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Some new results about left ideals of S

Neil Hindman and Dona Strauss

ABSTRACT. The smallestideal K(3S) of the Stone-Cech compactification of a
discrete semigroup S is the union of pairwise isomorphic and homeomorphic
minimal left ideals. We provide a simple characterization of semigroups for
which the smallest ideal of 8S is finite and some necessary conditions for the
minimal left ideals to be finite. We investigate when the smallest ideal of the
Stone-Cech compactification of a Cartesian product can be homeomorphic
to a Cartesian product of the smallest ideal of Stone-Cech compactifications.
We extend some known results about the fact that, if S is a countably infi-
nite cancellative semigroup, every non-minimal semiprincipal left ideal in S
contains many semiprincipal left ideals defined by right cancelable elements
of S. We conclude with some observations about the topological properties
of semiprincipal left ideals in 3S.
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1. Introduction

We continue our study of the algebraic and topological structure of the Stone-
Cech compactification S of a discrete semigroup S, with emphasis on the left
ideals of 8S. The left ideals are of analytical interest for at least two main rea-
sons. That is, they are orbit closures of the action of S on §S and, if they are
minimal, they are universal minimal dynamical systems. We will provide a more
detailed description of these things after we provide a brief introduction to the
algebraic structure of S.

We take the points of S to be the ultrafilters on S, identifying a point x € S
with the principal ultrafilter e(x) = {A C S : x € A}. Given A C S, A= {p e
BS : A € pland A* = A\ A, the set of nonprincipal ultrafilters with A as a
member. The set {4 : A C S} is a basis for the open sets (as well as a basis for
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the closed sets) in §S. With this topology, S is a compact Hausdorff space with
the property that if X is any compact Hausdorff space and f : S — X, there is
a continuous function f : BS — X which extends f.

The operation - on S extends uniquely to an operation on S so that (S, -)
is a right topological semigroup with S contained in its topological center. That
is, for each p € S, the function p, : BS — BS defined by p,(q) = q - p
is continuous and for each x € S, the function 1, : S — fAS defined by
Ax(q@) = x - q is continuous. Given points pandginfSandAC S, A€ p-q
ifandonlyif{s € S : s7'A € q} € pwheres A ={t €S : st € A}. We can

also characterize p - q as lim lim st, where s and t denote elements of S. From
S—pt—>q

this point on, we will write pq for p - q. If A is any subset of a semigroup, then
E(A) ={x € A : x is an idempotent}.

As a compact Hausdorff right topological semigroup, S has idempotents
and contains a smallest two sided ideal K(5S). An idempotent in K(8S) is said
to be a minimal idempotent. An idempotent in 3S is minimal if and only if it
is minimal with respect to the ordering of idempotents defined by p < q if and
onlyif p = pq = gp.

The smallest ideal K(38S) = | J{L : L is a minimal leftideal of S} = [ JIR : R
is a minimal right ideal of 8S}. If L is a minimal left ideal of §S and R is a
minimal right ideal of S, then L N R is a group, and any two such groups are
isomorphic. Then LNR is referred to as the structure group of 8S. If L and L' are
minimal left ideals of 3S and R is a minimal right ideal of 3S, then LnR and L'n
R are topologically isomorphic. (When we say that subsets of right topological
semigroups are topologically isomorphic we mean that there is a function taking
one to the other which is both an isomorphism and a homeomorphism.) Any
two minimal left ideals of 5S are isomorphic and homeomorphic. We do not
know in general whether they are topologically isomorphic. Any two minimal
right ideals of §S are isomorphic.

If L is a minimal left ideal of 8S and p € L, then L = (BS)p = pp[BS] so
minimal left ideals of §S are compact. We will use without comment the fact
that if p € E(L), then p is a right identity for L. (If ¢ € (8S)p, then g = rp for
somer,soqp =rpp =rp =gq.)

See [8, Part I] for an elementary introduction to the algebra and topology of
BS.

If p € N*, the notion of p-limit provides a uniform way of taking limits
of sequences. If (x,)> , is a sequence in a compact Hausdorff space X, then
p-llgg x, =y € X if and only if for every neighborhood U of y,{n e N : x,, €

U} € p.

If p € BS, then {1,(p) : s € S}is the orbit of p under S, and the orbit closure,
ct{l,(p) : s € S}is of substantial analytical interest. This orbit closure is
ct(Sp) = ctp,[S] = (BS)p, the semiprincipal left ideal generated by p. (The
principal left ideal generated by p is {p} U (8S)p.)
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If L is a minimal left ideal of S and for s € S, A} is the restriction of A to L,
then (L, (1))scs) is @ universal minimal dynamical system for S as described in
[8, Section 19.1].

Given a set X, we let P;(X) be the set of finite nonempty subsets of X. A set
S is a right zero semigroup provided xy = y for all x and y in S. A set S is a left
zero semigroup provided xy = x for all x and y in S.

We let o = NU{0}. Then w is the first infinite cardinal. Recall that cardinals
are ordinals and each ordinal is the set of its predecessors.

In Section 2, we deal with the question of under what conditions the minimal
left ideals of 58S are finite. That characterization is simple in the event that
K(BS) NS # @, namely that S has a finite left ideal. Much more interesting
is the situation in which K(BS) C S*. We obtain some necessary conditions
for the existence of finite left ideals and conclude the section by showing that
these conditions are far from sufficient, since they may hold with the left ideals
having cardinality 2% for any infinite cardinal x.

In Section 3, we obtain several results about the Stone-Cech compactification
of Cartesian products of semigroups, Cartesian products of Stone-Cech com-
pactifications of semigroups, and the relations between them and their smallest
ideals.

In Section 4, we obtain some results about countably infinite cancellative
semigroups including the fact that if S is such a semigroup, then the left ideals
of 8S that are contained in the smallest ideal are characterized as being those
ideals that are the union of groups.

We conclude the introduction with some basic facts about F-spaces that we
will need.

Definition 1.1. Let X be a completely regular Hausdorff space. Then C(X) is
the set of continuous real valued functions with domain X.

Recall that subsets A and B of a completely regular Hausdorff space X are
completely separated if and only if there exists f € C(X) such that forall x € A,
f(x) = 0and for all x € B, f(x) = 1. (If A and B are nonempty, this assertion
is equivalent to the statment that f[A] = {0} and f[B] = {1}. We write it the
way that we do because we want @ to be an F-space. If it is not, then Theorem
1.3(2) fails.)

Definition 1.2. (1) A topological space X is an F-space if and only if X is
a completely regular Hausdorff space and for every f € C(X),{x € X :
f(x) < 0}and {x € X : f(x) > 0} are completely separated.
(2) Atopological space X is a P-space if and only if X is a completely regular
Hausdorff space and every G5 subset of X is open.

We will need the following well known result.

Theorem 1.3. (1) IfS is a discrete space, then 3S is an F-space.
(2) A compact subset of an F-space is an F-space.
(3) IfX and Y are nonempty completely regular Hausdorff spaces and X X Y
is an F-space, then X and Y are F-spaces.
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(4) If X and Y are nonempty completely regular Hausdorff spaces and X XY
is an F-space, then either X or Y is a P-space.
(5) Any compact P-space is finite.

Proof. (1) This follows from [5, Theorem 14.25] and the fact that a discrete
space is an F-space.

(2) Let Y be a compact subspace of the F-space X and let f € C(Y). By [5,
Item 3.11(c)], pick g € C(X) such that gy = f. Pick h € C(X) such that h
completely separates {x € X : g(x) < O}and {x € X : g(x) > 0}. Then hy
completely separates{x € Y : f(x) <0Oland{x € Y : f(x) > 0}.

