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von Neumann’s inequality for the
Hartogs triangle

Sameer Chavan, Shubham Jain
and Paramita Pramanick

Abstract. For a commuting pair T of bounded linear operators T1 and T2
on a Hilbert spaceℋ, let DT = T∗2T2 − T∗1T1. If T

∗
2DTT2 ⩽ DT and the Taylor

spectrum of T is contained in the Hartogs triangle△H , then for any bounded
holomorphic function � on△H , ‖�(T)‖ ⩽ ‖�‖∞. We deduce this fact from
an analogue of von Neumann’s inequality for bounded domains in ℂd. The
proof of the latter closely follows the model theory approach as developed in
[1].
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1. Introduction
1.1. Hardy space of theHartogs triangle. TheHartogs triangle△H is given
by

△H = {(z1, z2) ∈ ℂ2 ∶ |z1| < |z2| < 1}.
Clearly,

△H = {(z1, z2) ∈ D2 ∶ (z2z2 − z1z1)(1 − z2z2) > 0}, (1)

whereD denotes the open unit disc. Moreover,△H is bi-holomorphic toD×D∗

via the map (z1, z2) → ( z1
z2
, z2), where D∗ = D∖{0}. Thus,△H is a holomorphi-

cally convex domain. However, it is easy to see that△H is not polynomially
convex (refer to [19] for the basics of several complex variables and also to [20]
for an exposition surveying classical and recent results on theHartogs triangle).

Let I = (0, 1). For (s, t) ∈ I × I, let

△Hs,t
=

{
(z1, z2) ∈ ℂ2 ∶

|z1|
s < |z2| < t

}
.
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The distinguished boundary )d(△Hs,t
) of△Hs,t

is given by

)d(△Hs,t
) = {(z1, z2) ∈ ℂ2 ∶ |z1| = st, |z2| = t}.

Following [12, Section 3] (see also [9, Section 6]), we de�ne theHardy space on
the Hartogs triangle△H as

H2(△H) =
{
f ∈ Hol(△H) ∶ sup

(s,t)∈I×I

1
4�2

∫
)d(△Hs,t )

|f|2d�s,t < ∞
}
,

where �s,t is the surface area measure on )d(△Hs,t
) induced by the Lebesgue

measure on the unit torus T×T. ThenH2(△H) is a reproducing kernel Hilbert
space endowed with the norm

‖f‖2
H2(△H)

= sup
(s,t)∈I×I

1
4�2

∫
2�

0
∫

2�

0
|f(stei�, tei
)|2st2d�d
.

A domainΩ inℂd is a nonempty open subset ofℂd. For a bounded domainΩ in
ℂd, letH∞(Ω)denote theBanach algebra of boundedholomorphic functions on
Ω endowedwith the sup norm ‖⋅‖∞,Ω.Note thatH∞(D2) ⊊ H∞(△H) (consider
f(z1, z2) = z1∕z2). However, any function holomorphic in a neighborhood of
△H extends analytically to D2 (see [20, Proposition 1.1]). The multiplier alge-
bra of a Hilbert space H of complex-valued holomorphic functions is denoted
byMult(H ). If � ∈ Mult(H ), then the operatorM� of multiplication by � de-
�nes a bounded linear operator. The multiplier norm of � is the operator norm
ofM�.

Lemma 1.1. The following statements are valid∶
(i) The reproducing kernel forH2(△H) is given by

�H(z, w) =
1

(z2w2 − z1w1)(1 − z2w2)
.

(ii) The multiplier algebra of H2(△H) is equal to H∞(△H) with equality of
norms.

Proof. Note that (i) is precisely [12, Proposition 3.2]. To see (ii), note that the
multiplier algebra ofH2(△H) is contained inH∞(△H) and ‖�‖∞,△H

⩽ ‖M�‖
(see [14]). Also, for each � ∈ H∞(△H),

‖�f‖H2(△H) ⩽ ‖�‖∞,△H
‖f‖H2(△H), f ∈ H2(△H).

