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Variational inequalities for the differences
of averages over lacunary sequences

Sakin Demir

ABSTRACT. Let f be a locally integrable function defined on R, and let (n;)
be a lacunary sequence. Define the operator A,, by

1 ™
g = o [ g -oat
ny o
We prove various types of new inequalities for the variation operator
o 1/s
st(x) = (Z |Ankf(x) - Ank_lf(x)|s>
k=1

when 2 < s < oo.

An increasing sequence (n; ) of real numbers is called lacunary if there exists
a constant 8 > 1 such that n,,,/n, > g forallk =0,1,2,....

Let f be a locally integrable function defined on R. Let (n;) be a lacunary
sequence and define the operator A, by

AnJG) = o f fx—)dt.
0

It is clear that
1

where * stands for convolution. Consider the variation operator

. 1/s
Vif(x) = (Z |Ankf(x) - Ank_lf(x)ls)
k=1

for 2 < s < o. The boundedness of the variation operator V,f provides an
estimate on the speed (or rate) of convergence of the sequence {4, f}.
Various types of inequalities for the two-sided variation operator

© |4 x+2" 1 x+2n71 s\
Vif) =2 z—f f(t)dt—zn_lf f@)dt
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when 2 < 5 < oo have been proven by the author in Demir, S. [1]. In this
research we prove that same types of inequalities are also true for any lacunary
sequence (n;,) for the one-sided variation operator V,f(x) for 2 < s < oo.

Lemma 1. Let (ny) be a lacunary sequence with the lacunarity constant f3, i.e.,
Nip1 /M = B> 1forallk =0,1,2,... If 1 < s < oo, then there exists a sequence
(m;) such that

m.
62 > mj—H >B>1
J
forall j and

. 1/s . 1/s
(Z |Ankf<x>—Ank_1f<x)|S) <[ 214 F) = Ay FOIS
k=1 j=1

Proof. Let us start our construction by first choosing m, = ny. If
n
2 > A >
p* 2 n, 2 B

define m; = n;. If ny /ny > B2, let my = Bn,. Then we have

m; _ fng
‘62 > WO = n_O = ﬁ > ﬁ
Also,
o > ﬁzno — 8.
m; — fng

Again, if ny/m; < B2, then choose m, = ny. If this is not the case, choose
m, = f3?n, < ny. By the same calculation as before, m, m;, m, are part of a
lacunary sequence satisfying

m
522%26>1.
k

To continue the sequence, either m; = n; if n;/m, < p? or my = B3n, if
ny/m, > 2.

Since 8 > 1, this process will end at some k, such that m; = n,. The remain-
ing elements m, are constructed in the same manner as the original n;, with
necessary terms added between two consecutive n;, to obtain the inequality

m
B2 > Dkl >8> 1.
my
Let now

T = 4§ ey <my < mih.
Then we have

Ankf(x) - Ank_lf(x) = Z (Amjf(x) - Amj_lf(x))

Jjelk)
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and thus we get
|An ) = Ap FQOI = | D) (A, F(X) = A, (X))
Jjelk)

< Z |Amjf(x) - Amj,lf(x)|~

JEI (k)
This implies that

D A fO) = A FOI S DT D0 1A f() = Ay f(X).
k=1

k=1 jeJ(k)
= 2 A, F) = Ay, fOOI.
j=1
Thus, we have

© l/S © l/S
(Z |Ankf<x>—Ank_1f(x)|S) <[ 2 1A F) = Ay FOIS
k=1 j=1

and this completes the proof.

Remark 2. We know from Lemma 1 that
1/s

(o] 1/s (o]
(Z | A, f(0) = Ank_lﬂx)w) <[ 2 1A F) = Ay fOI°
k=1 j=1

and the new sequence (m;) satisfies
m .
2> i >B>1
Pr2p
for all j € Z*. Therefore, we can assume without loss of generality that
n
52 > Tkl > ﬁ >1
Ny
for all k € Z* when we are proving any result for Vy(x).
Since

1 n np, n; Nk_1
N N, ny Ny ne
we can also assume that
1 1
R S -
n, — pak-1)

forallk =0,1,2,....

