op,,(ry). Consequently, if at e Sg;f([RxC) has the asymptotic expansion (A.6),
then G, = op,,(a)* — opM(aﬁ) satisfies

Go, Gi + x*HS(R,) — x¥HS (R,)

forall a,s,s’ € R,and all @’ < a by Lemma A.3 and the mapping properties of
op,,(ry) (as N — oo). The theorem is proved. ([l

sl
Theorem A.5. Let opM(aj) +G; € ‘Pg’ ,j=1,2. Then

(opy(a1) + Gy)o(op,(ay) + G,) = opy(a1#ay) + G : C*(R;) = C*(R,)

with op,,(a; #a,) + G € ‘I’gﬁ“z;f, and a,#a, € Sgﬁﬂz;ﬁ(ﬂ% x C) has the asymp-
totic expansion

[eo]

1

(a#ay)(x,0) ~ ) 1510ca](x, )(xDx)ar)(x, o). (A7)
k=0 "

Proof. The composition G,G, € ¥, in view of the defining mapping proper-

ties of the G;. We next prove that the compositions op,,(a;)G, and G,0p,,(a,)

belong to W,*. Let w € C¢°(R) with w = 1 near x = 0, and decompose
aj(x,0) = waj(x,0) + (1 —w)a;(x,0) = a;j(x,0) + aj (x,0).

The symbols a;,(x,0) and a; ,(x,0) no longer satisfy the joint symbol esti-
mates (A.2) in (x, o), but we have
K
a;o(x,0), xKa; (x,0) € S2(Ry X R)
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for K large enough by (A.3). Combined with the analyticity in o this shows that
M
opp(ajp) : xaHls,(R+) - x“H, & (R,),
)
0P (@ o) : X*HI(R,) — x*HKH, 2(R,).
Now G,op,,(as) : x“HlS)(R+) - x“'H;/(RJr) forall s,s’,a € Rand o’ <
a by the mapping properties of G,. Likewise, G 0p,/(a3) : Xx*H;(R}) —
x“'HZ:([RJr) foralls,s’,a € Randa’ < a+K,andso G 0p,(a,) : x*Hy(R,) —
x“’HlS) (R,)foralls,s’,a € Rand &’ < a.
, s'+E
We have G, : x*H,(R,) — x* H, 2(R.), and so
0Py (a1,0)Gy © XHS(R,) — x¥ H (R,)

foralls,s’,a € R and o’ < a. We likewise have
I+M_1
G, : X*H}R,) —» x¥KH, “(R,),
and thus
0Py (a1,0)G; + X H(R,) - x¥HS (R,),
which shows that
0p(a)G, : x*H}(Ry) — x* Hy (R)
foralls,s’,a € R and o’ < a. For the formal adjoints we have

[GlopM(az)]* = OPM(az)*GT and [OPM(al)Gz]* = G;OPM(al)*,

and because op,,(a;)* € ‘ng i by Theorem A.4 we finally obtain with the above
that op,(a;)G,, G,0py(a,) € ¥,=.

It remains to consider the composition op,,(a;)op,,(a,). Let us first take
a; € S;*(R x C). Then opy,(a;)op,(a;) = op,,(c) by the standard Mellin
pseudodifferential calculus, where for every N € N,

1 i dy
c(x,0) = I /]y Na,(x,0 +n)a,(xy,o) Tdn

N-1

B %[5§a1](x’ 0)[(xDy)*az](x, o) + ry(x,0)
k=0 ©*

=cn(x,0) +ry(x,0)
with
ry(x,0) =
1 (1—@)N-1

i d
A mﬂyﬂ”[ayaﬂ(&a+677)[(xDx)Na2](xy,a)Tydnde_
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Into this formula for ry(x, o) we substitute the splitting a, = a, + a; o, from
before and obtain ry(x,0) = ryo(x,0) + ry (X, o) which we process sepa-
rately. Let j € N, be arbitrary. Then x/ry o(x, o) is given by

