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On the chromatic localization of the
homotopy completion tower for O-algebras

Crichton Ogle and Nikolas Schonsheck

Abstract. The completion tower of a nonunital commutative ring is a clas-
sical construction in commutative algebra. In the setting of structured ring
spectra as modeled by algebras over a spectral operad, the analogous con-
struction is the homotopy completion tower. The purpose of this brief note
is to show that smashing localizations, such as that given by the Johnson-
Wilson spectrum E(n), commute with the terms of this tower.
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1. Introduction
We work in the context of symmetric spectra [14], and consider any alge-

braic structure described by algebras over a reduced operad O; that is, O[0] =∗
and hence O-algebras are nonunital . (See [5] and [18] for other well-behaved
categories of spectra.) To any O-algebra X, there is an associated homotopy
completion tower [12], analogous to the R-adic completion tower of a nonuni-
tal commutative ring R. The aim of this short paper is to show that the terms
of this tower commute with smashing localizations.

To keep this paper appropriately concise, we freely use the notation of [12]
in discussing homotopy completion in AlgO. The basic idea of the construction
is that the map of operads O → �kO induces a Quillen adjunction

AlgO
�kO◦O−// Alg�kOF
oo (1)
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where �kO is the degree k truncation ofO, i.e., �kO is equal toO in degrees less
than or equal to k and is trivial above. For any O-algebra X, this construction
gives rise to a towerX → {�kO◦O(X)}k. IfX is co�brant, this construction is ho-
motopical and is known as the homotopy completion tower of X. In fact, as we
elaborate in Section 4, this tower can be identi�ed with the Taylor tower [8] of
the identity functor on AlgO. Our discussion of this identi�cation supplements
[17, 2.21] and [20, 4.3].

Throughout the paper, we let E be a symmetric spectrum with the following
property. For U∶ SpΣ → Spℕ the forgetful functor from symmetric to ordinary
(or, sequential) spectra, assume that the localization functor associated to UE,
as de�ned in [2], is smashing. We will denote this localization by LE . Much
of our technical work involves constructing a well-behaved model SE of the
E-local sphere spectrum (see Theorem 1.6). Using this model, we obtain our
main result, proven in Section 3. Note that, below, the superscript “h” is added
to denote a suitably derived version of �nO◦O(−), as in [12, 3.3]; in particular,
�nO◦hO(X) is �brant for all X. We also remind the reader that equivalences in
Spℕ are strictly stronger than equivalences in SpΣ, since the latter need not in-
duce isomorphisms on stable homotopy groups.

Theorem 1.1. Let O be a Σ-co�brant operad in SpΣ and U∶ SpΣ → Spℕ the
forgetful functor from symmetric to ordinary spectra. If X is a �brant O-algebra,
then there is a weak equivalence

LE
(
U�nO◦hO(X)

)
≃ U�nO◦hO(SE ∧ X) (2)

withU(SE ∧ X) ≃ LE(UX).

Remark 1.2. The particular case of Theorem 1.1 that originally motivated this
paper is obtained when one takes E to be the Johnson-Wilson spectrum E(n)
for a �xed prime p; see, for instance, [15]. A construction of E(n) in symmet-
ric spectra is given in [25, I.6.63] and it is a classical result [21] that the cor-
responding E(n)-localization is smashing. It is also worth noting that the �rst
layer �1O◦hO(X) of the homotopy completion tower of an O-algebra X is the
TQ-homology of X (see, e.g., [3], [10], [22], and [23]). Thus, under appropri-
ate �brancy conditions, Theorem 1.1 shows that TQ-homology commutes with
chromatic (or, more generally, smashing) localizations.

Remark 1.3. Although we have assumed Σ-co�brancy in Theorem 1.1, any op-
erad can be replaced by a weakly equivalent Σ-co�brant operad, and the in-
duced map of homotopy completion towers is a weak equivalence; see, for in-
stance, [12, 3.26, 5.48].

In Section 4, we show an equivalence between the homotopy completion
tower of an O-algebra X and the Taylor tower of the identity functor evaluated
on X, with no connectivity assumptions on X. Speci�cally, Theorem 4.1 estab-
lishes a zigzag of weak equivalences

�nO◦O(X) ≃ Pn(id)X (3)
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for all co�brantO-algebrasX. This result, combined with Theorem 1.1, implies
the following.

