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Some new results about left ideals of �S

Neil Hindman and Dona Strauss

Abstract. The smallest idealK(�S) of the Stone-Čech compacti�cation of a
discrete semigroup S is the union of pairwise isomorphic and homeomorphic
minimal left ideals. We provide a simple characterization of semigroups for
which the smallest ideal of �S is �nite and some necessary conditions for the
minimal left ideals to be �nite. We investigate when the smallest ideal of the
Stone-Čech compacti�cation of a Cartesian product can be homeomorphic
to a Cartesian product of the smallest ideal of Stone-Čech compacti�cations.
We extend some known results about the fact that, if S is a countably in�-
nite cancellative semigroup, every non-minimal semiprincipal left ideal in �S
contains many semiprincipal left ideals de�ned by right cancelable elements
of �S. We conclude with some observations about the topological properties
of semiprincipal left ideals in �S.
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1. Introduction
Wecontinue our study of the algebraic and topological structure of the Stone-

Čech compacti�cation �S of a discrete semigroup S, with emphasis on the left
ideals of �S. The left ideals are of analytical interest for at least two main rea-
sons. That is, they are orbit closures of the action of S on �S and, if they are
minimal, they areuniversalminimal dynamical systems. Wewill provide amore
detailed description of these things after we provide a brief introduction to the
algebraic structure of �S.

We take the points of �S to be the ultra�lters on S, identifying a point x ∈ S
with the principal ultra�lter e(x) = {A ⊆ S ∶ x ∈ A}. Given A ⊆ S, A = {p ∈
�S ∶ A ∈ p} and A∗ = A ⧵ A, the set of nonprincipal ultra�lters with A as a
member. The set {A ∶ A ⊆ S} is a basis for the open sets (as well as a basis for

Received December 31, 2021.
2010Mathematics Subject Classi�cation. 22A15, 54D35, 54H13, 20M12.
Key words and phrases. semigroup, left ideals, ultra�lters, Stone-Čech compacti�cation.

ISSN 1076-9803/2022

970

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2022/Vol28.htm


LEFT IDEALS OF �S 971

the closed sets) in �S. With this topology, �S is a compact Hausdor� space with
the property that if X is any compact Hausdor� space and f ∶ S → X, there is
a continuous function f̃ ∶ �S → X which extends f.

The operation ⋅ on S extends uniquely to an operation on �S so that (�S, ⋅)
is a right topological semigroup with S contained in its topological center. That
is, for each p ∈ �S, the function �p ∶ �S → �S de�ned by �p(q) = q ⋅ p
is continuous and for each x ∈ S, the function �x ∶ �S → �S de�ned by
�x(q) = x ⋅ q is continuous. Given points p and q in �S and A ⊆ S, A ∈ p ⋅ q
if and only if {s ∈ S ∶ s−1A ∈ q} ∈ p where s−1A = {t ∈ S ∶ st ∈ A}. We can
also characterize p ⋅ q as lim

s→p
lim
t→q

st, where s and t denote elements of S. From

this point on, we will write pq for p ⋅ q. If A is any subset of a semigroup, then
E(A) = {x ∈ A ∶ x is an idempotent}.

As a compact Hausdor� right topological semigroup, �S has idempotents
and contains a smallest two sided ideal K(�S). An idempotent in K(�S) is said
to be a minimal idempotent. An idempotent in �S is minimal if and only if it
is minimal with respect to the ordering of idempotents de�ned by p ≤ q if and
only if p = pq = qp.

The smallest idealK(�S) =
⋃
{L ∶ L is aminimal left ideal of �S} =

⋃
{R ∶ R

is a minimal right ideal of �S}. If L is a minimal left ideal of �S and R is a
minimal right ideal of �S, then L ∩ R is a group, and any two such groups are
isomorphic. Then L∩R is referred to as the structure group of �S. If L and L′ are
minimal left ideals of �S andR is aminimal right ideal of �S, then L∩R and L′∩
R are topologically isomorphic. (When we say that subsets of right topological
semigroups are topologically isomorphicwemean that there is a function taking
one to the other which is both an isomorphism and a homeomorphism.) Any
two minimal left ideals of �S are isomorphic and homeomorphic. We do not
know in general whether they are topologically isomorphic. Any two minimal
right ideals of �S are isomorphic.

If L is a minimal left ideal of �S and p ∈ L, then L = (�S)p = �p[�S] so
minimal left ideals of �S are compact. We will use without comment the fact
that if p ∈ E(L), then p is a right identity for L. (If q ∈ (�S)p, then q = rp for
some r, so qp = rpp = rp = q.)

See [8, Part I] for an elementary introduction to the algebra and topology of
�S.

If p ∈ ℕ∗, the notion of p-limit provides a uniform way of taking limits
of sequences. If ⟨xn⟩∞n=1 is a sequence in a compact Hausdor� space X, then
p-lim

n∈ℕ
xn = y ∈ X if and only if for every neighborhood U of y, {n ∈ ℕ ∶ xn ∈

U} ∈ p.
If p ∈ �S, then {�s(p) ∶ s ∈ S} is the orbit of p under S, and the orbit closure,

cl{�s(p) ∶ s ∈ S} is of substantial analytical interest. This orbit closure is
cl(Sp) = cl�p[S] = (�S)p, the semiprincipal left ideal generated by p. (The
principal left ideal generated by p is {p} ∪ (�S)p.)
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If L is a minimal left ideal of �S and for s ∈ S, �′s is the restriction of �s to L,
then (L, ⟨�′s⟩s∈S) is a universal minimal dynamical system for S as described in
[8, Section 19.1].

Given a set X, we let Pf(X) be the set of �nite nonempty subsets of X. A set
S is a right zero semigroup provided xy = y for all x and y in S. A set S is a left
zero semigroup provided xy = x for all x and y in S.

We let ! = ℕ∪ {0}. Then ! is the �rst in�nite cardinal. Recall that cardinals
are ordinals and each ordinal is the set of its predecessors.

In Section 2, we dealwith the question of underwhat conditions theminimal
left ideals of �S are �nite. That characterization is simple in the event that
K(�S) ∩ S ≠ ∅, namely that S has a �nite left ideal. Much more interesting
is the situation in which K(�S) ⊆ S∗. We obtain some necessary conditions
for the existence of �nite left ideals and conclude the section by showing that
these conditions are far from su�cient, since they may hold with the left ideals
having cardinality 22� for any in�nite cardinal �.

In Section 3, we obtain several results about the Stone-Čech compacti�cation
of Cartesian products of semigroups, Cartesian products of Stone-Čech com-
pacti�cations of semigroups, and the relations between them and their smallest
ideals.

In Section 4, we obtain some results about countably in�nite cancellative
semigroups including the fact that if S is such a semigroup, then the left ideals
of �S that are contained in the smallest ideal are characterized as being those
ideals that are the union of groups.

We conclude the introduction with some basic facts about F-spaces that we
will need.
De�nition 1.1. Let X be a completely regular Hausdor� space. Then C(X) is
the set of continuous real valued functions with domain X.

Recall that subsets A and B of a completely regular Hausdor� space X are
completely separated if and only if there exists f ∈ C(X) such that for all x ∈ A,
f(x) = 0 and for all x ∈ B, f(x) = 1. (If A and B are nonempty, this assertion
is equivalent to the statment that f[A] = {0} and f[B] = {1}. We write it the
way that we do because we want ∅ to be an F-space. If it is not, then Theorem
1.3(2) fails.)
De�nition 1.2. (1) A topological space X is an F-space if and only if X is

a completely regular Hausdor� space and for every f ∈ C(X), {x ∈ X ∶
f(x) < 0} and {x ∈ X ∶ f(x) > 0} are completely separated.

(2) A topological spaceX is a P-space if and only ifX is a completely regular
Hausdor� space and every G� subset of X is open.

We will need the following well known result.
Theorem 1.3. (1) If S is a discrete space, then �S is an F-space.

(2) A compact subset of an F-space is an F-space.
(3) IfX andY are nonempty completely regular Hausdor� spaces andX ×Y

is an F-space, then X and Y are F-spaces.
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(4) IfX andY are nonempty completely regular Hausdor� spaces andX ×Y
is an F-space, then either X or Y is a P-space.

(5) Any compact P-space is �nite.

Proof. (1) This follows from [5, Theorem 14.25] and the fact that a discrete
space is an F-space.

(2) Let Y be a compact subspace of the F-space X and let f ∈ C(Y). By [5,
Item 3.11(c)], pick g ∈ C(X) such that g|Y = f. Pick ℎ ∈ C(X) such that ℎ
completely separates {x ∈ X ∶ g(x) < 0} and {x ∈ X ∶ g(x) > 0}. Then ℎ|Y
completely separates {x ∈ Y ∶ f(x) < 0} and {x ∈ Y ∶ f(x) > 0}.

(3) Assume that X × Y is an F-space. It su�ces to show that X is an F-
space, so let f ∈ C(X) be given. De�ne g ∶ X × Y → ℝ by g(x, y) = f(x).
Then g ∈ C(X × Y) so pick ℎ ∈ C(X × Y) such that ℎ completely separates
{(x, y) ∈ X × Y ∶ f(x, y) < 0} and {(x, y) ∈ X × Y ∶ f(x, y) > 0}. Pick
y ∈ Y and de�ne k ∈ C(X) by k(x) = ℎ(x, y). Then k completely separates
{x ∈ X ∶ f(x) < 0} and {x ∈ X ∶ f(x) > 0}.