1101

Lemma 3. Let (n;) be a lacunary sequence, and let y denote the smallest positive

integer satisfying

1
ﬁ+ﬁ§1.
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Ifi>j+7,0<y<njandn; <Xx <n,then
Xyy+n)(X) = Xon)(x) =0
unless k = i in which case
X410 = X0.n)(X) = X(ny+n,)-

Proof. Since (n;) is a lacunary sequence, there exists a constant § > 1 such
that ny,;/n, > g for all k. We can assume that

x> M
k

for all k by Remark 2. Since we have

P e
N Mg Ny ny
and
1 Ny 1
=< < —
B~ Mgy~ BRI
for all k, we see that
1 n 1
<tl<— )

pAk=D = ny = k-l
for all k > I. Let y denote the smallest positive integer satisfying

l+i§1.

BB
We see from (2) that
nj + Ny < Nyeyq (3)

forall k > j + y — 1. Itis easy to see that for k > i,

0<y<sn;<n<x<ny <n<y+n,
and this implies that

[ X041 ) = X0m0 )]+ Xy (X) = O
For k <i— 1, we see by (3) that

N <y+mn<nj+n_,<n.
Then we have
X410 * Xnin)(X) = X (000X * Xnniny) = 0-
Suppose now that k = i; by (3), we have
y<m<y+nsnj+n<ny
and this implies that
Xy+n)X) = X00)(X) = X@y4n) * Xnini)X) = X(npy+n)()- O
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Let
$3) = 2Ty
and define the kernel operator K : R — ¢5(Z%) as
K(x) = {¢r(x) — pr_1()}kez+

It is clear that

Vsf () = 1K # fOllesz+

o 1/s
(Z i * F(X) — Py * f(x)ls)
k=1

o 1/s
(Z |Ap, f(xX) — Ank_lf(x)ls)

k=1

where * denotes convolution, i.e.,

K # f(x) = f KGx—y)- f)dy.

Let B be a Banach space. We say that the B-valued kernel K satisfies the D,
condition, for 1 < r < oo, and write K € D,, if there exists a sequence {cl}fil of
positive numbers such that 3}, ¢; < co and such that

1/r
(f ||K<x—y>—1<(x)||%dx> < alSi(lyDI=",
Si(yD

forall ] > 1and all y > 0, where S;(|y|) denotes the spherical shell 2!|y| <
Ix] <2%lyand L + L =1.
r r’
When K € D, we have the Hérmander condition:

/ IK(x —y) —K(x)||pdx < C
lx|>21y|

where C is a positive constant which does not depend on y > 0.

Lemma 4. Let y denote the smallest positive integer satisfying
1 1
—+—=<1

BB

andlet1 <r,s <oo,i> j+y,and0<y <n; Then

Nit1 1/r
1/r-1
(/ ”K(x - }’) - K(x)||:;s(z+) dx) < Cini ’
n

i

i.e.,, K satisfies the D, condition for1 <r < co.
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Proof. Let
Pp(x,y) = Pp(x — ¥) — Pp(x).
Then it is easy to check that
K(x —y) = K(x) = {®(x, ) = Qp_1(x, V}kez+-
On the other hand, because of a property of the norm we have
IK(x = y) = K(X)||esz+) = [|Pr(x,¥) — Prr (X, V)l sz
<@k e Wleszy + 1Pr—1 (6, Vlesz+y
< 2[|@p_1 (X, Y)les(z+ys
where x and y are fixed and ||®y_;(x, y)||¢s(z+) is the £5(Z*)-norm of the se-

quence whose k™-entry is @, (x, y).
We now have

Nit1 1/r
( [ =) = KGOl )

i1 1/r
<2 (f ”ch 1(x y)||gs(z+) )
n,

1

i1 1/r
< Z(f ”q)k 1(x y)||gl(z+) )
n,

1
r 1/r

ity 1
=2 — d
/r; Z Ny )((ni,y+nl-)(x) X

i ni<nyp_,

r 1/r

ity 1
=2 f Z m%(ni,y+ni)(3(:) dx
n,

i ni<nj_1
1 1 Ry 1/r
2 (62 + 1-4 52> : E : (j}; X(ni,y+ni)(X) dx)

2<‘32+ 1 )lyl/r

IA

1-— 52 n;
1 1 1/r-1
2
(‘6 1- 52> g
where in the last inequality we used
n;
y<n;=< 3]

by (2), and this completes our proof with

1 1
— 2
€= 2<ﬁ "7 —62) B’
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Lemma 5. Let {n;} be a lacunary sequence. Then there exists a constant C > 0
such that

D 1(x) — ()] < €
k=1

forall x € R, where ¢, (x) = L X(0,n)(X), and by is its Fourier transform.
Ny

Proof. First, note that we have

o . 0 1 — e—ixmy 1 — e~ XM
I(x) = 1§1 [Pk (x) = P11 (X)| = kZ::l pR——
Let
)=, 1@ =F@l+ D 1) =P ()] = L(x) + (%)
{k:|x|n>1} {k:|x|n <1}

Let us now fix x € R and let k, be the first k such that |x|n; > 1. Since ¢, (x)
is an even function, we can assume without the loss of generality that x > 0.