1 (1 _ e)N—l

o ;
o 27(N — 1)l ./f Y x65 a1(x, 0 + OI(xD) Y az0l(xy, o) Tydnde,

and from this formula we see that for any given u7, u) € R, j, € Ny, and uy < 0
there exists N, € N such that for N > Ny and 0 < j < j, the map
S;P(R X C) X Sg®(R X C) 3 (a3,a,) = xIryo(x,0)

extends to a continuous map

SR x €) x S (R x ©) = SH(R, X R),

and the same is true for the map (ay, a,) ~ x/ry o(x,0 — ij). For these values
of the parameters we then have

opy(rn) @ x*Hy(Ry) — x“_jHZ_”O(RQ,
opy(ry.0)* = x7Jop,,(Xry o(x, 0 —ij))* : x*Hy(R,) — x“‘jHZ_”‘)(IRJr)

foralla,s € R iust as in the proof of Theorem A.4.
To analyze x/ry o, (X, o) we take advantage of analyticity and shift the inte-
gration in # into the complex plane and obtain

1 (1 _ Q)N—l .
b 2m(N —1)!

[/ y XN a ] (x, 0 + 06(n — iIK)[xK(xD )N ay o 1(xy, 0) C;—ydﬂde-

X1y o (x,0) =

Consequently, given uj, 1, € R, j, € Ny, and uy < 0, we first choose K € N

/;E’ )
large enough such that x‘K(l—co)Sg2 (RXC) < S2(R,XR), and can then find
Ny € N such that for N > Nyand 0 < j < j, the map (ay, a;) = x/ry (x,0)
is continuous in

SR x €) x S5 (R x ©) - SH(R, X R),

and the same property holds for the map (a;,a,) = x/ry o(x,0 — ij). Thus
0p,,(rN,c0) and op,,(ry )" have the same mapping properties as previously
stated for op,,(ry o) and op,,(ry)* for N large enough, and therefore op,,(ry)
and op,,(ry)* also have these properties.

ist .
Now let a; € Sg’ (R x C). By Lemma A.1 there exist sequences a;, €

I
S5 (R x C) such that a;, — a; in Sg’ (RxC)asv — oo for ,u;. > ;. For
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every u € C*(R,) we then have for N € N large enough

OpM(al)opM(az)u — OpM(al,v)OpM(aZ,v)u
= OPM(CN,V)U + OpM(rN,v)u - OPM(CN)U + OPM(”N)U,
where the extra v-parameter indicates that we use the previous formulas for
a;,, while its absence means that the formulas are applied to the symbols
a;j(x, o). Inparticular, op,,(a;)op,,(a,) = op,,(cy)+0p,,(ry) for N large enough,
and op,,(ry) has the mapping properties previously shown. Consequently, if

a#a, €SP (R x C) has the asymptotic expansion (A.7), then

Gy = OpM(al)OpM(az) - OpM(al#aZ)
satisfies
Go, Gi © x*HS(Ry) — x¥HS (R,)

foralla,s,s’ € R, and all &’ < a by Lemma A.3 and the mapping properties of
op,,(rny) as N — oo. The theorem is proved. (|

Definition A.6. A symbola(x,0) € S“;‘/Z(Rz) is right-hypoelliptic of order (u, 1)
if a(x, o) is invertible for sufficiently large |x, o| > 0, and the inverse satisfies

la=lx, 0| $ (x,0)2%, (A8)
and for every «, 8 € N we have

I[D%8Eal(x, o)a(x, )] Y| S <x,a>;f1“‘fzﬁ. (A.9)

We call a(x,0) € Sg;f(lR x C) right-hypoelliptic of order (u, u’) if its restriction
to R? is right-hypoelliptic of order (u, 1).