(4) This is [5, Exercise 14Q(1)]. (This is an easy exercise following the hint
and using the fact that a space X is a P-space if and only if for every f ∈ C(X),
{x ∈ X ∶ f(x) = 0} is open.)

(5) This is a consequence of [5, Exercise 4K(1)]. �

2. Finite minimal left ideals
In this section, we present several results about semigroups S that have the

property that �S has �nite minimal left ideals. There are some obvious exam-
ples of semigroups with this property, such as any semigroup with a right zero
or (ℕ,max). As we shall see, this property is preserved by all �nite products
and by some in�nite products. In [10], we had a section titled Finitely many
minimal right ideals. As we see now, these notions are equivalent.

Lemma 2.1. Let S be an in�nite discrete semigroup and let L be a minimal left
ideal of �S. The following statements are equivalent.

(a) L is �nite.
(b) E(L) is �nite.
(c) There are �nitely many minimal right ideals in �S.

Proof. It is trivial that (a) implies (b). If R is a minimal right ideal of �S, then
R ∩ L is a group and distinct minimal right ideals are disjoint, so (b) implies
(c). If L were in�nite, then by [8, Theorem 6.39], �S would contain at least 2c
minimal right ideals, so (c) implies (a). �

We shall need the following lemmawhich is analogous to [8, Theorem 2.23].
Since it is a purely algebraic statement, the corresponding statement with “left”
replaced by “right” is also valid.

Lemma 2.2. Let ⟨Si⟩i∈I be a family of semigroups and let S =×i∈ISi .
(1) If for each i ∈ I, Li is a minimal left ideal of Si , then×i∈ILi is a minimal

left ideal of S.
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(2) Assume L is a minimal left ideal of S and pick x⃗ ∈ L. For each i ∈ I, let
Li = Sixi . Then L =×i∈ILi and for each i ∈ I, Li is a minimal left ideal
of Si .

Proof. (1) Let L = ×i∈ILi. Trivially L is a left ideal of S. To see that L is
minimal, by [8, Lemma 1.52(a)] it su�ces to show that for all x⃗ ∈ L, L = Lx⃗,
so let x⃗ ∈ L. Then Lx⃗ ⊆ L. To see that L ⊆ Lx⃗, let y⃗ ∈ L. For each i ∈ I, pick
zi ∈ Li such that yi = zixi. Then y⃗ = z⃗x⃗ ∈ Lx⃗.

(2) To see that L ⊆×i∈ILi, let y⃗ ∈ L. Then by [8, Lemma 1.52(a)], pick z⃗ ∈ L
such that y⃗ = z⃗x⃗. Then for each i ∈ I, yi = zixi ∈ Li. To see that×i∈ILi ⊆ L,
let y⃗ ∈×i∈ILi and for i ∈ I, pick z⃗i ∈ Si such that yi = zixi. Then y⃗ = z⃗x⃗ ∈ L.

Finally, let i ∈ I. To see that Li is a minimal left ideal of Si suppose in-
stead there is a left ideal J of Si properly contained in Li. For j ∈ I, let Mj =

{ J if j = i
Lj if j ≠ i. Then×j∈IMj is a left ideal of S properly contained in L, a con-

tradiction. �

We obtain a simple characterization of when K(�S) is �nite. Recall that we
are identifying the points of S with the principal ultra�lters on S. Recall also
that if p ∈ �S, then ||p|| = min{|A| ∶ A ∈ p}.
Theorem 2.3. Let S be an in�nite discrete semigroup. If K(�S) is �nite, then
K(�S) ⊆ S. Consequently, K(�S) is �nite if and only if there is a �nite ideal of S.
Proof. If I is a �nite ideal of S, then by [8, Corollary 4.18], cl(I) is an ideal of
�S so K(�S) ⊆ cl(I) = I.

Now assume thatK(�S) is �nite. It su�ces to show thatK(�S)∩S ≠ ∅, since
then K(�S) ∩ S is a �nite ideal of S.

So, suppose that K(�S) ⊆ S∗. Pick an idempotent p ∈ K(�S) and let L be
the minimal left ideal of �S such that p ∈ L. Let � = ||p||. Then � ≥ !. Pick
D ∈ p such that |D| = �.

Since L is �nite, p is isolated in L. Pick A ∈ p such that A ∩ L = {p}.
Then A ∈ pp = �p(p), so pick C ∈ p such that Cp ⊆ A. If x ∈ C, then
xp ∈ A ∩ L so xp = p. Thus for each x ∈ C, �x(p) = p so by [8, Theorem
3.35], Bx = {a ∈ S ∶ xa = a} ∈ p.

We claim that
⋂

x∈C∩D Bx ⊆ K(�S). This will contradict [8, Theorem 3.62]
which says that |

⋂
x∈C∩D Bx| = 22� . So, let q ∈

⋂
x∈C∩D Bx. Then for each

x ∈ C ∩ D, �x is the identity on Bx so xq = q. Then �q is constantly equal to q
on C ∩ D, so pq = q and thus q ∈ K(�S) as claimed. �

We get an equally simple characterization of the existence of �nite minimal
left ideals of �S in the event that K(�S) ∩ S ≠ ∅.
Theorem 2.4. Let S be an in�nite discrete semigroup and assume that K(�S) ∩
S ≠ ∅. Then �S has �nite minimal left ideals if and only if S has a �nite left ideal.
Proof. Su�ciency. Let L be a �nite left ideal of S. By [8, Corollary 4.18], cl(L)
is a left ideal of �S which contains a minimal left ideal, and cl(L) = L.
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Necessity. Pick p ∈ K(�S) ∩ S and let L = �Sp. Then L is a minimal left
ideal of �S. Given s ∈ S, sp ∈ L ∩ S so L ∩ S is a left ideal of S. �

Let S = (ℕ, ∨)wherex∨y = max{x, y}. Then by [8, Exercise 4.1.11],K(�S) =
ℕ∗ andK(�S) is a right zero semigroup. In particular, the fact that the minimal
left ideals of �S are �nite (in this case singletons) does not imply that K(�S) ∩
S ≠ ∅.

As a consequence of Theorem 2.4, we are interested in characterizing semi-
groups S such that K(�S) ⊆ S∗ and �S has �nite minimal left ideals. The
following simple result is one such characterization. However, it is not very
satisfactory, since it depends on determining the existence of two nonprincipal
ultra�lters.

Theorem 2.5. Let S be an in�nite discrete semigroup such that K(�S) ⊆ S∗.
Then �S has �nite minimal left ideals if and only if there exist a �nite partitionℛ
of S and q ∈ S∗ such that for everyA ∈ ℛ there is some r ∈ S∗ such thatAq = {r}.

Proof. Su�ciency. Pick ℛ and q as speci�ed. Let

L =
{
r ∈ S∗ ∶ (∃A ∈ ℛ)(Aq = {r}

}
.

Then Sq ⊆ L so �Sq = cl(Sq) ⊆ L and L is �nite.
Necessity. Let L be a �nite minimal left ideal of �S and pick q ∈ L. Then

Sq ⊆ L so �Sq ⊆ L ⊆ S∗. For r ∈ L, let Ar = {s ∈ S ∶ sq = r} and let
ℛ = {Ar ∶ r ∈ L}. �

Wedo get satisfactory characterizations of the existence ofminimal left ideals
as singletons.

Theorem 2.6. Let S be an in�nite discrete semigroup such thatK(�S) ⊆ S∗. For
s ∈ S, let Cs = {t ∈ S ∶ st = t}. Then the minimal left ideals of �S are singletons
if and only if {Cs ∶ s ∈ S} has the in�nite �nite intersection property.

Proof. Necessity. Pick a minimal left ideal L of �S and pick q ∈ S∗ such that
L = {q}. Then for each s ∈ S, sq = q so by [8, Theorem 3.35], Cs ∈ q. Since
q is closed under �nite intersections and contains no �nite sets the conclusion
holds.

Su�ciency. Assume that {Cs ∶ s ∈ S} has the in�nite �nite intersection
property and pick q ∈ S∗ such that {Cs ∶ s ∈ S} ⊆ q. Given s ∈ S, �s is equal to
the identity on a member of q so sq = q. Then �q is constantly equal to q on S,
so for all p ∈ �S, pq = q. �

Theorem 2.7. Let S be an in�nite discrete semigroup. The following statements
are equivalent.

(a) The minimal left ideals of �S are singletons.
(b) For all p ∈ �S and all q ∈ K(�S), pq = q.
(c) K(�S) is a right zero semigroup.
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Proof. Assume that the minimal left ideals of �S are singletons and let q ∈
K(�S). Then {q} is a left ideal of �S so �Sq = {q}. Thus, (a) implies (b). It is
trivial that (b) implies (c).

Now assume that K(�S) is a right zero semigroup, let L be a minimal left
ideal of �S, and let q ∈ L. Then L = Lq ⊆ K(�S)q = {q}. �

The next theorem provides a class of examples of semigroups S such that
K(�S) ⊆ S∗ and the minimal left ideals are singletons.

Theorem 2.8. Let � be a discrete in�nite cardinal. For �, � ∈ �, let � ∨ � =
max{�, �} and let S = (�, ∨). Let U = {p ∈ �S ∶ (∀B ∈ p)(B is co�nal in �)}.
Then K(�S) = U, for all q ∈ �S and all p ∈ U, q ∨ p = p, and if q ∈ �S ⧵ U
and p ∈ U, then p ∨ q = p.