Theorem 1.4. Under the assumptions of Theorem 1.1, if X is furthermore co�-
brant, then there is a zigzag of weak equivalences

LE(UPn(id)X) ≃ UPn(id)(SE ∧ X) (4)

withU(SE ∧ X) ≃ LE(UX).

Ourmain result, Theorem 1.1, followswithout toomuch di�culty fromThe-
orems 1.5 and 1.6, which we turn to now.

Theorem1.5. LetR be a commutative ring spectrum, i.e., a commutativemonoid
in SpΣ, for which the pairing map R∧R ∼⟶R is a weak equivalence and suppose
that R is co�brant as a symmetric spectrum. If O is a Σ-co�brant operad in SpΣ,
then for any O-algebra X, there is a zigzag of weak equivalences

R ∧ (�nO◦hOX) ≃ �nO◦hO(R ∧ X) (5)

in the underlying category SpΣ.

The proof of Theorem 1.5 is the content of Section 2. In Section 3, we con-
struct SE and prove the following, along with Theorem 1.1.

Theorem 1.6. There exists a commutative ring spectrum SE with SE ∧SE
∼⟶SE

a weak equivalence, and which is co�brant as a symmetric spectrum, with the
following property: for any X ∈ SpΣ, there is a natural isomorphism

ℛU(SE ∧ X) ≅ ℛU(SE) ∧SℋC ℛU(X) ≅ LE(ℛUX) (6)

in the stable homotopy category, whereℛU denotes the right-derived functor ofU.

Remark 1.7. In order to leverage certain compatibility results in [18], notably
relating the smash product in SpΣ and Spℕ, we have phrased Theorem 1.6, its
proof, and the proof of 1.1 in terms of “the” stable homotopy category. In or-
der to be explicit, we take Ho(Spℕ), the homotopy category of the Bous�eld-
Friedlander model category structure on sequential spectra Spℕ, as our model
of the stable homotopy category. More concisely, we de�ne SℋC = Ho(Spℕ)
and note that, in particular, this means the objects of Spℕ and Ho(Spℕ) are the
same [4, 5.6]. Consequently, ifX ∈ SpΣ thenUX lives, as an object, both in Spℕ

and SℋC. Similarly, sinceℛUX isU applied to a �brant replacement of X, the
object ℛUX also lives both in Spℕ and SℋC. For these same reasons, it is also
appropriate to apply LE to any object in Sp

ℕ. To distinguish between the smash
product of SpΣ and that of SℋC, we denote the latter by ∧SℋC and the former
by simply ∧.

It is worth pointing out that, throughout this paper, we are considering the
homotopy completion of R ∧ X as an O-algebra. It is known (see, e.g., [17,
2.1]) that the objectwise smash of an operad with a commutative ring spectrum
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is again an operad. Thus, one could also consider the homotopy completion of
R∧X as an algebra over the operadR∧Owhich has values inR-modules (where
the symmetric monoidal product is ∧R). In this case, the result analogous to
Theorem 1.5 follows from [12, 4.10] and [17, 2.11(d)].

Assumption 1.8. Throughout this paper,Owill denote a reduced operad in SpΣ.
We assume, for all n ≥ 0, thatO[n] is (−1)-connected and that each map I[n] →
O[n] of the unit morphism I → O is a �at stable co�bration between �at stable
co�brant objects in SpΣ. (Weaker than theΣ-co�brancy condition needed for some
of our results, this assumption guarantees that the forgetful functor AlgO → SpΣ

preserves co�brant objects [12, 4.11].) Unless otherwise stated, we consider SpΣ

and AlgO with their positive �at stable model structures [12, Section 7].

Remark 1.9. Above, we have followed Schwede’s terminology [25] for what
Shipley refers to [27] as the “positive S-model structure.” Relatedly, we make
frequent use of the following fact to show that certain weak equivalences in
AlgO forget to weak equivalences in Spℕ, i.e., induce isomorphisms on all (un-
derived) stable homotopy groups. Suppose X is an O-algebra that is �brant
in the positive �at stable model structure on AlgO. Then the underlying sym-
metric spectrum X is �brant in the positive �at stable model structure on SpΣ,
and hence is also �brant in the positive stable model structure on SpΣ (see
[12, Section 7]). It follows from [26, 4.3] that X is a positive Ω-spectrum, i.e.,
Xn → ΩXn+1 is a weak equivalence for all n > 0 (see also [18, 14.2]). Hence, by

[24, 4.2], X is semistable. Therefore, if X
f
,→ Y is a weak equivalence of �brant

O-algebras in the positive �at stable model structure, then f in fact induces
isomorphisms on all (underived) stable homotopy groups, and so descends to

a weak equivalence UX
Uf
,,,→ UY in Spℕ.