(3) Assume that X X Y is an F-space. It suffices to show that X is an F-
space, so let f € C(X) be given. Defineg : X XY — R by g(x,y) = f(x).
Then g € C(X X Y) so pick h € C(X X Y) such that h completely separates
{(x,y) € X XY : f(x,y) < 0}and {(x,y) € X XY : f(x,y) > 0}. Pick
y € Y and define k € C(X) by k(x) = h(x,y). Then k completely separates
{xeX: f(x)<0tand{x € X : f(x)> 0}

(4) This is [5, Exercise 14Q(1)]. (This is an easy exercise following the hint
and using the fact that a space X is a P-space if and only if for every f € C(X),
{x e X : f(x) = 0}is open.)

(5) This is a consequence of [5, Exercise 4K(1)]. O

2. Finite minimal left ideals

In this section, we present several results about semigroups S that have the
property that S has finite minimal left ideals. There are some obvious exam-
ples of semigroups with this property, such as any semigroup with a right zero
or (N, max). As we shall see, this property is preserved by all finite products
and by some infinite products. In [10], we had a section titled Finitely many
minimal right ideals. As we see now, these notions are equivalent.

Lemma 2.1. Let S be an infinite discrete semigroup and let L be a minimal left
ideal of 8S. The following statements are equivalent.

(a) L is finite.

(b) E(L) is finite.

(c) There are finitely many minimal right ideals in 3S.
Proof. It is trivial that (a) implies (b). If R is a minimal right ideal of 3S, then
R N L is a group and distinct minimal right ideals are disjoint, so (b) implies
(c). If L were infinite, then by [8, Theorem 6.39], 8S would contain at least 2°
minimal right ideals, so (c) implies (a). O

We shall need the following lemma which is analogous to [8, Theorem 2.23].
Since it is a purely algebraic statement, the corresponding statement with “left”
replaced by “right” is also valid.

Lemma 2.2. Let (S;);c; be a family of semigroups and let S = X ;¢;S;.

(1) Ifforeachi €1, L; is a minimal left ideal of S;, then X ;c;L; is a minimal
left ideal of S.
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(2) Assume L is a minimal left ideal of S and pick X € L. Foreachi € I, let
L; = S;x;. Then L = X;¢;L; and foreach i € I, L; is a minimal left ideal
OfSl'.
Proof. (1) Let L = X,;g;L;. Trivially L is a left ideal of S. To see that L is
minimal, by [8, Lemma 1.52(a)] it suffices to show that forall X € L, L = LX,
solet X € L. Then LX C L. To see that L C LX, let y € L. For each i € I, pick
z; € L; such that y; = z;x;. Then y = ZX € LX.

(2) Tosee that L C X ;¢/L;, lety € L. Then by [8, Lemma 1.52(a)], pick Z € L
such that y = zZX. Then for each i € I, y; = z;x; € L;. To see that X ,L; C L,
lety € X,L; and for i € I, pick Z; € S; such that y; = z;x;. Theny = ZX € L.

Finally, let i € I. To see that L; is a minimal left ideal of S; suppose in-
stead there is a left ideal J of S; properly contained in L;. For j € I, let M; =

J ifj=i . . . .
{ L, ifj#i Then X ;M is a left ideal of S properly contained in L, a con-
tradiction. U

We obtain a simple characterization of when K(S) is finite. Recall that we
are identifying the points of S with the principal ultrafilters on S. Recall also
that if p € 8S, then ||p|| = min{|A| : A € p}.

Theorem 2.3. Let S be an infinite discrete semigroup. If K(BS) is finite, then
K(BS) C S. Consequently, K(BS) is finite if and only if there is a finite ideal of S.

Proof. If I is a finite ideal of S, then by [8, Corollary 4.18], c£(I) is an ideal of
BSsoK(BS) Cct(I)=1.

Now assume that K(3S) is finite. It suffices to show that K(8S)NS # @, since
then K(8S) N S is a finite ideal of S.

So, suppose that K(8S) C S*. Pick an idempotent p € K(BS) and let L be
the minimal left ideal of 3S such that p € L. Let x = ||p||. Then ¥ > w. Pick
D € psuch that |D| = «.

Since L is finite, p is isolated in L. Pick A € p such that AnL = {p}.
Then A € pp = pp(p), so pick C € p such that Cp C A. If x € C, then
xp € AnLsoxp = p. Thus for each x € C, 1,(p) = p so by [8, Theorem
3.35],B, ={a €S : xa =a} € p.

We claim that ﬂx <crD B, C K(BS). This will contradict [8, Theorem 3.62]
which says that | ﬂxeCnD B,| = 2¥. So,letq € ﬂxeCnD B,. Then for each
x € CND, 4, is the identity on B, so xq = q. Then p, is constantly equal to q
on C N D, so pqg = q and thus g € K(BS) as claimed. O

We get an equally simple characterization of the existence of finite minimal
left ideals of BS in the event that K(8S) N S # @.

Theorem 2.4. Let S be an infinite discrete semigroup and assume that K(8S) N
S # (. Then f3S has finite minimal left ideals if and only if S has a finite left ideal.

Proof. Sufficiency. Let L be a finite left ideal of S. By [8, Corollary 4.18], c¢£ (L)
is a left ideal of 8S which contains a minimal left ideal, and ¢£(L) = L.
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Necessity. Pick p € K(8S)n S and let L = BSp. Then L is a minimal left
ideal of S. Givens € S, sp € LN Sso L N Sisaleftideal of S. O

LetS = (N, V) where xvy = max{x, y}. Then by [8, Exercise 4.1.11], K(8S) =
N* and K(BS) is a right zero semigroup. In particular, the fact that the minimal
left ideals of BS are finite (in this case singletons) does not imply that K(8S) N
S # 0.

As a consequence of Theorem 2.4, we are interested in characterizing semi-
groups S such that K(8S) C S* and S has finite minimal left ideals. The
following simple result is one such characterization. However, it is not very
satisfactory, since it depends on determining the existence of two nonprincipal
ultrafilters.

Theorem 2.5. Let S be an infinite discrete semigroup such that K(8S) C S*.
Then 3S has finite minimal left ideals if and only if there exist a finite partition R
of S and q € S* such that for every A € R thereissomer € S* such that Aq = {r}.

Proof. Sufficiency. Pick R and q as specified. Let
L={resS*:(3A € R)(Aq = {r}}.

Then Sq C Lso Sq = c£(Sq) C L and L is finite.

Necessity. Let L be a finite minimal left ideal of 8S and pick ¢ € L. Then
Sq CLsofBSqCLCS* ForreL,letA, ={s €S : sq = r}and let
R={A, : reL} O

We do get satisfactory characterizations of the existence of minimal left ideals
as singletons.

Theorem 2.6. Let S be an infinite discrete semigroup such that K(BS) C S*. For
se S, letCy;={t €S : st =t}. Then the minimal left ideals of BS are singletons
ifand only if {C : s € S} has the infinite finite intersection property.

Proof. Necessity. Pick a minimal left ideal L of S and pick g € S* such that
L = {q}. Then for each s € S, sq = q so by [8, Theorem 3.35], Cy € q. Since
q is closed under finite intersections and contains no finite sets the conclusion
holds.

Sufficiency. Assume that {C; : s € S} has the infinite finite intersection
property and pick g € S* such that {C; : s € S} C q. Given s € S, 4, is equal to
the identity on a member of g so sq = q. Then pg is constantly equal to g on S,
so for all p € S, pq = q. O

Theorem 2.7. Let S be an infinite discrete semigroup. The following statements
are equivalent.

(a) The minimal left ideals of BS are singletons.
(b) Forall p € fSandallq € K(BS), pq = q.
(c) K(f3S) is a right zero semigroup.
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Proof. Assume that the minimal left ideals of 8S are singletons and let q €
K(BS). Then {q} is a left ideal of 3S so $Sq = {q}. Thus, (a) implies (b). It is
trivial that (b) implies (c).

Now assume that K(3S) is a right zero semigroup, let L be a minimal left
ideal of S, and letg € L. Then L = Lq C K(3S)q = {q}. O

The next theorem provides a class of examples of semigroups S such that
K(BS) C S* and the minimal left ideals are singletons.