Proof. First assume that q ∈ �S and p ∈ U. For s ∈ S, {t ∈ � ∶ s < t} ∈ p so
�s(t) = t for all t in a member of p and thus �s(p) = p. Thus, �p is constantly
equal to p on S so for all q ∈ �S, q ∨ p = p.

Now assume that q ∈ �S ⧵U and p ∈ U. Since q ∉ U, pick A ∈ q such that
A is not co�nal in � and let t be the supremum of A. Let B = {s ∈ S ∶ t < s}.
Then B ∈ p. For x ∈ A and s ∈ B, s ∨ x = s so �s is constantly equal to s on
A and so s ∨ q = s. Then �q is the identity on B, so p ∨ q = p. The fact that
K(�S) = U follows immediately. �

We note next that given any n ∈ ℕ, there exists a semigroup S such that
K(�S) ⊆ S∗ and the minimal left ideals of �S have n elements. A special case
of this result was established by Will Brian in [3].

Theorem 2.9. Let (T, ⋅) be an in�nite discrete semigroup, let (F, ∗) be a �nite
semigroup, and let S = T ×F. Then �S is topologically isomorphic to �S ×F and
the minimal left ideals of �S are the sets of the form L × M where L is a minimal
left ideal of �T andM is a minimal left ideal of F.

Proof. Let � be the identity function on T × F and let �̃ ∶ �S → �T × F be
the continuous extension of �. Noting that T ×F is contained in the topological
center of �T × F, we have by [8, Corollary 4.22] that �̃ is a homomorphism.
Since T × F is dense in �T × F, we have that �̃ is surjective. To see that �̃ is an
isomorphism and a homeomorphism, it su�ces to show that it is injective.

Since S =
⋃

x∈F(T × {x}), for each p ∈ �S, there is a unique  (p) ∈ F such
that T × { (p)} ∈ p. De�ne '(p) = {A ⊆ T ∶ A × { (p)} ∈ p}. It is a routine
exercise to show that '(p) is an ultra�lter on T and �̃(p) =

(
'(p),  (p)

)
. It then

follows that if p and q are in �S and �̃(p) = �̃(q), then p = q.
Letting S1 = �T and S2 = F, the assertion about minimal left ideals of �S

follows from Lemma 2.2. �

By Theorem 2.8, if � is an in�nite discrete cardinal and T = (�, ∨), then
K(�T) ⊆ T∗ and the minimal left ideals of �T are singletons. Thus, if one lets
n ∈ ℕ and F = ℤn in Theorem 2.9, then the minimal left ideals of �S all have
n elements.
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Lemma 2.10. Let S be an in�nite discrete semigroup and let L be a minimal left
ideal of �S. For x ∈ L, let Bx = {s ∈ S ∶

(
∀q ∈ E(L)

)
(sq = x)}.

(1) For all x, y ∈ L, BxBy ⊆ Bxy .
(2) If x is isolated in L and E(L) is �nite, then Bx ∈ x and in particular,

Bx ≠ ∅.

Proof. (1) Let x, y ∈ L. Let R be the minimal right ideal of �S such that y ∈ R,
let r be the identity of R∩L, and note that ry = y. Now let s ∈ Bx and let t ∈ By.
To see that st ∈ Bxy, let q ∈ E(L). Then stq = sy = sry = xy.

(2) Assume that x is isolated in L and E(L) is �nite. Pick A ⊆ S such that
A ∩ L = {x}. For each q ∈ E(L), xq = x so pick Cq ∈ x such that Cqq ⊆ A. If
s ∈ Cq, then sq ∈ A ∩ L so sq = x. Therefore

⋂
q∈E(L) Cq ⊆ Bx. �

Of course, Lemma 2.10(1) is trivial if Bx = ∅ or By = ∅. In Theorem 2.14 we
will produce a semigroup S and a minimal left ideal L for which (1) Bx ≠ ∅ if
and only if x is isolated in L and (2) |E(L)| ≥ 2c. So, the su�cient condition of
Lemma 2.10 is not necessary.

We show next that the existence of �nite minimal left ideals guarantees sub-
stantial structure.

Theorem 2.11. Let S be an in�nite discrete semigroup and let L be a �nite min-
imal left ideal of �S. For x ∈ L, let Bx = {s ∈ S ∶

(
∀q ∈ E(L)

)
(sq = x)}. Let

T =
⋃

x∈L Bx. Then {Bx ∶ x ∈ L} is a partition of T,

T = {s ∈ S ∶
(
∀q, r ∈ E(L)

)
(sq = sr)} ,

T is a left ideal of S, L ⊆ T, L is a minimal left ideal of T, and for each q ∈ E(L),
the restriction of �q to T is a homomorphism of T onto L.

Proof. We have by Lemma 2.10(2) that for each x ∈ L, Bx ≠ ∅ and trivially
if x ≠ y, then Bx ∩ By = ∅, so {Bx ∶ x ∈ L} is a partition of T. Trivially
T ⊆ {s ∈ S ∶

(
∀q, r ∈ E(L)

)
(sq = sr)}. If s ∈ S and for all q, r ∈ E(L), sq = sr,

then s ∈ Bx where x = sq for all q ∈ E(L). We thus have that T is a left ideal
of S. Given x ∈ L, Bx ∈ x, so x ∈ T. Since L ⊆ T, T ∩ K(�S) ≠ ∅ so, by
[8, Theorem 1.65(2)], L is a mimimal left ideal of T. Finally, let q ∈ E(L). For
x ∈ L, �q is constantly equal to x on Bx so �q[ Bx ] = {x} and thus �q[ T ] = L.
To see that the restriction of �q to T is a homomorphism, let u, v ∈ T. Pick x
and y in L such that Bx ∈ u and By ∈ v. Then BxBy ∈ uv so by Lemma 2.10(1),
Bxy ∈ uv and so �q(uv) = xy = �q(u)�q(v). �

We note that if in Theorem 2.11, L is a group, equivalently �S has only one
minimal right ideal, then T = S. We see now that in general one cannot require
that T = S.

Theorem 2.12. Let F = {e, a, b} where {a, b} is a left zero semigroup and e is an
identity adjoined to {a, b}. Let S = (ℕ, ∨) × F, let L be a minimal left ideal of �S,
and let q ∈ E(L). Then K(�S) ⊆ S∗ and �q is not a homomorphism on �S.
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Proof. By Theorem 2.8, the minimal left ideals of (�ℕ, ∨) are the sets {p} for
p ∈ ℕ∗. By Theorem 2.9, wemay presume that L = {(p, a), (p, b)} for some p ∈
ℕ∗. Assume without loss of generality that q = (p, a). Then �q

(
(1, e)(1, b)

)
=

(1, b)(p, a) = (p, b) while �q(1, e)�q(1, b) = (p, a)(p, b) = (p, a). �

We would like the properties of Theorem 2.11 to characterize �nite minimal
left ideals. We see now that we would also have to add the requirement that the
structure group of �S is �nite.

Theorem 2.13. Let S be an in�nite discrete semigroup, let L be a minimal left
ideal of �S, and assume that there exists t ∈ S such that for all q and r in E(L),
tq = tr. Let T = {s ∈ S ∶

(
∀q, r ∈ E(L)

)
(sq = sr)}. Then T is a left ideal of S,

the structure group of �S is �nite, and for every t ∈ T, tL is a minimal right ideal
of L so tL is a copy of the structure group of �S.

Proof. Since T ≠ ∅ it is trivially a left ideal of S.
We show now that for each q ∈ E(L), each t ∈ T, and each x ∈ L, tqx = tx.

To see this, let q, t, and x be given. Let R be the minimal right ideal to which
x belongs, and let r be the identity of L ∩ R so that rx = x. Then tqx = trx =
tx. Thus for q ∈ E(L) and t ∈ T, the restriction of �tq to L equals �t so the
restriction of �tq to L is continuous.

Next we show that for t ∈ T and q ∈ E(L), tq�S ∩ L = tqL. Trivially,
tqL ⊆ tq�S ∩ L. Now let x ∈ tq�S ∩ L and pick y ∈ �S such that x = tqy.
Since x ∈ L, xq = x, so x = xq = tqyq ∈ tqL.

Let P = tq�S ∩ L. Since tq�S is a minimal right ideal of �S, P is a copy of
the structure group of �S. Since P = tqL = �tq[L] and the restriction of �tq
to L is continuous, P is compact. Since P is compact and homogeneous, by [8,
Theorem 6.38], P is �nite.

Since P = tq�S ∩ L, by [8, Theorem 1.65(2)], P is a minimal right ideal of �S
so all minimal right ideals of L are copies of the structure group of �S.

To complete the proof we let t ∈ T. Pick q ∈ E(L). Then since for x ∈ L,
tx = tqx, tL = tqL = tq�S ∩ L and we have seen that tq�S ∩ L is a minimal
right ideal of L. �

By Theorem 2.11, if L is �nite, then the hypothesis of Theorem 2.13 holds.
We see next that the properties of Theorems 2.11 and 2.13 do not characterize
the existence of �nite minimal left ideals. If X and Y are discrete sets, p ∈ �X,
and q ∈ �Y, then the tensor product of p and q is the ultra�lter onX×Y de�ned
by

p ⊗ q = {C ⊆ X × Y ∶ {x ∈ X ∶ {y ∈ Y ∶ (x, y) ∈ C} ∈ q} ∈ p} .

