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On terms in a dynamical divisibility
sequence having a �xed G.C.D

with their indices

Abhishek Jha

Abstract. Let F and G be integer polynomials where F has degree at least
2. De�ne the sequence (an) by an = F(an−1) for all n ≥ 1 and a0 = 0. Let
ℬF, G, k be the set of all positive integers n such that k ∣ gcd(G(n), an) and if
p ∣ gcd(G(n), an) for some p, then p ∣ k. Let AF, G, k be the subset of ℬF, G, k
such thatAF, G, k = {n ≥ 1 ∶ gcd(G(n), an) = k}. In this article, we prove that
the asymptotic density of AF, G, k and ℬF, G, k exists for a class of (F, G) and
also compute the explicit density ofAF, G, k andℬF, G, k for G(x) = x.
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1. Introduction
Let F(x) ∈ ℤ[x] be a polynomial with positive leading coe�cient and de-

gree at least 2, then we de�ne the sequence (an) recursively as an = F(an−1)
and a0 = 0. That is, an denotes the n-th composition of F with itself evalu-
ated at 0. If (an) contains �nitely many distinct terms, then 0 is said to be a
preperiodic point, which means that there exist distinct integers m and n such
that am = an. If the sequence (an) contains in�nitely many distinct terms,
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then 0 is a wandering point. For the rest of the article we assume that 0 is a
wandering point or that the sequence is unbounded.

One can see that the sequence (an) is a divisibility sequence, that is, an ∣
am for n ∣ m. Such dynamical sequences share many characteristics with their
well-known cousins: sequences arising from algebraic groups such as Lucas se-
quences and elliptic divisibility sequences. Divisibility sequences such as Lu-
cas sequences or elliptic divisibility sequences have been recently studied, and
relations between these sequences and their indices are of particular interest.
For example, index divisibility sets have been investigated in the case of linear
recurrences [2] or elliptic divisibility sequences [18], and particular character-
izations for such sets have been discovered. The authors in [16] have consid-
ered the case where the n-th term in a Lucas sequence shares a �xed gcd with
n. Analogous results for elliptic divisibility sequences have been investigated
in [10]. In the dynamical setting, the index divisibility set for the polynomial
xd + c ∈ ℤ[x] was studied in [5]. In this survey [20], a complete account of
these results is mentioned.

Authors in [6] ask if the methods employed in [10] or [16] based on the rank
of apparition function for such sequences could be translated to the dynamical
setting to get more concrete results. Building on that, here in this article we
study the gcd relations of these dynamical divisibility sequences with their in-
dices based on the crucial rank of apparition function, which we de�ne in the
following.

De�nition 1.1. We de�ne oF(n), the rank of apparition of n in (ar), to be the
period of 0modulo n. That is,

oF(n) ∶= {
min{r ≥ 1 ∶ n ∣ ar}, if it exists
∞, otherwise.

Similarly, we set lF(n) ∶= lcm(n, oF(n)) whenever oF(n) < ∞. Lastly, we
de�ne

IF(n) ∶= {
1∕lF(n), if oF(n) < ∞
0, otherwise.

Next, we characterize sets of indices with properties identical to those de�ned
in [10] or [16]. For G(x) ∈ ℤ[x], we denote ℬF, G, k to be the set of positive
integers n satisfying the following conditions:
(1) k ∣ gcd(G(n), an),
(2) If p ∣ gcd(G(n), an) for some p, then p ∣ k.

We denoteAF, G, k to be the subset ofℬF, G, k de�ned by

AF, G, k = {n ≥ 1 ∶ gcd(G(n), an) = k}.

For ease of notations, we let ℬF, k = ℬF, x, k and AF, k = AF, x, k unless stated
otherwise, as we consider the case of G(x) = x till Section 5. It can be seen
that in the previous work,ℬF, k was used as an auxiliary tool to �nd the density
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ofAF, k and did not have any speci�cations of its own. However, in dynamical
sequences, we shall see that this set has an importance of its own.

In this article, we deal with the class of polynomials de�ned below.

De�nition 1.2. A polynomial F(x) ∈ ℤ[x] is said to be dynamically de�cient
if the sum ∑

p∣ap

1
p (1.1)

is �nite.