Acknowledgements. The authors would like to thank John E. Harper, Dun-
can Clark, David White, and Yu Zhang for many useful conversations, and
Mark Behrens and Doug Ravenel for several helpful correspondences. We are
indebted toNickKuhn for alerting us to the comparison between the homotopy
completion tower and the Taylor tower of the identity functor in the absence of
connectivity assumptions, as well as an enlightening discussion of this point.
The authors are also grateful to an anonymous referee who provided thorough
and thoughtful feedback on an earlier version of this paper, which led to im-
proved clarity of both our exposition and arguments.

2. Proof of Theorem 1.5
The purpose of this section is to prove the �rst technical result of the paper,

Theorem 1.5. However, there are a few points that we need to address �rst.
To begin, note that the statement of Theorem 1.5 implicitly uses the following
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fact. We suspect this is known to experts in the �eld (see, e.g., [17, 2.1]) but
have included the statement and proof for the sake of completeness.

Proposition 2.1. If X is an O-algebra and R is a commutative ring spectrum,
thenR∧X inherits anO-algebra structure and the naturalmapX≅S∧X → R∧X
induced by the unit map of R is a map of O-algebras.

Proof. Let � be the multiplication map of R andO◦(X)
�
,→ X the algebra struc-

ture map of X. The maps � and � induce the following.
∐

n≥0
O[n] ∧ (R ∧ X)∧n ≅

∐

n≥0
O[n] ∧ (R∧n ∧ X∧n)

�∗,,→

�∗,,→
∐

n≥0
O[n] ∧ (R ∧ X∧n) ≅ R ∧

∐

n≥0
O[n] ∧ X∧n �∗,,→ R ∧ X

(7)

The fact thatR is (strictly) commutative implies that this composite isΣn-equivariant
and hence induces a map

O◦(R ∧ X) =
∐

n≥0
O[n] ∧Σn (R ∧ X)

∧n → R ∧ X (8)

One then checks that this map is associative, unital, and compatible with the
O-algebra structure on X. �

Corollary 2.2. Given a commutative ring spectrum R, there is a natural map

O◦(R ∧ X) → R ∧
(
O◦(X)

)
(9)

Proof. The composite of the �rst three (Σn-equivariant) maps of (7) induces
the desired map. �

Though discovered independently, a result similar to the following appears
in unpublished work by John E. Harper in collaboration with the �rst author
and Yu Zhang.

Lemma 2.3. Suppose O and R are as in Theorem 1.5. Let Y be a co�brant O-
algebra and R a commutative ring spectrum for which the pairing map R∧R ∼⟶
R is a weak equivalence and which is co�brant in SpΣ. Then the map in Corollary
2.2 is a weak equivalence.

Proof. It follows from our assumptions and [12, 7.12] that the multiplication
map R∧n ∼⟶R is a weak equivalence for any n ≥ 0. Similarly, since Y was as-
sumed to be co�brant, we know thatY∧n is aswell and so themapR∧n∧Y∧n ∼⟶
R∧Y∧n is aweak equivalence. The assumption thatO isΣ-co�brant implies that
O[n] is projectively co�brant and so the functor O[n] ∧Σn (−) preserves weak
equivalences. By considering the injective stable model structure (see [14, 5.3]
and [25, III.4.13]) on SpΣ, in which every object is co�brant, it follows that the
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map
∐

n≥0
O[n] ∧Σn (R

∧n ∧ Y∧n)
�∗,,→

∐

n≥0
O[n] ∧Σn (R ∧ Y∧n) (10)

is a weak equivalence. �

Remark 2.4. Above, the Σ-co�brancy assumption on O was used only to con-
clude that the functor O[k] ∧Σk (−) preserves weak equivalences for all k ≥ 0.
For a �xed n, since �nO[k] is eitherO[k] or trivial, it follows that �nO[k]∧Σk (−)
also preserves weak equivalences for all k ≥ 0. The previous proof therefore re-
mains valid if O is replaced by �nO.