Theorem 2.14. Let A be an in�nite left zero semigroup and let S = A × (ℕ, ∨).
Let L be a minimal left ideal of �S, for x ∈ L, let

Bx = {s ∈ S ∶
(
∀q ∈ E(L)

)
(sq = x)} ,

and let T = {s ∈ S ∶
(
∀q, r ∈ E(L)

)
(sq = sr)}. Then K(�S) ⊆ S∗, for x ∈ L,

Bx ≠ ∅ if and only if x is isolated in L, T =
⋃
{Bx ∶ x is isolated in L}, T = S, for
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all q ∈ E(L), �q is a homomorphism from �S onto L, |L| = 22� where � = |A|,
and the structure group of�S is a singleton. In particular, themininimal left ideals
of �S are topologically isomorphic.

Proof. We use [10, Theorem 4.4]. In the statement of that theorem, B = ℕ,
U = ℕ∗, and V = {p ∈ �S ∶ �̃2(p) ∈ ℕ∗}. Numbers in parentheses in the
argument below refer to statements in [10, Theorem 4.4].

By (8),K(�S) ⊆ S∗. By (10) and (12), wemay pick y ∈ ℕ∗ such that �̃2(x) = y
for all x ∈ L and L = �A ⊗ y = {p ⊗ y ∶ p ∈ �A} so that |L| = 22� by [8,
Theorem 3.62]. By (11), {x ∈ L ∶ x is isolated in L} = A ⊗ y.

Given s = (a, n) ∈ S and q ∈ E(L), by (5) sq = a ⊗ y, so s ∈ T and sq is
isolated in L so s ∈ Bsq. Thus, T = S =

⋃
{Bx ∶ x is isolated in L}. If x ∈ L and

Bx ≠ ∅, pick s = (a, n) ∈ Bx. As above, x = a ⊗ y so x is isolated in L.
By (8),K(�S) consists of idempotents so the structure group of �S is a single-

ton. It remains to show that �q is a homomorphism onto L for each q ∈ E(L),
so let q ∈ E(L) be given. Then �q(pr) = prq = pq by (7) and �q(p)�q(r) =
pqrq = pq, again by (7).

For the �nal assertion, note that if L′ is a minimal left ideal of �S, and q is
any element of L, then the restriction of �q to L′ is a homeomorphism from L′
onto L. �

3. Cartesian products
In this section, we obtain several results involving the smallest ideal of a

Cartesian product of semigroups and the Cartesian product of smallest ideals
or of minimal left ideals.

Lemma 3.1. Let v ∈ ℕ and for i ∈ {1, 2, … , v}, let Si be an in�nite discrete
semigroup such that K(�Si) is �nite. Then

K
(
�(×v

i=1Si)
)
=×v

i=1K(�Si) ⊆×v
i=1Si .

Proof. Let �̃ ∶ �(×v
i=1Si) →×v

i=1�Si be the continuous extension of the iden-
tity function. Since �̃ [�(×v

i=1Si)] is a compact set containing×v
i=1Si, �̃ is sur-

jective.
We note that if p ∈ �(×v

i=1Si) and �̃ (p) ∈ ×v
i=1Si, then p ∈ ×v

i=1Si. To see
this, assume that �̃ (p) = x⃗ ∈ ×v

i=1Si. Then×v
i=1{xi} = {x⃗} is a neighborhood

of �̃ (p) so pick B ∈ p such that �̃ [ B ] ⊆ {x⃗}. Then B = � [B] ⊆ {x⃗} so B = {x⃗}.
By Theorem 2.3, each K(�Si) ⊆ Si. By [8, Exercise 1.7.3],

�̃
[
K
(
�(×v

i=1Si)
)]
= K(×v

i=1�Si)

and by [8, Theorem 2.23], K(×v
i=1�Si) = ×v

i=1K(�Si) ⊆ ×v
i=1Si. So, as we

observed above, K
(
�(×v

i=1Si)
)
⊆×v

i=1Si. Thus,

×v
i=1K(�Si) = �̃

[
K
(
�(×v

i=1Si)
)]
= K

(
�(×v

i=1Si)
)
.

�
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Theorem 3.2. Let S and T be in�nite discrete semigroups and let u, v ∈ ℕ with
u > 1. Statements (a) and (b) are equivalent and imply statements (c) and (d).

(a) clK
(
�(Sv)

)
and clK

(
(�T)u

)
are homeomorphic.

(b) K(�S) and K(�T) are �nite and |K(�S)|v = |K(�T)|u.
(c) K

(
�(Sv)

)
and K

(
(�T)u

)
are homeomorphic.

(d) If S = T, then either |K(�S)| = 1 or K
(
�(Sv)

)
= K

(
(�S)u

)
.

Proof. We show �rst that (b) implies (a) and (b) implies (c), so assume that (b)
holds. By Theorem 2.3, K(�S) ⊆ S and K(�T) ⊆ T. By Lemma 3.1 K

(
�(Sv)

)
=

(
K(�S)

)v
. By [8, Theorem 2.23], K

(
�(T)u

)
=

(
K(�T)

)u
. As discrete spaces of

the same cardinality, K
(
�(Sv)

)
and K

(
(�T)u

)
are homeomorphic. Since these

spaces are �nite, they equal their closures.
To see that (a) implies (b), assume that (a) holds. By Theorem 1.3 (1) and

(2), clK
(
�(Sv)

)
is an F-space. But clK

(
(�T)u

)
=

(
clK(�T)

)u
, so by Theorem

1.3(4), clK(�T) is a P-space, and by Theorem 1.3(5), clK(�T) is �nite. Since
clK

(
�(Sv)

)
and clK

(
(�T)u

)
are homeomorphic, they are the same size and

both are �nite, so K
(
�(Sv)

)
and K

(
(�T)u

)
are homeomorphic. By Lemma 3.1,

K
(
�(Sv)

)
=

(
K(�S)

)v
. Finally, by [8, Theorem 2.23], K

(
(�T)u

)
=

(
K(�T)

)u
.

To conclude the proof, we assume that (b) holds and that S = T. If |K(�S)| ≠
1, then u = v so Lemma 3.1 applies. �

Lemma 3.3. Let I be a set and for i ∈ I, let Si be an in�nite discrete semigroup.
For i ∈ I, let �i ∶ ×j∈ISj → Si be the projection and let �̃i ∶ �(×j∈ISj) → �Si
be its continuous extension. Let

M =
{
p ∈ �(×j∈ISj) ∶ (∀i ∈ I)

(
�̃i(p) ∈ K(�Si)

)}
.

ThenM is an ideal of �(×j∈ISj).

Proof. Let p ∈ M and q ∈ �(×j∈ISj). By [8, Corollary 4.22] given i ∈ I, �̃i is
a homomorphism so �̃i(pq) ∈ K(�Si) and �̃i(qp) ∈ K(�Si). �

Theorem 3.4. Let n ∈ ℕ and let S = (ℕ, ∨). Let
M = {p ∈ �(Sn) ∶ (∀i ∈ {1, 2, … , n})(�̃i(p) ∈ ℕ∗)} .

ThenM = K
(
�(Sn)

)
and for all p ∈ M and all q ∈ �(Sn), q ∨ p = p.

Proof. By Lemma 3.3, M is an ideal of �(Sn) and so K(�(Sn)
)
⊆ M. It then

su�ces to show that for all p ∈ M and all q ∈ �(Sn), q ∨ p = p, because then
for each p ∈ M, {p} is a minimal left ideal of �(Sn).

Let p ∈ M. We claim that for all x⃗ ∈ Sn, x⃗ ∨ p = p. This will su�ce since
then �p is constantly equal to p on Sn, hence on cl(Sn) = �(Sn). So let x⃗ ∈ Sn
be given. Given i ∈ {1, 2, … , n}, we have {m ∈ ℕ ∶ m > xi} ∈ �̃i(p) so we can
pick Di ∈ p such that �̃i[ Di ] ⊆ {m ∈ ℕ ∶ m > xi}.

If y⃗ ∈
⋂n

i=1 Di, then x⃗ ∨ y⃗ = y⃗ so �x⃗ is the identity on a member of p, so
�x⃗(p) = p as required. �
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Notice that if S = T = (ℕ, ∨), and u, v ∈ ℕ, the assertion that K
(
�(Sv)

)

and K
(
(�S)u

)
are isomorphic does not imply any of the other statements of

Theorem 3.2. Indeed, K
(
�(Sv)

)
and K

(
(�S)u

)
are both right zero semigroups

of cardinality 2c and are therefore isomorphic.

Lemma 3.5. Let S be an in�nite discrete semigroup, let L be a �nite minimal left
ideal of �S, and let q be an idempotent in L. For each x ∈ L, pick ax ∈ S such
that axq = x. For each b ∈ S, {t ∈ S ∶ bt = abqt} ∈ q.

Proof. Note that by Lemma 2.10(2), for each x ∈ L, ax exists. Pick B ⊆ S such
that B ∩ L = {q}. Since q is an idempotent, Q = {s ∈ S ∶ s−1B ∈ q} ∈ q. If
s ∈ Q, then sq ∈ B ∩ L so Q ⊆ {s ∈ S ∶ sq = q}. Then given s ∈ Q, �s(q) = q
so by [8, Theorem 3.35], Qs = {t ∈ S ∶ st = t} ∈ q.