We give a detailed overview of dynamically de�cient polynomials in the next
section. In spirit of the work done in [10] or [16], we investigate the asymptotic
densities of the sets ℬF, k and AF, k for polynomials F(x) ∈ ℤ[x] of degree at
least 2. Our �rst theorem establishes that these sets have positive density in
positive integers if they contain at least one element. The methods used in this
paper are somewhat similar to the ones used in [10]. Twomain ideas thatwe ex-
ploit in this paper are the properties of rigid divisibility sequences and the results
on the proportion of primes that divide at least one term of the sequence (an),
which have been illustrated in [3]. These ideas, in conjunction with the already
known methods, help us obtain density estimates. Moreover, we are also able
to characterize ℬF, k and AF, k with certain assumptions on the polynomial F
(Lemma 4.1). We now proceed to state our �rst theorem.

Theorem 1.3. Let F(x) ∈ ℤ[x] be a polynomial of degree at least 2. For any
�xed positive integer k,
(1) The asymptotic density ofℬF, k exists and is positive if and only ifℬF, k ≠ ∅.
(2) If F has linear coe�cient zero, thenAF, k has a positive asymptotic density if

and only ifAF, k ≠ ∅.

Our second result provides an expression for the asymptotic densities of these
sets in terms of IF(n).

Theorem 1.4. Let F be a dynamically de�cient polynomial of degree at least 2
and � be the Möbius function. Then for any �xed positive integer k,
(1) The asymptotic density ofℬF, k is equal to

∑

gcd(d, k)=1
�(d) IF(dk).

(2) The asymptotic density ofAF, k is equal to
∞∑

d =1
�(d) IF(dk).

Our last theorem shows that the asymptotic density of the setAF, ax+b ,1 exists
and is positive for any F(x) ∈ ℤ[x]. The author of [9] found that the analytic
density of the set of primes that divide at least one element of (an) is zero for
speci�c families of polynomials. This allows for a strengthening of this theorem
for speci�c F, as pointed out at the end of the article (see Remark 6.2).
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Theorem 1.5. Let F and G be integer polynomials where F has degree at least 2
andG is a linear polynomialwith coprime coe�cients; then the asymptotic density
ofAF, G ,1 exists and is positive.

Notations. Throughout the article, the letters p and q denote prime numbers
and P denote the set of prime numbers. For any set of integers S, we denote
S(x) = S ∩ [1, x].We de�ne

d(S) = lim
x→+∞

#S(x)
x

if the limit exists. For a subset G of P, we de�ne

D(G) = lim
x→+∞

#G(x)
#P(x)

.

We employ the Landau-Bachmann notationO and o as well as their associated
Vinogradov notation≪ and≫ .

The paper is organized as follows. In Section 2, we discuss the properties
and distribution of dynamically de�cient polynomials. In Section 3, we include
some preliminary results of di�erent �avors based on the sequence (an). In
Section 4, we study the structure of setsAF, k andℬF, k and also prove Theorem
1.3. In Section 5, we give explicit expressions for the asymptotic densities of
AF, k andℬF, k for dynamically de�cient polynomialsF, thus proving Theorem
1.4. Finally, in Section 6, we prove Theorem 1.5 and highlight some di�culties
we face in proving variants of Theorem 1.3 and 1.4 for G(x) ≠ x.

Acknowledgments. I would like to thankEmanuele Tron and SeoyoungKim
for looking at the article and providing valuable comments to improve its qual-
ity. I am thankful to Peter Mueller, David Speyer and Will Sawin for their an-
swers on MathOver�ow post [7] and Thomas Tucker for helpful discussions
regarding the Proposition 2.2 of the paper. I am grateful to Ayan Nath for his
constant support and helpful advice. I am indebted to the anonymous referee
for helpful comments.

2. Discussion on dynamically de�cient polynomials
In this section, we discuss the distribution and examples of dynamically de-

�cient polynomials. We provide a partial description of these polynomials in
Proposition 2.1, which gives us evidence that these polynomials are not rare.
This characterization, combinedwith previous �ndings, helps identify some ex-
amples of dynamically de�cient polynomials. We �nish this section by demon-
strating that almost all polynomials of degree d are dynamically de�cient, sup-
porting our intuition.