We can now give the proof of Theorem 1.5.

Proof of Theorem 1.5. By replacing if necessary, it su�ces to consider the
case of a co�brant X ∈ AlgO. We construct a weak equivalence

|||Bar(�nO,O, R ∧ X)||| ≃ R ∧ |||Bar(�nO,O,X)||| (11)

The proof is completed by appealing to [12, 4.10].
Our co�brancy assumption on O ensures that the forgetful functor AlgO →

SpΣ preserves co�brant objects (see, e.g., [12, 4.11]). Hence, the fact that X is
co�brant implies that O◦k◦(X) is co�brant for any k ≥ 0 by [10, 1.2]. Induc-
tive application of Lemma 2.3, with Y = O◦k◦(X), then shows that there is a
levelwise weak equivalence

Bar(�nO,O, R ∧ X)
∼⟶R∧Bar(�nO,O,X) (12)

Applying geometric realization and commutingwithR∧− completes the proof.
�

3. Constructing SE and the proof of Theorem 1.1
The purpose of this section is to construct a convenient model for the E-

local sphere spectrum and prove the main result of the paper. In particular, we
use [27] and [29] to �nd a symmetric spectrum SE that satis�es the desirable
properties listed in Propositions 3.5. With this model in hand, we then prove
Theorem 1.6 and conclude with the proof of Theorem 1.1.

Remark 3.1. There is a subtlety in this section that we wish to highlight. In
his original work [2], Bous�eld did not have the luxury of a highly structured
category of spectra in which to construct his localization functor LE . His con-
struction (see also [25, II.9]) is therefore slightly di�erent than the localization
in the sense of [13], which we implicitly use in constructing SE . We denote
by L the localization functor of [13] in SpΣ at the E-equivalences, i.e., L is the
composite of a �brant replacement in the localized model structure composed
with the identity “back to” the non-localized model structure. Using the com-
parisons established in [18], one can show that UL(S) is a model for LE(US),
and hence the two are canonically weakly equivalent in Spℕ.
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To construct SE , �rst let Sc
∼⟶S be a functorial co�brant replacement of the

symmetric sphere spectrum S in the model structure on commutative symmet-
ric ring spectra established by [27, 3.2]. The following two lemmas are needed
to apply the relevant result of [29] ultimately used to construct SE .

Lemma 3.2. L is a monoidal Bous�eld localization in the sense of [29, 4.4]

Proof. We appeal to [29, 4.6], noting that, when endowed with the positive �at
stable model structure, the category SpΣ is a co�brantly generated monoidal
model category in which co�brant objects are �at; see [27, 3.1] and [12, 7.12],
respectively.

Let f∶ A → B be an E-equivalence and K a co�brant symmetric spectrum.
Co�brantly replacing A and B, we have that the map

E ∧ Ac ∼⟶E ∧Bc (13)

is a weak equivalence. Smashing with the co�brant spectrum K preserves this
weak equivalence and it follows that the map

E ∧L (A ∧ K) ∼⟶E ∧L (B ∧ K) (14)

is a weak equivalence, i.e., that A ∧ K → B ∧ K is an E-equivalence. �

Lemma 3.3. The category of symmetric spectra with the positive �at stablemodel
structure satis�es the recti�cation axiom of [28, 4.5].

Proof. This follows from [27, 3.3] by taking “Y” to be the sphere spectrum.
Alternatively, by considering symmetric sequences concentrated at 0, the result
follows from [11, 4.29*(b)]. �

Lemmas 3.2 and 3.3 now show that the conditions of [29, 7.2] are satis�ed;
hence, there is a commutative diagram

Sc
(∗) //

��

S̃c

L(Sc)

∼

== (15)

in SpΣ, where (∗) is a map of commutative monoids. (Note that the existence of
such a diagram is what it means for L to preserve commutative monoids in the
language of [29]; see, for instance, the proof of [29, 3.2].) Replacing if necessary,
we may also assume that S̃c is �brant.

De�nition 3.4 (Construction of SE). We de�ne SE by factoring the map (∗)

Sc // SE
∼ // S̃c (16)

as a co�bration followed by an acyclic �bration in the model structure of [27,
3.2], namely the positive �at stable model structure on commutative ring spec-
tra.
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The following Proposition details the advantageous properties of this con-
struction.