Suppose a(x,c) € Sg;f(R x C) is right-hypoelliptic of order (u, 1’). Let y €
C*(R?) be an excision function such that y = 0 near (0,0) and y = 1 for large
|x, o] so that y(x,o)a(x,o)! is defined on R2. The estimates (A.8) and (A.9)

show that y(x,o)a(x,0)~! € S‘“';g([Rz). We then apply the kernel cut-off oper-
ator (A.5) to this symbol to obtain a holomorphic symbol g(x, o) € S,* *(RxC)
which has the following properties:

Lemma A.7. (a) We have a(x,0)q(x,0) —1, q(x,0)a(x,0)—1 € S, (R X C).
(b) Fory; eR, j=1,2 we have

[DZ6Eal(x, o + iy)IDE 6F gl(x, 0 +iyy) € s, T EHFI (R w €)

foralle,a,B,B' € N,.
(c) a(x,o + iy) € SH¢(R?) is right-hypoelliptic of order (u, 1) for everyy € R.
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Proof. We have q(x,0) — y(x,0)a(x,0)™! € S™(R?), and so

a(x,0)q(x,0) — 1 € SEF (R x ©) 1 S~2(R?) = S;°(R x C)
by (A.4); here (u — u’'); = max{u — u’,0}. For the same reason we also have
q(x,0)a(x,0) — 1 € S;®(R x C), proving (a).
To prove (b) we first consider y; = y, = 0. By (A.9) we have

(D68 al(x, )[D¥ 8F (yaV)I(x,0) € S—E1E+ad—ta(B+85¢ (R2),

and because g — ya~! € S™(R?) we can replace ya~! by g. Taylor expansion
(A.4) then shows that

(D265 a)(x, 0)[DF 8 g)(x,0) & 5,7 I (R x ),

and translation proves (b) for general y; = y,. For y; # y, we first use (A.4)
and get

00 . . Nk
pscfalie,o +ir) ~ Y, LI (Dsgha) e, + i)
k=0 '
Now multiply from the right by [D;Q"df,q](x, o +iy;). The resulting asymptotic
expansion then shows that (b) also holds in the case y; # y».

Finally, (c¢) follows from (a) and (b). By (a), a(x, g + iy) is invertible for suf-
ficiently large |x, | > 0, (x,0) € R?, and the inverse differs from q(x, o + iy)
by a rapidly decreasing function in (x, o). Both estimates (A.8) and (A.9) hold
for g(x, o + iy) instead of a(x, o + iy)~! and are stable with respect to rapidly
decreasing perturbations. The lemma is proved. (]

Theorem A.8. Let op,,(a) + G € ¥, and suppose that a € Sg;f(lR x C) is

right-hypoelliptic of order (u, u'). Then there exists op,,(b) € ‘PB“ * such that
(opy (@) + G)oop,,(b) =1+ G : C*(R,) - C*(R,)

with G € ¥,*.

Proof. With the symbol g(x,0) € 55“ ,;f(IR x C) we have

[

(attq)(x,0) ~ Y, 18alCe, (D) ql(x,0) = 1+ 7(x,0)

with r(x,0) € S(;fzgf(R X C) by Lemma A.7. Now apply the formal Neumann
S/ (R x C) such that (1 +r)#(1+7") ~ 1.
Let b(x,0) € Sg”’;ﬁ(R x C) with b(x,0) ~ q#(1 + r'). Then a#b ~ 1, and
Theorem A.5 implies the assertion. O

series argument and get r'(x,0) € S

Analogous considerations apply to left-hypoellipticity, but left-hypoellipticity
is not used in this work.
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Appendix B. An indefinite space arising in analytic Fredholm
theory

Definition B.1 ([26, Section 4.5]). Let (V,[-,-]y) and (W, [, ]y) be finite-di-
mensional C-vector spaces equipped with Hermitian sesquilinear forms [-, -]y,
and [-, -]y, respectively. Let further g € End(V) and h € End(W). Then the
triples (V, [+, -1y, g) and (W, [+, -]y, h) are unitarily equivalent if there exists an
isomorphism T : V — W such that both

[Tu,Tvly = [u,v]y Yu,v € Vand h = TgT!
hold.