Theorem 2.8. Let x be a discrete infinite cardinal. For a,6 € x, leta v =
max{c, 8} and let S = (x,V). Let U = {p € S : (VB € p)(B is cofinal in x)}.
Then K(8S) = U, forallq € BSandallp € U,qV p = p,andifq e BS\ U
andp e U,thenpVq=p.

Proof. First assumethatq € Sand pe U. Forse€ S,{t€x : s <t} € pso
As(t) = t for all ¢ in a member of p and thus A,(p) = p. Thus, p, is constantly
equalto pon Ssoforallg € S,qV p = p.

Now assume that g € 8S \ U and p € U. Since q ¢ U, pick A € q such that
A is not cofinal in x and let ¢ be the supremum of A. LetB={s € S : t < s}.
Then B € p. Forx € Aand s € B, s V X = 550 4, is constantly equal to s on
Aand so sV q = s. Then p, is the identity on B, so p v g = p. The fact that
K(BS) = U follows immediately. O

We note next that given any n € N, there exists a semigroup S such that
K(BS) C S* and the minimal left ideals of S have n elements. A special case
of this result was established by Will Brian in [3].

Theorem 2.9. Let (T, -) be an infinite discrete semigroup, let (F,*) be a finite
semigroup, and let S = T X F. Then S is topologically isomorphic to §S X F and
the minimal left ideals of BS are the sets of the form L X M where L is a minimal
left ideal of BT and M is a minimal left ideal of F.

Proof. Let ¢ be the identity function on T X F and let7 : S — BT X F be
the continuous extension of t. Noting that T X F is contained in the topological
center of ST X F, we have by [8, Corollary 4.22] that 7 is a homomorphism.
Since T X F is dense in BT X F, we have that 7 is surjective. To see that7is an
isomorphism and a homeomorphism, it suffices to show that it is injective.

Since S = J,..x(T x {x}), for each p € S, there is a unique (p) € F such
that T X {(p)} € p. Define p(p) ={A C T : A X {¥(p)} € p}. Itisaroutine
exercise to show that ¢(p) is an ultrafilter on T and (p) = (¢(p), ¥(p)). It then
follows that if p and g are in S and 7(p) =1(q), then p = q.

Letting S; = BT and S, = F, the assertion about minimal left ideals of 8S
follows from Lemma 2.2. O

By Theorem 2.8, if x is an infinite discrete cardinal and T = (x, V), then
K(BT) C T* and the minimal left ideals of ST are singletons. Thus, if one lets
n € Nand F = Z,, in Theorem 2.9, then the minimal left ideals of S all have
n elements.
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Lemma 2.10. Let S be an infinite discrete semigroup and let L be a minimal left
ideal of BS. Forx € L, let B, = {s € S : (Vq € E(L))(sq = x)}
(1) Forallx,y € L, B,B, C By,
(2) If x is isolated in L and E(L) is finite, then B, € x and in particular,
B, # 0.

Proof. (1) Let x,y € L. Let R be the minimal right ideal of S such thaty € R,
let r be the identity of RN L, and note thatry = y. Nowlets € B, and lett € B,.
To see that st € By, let g € E(L). Then stq = sy = sry = xy.

(2) Assume that x is isolated in L and E(L) is finite. Pick A C S such that
ANL = {x}. Foreach q € E(L), xq = x so pick C, € x such that C,, 49 € A If

s € Cy, then sq € ANLso sq = x. Therefore ﬂqu(L) C4 C By. O

Of course, Lemma 2.10(1) is trivial if B, = @ or B, = . In Theorem 2.14 we
will produce a semigroup S and a minimal left ideal L for which (1) B, # @ if
and only if x is isolated in L and (2) |E(L)| > 2°. So, the sufficient condition of
Lemma 2.10 is not necessary.

We show next that the existence of finite minimal left ideals guarantees sub-
stantial structure.

Theorem 2.11. Let S be an infinite discrete semigroup and let L be a finite min-
imal left ideal of BS. Forx € L, let B, = {s € S : (Vq € E(L))(sq = x)}. Let
T =J,; Bx- Then{By : x € L} is a partition of T,

={s€S: (Vq,r € E(L))(sq = sr)},

T is a left ideal of S, L C T, L is a minimal left ideal of T, and for each q € E(L),
the restriction of py to T is a homomorphism of T onto L.

Proof. We have by Lemma 2.10(2) that for each x € L, B, # @ and trivially
if x # y, then B, N B, = @, s0o{B, : x € L} is a partition of T. Trivially
T C{seS: (VqreEWL))(sq=sr)} Ifs € Sandforall g, r € E(L), sq = sr,
then s € B, where x = sq forallq € E(L) We thus have that T is a left ideal
of S. Given x € L,B, € x,sox € T. Since L C T, T n K(8S) # @ so, by
[8, Theorem 1.65(2)], L is a mimimal left ideal of T. Finally, let g € E(L). For
x € L, pq is constantly equal to x on B, so pq[B_x] = {x} and thus pq[f] = L.
To see that the restriction of p, to T is a homomorphism, let u,v € T. Pick x
and y in L such that B, € uand B, € v. Then B,.B, € uv so by Lemma 2.10(1),
By, € uv and so pg(uv) = xy = pga(u)p,(v). O

We note that if in Theorem 2.11, L is a group, equivalently 8S has only one
minimal right ideal, then T = S. We see now that in general one cannot require
that T = S.

Theorem 2.12. Let F = {e, a, b} where {a, b} is a left zero semigroup and e is an
identity adjoined to {a, b}. Let S = (N, V) X F, let L be a minimal left ideal of 3S,
and let g € E(L). Then K(BS) C S* and p, is not a homomorphism on (3S.
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Proof. By Theorem 2.8, the minimal left ideals of (8N, V) are the sets {p} for
p € N*. By Theorem 2.9, we may presume that L = {(p, a), (p, b)} for some p €
N*. Assume without loss of generality that g = (p,a). Then p,((1,e)(1,b)) =
(1,b)(p,a) = (p, b) while py(1,e)p,4(1,b) = (p, a)(p, b) = (p, a). O

We would like the properties of Theorem 2.11 to characterize finite minimal
left ideals. We see now that we would also have to add the requirement that the
structure group of 3S is finite.

Theorem 2.13. Let S be an infinite discrete semigroup, let L be a minimal left
ideal of S, and assume that there exists t € S such that for all q and r in E(L),
tq=tr. LetT ={s € S : (Vq,r € E(L))(sq = sr)}. Then T is a left ideal of S,
the structure group of 58S is finite, and for every t € T, tL is a minimal right ideal
of L so tL is a copy of the structure group of 3S.

Proof. Since T # (it is trivially a left ideal of S.

We show now that for each g € E(L),eacht € T, and each x € L, tgx = tx.
To see this, let g, £, and x be given. Let R be the minimal right ideal to which
x belongs, and let r be the identity of L N R so that rx = x. Then tgx = trx =
tx. Thus for g € E(L) and t € T, the restriction of 1, to L equals 4; so the
restriction of 4,4 to L is continuous.

Next we show that for t € T and q € E(L), tgq8S N L = tqL. Trivially,
tqL C tgBS N L. Now let x € tgBS N L and pick y € S such that x = tqy.
Since x € L, xq = x, 80 X = xq = tqyq € tqL.

Let P = tgBS N L. Since tgBS is a minimal right ideal of 8S, P is a copy of
the structure group of 8S. Since P = tqL = A;,[L] and the restriction of 4,,
to L is continuous, P is compact. Since P is compact and homogeneous, by [8,
Theorem 6.38], P is finite.

Since P = tqBS N L, by [8, Theorem 1.65(2)], P is a minimal right ideal of S
so all minimal right ideals of L are copies of the structure group of 8S.