We let SF be the set of primes p for which oF(p) = p. Using an analysis
of the cyclic structure of the polynomial map in ℤ∕pℤ, we get p ∈ SF if and
only if F is a cyclic permutation of Fp. Based on this implication, we present
a classi�cation of polynomials that are bijective in Fp for in�nitely many p,
which in turn is a simpli�ed form of [21, Theorem 2].
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Proposition 2.1. If '(x) ∈ ℤ[x] is bijective in Fp for in�nitely many p, then it
is a composition of linear polynomials cx + d ∈ ℚ[x] and Dickson polynomials
Dq(x, a) with a ∈ ℤ where q is an odd prime and a = 0 if q = 3. (The unique

polynomialDn(x, a)withDn
(
x + a

x
, a

)
= xn+

(a
x

)n
is calledDicksonpolynomial

of degree n and parameter a.)

Utilising the ideas above, we give some examples of dynamically de�cient
polynomials below.
(1) Let F(x) ∈ ℤ[x] be a polynomial of the form xd + xe + c with d > e ≥ 2.

By [6, Proposition 7 -(4)], if d ≢ e (mod p − 1), p > d and p ∤ c then,

p ∉ SF if gcd(d − e, p − 1) < log2 p.

Thus, if p > max(3d, c), then p ∉ SF . Therefore, one can observe that F
is dynamically de�cient, since there are �nitely many primes belonging to
the set SF , implying that the sum

∑
p∈SF

1∕p is �nite.
(2) If degF is even and 0 is a wandering point for F, then it cannot be clearly

expressed in the form stated in Proposition 2.1. Thus, it is a cyclic permu-
tation in Fp for �nitely many p, indicating that F is dynamically de�cient.

Based on some numerical evidence and arguments in [6] for the case F(x) =
xd +c, it was hypothesised [6, Hypothesis 6.1] that when d = 3, the probability
that a prime p > 2|c| satis�es p ∈ SF is 1.812∕(p − 1). Thus, we can argue that
the expected value of the sum

∑

p∈SF

1
p

is equal to
∑

p<2|c|
p ∈SF

1
p +

∑

p>2|c|
p ∈SF

1.812
p ⋅ (p − 1)

which is �nite. Therefore, one would expect that all polynomials of the form
xd + c are dynamically de�cient. Below, we provide an argument stating that
almost all polynomials of degree d ≥ 5 are dynamically de�cient. The proof is
essentially based on David Speyer’s answer at [7].

Proposition 2.2. Almost all monic polynomials F of degree d ≥ 5 are dynami-
cally de�cient.

Proof. We denoteG as the Galois group of F(x)−t overℂ[t]where t and x are
assumed to be algebraically independent over ℂ.

We know that almost all monic polynomials of degree d have Galois groupG
isomorphic to the symmetric group Sd. It follows that these polynomials are not
expressible as compositions of linear and Dickson polynomials as these com-
positions have solvable Galois groups [21, Theorem 3.11-(i),(ii)] while Sd is not
solvable for d > 4.By Proposition 2.1, this immediately leads to the fact thatF is
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bijective in Fp for �nitely many p. Thus, we conclude that the sum
∑

p∈SF
1∕p

is �nite. �

3. Preliminaries
The following lemma discusses some general properties of dynamical divis-

ibility sequences (ar).

Lemma 3.1. Let n and r be two positive integers and let p be a prime such that
each of oF(n), oF(r) and oF(p) exists, then
(1) n ∣ ar if and only if oF(n) ∣ r.
(2) oF(lcm(n, r)) = lcm(oF(n), oF(r)).
(3) n ∣ gcd(r, ar) if and only if lF(n) ∣ r.
(4) lF(lcm(n, r)) = lcm(lF(n), lF(r)).
(5) lF(p) = p ⋅ oF(p) if oF(p) < p.
(6) AF, k is nonempty if and only if k = gcd(lF(k), alF(k)).