Thus, the multiplier norm of � is equal to ‖�‖∞,△H
. �

1.2. Main theorem. Letℋ be a complex Hilbert space and let d be a positive
integer. By a commuting d-tuple T = (T1, … , Td) onℋ, we understand the d-
tuple of bounded linear operators T1, … , Td onℋ such that TjTk = TkTj for all
integers 1 ⩽ j ≠ k ⩽ d. The Taylor spectrum and approximate point-spectrum
of a commuting d-tuple T on ℋ are denoted by �(T) and �ap(T), respectively



VON NEUMANN’S INEQUALITY FOR THE HARTOGS TRIANGLE 793

(the reader is referred to [5] for de�nition and basic information on the various
joint spectra of commuting tuples).

The purpose of this note is to prove vonNeumann’s inequality for theHartogs
triangle (cf. [22, Theorem 1.1]).

Theorem 1.2. If T = (T1, T2) is a commuting 2-tuple on ℋ such that �(T) ⊂
△H and T∗2 (T

∗
2T2 − T∗1T1)T2 ⩽ T∗2T2 − T∗1T1, then

‖�(T)‖ ⩽ ‖�‖∞,△H
, � ∈ H∞(△H). (2)

Remark 1.3. Set DT ∶= T∗2T2 − T∗1T1 and ET ∶= DT − T∗2DTT2.
(1) By the hereditary functional calculus (see [1]),

T∗2DTT2 ⩽ DT ⟺
1
�H

(T, T∗) ⩾ 0,

where 1
�H
(z, w) = (z2w2 − z1w1)(1 − z2w2) (cf. (1)).

(2) The conditionET ⩾ 0need not imply�(T) ⊂ △H (cf. [22, Lemma 4.1]).
Indeed, any commuting subnormal 2-tuple T with minimal normal ex-
tension N such that

�(N) ⊂ {(z1, z2) ∈ ℂ2 ∶ |z1| > |z2| > 1}

satis�es ET ⩾ 0 (consult the spectral theorem for commuting normal
operators). However, since �(N) ⊆ �(T) (see [17]) is a nonempty set
(see [5]), �(T) intersects with the complement of△H .Also, by the spec-
tral theorem for commuting normal operators,

T∗1T1 ⩾ T∗2T2 ⩾ I.

This example also shows that ET ⩾ 0 need not imply

T∗1T1 ⩽ T∗2T2 ⩽ I.

(3) Any commuting 2-tuple T such that ET ⩾ 0 satis�es

�ap(T) ∩ D
2
⊆△H . (3)

Indeed, if (�1, �2) ∈ �ap(T), then there exists a sequence {xn}∞n=1 of unit
vectors such that

lim
n→∞

⟨ETxn, xn⟩ = 0⟹ (1 − |�2|2)(|�2|2 − |�1|2) ⩾ 0,

and hence (1) yields the inclusion (3).
Finally, note that (2) implies that△H is a spectral domain for T (see [1, De�-
nition 1.46]).

Since△H is not a P-ball in the sense [16] (indeed,△H is a Reinhardt do-
main, which is not complete), [16, Corollary 5.4] is not applicable to the case
of the Hartogs triangle. It turns out that an application of Lemma 1.1 together
with an analogue of von Neumann’s inequality (see Theorem 2.1) yields Theo-
rem 1.2.
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2. von Neumann’s inequality for a bounded domain

Theorem 2.1. Let Ω be a bounded domain in ℂd. Assume that there exists a
reproducing kernel Hilbert spaceH� with reproducing kernel � ∶ Ω×Ω → ℂ∖{0}
such that 1

�
is a hereditary function onΩ. If T is a commuting d-tuple onℋ such

that �(T) ⊂ Ω and 1
�
(T, T∗) ⩾ 0, then

‖�(T)‖ ⩽ ‖M�‖, � ∈ Mult(H�). (4)

If, in addition, the multiplier algebra Mult(H�) of H� is equal to H∞(Ω) (with
equality of norms), then

‖�(T)‖ ⩽ ‖�‖∞,Ω, � ∈ H∞(Ω). (5)