To complete the proof we let t € T. Pick ¢ € E(L). Then since for x € L,
tx = tgx, tL = tqgL = tgBS N L and we have seen that tgfS N L is a minimal
right ideal of L. |

By Theorem 2.11, if L is finite, then the hypothesis of Theorem 2.13 holds.
We see next that the properties of Theorems 2.11 and 2.13 do not characterize
the existence of finite minimal left ideals. If X and Y are discrete sets, p € X,
and q € BY, then the tensor product of p and q is the ultrafilter on X XY defined
by

pR®g={CCXXY :{xeX:{yeY :(x,y)eC}eq}e p}.
Theorem 2.14. Let A be an infinite left zero semigroup and let S = A X (N, V).
Let L be a minimal left ideal of BS, for x € L, let

B,={s€S: (VqgeEWL))(sq =x)},

andletT = {s € S : (Vq,r € E(L))(sq = sr)}. Then K(BS) C S*, forx € L,
B, # @ ifandonlyif x isisolated in L, T = | J{B, : x isisolated in L}, T = S, for
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all q € E(L), pq is a homomorphism from S onto L, |L| = 2% where x = |A|,
and the structure group of S is a singleton. In particular, the mininimal left ideals
of 5S are topologically isomorphic.

Proof. We use [10, Theorem 4.4]. In the statement of that theorem, B = N,
U=N*5andV = {p € BS : 7,(p) € N*}. Numbers in parentheses in the
argument below refer to statements in [10, Theorem 4.4].

By (8), K(BS) C S*. By(10) and (12), we may pick y € N* such that 7,(x) = y
forallx € LandL = BA®y = {p®y : p € BA}so that |[L| = 2% by [8,
Theorem 3.62]. By (11),{x € L : xisisolatedinL} = A ® y.

Given s = (a,n) € Sandq € E(L), by (5) sq = a® y,sos € T and sq is
isolated in L so s € By,. Thus, T = S = [ J{By : x isisolated in L}. If x € L and
B, # @, pick s = (a,n) € B,. As above, x = a ® y so x is isolated in L.

By (8), K(3S) consists of idempotents so the structure group of 3S is a single-
ton. It remains to show that p, is a homomorphism onto L for each g € E(L),
so let g € E(L) be given. Then p,(pr) = prq = pq by (7) and p,(p)py(r) =
pqrq = pq, again by (7).

For the final assertion, note that if L’ is a minimal left ideal of 8S, and q is
any element of L, then the restriction of p, to L' is a homeomorphism from L’
onto L. U

3. Cartesian products

In this section, we obtain several results involving the smallest ideal of a
Cartesian product of semigroups and the Cartesian product of smallest ideals
or of minimal left ideals.

Lemma 3.1. Letv € Nand fori € {1,2,...,0}, let S; be an infinite discrete
semigroup such that K(BS;) is finite. Then

K(B(X21S)) = X i1 K(BS) € X i1, .

Proof. Let7 : (X lesi) - X ;;1 BS; be the continuous extension of the iden-
tity function. Since T[S(X LlSi)] is a compact set containing X lesi, T1is sur-
jective.

We note that if p € B(X;-,S;) andT(p) € X;_,S;, then p € X;_,S;. To see
this, assume that7(p) = ¥ € X;,S;. Then X;_,{x;} = {X} is a neighborhood
of T(p) so pick B € p such that7[ B] C {X}. Then B = ([B] C {X} so B = {X}.

By Theorem 2.3, each K(8S;) C S;. By [8, Exercise 1.7.3],

TK(B(X ?:151'))] = K(X;—18S)

and by [8, Theorem 2.23], K(X;_,8S;) = X;-1K(8S;)) € Xi_;S;. So, as we
observed above, K(8(X;-;S:)) € X;—;S;. Thus,

X1 K(BS) =K (B(Xi=15D)] = K(B(X =1 S)).
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Theorem 3.2. Let S and T be infinite discrete semigroups and let u,v € N with
u > 1. Statements (a) and (b) are equivalent and imply statements (c) and (d).
(@) ctK(B(SY)) and c€K((BT)*) are homeomorphic.
(b) K(BS) and K(BT) are finite and |K(BS)|* = |K(BT)|".
(c) K(B(SY)) and K((BT)*) are homeomorphic.
(d) IfS = T, then either |[K(BS)| = 1 or K(B(S®)) = K((BS)*).

Proof. We show first that (b) implies (a) and (b) implies (c), so assume that (b)
holds. By Theorem 2.3, K(8S) C S and K(BT) C T. By Lemma 3.1 K(B(S?)) =

(K(BS))U. By [8, Theorem 2.23], K(B(T)*) = (K(BT))H. As discrete spaces of
the same cardinality, K(8(S")) and K((BT)*) are homeomorphic. Since these
spaces are finite, they equal their closures.

To see that (a) implies (b), assume that (a) holds. By Theorem 1.3 (1) and
(2), c€K(B(SY)) is an F-space. But c¢K((BT)*) = (cé’K(BT))u, so by Theorem
1.3(4), c¢K(BT) is a P-space, and by Theorem 1.3(5), c¢K(BT) is finite. Since
ctK(B(SY)) and c¢K((BT)*) are homeomorphic, they are the same size and
both are finite, so K(B(S")) and K((BT)*) are homeomorphic. By Lemma 3.1,
K(B(s?)) = (K(BS))'. Finally, by [8, Theorem 2.23], K((8T)*) = (K(BT))".

To conclude the proof, we assume that (b) holds and that S = T. If |[K(3S)| #
1, then u = v so Lemma 3.1 applies. O

Lemma 3.3. Let I be a set and fori € I, let S; be an infinite discrete semigroup.
Fori €1, letm; : X jgSj — S; be the projection and let 7; : f(X je1S;) — BS;
be its continuous extension. Let

M ={p e (XS : (Vi e )(7(p) € K(BS))}.
Then M is an ideal of (X jrS))-

Proof. Let p € M and q € B(X j¢[S;)- By [8, Corollary 4.22] given i € I, 7; is
a homomorphism so 7;(pq) € K(BS;) and 7;(qp) € K(BS;). O

Theorem 3.4. Letn € Nandlet S = (N, V). Let
M ={p € B(S") : (Vi €{1,2,...,n})(T;(p) € N*)}.
Then M = K(B(S™)) and forall p € M and all g € f(S™), ¢V p = p.

Proof. By Lemma 3.3, M is an ideal of 3(S") and so K(,@(S”)) C M. It then
suffices to show that for all p € M and all g € S(S"), q V p = p, because then
for each p € M, {p} is a minimal left ideal of S(S™).

Let p € M. We claim that for all X € S", X V p = p. This will suffice since
then p,, is constantly equal to p on S", hence on c¢£(S") = B(S™). So let xesn
be given. Giveni € {1,2,...,n}, we have {m € N : m > x;} € 7;(p) so we can
pick D; € psuch that 7;[D; | C{m € N : m > x;}.

Ify e ﬂ?zl D;, then X Vy = ¥ so Az is the identity on a member of p, so
Az(p) = p as required. O




LEFT IDEALS OF S 981

Notice that if S = T = (N,V), and u,v € N, the assertion that K(3(S))
and K((BS)*) are isomorphic does not imply any of the other statements of

Theorem 3.2. Indeed, K(B(S")) and K((8S)*) are both right zero semigroups
of cardinality 2¢ and are therefore isomorphic.

Lemma 3.5. Let S be an infinite discrete semigroup, let L be a finite minimal left
ideal of 58S, and let q be an idempotent in L. For each x € L, pick a, € S such
that a,q = x. Foreachb € S,{t €S : bt = g4t} € q.

Proof. Note that by Lemma 2.10(2), for each x € L, a,, exists. Pick B C S such
that BN L = {q}. Since q is an idempotent, Q = {s € S : s"'Be q} € q. If
se€Q,thensge BNLsoQ C{s €S : sq =q}. Thengivens € Q, 1,(q) = g
so by [8, Theorem 3.35],Q, ={t €S : st =t} €q.