Proposition 3.5. As de�ned, SE is

(i) a strictly commutative monoid in SpΣ;
(ii) positive �at stable co�brant and �brant;
(iii) weakly equivalent to the E-local sphere L(S); in fact, this equivalence is

compatible with the localizationmap S → L(S) and the unit map S → SE
and furthermore induces an isomorphism on stable homotopy groups.

Proof. That SE is a strictly commutativemonoid and �brant is immediate from
its construction. It follows from [27, 4.1] that Sc is positive �at stable co�brant
and so SE is as well. It is worth noting that, by [12, 7.12], the functor SE ∧ −
preserves weak equivalences.

To see that SE is naturally weakly equivalent to L(S), consider the following
commutative diagram

S S

��

S

��

S

��
S

��

Sc∼oo //

��

SE
∼ // S̃c

L(S) L(Sc)

∼

66

(#)oo

(17)

in SpΣ, where the upper verticalmaps are the unitmaps associated to each com-
mutative monoid comprising the second row. The fact that Sc ∼⟶S is a weak
equivalence implies that (#) is a weak equivalence as well, and this gives the
zigzag of weak equivalences SE ≃ L(S). Furthermore, note that in the (bottom)
zigzag of weak equivalences

S

xx �� �� ((
SE

∼ // S̃c L(Sc)∼oo ∼ // L(S)

(18)

each object is �brant, and so the weak equivalences in fact induce isomor-
phisms on stable homotopy groups (see Remark 1.9). Lastly, note that the left-
most downward arrow in (18) is the unit map S → SE , while the rightmost
downward arrow is the localization map S → L(S). �

Proof of Theorem 1.6. To begin, note that SE is co�brant by Proposition 3.5.
We now show the equivalence (6) claimed in Theorem 1.6. As shown in Propo-
sition 3.5, the weak equivalence SE ≃ L(S) induces an isomorphism on stable
homotopy groups and so remains a weak equivalence after forgetting to Spℕ.
Together with Remark 3.1 and the fact that both SE and L(S) are �brant, this
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shows that the we have isomorphisms

USE ≅ ℛUSE ≅ ℛUL(S) ≅ UL(S) ≅ LE(S) (19)

in the stable homotopy category. Using the comparisons of [18, 0.3], the fact
that LE is smashing, and the naturality shown in (18), we then obtain a com-
mutative diagram

ℛUX

��

�∧id // ℛUSE ∧SℋC ℛUX

≅vv
LE(ℛUX)

(20)

in the stable homotopy category, where � is induced by the unit map S → SE
and the vertical map is the natural localization map [2] of ℛUX. This estab-
lishes (6).

Lastly, we show that the pairing map SE ∧ SE
∼⟶SE is a weak equivalence.

Indeed, by taking X = SE in (20), the “two-out-of-three” property implies that
the unit map ℛUSE → ℛUSE ∧SℋC ℛUSE is an isomorphism in Ho(Spℕ). It
follows from [18, 0.3] that the corresponding map SE

∼⟶ SE ∧ SE is a weak
equivalence in SpΣ, and the fact that there is a retract

SE //

id ##

SE ∧ SE

��
SE

(21)

in SpΣ from the commutative monoid structure of SE then completes the proof.
�

Proof of Theorem 1.1. It follows fromTheorem 1.5 that there is aweak equiv-
alence

ℛU
(
SE ∧ (�nO◦hO(X))

)
≃ ℛU

(
�nO◦hO(SE ∧ X)

)
(22)

in Spℕ. By [18, 0.3] and Theorem 1.6, the left hand side of (22) is weakly equiv-
alent in Spℕ to LE

(
ℛU(�nO◦hO(X))

)
which, since �nO◦hO(X) is �brant, is weakly

equivalent in Spℕ to LE(U�nO◦hO(X)). For the same �brancy reason, the right
hand side of (22) is weakly equivalent in Spℕ to U�nO◦hO(SE ∧ X). This estab-
lishes the �rst weak equivalence of Theorem 1.1.

To see that U(SE ∧ X) ≃ LE(UX), recall that both SE and X are �brant, and
that the former is also co�brant. By [24, 4.10], SE ∧ X is semistable (see [14,
5.6.1]). It follows that U(SE ∧ X) is weakly equivalent in Sp

ℕ to ℛU(SE ∧ X),
the latter of which is weakly equivalent in Spℕ to LE(ℛUX). Since X is �brant,
LE(ℛUX) ≃ LE(UX) in Sp

ℕ, and this completes the proof. �
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4. Identi�cation of the Taylor tower
The purpose of this section is to show the following, which identi�es the

homotopy completion tower with the Taylor tower of the identity functor on
O-algebras and, along with Theorem 1.1, proves Theorem 1.4. Note that, in
this section, we continue to assume O is Σ-co�brant.