We clearly have
4
Li(x) < Z

ke xms1y [ X17

Since the sequence {n;} is lacunary, there exists a constant § > 1 such that
Nyy1/My 2 Blorallk € N. Also note that in the sum, I, the term with index n|
is the term with smallest index, since it is the first term that satisfies condition
|x|n, > 1 and the sequence {n,} is increasing. On the other hand, we have

Ry, Ry, . Ricy+1 . Ry 42 M 1
M Mgl Migsz Miges M BE
‘We now have
nws ¥ oo
{le: x|y} 11K
4l’lk0

fh: x>y 117 M
4 Ry,

X170k, g a1y ™

<4 1

{k:x|me21} B

. 1
simce

n 1 .
<land = = TR Also, since

xnko ng
i 11
ﬁ_ ’

k=1
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we clearly see that I;(x) < C; for some constant C; > 0.
To control the summation I, let us first define the function F as

_ p—ir
Fory=12¢"

Then we have ¢, (x) = F(xn,). Now by the Mean Value Theorem, there exists
a constant ¢ € (xny, xny,,) such that

|F(xnycyq) — Fxmp)| = [F/ ()| xRy — xngcl.
Also, it is easy to verify that

xX+2
x2

|F'(x)] <

for x > 0.
Now we have

|F(xny1) — F(xn)| = [F/(O|Xnyeq1 — xng
< £+2
< E
XNjqq + 2
< %Pﬂ(nkﬂ — )
x2n;

_ 2Ny
= —— (M1 — k).
o

| x| (M1 — 1ye)

Thus, we have

Lx)= ). |F(xngy)—F(xny))

{k:]|x|n, <1}
2 2Ny 4
< <. — (M1 — 1)
{k: |x|n<1} L

R Ny

2
4"k+1<1 1 )

- 2
tk: Ixme<1y 1]

~ 16 ( 11 )
i eme<ny XA\ Ty

161 1
x| \ny Mg
16

- |x|nk0+1
< 16.

‘We thus conclude that
Ix)=L(x)+ L(x) <C; +16 :=C
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for all x € R and this completes our proof. O

Lemma 6. Lets > 2 and (n; ) be a lacunary sequence. Then there exits a constant
C > 0 such that

1Vsfllrzw) < Cllf 2wy
forall f € L*(R).

Proof. Since
[e6] (o]
D0 18k(x) = B (12 < D i) = ey ()1,
k=1 k=1
it is clear from Lemma 5 that there exists a constant C > 0 such that
[o]
D 1) = ()P < €
k=1

for all x € R.
‘We now obtain

2/p
1Vsf 2wy = P * f(X) — Pre—y * f(x)|p> dx

~
Il
—

Ms

[Brc # FOO) = prey * f(0)]” dx

=~
Il
—_

IA
Mg s=— 5—
Ms

|$ic () = ey fOO|” dx

=~
Il
—

I
M s

|(Be = $r) * FEO)[ dx

~
I
—

A FOOP dx (Ap(x) = i () — pr_q (X))

—

|Ax * f(x)|>?dx  (by Plancherel’s theorem)

I
M

=~
Il
—

AP - 1f ()17 dx

I
M s

1
e
M8 $— s$— s5— 55— 55—

=~
I
—

—~

A7 - 1f ()] dx

T
T

=~
Il
—_

|61() = i1 (I - | f ()] dx

Ms

< Cf |f (o)1 dx
R
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=C f |f(x)|*?dx (by Plancherel’s theorem)
R

= C”f”iZ(R)
as desired. O

Remark 7. Since for s > 2, we have proved in Lemma 4 that the kernel operator
K(x) = {¢(x) — pr_1(x)}ez+ satisfies the D, condition for 1 < r < o0, it
specifically satisfies D, condition. We also have proved in Lemma 6 that Tf =
{(¢x — Pr—1) * flkez+ is a bounded operator from L3(R) to LZS(ZJr)(IR{) since

IK s flleszey = Vsf(x). Therefore, Tf = {(¢x — ¢x—1) * flez+ is an
¢*-valued singular operator of convolution type for s > 2.