Now let b € S and let x = bg. Then bg = a,q, bQ € bq, and a,Q € a,q.
Therefore, bQ N a,Q # @ so pick s and s’ in Q such that bs = a,s’. Givent €
Qs N Qy, we have bt = bst = a,s't = a,ts0Q;NQy C{t €S : bt = apgt}. O
Theorem 3.6. Let v € N and fori € {1,2,...,v}, let S; be an infinite discrete
semigroup such that the minimal left ideals of BS; are finite. LetT : f(X leSi) -
X i_18S; be the continuous extension of the identity. Let M be a minimal left ideal
of B(Xi_,S;). ThenTis injective on M. Foreachi € {1,2, ..., v}, there is a minimal
left ideal L; of BS; such that the restriction of T to M is an isomorphism (and a
homeomorphism) onto X ?=1Li~

Proof. We put “and a homeomorphism” in parentheses because once we know
that the restriction of 7 is an isomorphism, it is a bijection between discrete
spaces of the same size.

Pick an idempotent u € M and let ¢ = T(u). By [8, Exercise 1.7.3], ¢ is a
minimal idempotent of X;_,8S;. Fori € {1,2,...,v}, let L, = (8S:)q;. By [8,
Theorem 2.23], § € X LIK(BSL-) so each L; is a minimal left ideal of 3S;. By
Lemma 2.2, X leLi is a minimal left ideal of X ?zlﬁS,-. By [8, Exercise 1.7.3]
again, T[M] is a minimal left ideal of X_,S;. Since T(u) € X;_,L; N'T[M], we
have that szlLi =T[M]. Consequently, |M| > |><f=1Ll-|.

For each i € {1,2,...,v} and each x € L; pick by Lemma 2.10(2), a;, € S;
such that a; ,q; = x. Fori € {1,2,...,v}and b € S;,1letQ;, ={t € S; : bt =
a; pg,t}- Then by Lemma 3.5, Q;, € g;.

Fori € {1,2,..,v}let A; = {a;,, : x € L;} and note that |A;| = |L;|. Let
A=X leAi. We claim that for each b € X ?:151', there exists d € A such that
bu = Gu. Soletb € X+_,S; and letd = (@1b,gs A2 ygys s Qupyg,)- Thend € A.
Now X ?:1@ is a neighborhood of ¢ so pick B € usuch that7[B] C X ;;1@.
Then B C X;_1Q;p, 80 Xi—1Q;p € u. Forf € X;_1Q;p,, bf=dfso A and 4;
agree on a member of u so bu = du as required.

Now M = ct((X;=1Spu) and (X;_;S)u C {du : d € A}. Since the latter
set is finite, it is closed so M C {au : d € A}so |M| < |{du : d € A}| < |A| =
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| X -1 L;| and thus |[M| = | X;_,L;|. SinceT[M] = X ;_,L; which is finite, Tmust
be injective on M. By [8, Corollary 4.22],7is a homomorphism. O

Lemma 3.7. Let x be a cardinal and for o < x let S, be an infinite discrete
semigroup with the property that the minimal left ideals of 58S, are singletons.
Then the minimal left ideals of B( X , S, ) are singletons.

Proof. For o < x, pick a minimal idempotent g, in 8S,. Then |(8S,)g,| = 1
so for all s € S, sq, = q,. Thus, by [8, Theorem 3.35], for each s € S,
Qss ={t €S, : st =t} € q,.

LetS = X,_.S,. Fors € S,letT; = {f € S : 5 = {}. We claim that
{T: : § € S} has the finite intersection property. To see this, let F € P(S). For
o < x,pick t; € (V{Qqys, : § € F}. We claim that fe (Nsep Ts- Indeed, given
Se€Fando <x,(, € Q,y, S0S,t, = I, and thus ST = 1.

Pick u € S such that {T; : 5§ € S} C u. Then given § € S, A; is the identity
on Tz so su = u. Then p,, is constantly equal tou on S, so forall p € 8S, pu = u.
Thatis |(8S)u| = 1. O

Theorem 3.8. Let x be a cardinal and for o < x let S, be an infinite discrete
semigroup with the property that the minimal left ideals of S, are finite and let
L, be a minimal left ideal of BS,. The following statements are equivalent.

(a) The minimal left ideals of B( X ,<,Sy) are topologically isomorphic to
><O'<KLO"

(b) The minimal left ideals of B( X ;«,.Sy) are homeomorphic to X ;L.
(c) {o <x : |Ls| > 1}is finite.

Proof. That (a) implies (b) is trivial.

To see that (b) implies (c¢), assume that (b) holds, let F = {c < x : |L,| > 1},
and suppose that F is infinite. The minimal left ideals of (X ,.,S,) are F-
spaces so XL, is an F-space so by Theorem 1.3(3), X ,crL, is an F-space.
Let G be an infinite subset of F such that F \ G is infinite. Then

( X O'EGLG) X ( X aeF\GLa)

is an F-space so by Theorem 1.3(4) without loss of generality X ,c;L, is a P-
space. But X ,csL, is infinite and compact, contradicting Theorem 1.3(5).

To see that (c) implies (a), let F = {o < x : |L,;| > 1} and assume that F is
finite. If x is finite, the conclusion follows from Theorem 3.6, so assume that
x is infinite. If F = @, the conclusion follows from Lemma 3.7, so assume that
F#0.

Let I be a minimal left ideal of S(X ,¢rS,). By Theorem 3.6, I is topologi-
cally isomorphic to X ;cpLg. Let M be a minimal left ideal of (X ;g0 £S5)- By
Lemma 3.7, |[M| = 1.

Now X, .Sy is isomorphic to (X ;epSe) X (X gen £S5) 80 B(X 54,S5) is topo-
logically isomorphic to B(( X 5erSs) X (X 5\ rSs)). By Theorem 3.6, the min-
imal left ideals of 8((X yerSs) X (X gex\rSs)) are topologically isomorphic to
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I X M. Since |M| = 1, they are topologically isomorphic to I which is topologi-
cally isomorphic to X ;epL. O

We saw in Lemma 3.1 that if K(3S;) is finite for each i € {1,2,...,v}, then
K(B(Xi-1S)) = Xi1K(BS;). We obtain now substantial information about
K(B(X lesi)) from the much weaker assumption that the minimal left ideals
are finite.

Theorem 3.9. Letv € N\ {1} and fori € {1,2,...,0}, let S; be an infinite discrete
semigroup such that the minimal left ideals of 8S; are finite. LetT : (X lesi) -
X le BS; be the continuous extension of the identity. The following statements are
equivalent.

(a) Tis injective on K(B(X ;1S))-

(b) Tis a topological isomorphism from K(B(X ;,S;)) onto X ;_1K(BS;).

(©) K(B(Xi=1Sy) and X ;_1K(BS;) are homeomorphic.

(d) Forall but at mostonei € {1, 2, ..., 0}, K(8S;) is finite.

Proof. Giveni € {1,2,...,0}, we have noted that 8S; has finitely many min-
imal right ideals so by [10, Theorem 3.2], K(3S;) is compact. By Lemma 2.2,
the minimal left ideals of B(X;_,S;) are finite so, again by [10, Theorem 3.2],
K(B(X leSi)) is compact. By [8, Corollary 4.22], 7is a homomorphism so it is
trivial that (a) implies (b) and that (b) implies (c).

To see that (c) implies (d), assume that K(8(X;-,S;)) and X;_,K(BS;) are
homeomorphic. If there is no i such that K(gS;) is infinite, we are done, so
assume without loss of generality that K(8S,) is infinite. Since K(B(X iv=1Si))
is a compact subset of 6(><f=18i), we have by Theorem 1.3 (1) and (2) that
K(B(Xi-1S;)) is an F-space, so X;_;K(BS;) is an F-space. Since K(8S,) is infi-
nite and compact, by Theorem 1.3 (4) and (5), X fzzK (BS;) is finite.

To see that (d) implies (a), assume that for each i € {2,3,...,v}, K(8S;) is
finite. By Theorem 2.3, fori € {2, 3, ..., v}, K(8S;) C S;.