The Canonical Form Theorem [26, Theorem 5.1.1] classifies all the triples
(V,[-, -]y, g) for nondegenerate [-, -], and selfadjoint g € End(V), up to uni-
tary equivalence. The generalized eigenspaces &;, C V of g associated with
real eigenvalues o, € R are particularly interesting. By the Canonical Form
Theorem we can localize to (é”ao, [,-]y, g — 0¢) to further study these spaces.
In this appendix and Appendix C we discuss an indefinite space from analytic
Fredholm theory that arises as unitarily equivalent to (éac,o, [, -]y, g — g¢) for
indicial operators. We refer to [19, 22, 23, 24] for related investigations and re-
sults. Information about the general theory of Fredholm operator pencils and
applications to differential equations can be found in [32].

Suppose E, and E; are separable complex Hilbert spaces such that E; < E|
is densely and continuously embedded, and let

2 . B,(0) —» Z(Ey, Ep)

be a holomorphic operator function defined on the open disk B,(0) c C for
some ¢ > 0. We assume that #(o) is Fredholm for all ¢ € B,(0) and invertible
for all o # 0. We consider each operator #(o) : E; C E, — E, an unbounded
operator acting in E, with domain E;. Under the stated assumptions, &?(o) is
closed and densely defined. We assume that

PG = P(0) : E; CEy — E,

holds. In particular, #(o) is selfadjoint for real o. We denote the set of germs
of such operator functions (o) by Ps,(E1, Ey).

With every #(o) € P, (E;, E,) we associate its spectral flow across o = 0 as
follows: Pick ¢y, 5, > 0 small enough such that #(c)—A4 : E; — E,is Fredholm
for —-6; < 0 < 6y and —gy < 4 < g, and such that Z(c) + ¢, : E; — E,is
invertible for —6, < o < §,. Then

SF,_o[#(0) :E; CEy — Ey] =
lim ([ ¢ (2 (0))] = tr[ o o (P (-0))]).
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where ITj ) in each case is the spectral projection onto the spectral subspace
of the operator pertaining to the part of the spectrum contained in [0, g;). We
refer to the survey by Lesch [40] for details on the spectral flow.

For any Fréchet space F let 9i,(F) denote the space of meromorphic germs
of F-valued functions at 0, and let $,(F) denote the holomorphic germs. Then
(m/ 5)O(F ) 1= My(F)/Ho(F) can be identified with the space of principal
parts of Laurent expansions at 0 of F-valued meromorphic functions. The op-
erator function (o) € P, (E;, Ey) induces a map

2 (M/9) (E) — (M/H) (o),
2[a(0) + Ho(E1)] = 2(0)a(0) + Ho(Eo)
for t(o) + Ho(E;)) € (EUZ/{))O(El). Define
H(P) =1{i(0) + Ho(E1) € (M/H) (E1); Z(0)it(0) € Ho(Eo)}-
Then % (2) = ker[ 2 : (im/Sj)O(El) - (im/sj)o(EO)], and by analytic Fred-
holm theory we have dim J# (%) < oo0. We define a pairing
[ lw() : H(P)xH(P)—>C
via
(14, 0] (o) = % 56(,@(0)12(0), 0(0))g, do = res;_o( P (0)0(0), V(0)),»
o

where C is a positively oriented circle of sufficiently small radius centered at
the origin. It is easy to see that [, -] () is well-defined (i.e. independent of
representatives @ and ¥ modulo holomorphic germs), and that it furnishes a
Hermitian sesquilinear form on 2 (). We then consider the triple

(j('@)a ['5 '],%(:@)’Ma)a
where
M, : A (P) - (D), o)+ Ho(E) = ali(o) + Ho(Er).

Note that M, is selfadjoint with respect to [+, -] ().
For ¢ € N we also consider the Hermitian sesquilinear forms

[ Loy : ker M xkerMf — C,
[, 6]p(2y.e = [MET10,6]p ().