Remark 2.2. The above result is applicable to a number of domains Ω in ℂd

allowing us to recover variants of several known results ([3, 1, 8, 13, 16, 22]):

∙ Letting Ω = Dd and �(z, w) = 1
∏d

j=1(1−wjzj)
, z, w ∈ Dd, we get (5) for

any commuting d-tuple T satisfying �(T) ⊂ Dd and
∑

�j∈{0,1}
j=1,…,d

(−1)|�|T∗�T� ⩾ 0,

where T� =
∏d

j=1 T
�j
j , |�| = �1 + ⋯ + �d, � = (�1, … , �d). This re-

covers a variant of von Neumann inequality for the polydisc (cf. [6,
Theorem 4.7] and [21, Theorem 1.9.1]).

∙ Letting Ω = Bd and �(z, w) = 1
1−⟨z, w⟩

, z, w ∈ Bd, we get (4) for any

commuting d-tuple T satisfying �(T) ⊂ Bd and
∑d

j=1 T
∗
jTj ⩽ I. This

recovers Drury’s theorem (see [8, pp 300-301]).
∙ Letting Ω = Bd and �(z, w) = 1

(1−⟨z, w⟩)d
, z, w ∈ Bd, we get (5) for any

commuting d-tuple T satisfying �(T) ⊂ Bd and
∑

0⩽k⩽d
(−1)k

(d
k

) ∑

|�|=k

k!
�!T

∗�T� ⩾ 0.

This is a consequence of [13, Theorem 11].
∙ For 0 < r < 1, letting Ω = Ar = {z ∈ ℂ ∶ r < |z| < 1} and �(z, w) =

1−r2

(1−zw)(1−r2∕zw)
, z, w ∈ Ar, we get (4) for any bounded linear operator T

satisfying �(T) ⊂ Ar and

r2I − (1 + r2)T∗T + T∗2T2 ⩽ 0.

This recovers a part of [22, Theorem 1.1].

Recall from [2] (see also [1, Chapter 4]) that ℎ is a hereditary function onΩ if
ℎ is a mapping fromΩ×Ω toℂ such that (z, w) → ℎ(z, w) is holomorphic func-
tion on Ω × Ω. A dyad in Her(Ω) is a function of the form (z, w) →  (w)�(z),
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z, w ∈ Ω, for some functions � and  in Hol(Ω). Here Her(Ω) denotes the set
of hereditary functions on Ω.

It has been recorded in [1, Remark 4.15] that for any domain Ω in ℂd, the
hereditary functional calculus is well-de�ned and satis�es the properties as
listed in [1, Lemma 4.13]. Alternatively, following [4, Section 1], we may use
the iterated Cauchy-Weil integral (see [5, Corollary 5.4]) to de�ne

ℎ(T) = 1
(2�i)2d

∫
)Ω′

∫
)Ω′

ℎ(z, w)M(w − T∗)M(z − T) ∧ dz ∧ dw

for every ℎ ∈ Her(Ω), where M is the Martinelli kernel (see [5]) and Ω′ is an
open domain with C1-boundary such that �(T) ⊂ Ω′ ⊂ Ω′ ⊂ Ω. In the proof of
Theorem 2.1, we need the continuity of the hereditary functional calculus∶

Lemma2.3. LetΩ be a boundeddomain inℂd. If {ℎn}∞n=1 is a sequence inHer(Ω),
ℎ ∈ Her(Ω), and ℎn → ℎ uniformly on compact subsets of Ω × Ω, then ℎn(T) →
ℎ(T) with respect to the operator norm, whenever T is a commuting d-tuple with
�(T) ⊂ Ω.