Proof. The�rst four statements are basic properties of the divisibility sequences,
and their proofs are given in [10, Lemma 2.3]. For (5), note that if oF(p) < p,
then gcd(oF(p), p) = 1 and hence the result.
The proof of (6) follows directly from arguments in [10, Proposition 2.4] and
[16, Lemma 2.2]. However, we include it here for completeness. Since n di-
vides bothlF(n) andalF(n),weknown ∣ gcd(lF(n), alF(n)) for alln.Thus if k ∈
AF, k, thenk = gcd(n, an) for somen.By 3, this indicates that gcd(lF(k), alF(k)) ∣
gcd(n, an) = k and k = gcd(lF(k), alF(k)). �

When investigating these sequences, a simple question arises: Howmanyprimes
show up as divisors in the �rstN terms of (an)? To answer this question, we de-
�ne the set Q� to count these primes and determine the rate at which #Q�(x)
grows.
For each � > 0 and a dynamical sequence (an), we de�ne the set

Q� = {p ∶ oF(p) ≤ � ⋅
log p
log d

}

where d = degF. We present the dynamical analogue of a folklore argument
implicit in [8, Section 3, p. 212] and [10, Lemma 2.6] to bound the cardinality
of Q�(x). The estimates obtained here are similar to [1, Theorem 1.1i].

Lemma 3.2. For each � > 0, there exists a constant C such that #Q�(x) < C x�
for all x ≥ 1.

Proof. From the de�nition of Q�(x), we observe that

exp (#Q�(x)) ≤ 2 ⋅
∏

p∈Q�(x)
p.

Therefore, we have that
#Q�(x) ≤ log 2 +

∑

p∈Q�(x)
log p. (3.1)
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Moreover, oF(p) ≤ � ⋅ log p∕log d ≤ � ⋅ log x∕log d for each prime p ∈ Q�(x),
which shows that

p ∣ a oF(p), whenever oF(p) ≤ � ⋅ log x∕log d.

This, in turn, leads to following divisibility
∏

p∈Q�(x)
p ∣

∏

n≤�⋅log x∕log d
an,

which along with (3.1) reduces to

#Q�(x) ≤ log 2 +
∑

n≤�⋅log x∕log d
log |an|.

Also, by [22, Theorem 1], if we set

� = lim
n→+∞

a1∕d
n

n ,

then � is either an integer or irrational number greater than 1. Furthermore,
based on a classical technique for analysis of polynomial recursions in [22, Sec-
tion 2], we get that an = A�dn + B + O(�−dn) where A and B are algebraic
numbers depending only on F. As a result, we conclude that

#Q�(x) ≪
∑

n≤�⋅log x∕log d
dn ≪ d

�⋅ log x
log d = x�,

as desired. �

Remark 3.3. It can be seen that the bounds for the rank of apparition of primes
in the case of Lucas sequences and elliptic divisibility sequences have been
proven in [16, Lemma 2.4] and [10, Lemma 2.6] respectively. Let (Dn)n≥1 be
an elliptic divisibility sequence and let rn be the rank of apparition for n for the
elliptic divisibility sequence, that is,

rn = min{r ≥ 1 ∶ n ∣ Dr}.

Then for all x, � > 0, it is shown in [10, Lemma 2.6] that

#{p ≤ x ∶ rp ≤ p�} ≪ x3� .

However, current techniques seem insu�cient to prove such bounds in the
dynamical case as the growth rate of the sequence (an) is quite large as com-
pared to that of linear recurrences or elliptic divisibility sequences. As a result,
we get a logarithmic factor in our bounds.

It has been conjectured based on some numerical experiments in [4, Conjec-
ture 18.3] and [17, Conjecture 14] that the bounds obtained for Lucas sequences
or elliptic divisibility sequences hold for their dynamical cousins as well.

Our next lemma is a dynamical analogue of sums in [12] and a somewhat
stronger analogue of [17, Theorem 11]. Although, the crucial idea is same.



ON THE G.C.D. OF POLYNOMIAL MAPS AND THEIR INDICES 1159

Lemma 3.4. Let ", � > 0 and � ≥ 0 be three constants such that � = " − � > 0
and � + � < 1. Then,

∑

p>z

(log p)�

p ⋅ oF(p)"
≪ 1

(log z)�
.

Proof. We divide our summation into two parts;
∑

p>z

(log p)�

p ⋅ o(p)"
= S1 + S2

where S1 is the summation over the primes not in Q� and S2 is the summation
over the rest of primes. For S1, by the de�nition of Q� and the fact that n-th
prime pn is at least n ⋅ log n for n ≥ 2 [14], we obtain the following,

∑

p≥z
p∉Q�

(log p)�

p ⋅ oF(p)"
≪

∑

z ≤p≤pz

1
p ⋅ (log p)�

+
∑

p≥pz

1
p ⋅ (log p)�

≪ 1
(log z)�

+
∑

x ≥z

1
x ⋅ (log x)1+�

≪ 1
(log z)�

+ ∫
∞

z

dt
t(log t)1+�

≪ 1
(log z)�

+ 1
(�) ⋅ (log z)�

≪ 1
(log z)�

.