Let (my(¢), m(€), m_(¢)) be the invariants of [, -] () ¢. The numbers m, (¢)
and m_(¢) yield the sign characteristic for M, associated to Jordan blocks of
size ¢ X ¢ in the Canonical Form Theorem [26, Theorem 5.1.1] for the triple
(A (D), [, ] #(2), My ); see [26, Theorem 5.8.1] and Proposition 3.3. The main
theorem regarding this triple is the following.
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Theorem B.2. (¢ (2),[-, ] ¢(»)) is nondegenerate, and

sgn( A (DP), [ ) = 2, (me(€) —m_(£))
¢ odd

= SFG=0[¢@(O’) . El C EO — Eo],
where m,.(¢) are the invariants of the triple (' (), [+, ] ¢ (), My).

Proof. We will prove the theorem by reducing it to the finite-dimensional case,
considered separately in Appendix C. To this end, let N = ker(£?(0)) and R =
ran(#2(0)). We have the orthogonal decomposition E, = N @ R. Let 7y =
TNy = 71'12\, € Z(E,) be the orthogonal projection onto N, and let 7z = 1 — 7.
Because dim N < oo both 7y, 7 € Z(E;) by the Closed Graph Theorem, and

we get E; = N @ [Rn E;]. We decompose

N N
P(0) = [ﬁ”% Sl e - e,
21 22 RN E'1 R
and note that #,,(0o) is invertible for |o| < € for € > 0 small enough.
Now, for 0 < t < 1, define %(0) : E; — E; via

1 0 N N
%)= | L |: e - o  j=12
—tP(0) Pulo) 1 RNE, RNE;
Then %(o) : B.(0) — Z(E;) is holomorphic and invertible, and the same
holds for

N N
%(5)* = [1 _t‘gzlz(o-)yzz(a)_l] : &) - (&)
0 1 RNE; RNE;

where the adjoint refers to the base Hilbert space E,. Then
Z1(0) = U(0)* P(0)%(0) € Psu(En, Ep)
is a homotopy within P, (E;, E,) between Zy(0) = (o) and

P11(0) — P13(0) P(0) " Py (0) 0
0 Pp@)|”

By the homotopy invariance of the spectral flow we have
SFo—o[#1(0) : E\ C Ey = Eo] = SF,-o[#(0) : E, C Ey = Ey].
Moreover, the map
(o) + Ho(Er) —> %(0)a(9) + Ho(Er)

furnishes a unitary equivalence

(A (P Mo) 2 (H (P, [ L) M)
It therefore suffices to prove the theorem for £2;(o) instead of (o). Define

p(0) 1= P11(0) = P13(0) P2(0) " P (0) € Pu(N),

P(0) =
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so Z(0) = [p E)G) 92(2) (0)]. In view of the invertibility of &2,,(c) we have
both

SFy—0[#1(0) : Ey C Ey — Ey] = SF,-[p(0) : N - N]
and

(AP, [ ) Ma) = (A (D), [ 1w (p)r Mo)s

where the latter unitary equivalence is induced by projection onto N. The the-
orem is therefore reduced to considering the finite-dimensional case for p(o) €
P (N), and an application of Theorem C.5 thus finishes the proof. O

We conclude with the following theorem about semibounded operators.
Theorem B.3. Suppose ¥ (o) € Ps,(Eq, Ey) satisfies (o) > 0 for o real. Then
the following hold:

(1) my(¢) = m_(¢) = 0 for ¢ odd. The canonical form for M, does not
contain any Jordan blocks of odd sizes, and sgn(,)i/(ﬂ), [ ~]%(g)) =0.

(2) Thesign characteristic for the triple (£ (), [-, -1 ¢ ) M) does not con-
tain any negative terms, i.e., we also have m_(¢) = 0 for ¢ even.