Now let b ∈ S and let x = bq. Then bq = axq, bQ ∈ bq, and axQ ∈ axq.
Therefore, bQ ∩ axQ ≠ ∅ so pick s and s′ in Q such that bs = axs′. Given t ∈
Qs ∩Qs′ , we have bt = bst = axs′t = axt so Qs ∩Qs′ ⊆ {t ∈ S ∶ bt = abqt}. �

Theorem 3.6. Let v ∈ ℕ and for i ∈ {1, 2, … , v}, let Si be an in�nite discrete
semigroup such that the minimal left ideals of �Si are �nite. Let �̃ ∶ �(×v

i=1Si) →
×v

i=1�Si be the continuous extension of the identity. LetM be aminimal left ideal
of �(×v

i=1Si). Then �̃ is injective onM. For each i ∈ {1, 2, … , v}, there is aminimal
left ideal Li of �Si such that the restriction of �̃ to M is an isomorphism (and a
homeomorphism) onto×v

i=1Li .

Proof. Weput “and a homeomorphism” in parentheses because oncewe know
that the restriction of �̃ is an isomorphism, it is a bijection between discrete
spaces of the same size.

Pick an idempotent u ∈ M and let q⃗ = �̃ (u). By [8, Exercise 1.7.3], q⃗ is a
minimal idempotent of ×v

i=1�Si. For i ∈ {1, 2, … , v}, let Li = (�Si)qi. By [8,
Theorem 2.23], q⃗ ∈ ×v

i=1K(�Si) so each Li is a minimal left ideal of �Si. By
Lemma 2.2, ×v

i=1Li is a minimal left ideal of ×v
i=1�Si. By [8, Exercise 1.7.3]

again, �̃ [M] is a minimal left ideal of×v
i=1�Si. Since �̃ (u) ∈×v

i=1Li ∩ �̃ [M], we
have that×v

i=1Li = �̃ [M]. Consequently, |M| ≥ |×v
i=1Li|.

For each i ∈ {1, 2, … , v} and each x ∈ Li pick by Lemma 2.10(2), ai,x ∈ Si
such that ai,xqi = x. For i ∈ {1, 2, … , v} and b ∈ Si, let Qi,b = {t ∈ Si ∶ bt =
ai,bqi t}. Then by Lemma 3.5, Qi,b ∈ qi.

For i ∈ {1, 2, … , v} let Ai = {ai,x ∶ x ∈ Li} and note that |Ai| = |Li|. Let
A = ×v

i=1Ai. We claim that for each b⃗ ∈ ×v
i=1Si, there exists a⃗ ∈ A such that

b⃗u = a⃗u. So let b⃗ ∈×v
i=1Si and let a⃗ = ⟨a1,b1q1 , a2,b2q2 , … , av,bvqv ⟩. Then a⃗ ∈ A.

Now×v
i=1Qi,bi is a neighborhood of q⃗ so pickB ∈ u such that �̃ [ B ] ⊆×v

i=1Qi,bi .
Then B ⊆×v

i=1Qi,bi so×
v
i=1Qi,bi ∈ u. For t⃗ ∈×v

i=1Qi,bi , b⃗ t⃗ = a⃗ t⃗ so �b⃗ and �a⃗
agree on a member of u so b⃗u = a⃗u as required.

Now M = cl
(
(×v

i=1Si)u
)
and (×v

i=1Si)u ⊆ {a⃗u ∶ a⃗ ∈ A}. Since the latter
set is �nite, it is closed soM ⊆ {a⃗u ∶ a⃗ ∈ A} so |M| ≤ |{a⃗u ∶ a⃗ ∈ A}| ≤ |A| =
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|×v
i=1Li| and thus |M| = |×v

i=1Li|. Since �̃ [M] =×v
i=1Li which is �nite, �̃must

be injective onM. By [8, Corollary 4.22], �̃ is a homomorphism. �

Lemma 3.7. Let � be a cardinal and for � < � let S� be an in�nite discrete
semigroup with the property that the minimal left ideals of �S� are singletons.
Then the minimal left ideals of �(×�<�S�) are singletons.

Proof. For � < �, pick a minimal idempotent q� in �S�. Then |(�S�)q�| = 1
so for all s ∈ S�, sq� = q�. Thus, by [8, Theorem 3.35], for each s ∈ S�,
Q�,s = {t ∈ S� ∶ st = t} ∈ q�.

Let S = ×�<�S�. For s⃗ ∈ S, let Ts⃗ = {t⃗ ∈ S ∶ s⃗ t⃗ = t⃗}. We claim that
{Ts⃗ ∶ s⃗ ∈ S} has the �nite intersection property. To see this, let F ∈ Pf(S). For
� < �, pick t� ∈

⋂
{Q�,s� ∶ s⃗ ∈ F}. We claim that t⃗ ∈

⋂
s⃗∈F Ts⃗. Indeed, given

s⃗ ∈ F and � < �, t� ∈ Q�,s� so s�t� = t� and thus s⃗ t⃗ = t⃗.
Pick u ∈ �S such that {Ts⃗ ∶ s⃗ ∈ S} ⊆ u. Then given s⃗ ∈ S, �s⃗ is the identity

onTs⃗ so s⃗u = u. Then �u is constantly equal to u on S, so for allp ∈ �S, pu = u.
That is |(�S)u| = 1. �

Theorem 3.8. Let � be a cardinal and for � < � let S� be an in�nite discrete
semigroup with the property that the minimal left ideals of �S� are �nite and let
L� be a minimal left ideal of �S�. The following statements are equivalent.

(a) The minimal left ideals of �(×�<�S�) are topologically isomorphic to
×�<�L�.

(b) The minimal left ideals of �(×�<�S�) are homeomorphic to×�<�L�.
(c) {� < � ∶ |L�| > 1} is �nite.

Proof. That (a) implies (b) is trivial.
To see that (b) implies (c), assume that (b) holds, let F = {� < � ∶ |L�| > 1},

and suppose that F is in�nite. The minimal left ideals of �(×�<�S�) are F-
spaces so×�<�L� is an F-space so by Theorem 1.3(3), ×�∈FL� is an F-space.
Let G be an in�nite subset of F such that F ⧵ G is in�nite. Then

(×�∈GL�) × (×�∈F⧵GL�)

is an F-space so by Theorem 1.3(4) without loss of generality ×�∈GL� is a P-
space. But×�∈GL� is in�nite and compact, contradicting Theorem 1.3(5).

To see that (c) implies (a), let F = {� < � ∶ |L�| > 1} and assume that F is
�nite. If � is �nite, the conclusion follows from Theorem 3.6, so assume that
� is in�nite. If F = ∅, the conclusion follows from Lemma 3.7, so assume that
F ≠ ∅.

Let I be a minimal left ideal of �(×�∈FS�). By Theorem 3.6, I is topologi-
cally isomorphic to×�∈FL�. LetM be a minimal left ideal of �(×�∈�⧵FS�). By
Lemma 3.7, |M| = 1.

Now×�<�S� is isomorphic to (×�∈FS�)×(×�∈�⧵FS�) so �(×�<�S�) is topo-
logically isomorphic to �

(
(×�∈FS�) × (×�∈�⧵FS�)

)
. By Theorem 3.6, the min-

imal left ideals of �
(
(×�∈FS�) × (×�∈�⧵FS�)

)
are topologically isomorphic to
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I ×M. Since |M| = 1, they are topologically isomorphic to I which is topologi-
cally isomorphic to×�∈FL�. �

We saw in Lemma 3.1 that if K(�Si) is �nite for each i ∈ {1, 2, … , v}, then
K
(
�(×v

i=1Si)
)
= ×v

i=1K(�Si). We obtain now substantial information about
K
(
�(×v

i=1Si)
)
from the much weaker assumption that the minimal left ideals

are �nite.

Theorem 3.9. Let v ∈ ℕ⧵{1} and for i ∈ {1, 2, … , v}, let Si be an in�nite discrete
semigroup such that the minimal left ideals of �Si are �nite. Let �̃ ∶ �(×v

i=1Si) →
×v

i=1�Si be the continuous extension of the identity. The following statements are
equivalent.

(a) �̃ is injective on K
(
�(×v

i=1Si)
)
.

(b) �̃ is a topological isomorphism from K
(
�(×v

i=1Si)
)
onto×v

i=1K(�Si).
(c) K

(
�(×v

i=1Si)
)
and×v

i=1K(�Si) are homeomorphic.
(d) For all but at most one i ∈ {1, 2, … , v}, K(�Si) is �nite.

Proof. Given i ∈ {1, 2, … , v}, we have noted that �Si has �nitely many min-
imal right ideals so by [10, Theorem 3.2], K(�Si) is compact. By Lemma 2.2,
the minimal left ideals of �(×v

i=1Si) are �nite so, again by [10, Theorem 3.2],
K
(
�(×v

i=1Si)
)
is compact. By [8, Corollary 4.22], �̃ is a homomorphism so it is

trivial that (a) implies (b) and that (b) implies (c).
To see that (c) implies (d), assume that K

(
�(×v

i=1Si)
)
and ×v

i=1K(�Si) are
homeomorphic. If there is no i such that K(�Si) is in�nite, we are done, so
assume without loss of generality that K(�S1) is in�nite. Since K

(
�(×v

i=1Si)
)

is a compact subset of �(×v
i=1Si), we have by Theorem 1.3 (1) and (2) that

K
(
�(×v

i=1Si)
)
is an F-space, so×v

i=1K(�Si) is an F-space. Since K(�S1) is in�-
nite and compact, by Theorem 1.3 (4) and (5),×v

i=2K(�Si) is �nite.
To see that (d) implies (a), assume that for each i ∈ {2, 3, … , v}, K(�Si) is

�nite. By Theorem 2.3, for i ∈ {2, 3, … , v}, K(�Si) ⊆ Si.
Let M = {p ∈ �(×v

i=1Si) ∶ (∀i ∈ {1, 2, … , v})(�̃i(p) ∈ K(�Si)}. By Lemma
3.3, M is an ideal of �(×v

i=1Si) so it su�ces to show that �̃ is injective on M.
For i ∈ {1, 2, … , v}, let �̃i ∶ �(×v

j=1Sj) → �Si be the continuous extension of
the projection function and let �i ∶×v

j=1�Sj → �Si be the projection function.
Then �i◦̃� and �̃i are continuous functions agreeing on ×v

j=1Sj, so they are
equal. For any p ∈ M and i ∈ {2, 3, … , v} there is some xp,i ∈ Si such that
�̃i(p) = xp,i so that, since �i◦̃� = �̃i, �̃ (p) = ⟨�̃1(p), xp,2, … , xp,v⟩. Now assume
that p, q ∈ M and �̃ (p) = �̃ (q). Then

⟨�̃1(p), xp,2, … , xp,v⟩ = ⟨�̃1(q), xq,2, … , xq,v⟩.