Theorem 4.1. For any co�brant O-algebra X, there is a weak equivalence

Pn(id)(X) ≃ �nO◦O(X) (23)

in AlgO.

Aproof of this result appears in [17, 2.21], and is based on an argument given
by Pereira in [20, 4.3]. As [20] has not yet been published, we have included an
alternative proof for the sake of completeness. The authors would like to thank
Nick Kuhn for outlining this di�erent strategy [16].

Remark 4.2. It is worth noting that, if X is 0-connected, Theorem 4.1 can be
obtained as a consequence of the connectivity estimates used to prove [12, 1.12].
We emphasize that Theorem 4.1 makes no connectivity assumptions.

To keep this section appropriately brief, we assume the reader is familiarwith
standard constructions in Goodwillie calculus, both in the context of spaces
and O-algebras (see, for instance, [6], [7], [8], [19], and [20]). In particular,
when working in O-algebras, one often implicitly (pre)composes with functo-
rial (co)�brant replacements to keep things homotopically meaningful.

The strategy of our proof is as follows. To begin, because Pn behaves par-
ticularly well when applied to spectrum-valued functors, it is advantageous to
reduce Theorem 4.1 to proving the result when we consider the functors id and
�nO◦O(−) as landing in SpΣ, which is accomplished by Lemma 4.4. Next, we
consider the free-forgetful adjunction

SpΣ
O◦(−) // AlgOU
oo (24)

and analyze the ntℎ degree Taylor approximation to the free O-algebra functor
in Lemma 4.5. Lastly, to prove Theorem 4.1, we use the fact [10, 1.8] that the
identity functor on AlgO can be resolved as the homotopy colimit of iterates of
the free O-algebra functor.

Remark 4.3. It is common to applyO◦(−) to anO-algebra, in which case one is
implicitly precomposing with the forgetful functor U.

Lemma4.4. SupposeF andG are homotopy functors de�ned on, andwith values
in, O-algebras. If a map F → G induces an equivalence Pn(UF)

∼⟶ Pn(UG),
then it also induces an equivalence PnF

∼⟶PnG.

Proof. Since the positive �at stable model structure on AlgO is induced by the
forgetful functor U, we know that homotopy limits in AlgO are calculated in
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the underlying category SpΣ, and that U re�ects weak equivalences. It follows
from [9, 3.27] and [12, 4.11] that �ltered homotopy colimits in AlgO are also
calculated in the underlying category of spectra. In particular, this means that
the objects of homotopy limits and �ltered homotopy colimits in AlgO are cal-
culated in SpΣ, and theO-algebra structure on that object is then induced by the
naturality of the homotopy (co)limit construction. Hence, the forgetful func-
tor U commutes naturally with the construction of Pn, i.e., we have a natural
equivalence UPn ≃ PnU. �

Lemma 4.5. Consider the map of operads O → �nO. Applying Pn to the in-
duced map UO◦(−) → U�nO◦(−) of endofunctors on Sp

Σ yeilds an equivalence
of functors Pn

(
UO◦(−)

) ∼⟶Pn
(
U�nO◦(−)

)
.

Proof. For any X in SpΣ, note that the following diagram
∐n

k=0O[k] ∧Σk X
∧k (∗) //

id ))

∐∞
k=0O[k] ∧Σk X

∧k

(#)
��∐n

k=0O[k] ∧Σk X
∧k

(25)

in SpΣ commutes, where (∗) is the canonical inclusion and (#) is induced by
mapping O[k] to a point for k > n, i.e., (#) is the map induced by UO◦(−) →
U�nO◦(−). By the “two-out-of-three” property, it will therefore su�ce to show
that applying Pn to (∗) yields a weak equivalence. Towards that end, note that
since Pn naturally commutes with sequential homotopy colimits, we haveweak
equivalences of functors as below.