(3) There exists a unique Lagrangian subspace of % () that is invariant
under M, denoted by ¢ (<?)1. Specifically, if
2

N
#(2)=EPu;
j=1

according to the Canonical Form Theorem with mutually -, -] ;7 (5)-ortho-
gonal direct summands, and each U is associated to a single Jordan block
of M of size (2n;) X (2n;), then

N
H(P) = Plu; nkermy’]
2 j=1

Proof. Let ¢ € N, and let 11(0) + $H,(E;) € ker M’ be arbitrary. Then

R N 1A R -1, —
[, 0] ()0 = [0, MET 0] () = Tes,o{ P(0)0(0),T (D)),

We have Z(0)i(0), oii(c) € Ho(E,), and consequently

res,—o(2(0)i(0), 5 4@))g, = lim *(2(0)a(0), 4(0))z, -

o real
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Note that (Z(0)i(0), 2(0))g, > 0 for real o # 0 by assumption. For odd ¢ we
thus get

resy—o{ 2(0)a(o), Ef_lﬂ(E»EO lir51+ o’ (P (0)a(0), 4(0))g, = O,

resy—ol 2(0)0(0), Ef_lﬁ(E»Eo = 11%1 o?(P(0)0(0), (0))g, <0,
o—0—
and so [, ] ()¢ = 0, while for even ¢ we have

tes,_o( (@), T 4@, = lim o (P(@)(0), (0D, > 0,

o real

and so [@, @] (), > 0. This proves the first two assertions of the theorem.
The third assertion now follows from [26, Theorem 5.12.4]. O

Appendix C. Analytic crossings and spectral flow in
finite-dimensional spaces

Let F be a complex finite-dimensional Hilbert space. For a holomorphic op-
erator function p(c) : B.(0) - Z(F), where ¢ > 0 is sufficiently small, we
define its adjoint via p*(o) := [p(0)]* : B.(0) — Z(F) and note that it de-
pends holomorphically on o. By P, (F) we denote the collection of all germs
of holomorphic .Z(F)-valued functions p(c) defined near o = 0 such that for
some sufficiently small € > 0 the following two properties hold:

« p(o) : B,(0) » Z(F) is holomorphic and invertible for o # 0.
« pis selfadjoint in the sense that p* = p as operator functions on B,(0).

In other words, for real —¢ < o < ¢, the operator p(c) : F — F is selfadjoint
and invertible for o # 0. Thus crossings of negative to positive eigenvalues (or
vice versa) may occur at ¢ = 0 only, while p(o) is analytic near ¢ = 0. The
spectral flow of p(c) across o = 0 is

SForolp(0) 1 F — F] = lim (tr{IL,(p(0))] ~ trlIL(p(~0))]).

ag
where I1, in each case denotes the spectral projection onto the span of the
eigenspaces associated with positive eigenvalues of the selfadjoint operator p(o)
or p(—o), respectively.
As in Appendix B, every p(o) € P,,(F) induces a map

p: (M/9) (F) -~ (M/9) (F),
p[6(0) + Ho(F)] = p(0)0(0) + Ho(F)
for ¥(o) + Hy(F) € (Em/Sj)O(F). Define
J (p) =ker[p : (M/H) (F) — (M/H) ()]
= {0(0) + Ho(F) € (M/H) (F); p(0)v(0) € Ho(F)}.
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Note that dim .#'(p) < co. We define a pairing [+, -] () : # (p) x # (p) - C
via

(0.8 ) = 3 §é<p<o)ﬁ(a>, (@) do = res,-o(P(@)5(0), W@y

where C is any positively oriented circle centered at o = 0 of sufficiently small
radius. This is a Hermitian sesquilinear form on 7 (p). We thus associate with
every p(0) € P, (F) the triple (2 (p), [+, -1.4(p)» Mo ), where

M, : A (p) = A (p),
M, : 0(0) + Ho(F) — c0(o) + Ho(F).
Note that M, € £ (¢ (p)) is nilpotent and selfadjoint with respect to [+, -] 4(p)-
Definition C.1. For p,q € P, (F) we write p ~, q if there exists ¢ > 0 and

an invertible holomorphic operator function u(o) : B.(0) — Z(F) such that
u*qu = p on B,(0), i.e., [u(o)]*q(o)u(c) = p(c) : F — F for ¢ € B,(0).