For i ∈ {2, 3, … , v}, let xi = xp,i. Since �1 is injective on S1 ××v
i=2{xi}, �̃1 is

injective on cl(S1 ××v
i=2{xi}) = �S1 ××v

i=2{xi}. Since �̃1(p) = �̃1(q), we have
that p = q. �
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For any in�nite discrete semigroups ⟨Si⟩vi=1, we know by [8, Exercise 1.7.3]
that �̃ [K

(
�(×v

i=1Si)
)
] = K(×v

i=1�Si). We investigate now the preimage under �̃
of K(×v

i=1�Si) in the event that the minimal left ideals of �Si are �nite.

Theorem 3.10. Let v ∈ ℕ and for i ∈ {1, 2, … , v}, let Si be an in�nite discrete
semigroup such that theminimal left ideals of �Si are �nite. Let x⃗ ∈ K(×v

i=1�Si).
There is a minimal idempotent u of �(×v

i=1Si) such that, if y ∈ �(×v
i=1Si) and

�̃ (y) = x⃗, then uy = y.

Proof. For i ∈ {1, 2, … , v}, let Li = (�Si)xi and note that Li is a minimal left
ideal of �Si. For i ∈ {1, 2, … , v}, let qi be the identity of Li ∩ xi(�Si) so that
qixi = xi.

Let q⃗ = ⟨q1, q2, … , qv⟩. We claim that for each i ∈ {1, 2, … , v}, there exists
Qi ∈ qi such that for all s ∈ Qi, sxi = xi. To see this, let i ∈ {1, 2, … , v}. Since
xi is isolated in Li, pick A ⊆ Si such that A ∩ Li = {xi}. Since qixi = xi, pick
Qi ∈ qi such that Qixi ⊆ A. Given s ∈ Qi, sxi ∈ A ∩ Li so sxi = xi. For s ∈ Qi,
let Xi,s = {t ∈ Si ∶ st = t}. Then by [8, Theorem 3.35], Xi,s ∈ xi.

By [8, Exercise 1.7.3(3)] we may pick a minimal idempotent u ∈ �(×v
i=1Si)

such that �̃ (u) = q⃗. Let Q = ×v
i=1Qi. We claim that Q ∈ u. To see this, note

that×v
i=1Qi is a neighborhood of q⃗ so pick B ∈ u such that �̃ [ B ] ⊆ ×v

i=1Qi.
Then B ⊆ Q. For s⃗ ∈ Q, let Xs⃗ =×v

i=1Xi,si .
Now assume we have y ∈ �(×v

i=1Si) such that �̃ (y) = x⃗. We claim that for
s⃗ ∈ Q, Xs⃗ ∈ y, so let s⃗ ∈ Q. For i ∈ {1, 2, … , v}, si ∈ Qi so Xi,si ∈ xi so×v

i=1Xi,si
is a neighborhood of x⃗ = �̃ (y) so pick C ∈ y such that �̃ [ C ] ⊆×v

i=1Xi,si . Then
C ⊆×v

i=1Xi,si .
To see that uy = y, it su�ces to show that �y is constantly equal to y on Q,

so let s⃗ ∈ Q. To see that s⃗y = y, it su�ces that �s⃗ is the identity on Xs⃗, so let
t⃗ ∈ Xs⃗. Then for i ∈ {1, 2, … , v}, ti ∈ Xi,si so siti = ti. �

Corollary 3.11. Let v ∈ ℕ and for i ∈ {1, 2, … , v}, let Si be an in�nite discrete
semigroup such that the minimal left ideals of �Si are �nite. Then

�̃−1[K(×v
i=1�Si)] = K

(
�(×v

i=1Si)
)
.

Proof. Trivially K
(
�(×v

i=1Si)
)
⊆ �̃−1[K(×v

i=1�Si)]. To see that

�̃−1[K(×v
i=1�Si)] ⊆ K

(
�(×v

i=1Si)
)

let y ∈ �̃−1[K(×v
i=1�Si)]. Let x⃗ = �̃ (y) and pick u as guaranteed by Theorem

3.10. Since uy = y, y ∈ K
(
�(×v

i=1Si)
)
. �

Corollary 3.12. Let v ∈ ℕ and for i ∈ {1, 2, … , v}, let Si be an in�nite discrete
semigroup such that the minimal left ideals of �Si are �nite. Let y and z be in
K
(
�(×v

i=1Si)
)
andassume that �̃ (y) = �̃ (z). Then y and z lie in the sameminimal

right ideal of �(×v
i=1Si).
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Proof. Let x⃗ = �̃ (y) and pick u as guaranteed by Theorem 3.10. Then uy = y
and uz = z so y and z are both in the minimal right ideal u

(
�(×v

i=1Si)
)
. �

We conclude this section with a consideration of the number of minimal left
ideals of �(×v

i=1Si) that �̃ takes to a given minimal left ideal of×v
i=1�Si.

Theorem3.13. Let v ∈ ℕ⧵{1} and for i ∈ {1, 2, … , v}, let Si be an in�nite discrete
semigroup such that the minimal left ideals of �Si are �nite. If

|{i ∈ {1, 2, … , v} ∶ K(�Si) is in�nite}| ≥ 2 ,
then there exist distinct minimal left ideals M1 and M2 of �(×v

i=1Si) such that
�̃ [M1] = �̃ [M2].
Proof. Suppose that there do not exist distinct minimal left idealsM1 andM2
of �(×v

i=1Si) such that �̃ [M1] = �̃ [M2]. We shall show that �̃ is injective on
K
(
�(×v

i=1Si)
)
so that, by Theorem 3.9 there is at most one i ∈ {1, 2, … , v} such

that K(�Si) is in�nite.
To this end, let p and q be distinct members of K

(
�(×v

i=1Si)
)
. If

(
�(×v

i=1Si)
)
p =

(
�(×v

i=1Si)
)
q

then by Theorem 3.6, �̃ (p) ≠ �̃ (q). So we assume that M1 =
(
�(×v

i=1Si)
)
p ≠(

�(×v
i=1Si)

)
q = M2. Since �̃ [M1] ≠ �̃ [M2], they are distinct minimal left ideals

of×v
i=1K(�Si) and are therefore disjoint so again �̃ (p) ≠ �̃ (q). �

Given that for any discrete semigroup S all minimal left ideals of �S are
homeomorphic and isomorphic, we (or at least one of us) would have thought
that the number of minimal left ideals taken to a given minimal left ideal of
×v

i=1�Si by �̃ must be independent of the given minimal left ideal. It turns out
that, at least consistently, this is not true.

Theorem 3.14. Let S = (ℕ, ∨). For minimal left ideals L1 and L2 of �S, let
ℳ(L1, L2) = {M ∶ M is a minimal left ideal of �(S × S) and �̃ [M] = L1 × L2} .

(1) There exists a minimal left ideal L1 of �S such that for every minimal left
ideal L2 of �S, |ℳ(L1, L2)| = 2c.

(2) Assume the continuum hypothesis. For each n ∈ ℕ ⧵ {1}, there exist min-
imal left ideals L1 and L2 of �S such that |ℳ(L1, L2)| = n.

Proof. The minimal left ideals of �S are the sets {p} for p ∈ ℕ∗ while by
Theorem 3.4, the minimal left ideals of �(S × S) are the sets of the form {p}
such that �̃1(p) ∈ ℕ∗ and �̃2(p) ∈ ℕ∗. As we saw in the proof of Theorem
3.9, if p ∈ �(S × S), then �̃ (p) = ⟨�̃1(p), �̃2(p)⟩. Thus, given p and q in ℕ∗,
ℳ({p}, {q}) =

{
{r} ∶ r ∈ �(S × S) and �̃ (r) = (p, q)

}
so that |ℳ({p}, {q})| =

| �̃−1[{(p, q)}] |.
(1) It was shown in [6] that there exists p ∈ ℕ∗ such that for all q ∈ ℕ∗,

| �̃−1[{⟨p, q⟩}]| = 2c.
(2) It was shown in [1] that, assuming the continuum hypothesis, for each

n ∈ ℕ ⧵ {1} there exist p and q in ℕ∗ such that | �̃−1[{⟨p, q⟩}]| = n. �
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M. Daguenet established in [4] that if there exist p and q in ℕ∗ such that
�̃−1[{⟨p, q⟩}] is �nite, then there exist P-points in �ℕ, so this cannot be estab-
lished in ZFC. (An elementary proof of this assertion is in [2, Theorem 14].)