Pn(
∞∐

k=0
O[k] ∧Σk (−)

∧k) ≃ Pn
(
hocolim

m
(
m∐

k=0
O[k] ∧Σk (−)

k)
)

≃ hocolim
m

Pn(
m∐

k=0
O[k] ∧Σk (−)

k)

(26)

(In fact, for spectrum-valued functors, Pn commutes with all homotopy colim-
its; see [8, 1.7].)

To analyze (26), let us �x m ≥ n. It follows from [8, 3.1] (or [19, 5.24]) that
the functor

X ↦ O[k] ∧Σk X
∧k (27)

in SpΣ is k-homogeneous. Together with the facts that (i) Pn commutes with
homotopy limits and (ii) �nite coproducts and products agree in SpΣ, this shows
that

Pn(
m∐

k=0
O[k] ∧Σk (−)

k) ≃ Pn(
m∏

k=0
O[k] ∧Σk (−)

k) ≃ Pn(
n∐

k=0
O[k] ∧Σk (−)

k) (28)
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Hence, all of the structuremaps in the homotopy colimit in (26) areweak equiv-
alences after them = n term. It follows that the map of functors

n∐

k=0
O[k] ∧Σk (−)

k ⟶
∞∐

k=0
O[k] ∧Σk (−)

k (29)

on SpΣ induced by the canonical inclusion yields an equivalence after applying
Pn, which su�ces to complete the proof. �

Proof of 4.1. It is explicitly shown in [17, 2.21] that �nO◦O(−) is n-excisive.
The desired identi�cation Pn(id) ≃ �nO◦O(−)will therefore follow by showing
an equivalence

Pn(id) ≃ Pn
(
�nO◦O(−)

)
(30)

of functors AlgO → AlgO.
The strategy now is to resolve the identity functor by iterates of the free O-

algebra functorO◦(−). Crucial to the following argument are three of themain
results of [10]. Indeed, it follows from [10, 1.8] that we have aweak equivalence
of functors

id ≃ hocolimBar(O,O,−)∶ AlgO → AlgO (31)

This equivalence holds after composing with the forgetful functor and applying
Pn, i.e.,

Pn(U) ≃ Pn
(
U hocolimBar(O,O,−)

)
(32)

We then have the following weak equivalences of functors, where the construc-
tions in simplicial O-algebras are done levelwise.

Pn(U) ≃ Pn
(
U hocolimBar(O,O,−)

) (1)
≃ Pn

(
hocolimU Bar(O,O,−)

)

(2)
≃ hocolimPnU Bar(O,O,−)

(3)
≃ hocolimPnU Bar(�nO,O,−)

(4)
≃ Pn hocolimU Bar(�nO,O,−)

(5)
≃ Pn

(
U hocolimBar(�nO,O,−)

)

(6)
≃ Pn

(
U�nO◦O(−)

)

(33)

Equivalences (1) and (5) follow from the fact [10, 1.6] that homotopy colimits
of simplicial diagrams in AlgO can be calculated in the underlying category of
spectra, and hence naturally commute with the forgetful functor U.

Next, equivalences (2) and (4) follow from the fact [8, 1.7] that Pn com-
muteswith homotopy colimits of spectrum-valued functors, essentially because
hocolim’s of spectra preserve cartesian cubes. Equivalence (6) follows from the
identi�cation

hocolimBar(�nO,O,−) ≃ �nO◦O(−) (34)

given by [10, 1.10]. Lastly, equivalence (3) is derived as follows.
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Consider the map U Bar(O,O, 0) → U Bar(�nO,O,−) induced by O → �nO.
Applying Pn at simplicial degree one, for instance, gives the top row of the fol-
lowing diagram.

Pn(UO◦O◦−)

��

// Pn(U�nO◦O◦−)

��
Pn

(
Pn(UO◦−)◦O◦ −

)
// Pn

(
Pn(U�nO◦−)◦O◦ −

)

(35)

Lemma 4.5 shows that the bottom row of the diagram above is a weak equiv-
alence, while a straightforward generalization of [1, 3.1] to O-algebras (as de-
tailed in [20, 4.9]) shows that the vertical arrows areweak equivalences. Hence,
the top row is a weak equivalence. Performing a similar analysis at each sim-
plicial degree gives equivalence (3).

To complete the proof, it is a straightforward check that the zigzag of (33)
is compatible with the natural map id ≅ O◦O(−) → �nO◦O(−) induced by the
map of operads O → �nO. Lemma 4.4 then gives the desired equivalence of
(30), completing the proof. �
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