Proof. Let T be a commuting d-tuple satisfying �(T) ⊂ Ω.As pointed out in [1,
Remark 4.15], the proof of this fact relies on the nuclearity of Hol(Ω) (see [10,
Theorem V.4.1], [7, Theorem 3.64]) and [15, Proposition, p 113]. Alternatively,
one may adapt the proof of [1, Proposition 2.87] to the present situation. Since
�(T) is contained in Ω′ and

� ↦
( d∑

j=1
(Tj − �j)∗(Tj − �j)

)−1

is bounded on )Ω′ (since the approximate point-spectrum is a closed subset of
Ω′ and the inverse map on invertible bounded linear operators is continuous),
by [5, Lemma 5.11], the map (z, w) ↦ M(w −T∗)M(z − T) is bounded on )Ω′.
It follows that

ℎn(z, w)M(w − T∗)M(z − T) → ℎ(z, w)M(w − T∗)M(z − T)

in the operator norm, uniformly for z, w ∈ )Ω′. Hence, ℎn(T) → ℎ(T). �

If Ω is a Reinhardt domain in ℂd, then by [11, Proposition 1.7.1(b)&(c)],
(z, w) → ℎ(z, w)has a Laurent series expansion converging compactly onΩ×Ω,
and hence for some complex numbers a�,�,

ℎ(T) =
∑

�,�∈ℤd

a�,�T∗�T�,

where ℤ denotes the set of integers. This observation is applicable to the Har-
togs triangle (see [20, Eq (1.1)]).

The following is a counter-part of [1, Theorem 4.4] for any bounded domain
in ℂd.
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Lemma 2.4. Let Ω be a bounded domain in ℂd. If A is a positive semi-de�nite
hereditary function onΩ, then there exists a sequence {fn}∞n=1 inHol(Ω) such that

A(z, w) =
∞∑

n=1
fn(w)fn(z), z, w ∈ Ω, (6)

where the series in (6) converges uniformly on compact subsets ofΩ × Ω.

Proof. Weclosely follow the proof of [1, Theorem4.4]. SinceA is positive semi-
de�nite on Ω, by Moore’s theorem (see [1, Theorem 2.5]), there exist a Hilbert
spaceℳ and a function u ∶ Ω → ℳ such that

∨{u(z) ∶ z ∈ Ω} = ℳ, A(z, w) = ⟨u(z), u(w)⟩ℳ , z, w ∈ Ω.

By the reproducing property ofℳ, u is easily seen to be a weakly holomorphic
function, and hence by [1, Lemma 2.90], u is holomorphic. Also, since Ω is
separable, so is ℳ. Let {en}Nn=1 be an orthonormal basis for ℳ, where N is a
positive integer orN = ∞.ByParseval’s identity and the continuity of the inner-
product, we have

A(z, w) = ⟨u(z), u(w)⟩ℳ =
N∑

n=1
⟨u(w), en⟩ℳ⟨u(z), en⟩ℳ , z, w ∈ Ω.

Therefore, if we de�ne fn = ⟨u(⋅), en⟩ℳ , n = 1,… ,N, then fn ∈ Hol(Ω) and
(6) holds (if N < ∞, then let fn = 0 for n > N). Letting z = w in (6), we
may conclude from Dini’s theorem (see [18, Theorem 7.13]) that

∑∞
n=1 |fn(⋅)|

2

converges uniformly on compact subsets ofΩ.Weobtain the desired conclusion
now from the Cauchy-Schwarz inequality. �

Proof of Theorem 2.1. Assume that �(T) ⊂ Ω and 1
�
(T, T∗) ⩾ 0. Let � ∈

Mult(H�). After multiplying by a scalar, if required, we may assume that � be-
longs to the closed unit ball ofMult(H�). By [14, Theorem 5.21], there exists a
positive semi-de�nite kernel A ∶ Ω × Ω → ℂ such that

(1 − �(w)�(z))�(z, w) = A(z, w), z, w ∈ Ω. (7)

Thus, we have the model formula

1 − �(w)�(z) =
A(z, w)
�(z, w)

, z, w ∈ Ω.

SinceA is a positive semi-de�nite element ofHer(Ω), by Lemma2.4, there exists
a sequence {fn}∞n=1 of elements in Hol(Ω) such that

1 − �(z)�(w) =
∞∑

n=1
fn(w)

(1
� (z, w)

)
fn(z)
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converges uniformly on compact subsets of Ω × Ω. Since �(T) ⊂ Ω, by the
continuity of the hereditary functional calculus on Ω (see Lemma 2.3),

I − �(T)∗�(T) =
∞∑

n=1
fn(T)∗

(1
� (T, T

∗)
)
fn(T).