Question 3.15. Can one produce in ZFC an in�nite discrete semigroup S and
minimal left ideals L1, L2, L3, and L4 of �S such that |ℳ(L1, L2)| ≠ |ℳ(L3, L4)|?

4. Semiprincipal left ideals
Our �rst theorem of this section, Theorem 4.4, extends [8, Theorem 6.56],

by replacing the assumption that S can be embedded in a group by the weaker
assumption that S is cancellative, and by proving the result for any countable
set of elements {pi ∶ i ∈ ℕ} in �S ⧵ K(�S), instead of a �nite set.

We shall show that, if S is any countably in�nite cancellative semigroup, ev-
ery non-minimal semiprincipal left ideal in �S contains many semiprincipal
left ideals de�ned by right cancelable elements of �S, andwe shall explore some
of the properties of these left ideals. Semiprincipal left ideals de�ned by right
cancelable elements are of interest, because their topology is known. They are
homeomorphic to �S if S is an arbitrary semigroup. If S is a group or (ℕ,+),
they are the only semiprincipal left ideals of �Swhich are homeomorphic to �S.
In the case in which S is a countably in�nite semigroup which can be embed-
ded in a group, the semiprincipal left ideals of �S de�ned by right cancelable
elements, have rich algebraic properties. It is only because of the fact that, in
this case, every non-minimal semiprincipal left ideal L of �S contains semiprin-
cipal left ideals de�ned by right cancelable elements of �S, that we know that
L contains many in�nite decreasing chains of idempotents.

Lemma 4.1. Let S be an in�nite discrete space. IfA and B are countable subsets
of �S for which A ∩ B ≠ ∅, then A ∩ B ≠ ∅ or A ∩ B ≠ ∅.

Proof. [8, Theorem 3.40]. �

AsubsetA of a semigroupS is piecewise syndetic inS if and only ifA∩K(�S) ≠
∅.

Lemma 4.2. Let S be a countably in�nite discrete cancellative semigroup, let
⟨pn⟩∞n=1 be a sequence in �S ⧵ K(�S), and let Q be a piecewise syndetic subset
of S. There is an in�nite set R ⊆ Q such that

(1) for every x ∈ R∗, every i and j in ℕ, and every a ∈ S, api ∉ �Sxpj ,
(2) for every distinct a and b in S, aR∗∩bR∗ = ∅, and there is a co�nite subset

V of R such that as ≠ bt for all s and t in V.

Proof. Pick q ∈ K(�S) ∩ Q. We claim that, if a ∈ S and i, j ∈ ℕ, then
api ∉ �Sqpj. If we assume the contrary, then api ∈ K(�S) and so apiu = api
for some minimal idempotent u ∈ �S. Hence, by [8, Lemma 8.1], piu = pi,
contradicting the assumption that pi ∉ K(�S). Therefore by the continuity of
�a, we may choose a member Di,j,a of pi for which aDi,j,a ∩ �Sqpj = ∅. Again



LEFT IDEALS OF �S 987

by the continuity of �a, we have that aDi,j,a = aDi,j,a. Then given any b ∈ S,
bqpj ∉ aDi,j,a so wemay choose Ei,j,a,b ∈ q such that Ei,j,a,b ⊆ {s ∈ S ∶ bspj ∉
aDi,j,a}.

For every distinct a, b ∈ S, aq ≠ bq by [8, Corollary 8.2] so we may choose
Ha,b ∈ q such that aHa,b ∩ bHa,b = ∅. By [8, Theorem 4.36], K(�S) ⊆ S∗ so Q
is in�nite. Let C = Q∗ ∩

⋂
{Ei,j,a,b ∶ i, j ∈ ℕ and a, b ∈ S} ∩

⋂
{Ha,b ∶ a, b ∈ S

and a ≠ b}. Then C is a G� subset of S∗ which is non-empty, because q ∈ C.
So it follows from [8, Theorem 3.36], that C has a non-empty interior in S∗. We
can therefore choose an in�nite subset R of S for which R∗ ⊆ C, because the
sets of the form R∗ provide a base for the topology of S∗. Since R∗ ⊆ Q∗, R ⧵ Q
is �nite, so we may presume that R ⊆ Q.

(1) Now let x ∈ R∗, let i, j ∈ ℕ, let a ∈ S, and suppose that api ∈ �Sxpj =
cl{bxpj ∶ b ∈ S}. Now aDi,j,a ∈ api so one may pick b ∈ S such that bxpj ∈
aDi,j,a. Pick B ∈ x such that bBpj ⊆ aDi,j,a and pick s ∈ B ∩ Ei,j,a,b. Then
bspj ∈ aDi,j,a, a contradiction.

(2) Assume that a and b are distinct elements of S. Then aR∗ ∩ bR∗ = ∅
because R∗ ⊆ Ha,b. Now let A = {s ∈ R ∶ (∃t ∈ R)(as = bt)} and let B =
{s ∈ R ∶ (∃t ∈ R)(at = bs)}. We claim that A ∪ B is �nite so that we can let
V = R ⧵ (A ∪ B). Suppose instead without loss of generality that A is in�nite
and let ⟨sn⟩∞n=1 enumerateA. For each n ∈ ℕ, let tn be the unique member of R
such that asn = btn. Let p ∈ ℕ∗, let u = p-lim

n∈ℕ
sn and let v = p-lim

n∈ℕ
tn. Then u

and v are in R∗ and au = bv, a contradiction. �

Lemma 4.3. Let S be a countably in�nite discrete cancellative semigroup, let
⟨pn⟩∞n=1 be a sequence in �S ⧵ K(�S), and let R be an in�nite subset of S as guar-
anteed by Lemma 4.2 for Q = S. Let i, j ∈ ℕ, let y, z ∈ �S, let w, x ∈ R∗, let
Y ∈ y, let Z ∈ z, letW ∈ w, let X ∈ x, and assume that ywpi = zxpj . There
exist a ∈ Y, b ∈ Z, u ∈ W∗, and v ∈ X∗ such that aupi = bvpj .

Proof. Since ywpi ∈ cl(Ywpi) and zxpj ∈ cl(Zxpj), we may apply Lemma
4.1 and, essentially without loss of generality, assume we have b ∈ Z such
that bxpj ∈ cl(Ywpi). (The other choice of a ∈ Y with awpi ∈ cl(Zxpj)
would end up letting v = x and picking u ∈ W∗ during the argument.) Since
bxpj ∈ cl(bXpj), applying Lemma 4.1 again we either get some d ∈ X such
that bdpj ∈ cl(Ywpi) or some a ∈ Y such that awpi ∈ cl(bXpj) = bXpj.
Since cl(Ywpi) ⊆ �Swpi, we can’t have bdpj ∈ cl(Ywpi) by Lemma 4.2(1) so
we have awpi ∈ bXpj. Since awpi ∉ bXpj by Lemma 4.2(1), we must have
some v ∈ X∗ such that awpi = bxpj. Let u = w. �

Theorem 4.4. Let S be a countably in�nite discrete cancellative semigroup, let
⟨pn⟩∞n=1 be a sequence in �S ⧵ K(�S), and let R be an in�nite subset of S as guar-
anteed by Lemma 4.2 for Q = S. Then:

(1) For every i ∈ ℕ and every x ∈ R∗, xpi is right cancelable in �S;
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(2) For every distinct i, j ∈ ℕ for which Spi ∩ Spj = ∅, and for every w, x ∈
R∗, the left ideals �Swpi and �Sxpj of �S are disjoint;

(3) For every i ∈ ℕ and every distinct w, x ∈ R∗, the left ideals �Swpi and
�Sxpi of �S are disjoint.

Proof. (1) Suppose that y and z are distinct elements of�Sxpi forwhich yxpi =
zxpi. We can choose disjoint subsets Y and Z of S which are members of y and
z respectively. By Lemma 4.3 with i = j, w = x, andW = X = R, pick a ∈ Y,
b ∈ Z, and u, v ∈ R∗ such that aupi = bvpi.

Since a ≠ b, pick by Lemma 4.2(2) a co�nite subset V of R such that for all
s, t ∈ V, as ≠ bt. Since u and v are in R∗, V ∈ u and V ∈ v. Then cl(aVpi) ∩
cl(bVpi) ≠ ∅, so by another application of Lemma 4.1 we can assume without
loss of generality that we have s ∈ V such that aspi ∈ cl(bVpi) = bVpi so we
can pick t ∈ V such that aspi = btpi. We can’t have t ∈ V∗ by Lemma 4.2(1),
so we must have t ∈ V. But then by [8, Corollary 8.2], we must have as = bt,
contradicting our choice of V.

(2) Assume that ywpi = zxpj, where y, z ∈ �S and w, x ∈ R∗. Let Y = Z =
S andW = X = R and pick by Lemma 4.3, a, b ∈ S and u, v ∈ R∗ such that
aupi = bvpj. Now cl(aRpi) ∩ cl(bRpj) ≠ ∅ so by an application of Lemma
4.1 we may presume that we have s ∈ R such that aspi ∈ bRpj so we may pick
t ∈ R such that aspi = btpj. By Lemma 4.2(1) we cannot have t ∈ R∗, so t ∈ R
and thus Spi ∩ Spj ≠ ∅.