Lemma 8. Let A and B be Banach spaces. A singular integral operator T map-
ping A-valued functions into B-valued functions can be extended to an operator
defined inall L¥, 1 < p < oo, and satisfying

@ TSNz < Cpllfllze, 1< p < oo,

(D) ITfllwry < Call Il
i) TSy < Collfllan»
() [ITfllemos) < Csllf lleocay, f € L°(A),
where Cp,C1,C5,C3 >0, and L (A) is the space of bounded functions with com-
pact support.

Proof. This is Theorem 1.3 of Part IT in Rubio de Francia, J. L. et al [5]. O

The following theorem is our first result:

Theorem 9. Let2 < s < oo, and let (n;) be a lacunary sequence. Then there
exits a constant C > 0 such that

Vs fllnw < Cllfllmw)
forall f € HY(R).

Proof. This follows from Remark 7 and Lemma 8 (iii) since ||[K * f(x)||¢s(z+) =
st (x) [l

Remark 10. We have proved that Tf = {(¢ — $r—1) * flrez+ is an ¢*-valued
singular operator of convolution type for s > 2. By applying Lemma 8 to this
observation we also provide a different proof for the following known facts for
s > 2 (see [4]) since |[K * f(X)||¢s(z+) = Vsf(X).

@ 1Vsf llo@y < Cpllflle@y 1 <p <o,
(11) 1Vsfllwrrwy < Crllf L)
(i) |Vsfllemom) < CollfllLo@mys [ € L°(R),

where C,, Cy,C; > 0.
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Letw € LIIOC(IR) be a positive function. We say that w is an A, weight for
some 1 < p < oo if the following condition is satisfied:

1 p-1
sgp(ﬁ [w(x) dx) (% —/Iw(x)_t: dx) < o0,

where the supremum is taken over all intervals I in R.
We say that the function w is an A, weight if there exist 6 > 0 and € > 0 such
that given an interval I in R, for any measurable E C I,

IE| <6-I| = w(E) <A —¢)-wd).

w(E)=/w.
E

It is well known and easy to see thatw € A, = w € A, if1 < p < co.
We say that w € A; if given an interval I in R there is a positive constant C such
that

Here

% f w(y)dy < Cw(x)
I

forae. x €.

Lemma 11. Let A and B be Banach spaces, and T be a singular integral operator
mapping A-valued functions into B-valued functions with kernel K € D,, where
1 <r < co. Then, forall1 < p < oo, and for all (f;) € Lfl(w) N Lfl(IR”), the
weighted inequalities

1/p 1/p

TSl < Cpp@) || S UFI,

! LP(w) / LP(w)
holdifw € Apjandr’ < p < oo, orifw € A;,’ and 1 < p < r'. Likewise, if
w(x)' € A,, then the weak type inequality

1/p 1/p

w|{x: | Sirsels| > at|<cws [|Sisel| weodx
J J

holds for all (f;) € L, (w) n L} (R™).
Proof. This is Theorem 1.6 of Part II in Rubio de Francia, J. L. et al [5]. O

Our next result is the following:
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Theorem 12. Let2 < s < oo. Then, forall1 < p < oo, and for all (f;) €

LP(w) N LP(R), the weighted inequalities
1/p 1/p
2Vt F < Cppw) || 2011
! LP(w) ! LpP(w)
hold ifw € A and v’ < p < oo, orifw € A;’ and 1 < p < r'. Likewise, if
w(x)" € A,, then the weak type inequality
1/p 1/p

w|ix: [ZOr| > 2| <y f SR | wedx
J J

holds for all (f;) € L'(w) n L'(R).

Proof. We have proved for 2 < s < oo that Tf = {(¢x — Pr—1) * flrez+ isan
¢*-valued singular integral operator of convolution type and its kernel operator
K(x) = {¢r(x) — $r_1(x)}kez+ satisfies D, condition for 1 < r < co. Thus, the
result follows from Lemma 11 and the fact that [|K * f(X)||zsz+) = Vs f(x). O

In particular we have the following corollary:

Corollary 13. Let 2 < s < oo. Then the weighted inequalities

1Vef o) < Crp@) 1S lngey

hold for all (f;) € Lﬁ(w) N Lﬁ(lR”) ifwe Ay and r'<p<o,orifwe A;’
and1 < p <r'. Likewise, ifw(x)" € A, then the weak type inequality

w(ix : VfG) > 2) < Cow)} [ 1ol d
holds for all (f;) € L'(w) n L}(R).
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