Let M = {p € B(X;—1S;) : (Vi € {1,2,...,v)(T(p) € K(BS;)}. By Lemma
3.3, M is an ideal of B(X;_,S;) so it suffices to show that 7 is injective on M.
Fori € {1,2,...,v}, let 7; : ,B(X;-):lSJ-) — f3S; be the continuous extension of
the projection function and let y; : X ;3:1,65 i = BS; be the projection function.
Then u;or and 7; are continuous functions agreeing on X;;lS-, so they are
equal. Forany p € M andi € {2,3,...,v} there is some Xp; € S;such that
7i(p) = X, so that, since y;ol = 7;, 7(p) = (m1(p), Xp 2, -+ » Xp ). NOW assume
that p,q € M and7(p) =7(q). Then

(TL(P), Xp2s e s Xp o) = (T1(Q)s Xg 25 oo s X g 0)-

Fori € {2,3,...,v}, let x; = x,;. Since 7 is injective on S; X szz{xl-}, 7, is
injective on c€(S; X X ;_,{x;}) = BS; X X;_,{x;}. Since 77(p) = 71(q), we have
that p = q. O



984 NEIL HINDMAN AND DONA STRAUSS

For any infinite discrete semlgroups (Si);-,>» we know by [8, Exercise 1.7.3]
that T[K (B(X ,-=lSl-))] = K(X;_,8S;). We investigate now the preimage under T
of K(X;_,8S;) in the event that the minimal left ideals of 8S; are finite.

Theorem 3.10. Letv € Nand fori € {1,2,...,v}, let S; be an infinite discrete
semigroup such that the minimal left ideals of 8S; are finite. Let X € K(X j_185S;).
There is a minimal idempotent u of (X ;-,S;) such that, ify € B(X;,S;) and
T(y) = X, thenuy = y.
Proof. Fori € {1,2,...,v}, let L; = (B8S;)x; and note that L; is a minimal left
ideal of 8S;. Fori € {1,2,...,0}, let g; be the identity of L; n x;(3S;) so that
qiX; = X;.

Let 4 = {q1,¢2,-..,qy)- We claim that for each i € {1,2, ..., v}, there exists
Q; € g; such that for all s € Q;, sx; = x;. To see this, leti € {1,2,...,v}. Since
x; is isolated in L;, pick A C S; such that AN L; = {x;}. Since g;x; = x;, pick

Q; € q; suchthathx C A. Givens € Q;, 5x; eAnL so sx; = x;. For s € Q;,
letX; s ={t €S, : st = t}. Then by [8, Theorem 3.35],X,,s € X;.

By [8, Exercise 1.7.3(3)] we may pick a minimal idempotent u € (X ;_,S;)
such that t(u) =gq. LetQ = ><l 1Ql We claim that Q € u. To see thls note
that >< _,Q; is a neighborhood of ¢ q so pick B € u such that7[B] C le
ThenB C Q. ForseQ,letXz = ><l 1Xis,-

Now assume we have y € S( >< _15;) such that7(y) = X. We claim that for
SEQ,X;€y,s0lets € Q. Fori €{1,2,...,u},5; € Q; szls € X; S0 ><l 1Xls
is a neighborhood of ¥ =7(y) so pick C € y such that7[C ] C X_,X; . Then
Cc X;)=1Xi,s,--

To see that uy = y, it suffices to show that p,, is constantly equal to y on Q,
so let § € Q. To see that sy = y, it suffices that 1z is the identity on Xj, so let
f € Xz. Thenfori €{1,2,...,v},t; € X, SO 8it; = 1. O

Corollary 3.11. Letv € Nand fori € {1,2,...,0}, let S; be an infinite discrete
semigroup such that the minimal left ideals of 8S; are finite. Then

THK(X2185)] = K(B(X 11S))).-
Proof. Trivially K(8(X;;S;)) CT'[K(X;-18S;)]. To see that
THK(X218S)] € K(B(X=1S1)

lety € TUK(X;-18S;)]. Let ¥ = T(y) and pick u as guaranteed by Theorem
3.10. Since uy = y,y € K(B(X;-1S))). O

Corollary 3.12. Letv € Nand fori € {1,2,...,0}, let S; be an infinite discrete
semigroup such that the minimal left ideals of 8S; are finite. Let 'y and z be in
K(B(X leSi)) and assume thatt(y) =T(z). Theny and z liein the same minimal

right ideal of B( X ;;lSi).
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Proof. Let X = 7(y) and pick u as guaranteed by Theorem 3.10. Then uy =y
and uz = z so y and z are both in the minimal right ideal u(8(X;-;Sy)). O

We conclude this section with a consideration of the number of minimal left
ideals of B( X ;_,S;) that T takes to a given minimal left ideal of X;_,8S;.

Theorem 3.13. Letv € N\{1}and fori € {1, 2, ..., 0}, let S; be an infinite discrete
semigroup such that the minimal left ideals of 8S; are finite. If

|{i € {1,2,...,0} : K(BS;) is infinite}| > 2,

then there exist distinct minimal left ideals M, and M, of B(X ;-,S;) such that
T[M;] =T[M,].
Proof. Suppose that there do not exist distinct minimal left ideals M; and M,
of B(X;-,S;) such that T[M;] = T[M,]. We shall show that 7 is injective on
K(B(Xi-1Sy)) so that, by Theorem 3.9 there is at most one i € {1,2, ..., v} such
that K(3S;) is infinite.

To this end, let p and g be distinct members of K (B( X ;;151-)). If

(B(Xi=S0)p = (B(Xi=150)q
then by Theorem 3.6, 7(p) # 7(q). So we assume that M; = (B(X;_1S))p #
(B(Xi=15)))q = M. Since T[M; ] # T[M,], they are distinct minimal left ideals
of X ?le (BS;) and are therefore disjoint so again7(p) #7(q). O

Given that for any discrete semigroup S all minimal left ideals of 3S are
homeomorphic and isomorphic, we (or at least one of us) would have thought
that the number of minimal left ideals taken to a given minimal left ideal of
X f=1 BS; by Tmust be independent of the given minimal left ideal. It turns out
that, at least consistently, this is not true.

Theorem 3.14. Let S = (N, V). For minimal left ideals L, and L, of S, let
M(L;,L,) ={M : M is a minimal left ideal of (S X S) andT[M] = L; X L,}.
(1) There exists a minimal left ideal L, of 8S such that for every minimal left
ideal L, of S, |M(L,,L,)| = 2.
(2) Assume the continuum hypothesis. For each n € N \ {1}, there exist min-
imal left ideals L, and L, of S such that |M(L,,L,)| = n.

Proof. The minimal left ideals of 3S are the sets {p} for p € N* while by
Theorem 3.4, the minimal left ideals of B(S X S) are the sets of the form {p}
such that 777(p) € N* and 7,(p) € N*. As we saw in the proof of Theorem
3.9,if p € B(S x S), thenT(p) = (7(p), 7,(p)). Thus, given p and q in N*,
M(phigh) = {{r} : r € B(S x $)andT(r) = (p,q)} so that [M({p}, {g}] =
1T {(p, D} 1.

(1) It was shown in [6] that there exists p € N* such that for all g € N*,
T {p, @} =2

(2) It was shown in [1] that, assuming the continuum hypothesis, for each
n € N\ {1} there exist p and q in N* such that |7 [{{p, ¢)}]| = n. O
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M. Daguenet established in [4] that if there exist p and g in N* such that
TH{(p, g)}] is finite, then there exist P-points in BN, so this cannot be estab-
lished in ZFC. (An elementary proof of this assertion is in [2, Theorem 14].)

Question 3.15. Can one produce in ZFC an infinite discrete semigroup S and
minimal left ideals Ly, L,, Ls, and L, of 8S such that |M (L, L,)| # |M(Ls, Ls)|?

4. Semiprincipal left ideals

Our first theorem of this section, Theorem 4.4, extends [8, Theorem 6.56],
by replacing the assumption that S can be embedded in a group by the weaker
assumption that S is cancellative, and by proving the result for any countable
set of elements {p; : i € N}in 8S \ K(BS), instead of a finite set.