(3) Assume that ywpi = zxpi for some y, z ∈ �S. We can choose disjoint
subsetsW and X of R which are members of w and x respectively. By Lemma
4.3 with i = j and Y = V = S, we may choose a, b ∈ S, u ∈ W∗, and v ∈ X∗

such that aupi = bvpi. If a ≠ b we reach a contradiction as in the second
paragraph of the proof of (1). So assume that a = b. Then by [8, Lemma 8.1]
we have that upi = vpi. Then cl(Wpi) ∩ cl(Xpi) ≠ ∅, so applying Lemma 4.1
we may assume we have s ∈ W such that spi ∈ Xpi so pick t ∈ X such that
spi = tpi. By [8, Corollary 8.2] we can’t have t ∈ X and by Lemma 4.2(1) we
can’t have t ∈ X∗. �

Corollary 4.5. Let S be a countably in�nite discrete cancellative semigroup and
let L be a left ideal of �S. Then L ⊆ K(�S) if and only if L is a union of pairwise
disjoint groups.

Proof. Necessity. Assume that L ⊆ K(�S). Letℳ = {M ∶ M is a minimal left
ideal of �S and L ∩ M ≠ ∅}. Since L ≠ ∅,ℳ ≠ ∅ and ifM ∈ ℳ, thenM ⊆ L
and by [8, Theorem 1.61],M is the union of pairwise disjoint groups.

Su�ciency. Assume that L is the union of groups and supposep ∈ L⧵K(�S).
By Theorem 4.4(1) pick x ∈ S∗ such that xp is right cancelable in �S. Then
xp ∈ L so pick a group G ⊆ L such that xp ∈ G and let e be the identity of G.
Let r be the inverse of xp in G. Then e = xpr ∈ S∗, so the fact that exp = xp
shows that xp ∈ S∗xp, contradicting [8, Lemma 8.15]. �
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Note that ifp ∈ K(�S), then all idempotents in �Sp areminimal so �Sp does
not have a chain of idempotents of length 2.

Theorem 4.6. Let S be a countably in�nite discrete semigroup which can be em-
bedded in a group. For every p ∈ S∗ ⧵ K(�S), the left ideal �Sp of �S contains
in�nite decreasing chains of idempotents.

Proof. Since S can be embedded in a group, it generates a countable discrete
group G. Let p ∈ S∗ ⧵ K(�S). By [8, Theorem 6.56] we may pick r ∈ S∗ such
that rp is right cancelable in �G. By [8, Corollary 8.54], Crp contains an in�nite
decreasing chain of idempotents, where Crp =

⋂
{D ⊆ �G ∶ D is a compact

subsemigroup of �G and rp ∈ D}. Since �Sp is a compact subsemigroup of �G
and rp ∈ �Sp, Crp ⊆ �Sp. �

If �S is an arbitrary discrete semigroup, it is obvious that every semiprincipal
left ideal of �S is compact. This illustrates a striking contrast between left ideals
and right ideals. For example, we know that the semiprincipal right ideals of
�ℕ de�ned by elements of ℕ∗ are not Borel [9, Theorem 2.9]. We shall discuss
some of the topological properties of left ideals in �S.

Recall that a Stonean space is a compact Hausdor� extremally disconnected
space. Recall also that a space satis�es the countable chain condition if and only
if any collection of pairwise disjoint open sets is countable. We shall list some
conditions which imply that a left ideal of �S is Stonean.

Theorem 4.7. Let S be an arbitrary discrete semigroup.
(1) If p is an idempotent in �S, the left ideal �Sp of �S is Stonean.
(2) Every minimal left ideal of �S is Stonean.
(3) If p is a right cancelable element of �S, the left ideal �Sp is Stonean and

Sp consists of points isolated in �Sp.
(4) If S is countable, every semiprincipal left ideal of �S is Stonean.
(5) The support of any probabilitymeasure� de�ned on �S, with the property

that �(s−1(B)) = �(B) for every Borel subset of �S and every s ∈ S, is a
Stonean left ideal in �S.

Proof. (1) This follows immediately from [7, Lemma 2].
(2) Every minimal left ideal L of �S has an idempotent p and L = �Sp so (1)

applies.
(3) Since �p is a continuous bijective map from �S onto �Sp, it is a homeo-

morphism.
(4) If S is countable, every semiprincipal left ideal of �S is separable. It was

shown in the Proposition on page 19 of [11] that every compact F-space which
satis�es the countable chain condition is Stonean.

(5) It is obvious that the support of � is a compact left ideal in �S. Since it is
a compact F-space which satis�es the countable chain condition, it is Stonean.

�

In the proof of the next lemma, we will use the fact from [8, Theorem 6.54]
that the center of (�ℤ,+) is ℤ.
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Lemma 4.8. Let S be a group or (ℕ,+), let p ∈ S∗, and let L = �Sp. If there is a
point of Sp which is isolated in L, then all points of Sp are isolated in L.

Proof. Assume that s ∈ S and sp is isolated in L. Assume �rst that S is a group.
Given u ∈ S, pick t ∈ S such that tu = s. Then the restriction of �t to L is a
homeomorphism from L to itself and sp = �t(up) so up is isolated in L.

Now assume that S = (ℕ,+). PickA ⊆ ℕ such thatA∩L = {s+p}. We show
that for all t ∈ ℕ such that t < s, s − t + p is isolated in L, and for all t ∈ ℕ,
s + t + p is isolated in L.

Assume �rst that t < s. Then s − t + p ∈ A − t ∩ L. Now let r ∈ A − t ∩ L
and pick q ∈ �ℕ such that r = q + p. Then r + t = q + t + p ∈ A ∩ L, so
r + t = s + p and so r = s − t + p.

Now let t ∈ ℕ. Then s + t + p ∈ A + t ∩ L. Suppose that s + t + p is not
isolated in L and let B = (A + t ∩ L) ⧵ {s + t + p}. Then B ≠ ∅. We claim
B is in�nite. For each r ∈ B, pick Dr ∈ (s + t + p) ⧵ r. If B is �nite, then
(A + t) ∩

⋂
r∈B Dr ∩ L = {s + t + p} so that s + t + p is isolated in L.

Since B is in�nite, pick r ∈ (A + t ∩ L) ⧵
(
{s + t + p} ∪ ({1, 2, … , t} + p)

)
.

Pick q ∈ �ℕ such that r = q + p. Then {1, 2, … , t} ∉ q so q − t ∈ �ℕ and
q − t + p ∈ A ∩ L so q − t + p = s + p and thus r = q + p = s + t + p. �

Theorem4.9. LetS be a group or (ℕ,+)and letp ∈ S∗. The following statements
are equivalent.

(a) �Sp is Stonean and Sp consists of points isolated in �Sp.
(b) �Sp is Stonean and there is a point of �Sp which is isolated in �Sp.
(c) p is right cancelable in �S.

Proof. It is trivial that (a) implies (b) and the fact that (c) implies (a) is Theorem
4.7(3).

To see that (b) implies (c), let L = �Sp and assume that L is Stonean and
has an isolted point x. Pick y ∈ �S such that x = yp. Pick A ⊆ S such that
A ∩ L = {x}. Then {s ∈ S ∶ s−1A ∈ p} ∈ y. If s−1A ∈ p, then sp ∈ A ∩ L
so sp = x. Thus {s ∈ S ∶ s−1A ∈ p} is a singleton. Recalling that we have
identi�ed the points of Swith the principal ultra�lters on S, we have that y ∈ S.
By Lemma 4.8, every point of Sp is isolated in L.

Note that the function sp ↦ s from Sp to S is well de�ned. Since L is ex-
tremally disconnected we have by [5, Exercise 6M(2)] that L is a copy of �(Sp),
so we may pick a continuous function f ∶ �Sp → �S such that f(sp) = s for
all s ∈ S.

Given any q ∈ �S, we claim that f(qp) = q. To see this, pick a net ⟨s�⟩�∈I
in S converging to q. Then ⟨f(s�p)⟩�∈I converges to f(qp) while for each � ∈ I,
f(s�p) = s� so f(qp) = q. Therefore if q, r ∈ �S and qp = rp, then we have
q = f(qp) = f(rp) = r so p is right cancelable in �S. �

Recall that ℍ =
⋂∞

n=1 cl�ℕ(2
nℕ). By [8, Lemma 6.8] ℍ is a compact sub-

semigroup of �ℕ which contains all of the idempotents of �ℕ.
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Theorem 4.10. LetG be a countably in�nite discrete group which can be embed-
ded algebraically in a compact metrizable topological group.

(1) If q is an idempotent in �G, then there is an idempotent p ∈ �! such that
�Gp and �! + q are homeomorphic.

(2) Every minimal left ideal of �G is homeomorphic to a minimal left ideal of
�!.

Proof. (1) By [8, Theorem 7.28], there is a bijective map  ∶ ! → G, with the
following properties: Ifm, k, n ∈ !,m < 2k, and n ∈ 2k+1ℕ, then  (m + n) =
 (m) (n) and if  ̃ ∶ �! → �G denotes the continuous extension of  , then
 ̃ is a homeomorphism which maps ℍ isomorphically onto a subsemigroup of
�G which contains all the idempotents of G∗.

If n ∈ !, x ∈ ℍ, and n < 2k, then  ̃◦�n and � (n)◦ ̃ agree on 2k+1ℕ so
 ̃(n+x) =  (n) ̃(x). If q is an idempotent in �G, we can choose an idempotent
p in �! for which  ̃(p) = q. Since  ̃(n+p) =  (n)q for every n ∈ !,  ̃(�!+p)
contains the dense subspace Gq of �Gq. So  ̃(�! + p) = �Gq.

(2) This follows from (1) since if q is minimal in �G one can show that p is
minimal in �!. We omit the veri�cation since this conclusion also follows from
[8, Theorem 7.32]. �
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