Note that ~ is an equivalence relation on the set P, (F).

Proposition C.2. For p,q € P, (F) with p ~, q the triples
(A (P), [ 1 (py» Mo) and (£ (), [, -1 (g)» M)

are unitarily equivalent. More precisely, if u*qu = p with the holomorphic and
invertible function u(c) : B.(0) » Z(F), then

T : X (p)— (), 06(0)+ Ho(F) = u(@)i(o) + Ho(F)

furnishes a unitary equivalence between these indefinite inner product spaces.
Moreover, we have

SFO’:O[p(G) ‘F— F] = SFG:O[Q(G) CF— F]-

Proof. The proof of the first statement follows immediately from the defini-
tions. Note that T~! is given by multiplication by u(c)~!, which exists and is
holomorphic near o = 0. Finally, M, commutes with multiplication by holo-
morphic operator functions, so T is a unitary equivalence of the triples.
Regarding the spectral flow, we note that if a = a* € Z(F) is selfadjoint,
then [v, w], := (av, w)r is a Hermitian sesquilinear form on F. If (mg, m, m_)
are its invariants, then m, = tr(I1,(a)). If b = u*au with an invertible u, then

u : (F,[-1p) = (F,[-]s) is a unitary equivalence of these indefinite inner
product spaces. Consequently, [-,-], and [, -], have the same invariants, i.e.,
m, = tr(l1,(a)) = tr(TI1.(b)), which implies the invariance of the spectral
flow as claimed. U

The following key lemma is based on several results from analytic perturba-
tion theory (see [30, 55]).

Lemma C.3. Suppose p € P, (F) such that p(0) is invertible. Then there exists
an orthogonal projection & = 7 = * € £ (F) such that p(c) ~; w — (1 — 7).
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Proof. Choose ¢ > 0 and ¢ > 0 such that with

spec, (p(0)) = spec(p(0)) N B,_c(£¢)
we have spec(p(0)) = spec, (p(0)) U spec_(p(0)) for |o| < €. Define

1 _
(o) = 30 9299_5(9)(/1 — p(o))~tdaA € Z(F).

Then 7(c) = n*(c) = m(c)? is the Riesz projection onto the generalized eigen-
spaces associated with eigenvalues of p(o) that have positive real part for |o| <
¢. In particular, for o real, (o) is an orthogonal projection. Note that 7(c)
is holomorphic in o in view of the Dunford integral representation formula.
We’'ll see momentarily that the 77 in the statement of the lemma is going to be
7 .= 7(0), but first define w(o) via

1 1
1 3= p(o) " dd + —— (=) 2(4 — p(o))~L dA.
27t J3p, (o) 271 J3p,_.(~o)

Holomorphic functional calculus implies that w(c) = w* (o) is invertible with
w*pw = (o) — (1 — 7(0)), so p(c) ~; (o) — (1 — #(c)). Now, making £ > 0
smaller if necessary, we may further assume that ||7z(c) — 7(0)|| ¢y < 1 for all
|o| < €. Let then

u(o) = [2(0)m(0) + [1 — 7(@)][1 — 7(O)]][1 - [(0) — 7(O)]] 2,

u*(0) = [1 = [7(0) — 7(O)] 2[x(O)7(a) + [1 = w(O)][1 — 7(a)]].

We have u*(0) = u(o)™!, and u*(0)m(o)u(o) = 7(0). Thus 7(c)—(1—m(0)) ~
7(0) — (1 — 7(0)). In conclusion,

p(0) ~5 m(0) — (1 — 7(0)) ~5 (0) — (1 — 7(0)).
O

Proposition C.4. Let p € P, (F) be arbitrary. Then there exists N € Ny and an
orthogonal decomposition

N
F=PF.coF_,)
£=0
such that
N
p(o) ~ Z (”F+,f - ﬂFﬁ,f)Gf’
£=0

where 7ty is the orthogonal projection onto F.. , C F. We note that some of the
spaces F . , may be {0}.
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Proof. We prove this proposition by induction with respect to dim F.