We shall show that, if S is any countably infinite cancellative semigroup, ev-
ery non-minimal semiprincipal left ideal in 8S contains many semiprincipal
left ideals defined by right cancelable elements of 58S, and we shall explore some
of the properties of these left ideals. Semiprincipal left ideals defined by right
cancelable elements are of interest, because their topology is known. They are
homeomorphic to §S if S is an arbitrary semigroup. If S is a group or (N, +),
they are the only semiprincipal left ideals of 3S which are homeomorphic to 3S.
In the case in which S is a countably infinite semigroup which can be embed-
ded in a group, the semiprincipal left ideals of S defined by right cancelable
elements, have rich algebraic properties. It is only because of the fact that, in
this case, every non-minimal semiprincipal left ideal L of 8S contains semiprin-
cipal left ideals defined by right cancelable elements of 8S, that we know that
L contains many infinite decreasing chains of idempotents.

Lemma 4.1. Let S be an infinite discrete space. If A and B are countable subsets
of BS for which ANB # @, then ANB # @ or ANB # 0.

Proof. [8, Theorem 3.40]. O

Asubset A of a semigroup S is piecewise syndetic in S ifand only if ANK(3S) #
Q.

Lemma 4.2. Let S be a countably infinite discrete cancellative semigroup, let
(Pn)y, be a sequence in BS \ K(BS), and let Q be a piecewise syndetic subset
of S. There is an infinite set R C Q such that
(1) forevery x € R*, everyiand jin N, and every a € S, ap; & BSxp;,
(2) foreverydistinctaand bin S, aR*NbR* = @, and there is a cofinite subset
V of R such that as # bt forallsand tin V.

Proof. Pick ¢ € K(BS) n 5 We claim that, if a € Sand i,j € N, then
ap; & BSqp;. If we assume the contrary, then ap; € K(BS) and so ap;u = ap;
for some minimal idempotent u € 3S. Hence, by [8, Lemma 8.1], pju = p;,
contradicting the assumption that p; ¢ K(BS). Therefore by the continuity of
Aq, we may choose a member D; ; , of p; for which am NBASqp; = @. Again
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by the continuity of 1,, we have that aTj,a =ab; j,- Then given any b € S,
bgp; & aD; j, so we may choose E; j ,, € qsuchthatE;;,, C{s€ S : bsp; &
aDi’j’a}.

For every distinct a,b € S, aq # bq by [8, Corollary 8.2] so we may choose
H,} € g such that am N bm = (). By [8, Theorem 4.36], K(3S) C S*so Q
is infinite. Let C = Q* N ({Eyap : i.j ENanda,b € S}n({H,p : a,bES
and a # b}. Then C is a G subset of S* which is non-empty, because q € C.
So it follows from [8, Theorem 3.36], that C has a non-empty interior in S*. We
can therefore choose an infinite subset R of S for which R* C C, because the
sets of the form R* provide a base for the topology of S*. Since R* C Q*, R\ Q
is finite, so we may presume that R C Q.

(1) Now let x € R*, leti, j € N, let a € S, and suppose that ap; € BSxp; =
ct{bxp; : b € S}. Now aD, j , € ap; so one may pick b € S such that bxp; €
aD; j 4. Pick B € x such that bEpj C aD;j, and pick s € BN E; 5. Then
bsp; € aD; j 4, a contradiction.

(2) Assume that a and b are distinct elements of S. Then aR* N bR* =
because R* C m. Nowlet A ={s € R : (3t € R)(as = bt)} and let B =
{s € R : (3t € R)(at = bs)}. We claim that A U B is finite so that we can let
V = R\ (A U B). Suppose instead without loss of generality that A is infinite
and let (s,)>> , enumerate A. For each n € N, let ¢, be the unique member of R
such that as,, = bt,. Let p € N*, letu = p-LiErrNg s, and letv = p-}liéer t,. Thenu

and v are in R* and au = bv, a contradiction. O

Lemma 4.3. Let S be a countably infinite discrete cancellative semigroup, let
(Pn)y,, be a sequencein BS \ K(BS), and let R be an infinite subset of S as guar-
anteed by Lemma 4.2 for Q = S. Leti,j € N, lety,z € S, let w,x € R*, let
YeyleZ €z leeW € w, let X € x, and assume that ywp; = ZXpj. There
exista€Y,beZ, ueW* andv € X* such that aup; = bvpj.

Proof. Since ywp; € cf(Ywp;) and zxp; € ct(Zxp;), we may apply Lemma
4.1 and, essentially without loss of generality, assume we have b € Z such
that bxp; € cf(Ywp;). (The other choice of a € Y with awp; € c¢f(Zxp;)
would end up letting v = x and picking u € W* during the argument.) Since
bxp; € ct(bXp;), applying Lemma 4.1 again we either get some d € X such

that bdp; € cf(Ywp;) or some a € Y such that awp; € c€(bXp;) = b)_(pj.
Since cf(Ywp;) C fSwp;, we can’t have bdp; € cf(Ywp;) by Lemma 4.2(1) so

we have awp; € bfpj. Since awp; & bXp; by Lemma 4.2(1), we must have
some v € X* such that awp; = bxp;. Letu = w. O

Theorem 4.4. Let S be a countably infinite discrete cancellative semigroup, let
(Pl be asequencein BS \ K(BS), and let R be an infinite subset of S as guar-
anteed by Lemma 4.2 for Q = S. Then:

(1) Foreveryi € N and every x € R*, xp; is right cancelable in 3S;
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(2) For every distinct i, j € N for which Sp; N Sp; = @, and for every w, x €
R*, the left ideals BSwp; and BSxp; of BS are disjoint;

(3) Foreveryi € N and every distinct w,x € R*, the left ideals BSwp; and
BSxp; of BS are disjoint.

Proof. (1) Suppose thaty and z are distinct elements of 8Sx p; for which yxp; =
zx p;. We can choose disjoint subsets Y and Z of S which are members of y and
z respectively. By Lemma 4.3 withi = j,w = x,and W =X =R, picka €Y,
b € Z, and u,v € R* such that aup; = bup;.

Since a # b, pick by Lemma 4.2(2) a cofinite subset V' of R such that for all
s,t € V,as # bt. SinceuandvareinR*, V € uand V € v. Then c€(aVp;) N
ct(bV p;) # @, so by another application of Lemma 4.1 we can assume without
loss of generality that we have s € V such that asp; € c€(bV p;) = bV p; so we
can pick t € V such that asp; = btp;. We can’t have t € V* by Lemma 4.2(1),
so we must have ¢ € V. But then by [8, Corollary 8.2], we must have as = bt,
contradicting our choice of V.

(2) Assume that ywp; = zxp;, where y,z € BSand w,x € R*. LetY = Z =
Sand W = X = R and pick by Lemma 4.3, a,b € S and u,v € R* such that
aup; = bup;. Now c(aRp;) N ct(bRp;) # ¥ so by an application of Lemma

4.1 we may presume that we have s € R such that asp; € bRp j SO0 we may pick

t € R such that asp; = btp;. By Lemma 4.2(1) we cannot have t € R*,sot € R
and thus Sp; N Sp; # 0.

(3) Assume that ywp; = zxp; for some y,z € £S. We can choose disjoint
subsets W and X of R which are members of w and x respectively. By Lemma
43withi=jandY =V = S, we may choose a,b € S,u € W*,and v € X*
such that aup; = buvp;. If a # b we reach a contradiction as in the second
paragraph of the proof of (1). So assume that a = b. Then by [8, Lemma 8.1]
we have that up; = vp;. Then c€(Wp;) N ct (X p;) # @, so applying Lemma 4.1
we may assume we have s € W such that sp; € Xp; so pick t € X such that
sp; = tp;. By [8, Corollary 8.2] we can’t have t € X and by Lemma 4.2(1) we
can’t have r € X*. O

Corollary 4.5. Let S be a countably infinite discrete cancellative semigroup and
let L be a left ideal of S. Then L C K(fBS) if and only if L is a union of pairwise
disjoint groups.