Hence, by the assumption 1
�
(T, T∗) ⩾ 0,we conclude that I −�(T)∗�(T) ⩾ 0 or

equivalently, ‖�(T)‖ ⩽ 1 completing the proof of the �rst part. The remaining
part is now immediate. �

Proof of Theorem 1.2. An application of Lemma 1.1 to the choice � = �H
together with Theorem 2.1 and Remark 1.3(1) yields (2). �

Let us discuss some consequences of Theorem 1.2.

Corollary 2.5. If T = (T1, T2) is a commuting 2-tuple onℋ such that �(T) ⊂
△H and T∗2 (T

∗
2T2 − T∗1T1)T2 ⩽ T∗2T2 − T∗1T1, then

T∗1T1 ⩽ T∗2T2 ⩽ I. (8)

Proof. Letting �(z1, z2) = z2 in (2), we conclude that T∗2T2 ⩽ I. To see the
remaining inequality, by the spectralmapping property (see [5, Theorem 5.19]),
T2 is invertible. Applying (2) to the bounded holomorphic function �(z1, z2) =
z1∕z2 on△H ,we get ‖T1T−12 ‖ ⩽ 1, or equivalently, (T1T−12 )∗(T1T−12 ) ⩽ I. Thus,
T∗1T1 ⩽ T∗2T2 completing the proof. �

Remark 2.6. Assume that (8) holds and T2 onℋ is invertible. Note that 2-tuple
(T1T−12 , T2) is a commuting pair of contractions. By Ando’s dilation theorem
(see [3]), there exists a unitary commuting 2-tuple U = (U1, U2) on a Hilbert
spaceK ⊇ ℋ such that

Tm1 T
n−m
2 = (T1T−12 )mTn2 = PHUm

1 U
n
2 , m, n ⩾ 0,

where Pℋ denotes the orthogonal projection ofK ontoℋ. Finally, it has been
pointed out by the anonymous referee that (8) can also be deduced from a cou-
ple of applications of the Gelfand spectral radius formula.

For certain Taylor invertible 2-tuples, the inclusion �(T) ⊂ △H appearing
in Theorem 1.2 may be replaced by the weaker condition �(T) ⊆ △H .

Corollary 2.7. Let T = (T1, T2) be a commuting 2-tuple onℋ such that �(T) ⊆
△H and

ET ∶= T∗2T2 − T∗1T1 − T∗2 (T
∗
2T2 − T∗1T1)T2 ⩾ 0.

If T is Taylor-invertible and T∗1T1 ⩽ T∗2T2 ⩽ I, then for every bounded rational
function � with poles o�△H , ‖�(T)‖ ⩽ ‖�‖∞,△H

.

Proof. Assume that T is Taylor-invertible and T∗1T1 ⩽ T∗2T2 ⩽ I. For 0 < s, t <
1, let Ts,t denote the commuting pair (stT1, tT2). Note that

ETs,t = t2
(
ET + (1 − t2)T∗22 T

2
2 + (1 − s2)T∗1T1 + (s2t2 − 1)T∗2T

∗
1T1T2

)
.
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Thus, if T∗1T1 ⩽ T∗2T2 ⩽ I, then

ETs,t ⩾ t2(ET) + t2(1 − t2 + 1 − s2 + s2t2 − 1)T∗2T
∗
1T1T2

= t2(ET) + t2(1 − t2)(1 − s2)T∗2T
∗
1T1T2,

which is a positive operator by assumption. Since (0, 0) ∉ �(T), by the spectral
mapping property (see [5, Theorem 5.19]), �(Ts,t) ⊂ △H . One may now apply
Theorem 1.2 to the commuting 2-tuple Ts,t and any bounded rational function
� with poles o�△H , and let s, t tend to 1. �

We do not know whether the assumption of the Taylor invertibility of T can
be relaxed from Corollary 2.7. This constraint may be related to the fact that
the origin is a singularity of the boundary of the Hartogs triangle.
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