If F = Cwe canwrite p(0) = oV p(c) forsome N € Ny, where p(c) € P, (C)
with p(0) # 0. By Lemma C.3 we have p(c) ~, +1, and so p(c) ~; +c”, thus
proving the result if dim F = 1.

We now assume that the proposition is valid for spaces F up to dimension
k for some k € N. Let then F be (k + 1)-dimensional. We can write p(c) =
o’p(o), where v € Ny and p(o) € P, (F) with p(0) # 0, and proving the claim
for p(o) implies that it holds for p(c) as well. Thus we assume without loss of
generality that v = 0 and p(c) = p(o) in the sequel.

If p(0) is invertible, Lemma C.3 implies that p(c) ~; 7 — (1 — x) for some
orthogonal projection 7, thus proving the assertion in this case. So suppose
now that p(0) is not invertible. Let F, = ker p(0). Then {0} ¢ F, ¢ F, so
1 < dimF, < k. We decompose p(c) as

Fo

F
_[pn(o) p(0)] . 0 N
p(g)_[Pn(O') Pzz(U)]' ;‘i ;BL
0 0

Note that p,,(0) € Pg,(Fy) is invertible for |o| small enough. Define

1 0 Fy Fy
u(o) = _ & - o .
@) [—Pzz(ﬁ) 1px(0) 1] Fé' Fé'
Then u(o) is invertible, and
F, F,
_ -1 0 0
u*(o) — [(1) plz(o-)fﬂ(o') ] . @ - @ .
Fy  Fj

‘We have

u*(o)p(o)u(o) = [p“(a) - p12(02)p22(‘7)_1pzl(0) pZZO(U) ’

where ¢ = p;; — p12p2_21 Do € Ps(Fy). Consequently, the proposition holds

for p if it holds for both q € P, (F,) and p,, € ﬂ’sa(FOl). But the inductive
hypothesis is applicable to g, and Lemma C.3 applies to p,,, thus proving the
proposition for p. This completes the induction and finishes the proof. O

Theorem C.5. Let p € P, (F) be arbitrary. Then [+, -] () : # (p) X # (p) =
C is nondegenerate, and

sgn(A (p). [ Lwwy) = D, (mi(€) = m_(€)) = SF,_o[p(0) : F - F|,
¢ odd

where m..(¢) are the invariants of the triple (¢ (p), [, -1 (p)» Mo ).
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Proof. Propositions C.2 and C.4 imply that it suffices to prove the theorem for
the special case p(c) = oNI : F — F, where N € N,. In this situation

N
H () ={D fi07 + $u(F); f; €F},
j=1

N N
and for 6(0) = Y, f;j07/ and w(o) = ), go ™~ we get
j=1 k=1

N fi &1
(6,01 = 2 Fvnogdr = (7| 5 [ T ])
k=1 ~n1 Len] FY
fi I
where J : FN — FNisgivenbyJ| : | = | : |. We have J? = 1, so J has
fn f1

eigenvalues +1, proving the nondegeneracy of the pairing. The dimensions of
the eigenspaces of J depend on the parity of N. Direct computation shows that

for N even we have dimker(J —I) = dimker(J +1) = g dim F, thus proving in

this case that

sgn( (p), [, ']Jﬁ/(p)) =0=SF,_[p(0) : F - F].
For N odd we have dim ker(J —1I) = %
and thus

dim F and dim ker(J +1) = % dimF,

sgn((p), [+, -1 (py) = dimF = SF,_o[p(o) : F — F]|.
Finally, we note that if ¥(c) and (o) above belong to ker[Mg A (p) —
J (p)], then
0 ¢ #N,
<fNa gN>F ¢ =N.

Thus m,(€) = m_(¢) = 0 for ¢ # N, while m (N) = dimF and m_(N) = 0.
The theorem is proved. (]

[MET10, 0] 4 (p) =
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