Proof. Necessity. Assume that L C K(8S). Let M = {M : M is a minimal left
idealof BSand LN M # @}. Since L # §, M # $and if M € M,then M C L
and by [8, Theorem 1.61], M is the union of pairwise disjoint groups.
Sufficiency. Assume that L is the union of groups and suppose p € L\ K(fS).
By Theorem 4.4(1) pick x € S* such that xp is right cancelable in 8S. Then
xp € L so pick a group G C L such that xp € G and let e be the identity of G.
Let r be the inverse of xp in G. Then e = xpr € S*, so the fact thatexp = xp
shows that xp € S*xp, contradicting [8, Lemma 8.15]. O
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Note thatif p € K(8S), then all idempotents in 8S p are minimal so 8Sp does
not have a chain of idempotents of length 2.

Theorem 4.6. Let S be a countably infinite discrete semigroup which can be em-
bedded in a group. For every p € S* \ K(BS), the left ideal 3Sp of BS contains
infinite decreasing chains of idempotents.

Proof. Since S can be embedded in a group, it generates a countable discrete
group G. Let p € S* \ K(BS). By [8, Theorem 6.56] we may pick r € S* such
that rp is right cancelable in BG. By [8, Corollary 8.54], C,., contains an infinite
decreasing chain of idempotents, where C,, = (1{D C G : D is a compact
subsemigroup of G and rp € D}. Since BSp is a compact subsemigroup of fG
and rp € fSp, C,, C BSp. ]

If S is an arbitrary discrete semigroup, it is obvious that every semiprincipal
left ideal of S is compact. This illustrates a striking contrast between left ideals
and right ideals. For example, we know that the semiprincipal right ideals of
AN defined by elements of N* are not Borel [9, Theorem 2.9]. We shall discuss
some of the topological properties of left ideals in §S.

Recall that a Stonean space is a compact Hausdorff extremally disconnected
space. Recall also that a space satisfies the countable chain condition if and only
if any collection of pairwise disjoint open sets is countable. We shall list some
conditions which imply that a left ideal of S is Stonean.

Theorem 4.7. Let S be an arbitrary discrete semigroup.

(1) If pis an idempotent in 3S, the left ideal SSp of 3S is Stonean.

(2) Every minimal left ideal of S is Stonean.

(3) If p is a right cancelable element of 3S, the left ideal BSp is Stonean and
Sp consists of points isolated in SSp.

(4) If S is countable, every semiprincipal left ideal of 8S is Stonean.

(5) Thesupport of any probability measure u defined on 3S, with the property
that u(s~Y(B)) = u(B) for every Borel subset of 3S and every s € S, is a
Stonean left ideal in BS.

Proof. (1) This follows immediately from [7, Lemma 2].

(2) Every minimal left ideal L of 8S has an idempotent p and L = SSp so (1)
applies.

(3) Since p,, is a continuous bijective map from S onto SSp, it is a homeo-
morphism.

(4) If S is countable, every semiprincipal left ideal of 5S is separable. It was
shown in the Proposition on page 19 of [11] that every compact F-space which
satisfies the countable chain condition is Stonean.

(5) It is obvious that the support of u is a compact left ideal in 8S. Since it is
a compact F-space which satisfies the countable chain condition, it is Stonean.

O

In the proof of the next lemma, we will use the fact from [8, Theorem 6.54]
that the center of (87, +) is Z.
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Lemma 4.8. Let S bea group or (N, +), let p € S*, and let L = BSp. If thereisa
point of Sp which is isolated in L, then all points of Sp are isolated in L.

Proof. Assume thats € Sand spisisolated in L. Assume first that S is a group.
Given u € S, pick t € S such that rtu = s. Then the restriction of 4, to L is a
homeomorphism from L to itself and sp = A,(up) so up is isolated in L.

Now assume that S = (N, +). Pick A C Nsuch that ANL = {s+ p}. We show
that for all t € Nsuch thatt < s, s —t + p isisolated in L, and for all t € N,
s+t + pisisolated in L.

Assume first thatt < s. Thens—t + p € A—tnL Nowletre A—tnlL
and pick g € BN such thatr = g+ p. Thenr+t =q+t+p € ANL,so
r+t=s+pandsor=s—t+p.

Nowlett € N. Thens+t+p € A+tNnL. Suppose that s + ¢ + p is not
isolated in L and let B = (A+t N L) \ {s +t+ p}. Then B # @. We claim
B is infinite. For each r € B, pick D, € (s +t + p) \ r. If B is finite, then
(A+8)N(),cgDrNL={s+t+ p}sothats+t+ pisisolated in L.

Since B is infinite, pick r € (A+t N L)\ ({s + ¢ + p} U ({1,2,...,t} + p)).
Pick g € N such thatr = g + p. Then {1,2,...,t} € gsoq —t € N and
q—t+peZanoq—t+p=S+pandthusr=q+p=s+t+p. O

Theorem 4.9. Let S beagroup or(N, +) and let p € S*. The following statements
are equivalent.

(a) BSp is Stonean and Sp consists of points isolated in 5Sp.
(b) BSp is Stonean and there is a point of BSp which is isolated in $Sp.
(c) pisright cancelable in BS.

Proof. Itistrivial that(a)implies (b)and the fact that (c) implies (a) is Theorem
4.7(3).

To see that (b) implies (c), let L = SSp and assume that L is Stonean and
has an isolted point x. Pick y € S such that x = yp. Pick A C S such that
ANL =1{x}. Then{se S :s'Aepley Ifs'A e p,thensp € AnL
sosp = x. Thus{s € S : s!A € p}is a singleton. Recalling that we have
identified the points of S with the principal ultrafilters on S, we have thaty € S.
By Lemma 4.8, every point of Sp is isolated in L.

Note that the function sp — s from Sp to S is well defined. Since L is ex-
tremally disconnected we have by [5, Exercise 6M(2)] that L is a copy of 8(Sp),
so we may pick a continuous function f : 8Sp — S such that f(sp) = s for
alls € S.

Given any q € S, we claim that f(gp) = q. To see this, pick a net (s,),er
in S converging to gq. Then (f(s,p)).er converges to f(qp) while for eacht € I,
f(s,p) = s,s0 f(gp) = q. Therefore if g, € S and gp = rp, then we have
q = f(gp) = f(rp) = r so p is right cancelable in 8S. O

Recall that H = ﬂ:;l ctgn(2"N). By [8, Lemma 6.8] H is a compact sub-
semigroup of SN which contains all of the idempotents of SN.
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Theorem 4.10. Let G be a countably infinite discrete group which can be embed-
ded algebraically in a compact metrizable topological group.

(1) Ifqis anidempotent in 8G, then there is an idempotent p € Sw such that
BGp and fw + q are homeomorphic.
(2) Every minimal left ideal of G is homeomorphic to a minimal left ideal of

Bw.

Proof. (1) By [8, Theorem 7.28], there is a bijective map 3 : w — G, with the
following properties: If m, k,n € w, m < 2k and n € 2K*IN, then Y(m+n) =
Y(m)p(n) and if P : fw — BG denotes the continuous extension of 1, then
1 is a homeomorphism which maps H isomorphically onto a subsemigroup of
BG which contains all the idempotents of G*.

Ifn € w,x € H, and n < 2%, then 9o, and A¢(n)o{5 agree on 2K*IN so
P(n+x) = p(n)P(x). If ¢ is an idempotent in SG, we can choose an idempotent
p in Bw for which l;bv(p) = q. Since J(n +p) = p(n)qforeveryn € w, J(ﬁco +p)
contains the dense subspace Gq of BGq. So P(Bw + p) = BGq.

(2) This follows from (1) since if g is minimal in G one can show that p is
minimal in Sw. We omit the verification since this conclusion also follows from
[8, Theorem 7.32]. O
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