For S2, it follows from partial summation that
∑

p≥z
p∈Q�

(log p)�

p ⋅ oF(p)"
≤

∑

p≥z
p∈Q�

1
p1−� ⋅ oF(p)"

≤
∑

p≥z
p∈Q�

1
p1−�

=
#Q�(t)
t1−�

|||||||

∞

t=z
+ (1 − �) ∫

∞

z

#Q�(t)
t2−�

dt

≪ 1
z1−�−�

.

Thus, we obtain
∑

p>z

(log p)�

p ⋅ o(p)"
≪ 1

(log z)�
+ 1
z1−�−�

≪ 1
(log z)�

,

as desired. �

For a given setℒ of integers, the set of its non-multiples is de�ned as

N(ℒ) = {n ≥ 1 ∶ s ∤ n for all s ∈ ℒ} (3.2)

We shall be using the following lemma regarding such sets.
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Lemma 3.5. Ifℒ is a set of positive integers such that
∑

s ∈ℒ

1
s < ∞,

thenN(ℒ) has an asymptotic density. Moreover, if 1 ∉ ℒ, thenN(ℒ) has posi-
tive asymptotic density.

Proof. See [16, Lemma 2.3]. �

Next, we discuss a particular class of divisibility sequences known as rigid
divisibility sequences. An integer sequence (bn) is a rigid divisibility sequence if
for every prime p, the following two properties hold:
(a) If �p(bn) > 0, then �p(bnk) = �p(bn) for all k ≥ 1, and
(b) If �p(bn) > 0 and �p(bm) > 0, then �p(bn) = �p(bm) = �p(bgcd(n,m)).

Lemma 3.6. Let '(x) ∈ ℤ[x] be a non-constant polynomial whose linear coef-
�cient is zero, then the sequence ('n(0))n≥0 is a rigid divisibility sequence.

Proof. See [13, Proposition 3.1, 3.2]. �

The following result gives information on the analytic density of primes p
that do not divide any term of the sequence (an). We need a simpli�ed variant
of [3, Theorem 3.1] for our purposes.

Lemma 3.7. Let '(x) be a polynomial with integral coe�cients and degree at
least 2. LetA andT be �nite subsets of ℤ such that the forward orbit

O'(z) = {z, '(z), '2(z), …}

is �nite for all z ∈ A with a possible exception of at most one integer and in�nite
for all z ∈ T. Then, there exists a positive integerM and a positive analytic density
of primes p such that for any 
 ∈ T, any � ∈ A, any p ∈ P, and anym ≥ M,

'm(
) ≢ � (mod p).

Proof. See [3, Theorem 3.1]. �

Our next lemma gives a modi�ed version of Mertens’ formula [19, Chapter
I.1, Theorem 11] for primes that divide at least one term of the sequence (an).

Lemma 3.8. There exist constants B0 and 
 ∈ (0, 1] such that for B ≥ B0, we
have,

∏

q ≤B
oF(q) <∞

(1 − 1
q) ≫

1
(log B)1−


.

Proof. Let '(x) = F(x) and T = A = {0}, then we know that an = 'n(0)
is unbounded. Therefore, we can apply Lemma 3.7 to these sets to obtain a
positive analytic density of primes p such that an ≢ 0 (mod p) for all n ≥ M
whereM is an absolute constant.
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Let ℒ be the set of primes p such that oF(p) = ∞. Then by the arguments
above, we have that D(ℒ) > 0. First, we handle the case when D(ℒ) < 1 and
so we let D(ℒ) = 
 for 
 ∈ (0, 1). Therefore,

∑

q ≤B
q ∈P⧵ℒ

log (1 − 1
q) = −

∑

q ≤B
q ∈P⧵ℒ

1
q + O(1).

We know from elementary calculations that
∑

q ≤B
q ∈P⧵ℒ

1
q = (1 − 
) ⋅ log log B + O(1).

This gives us a bound
∑

q ≤B
q ∈P⧵ℒ

log (1 − 1
q) = −(1 − 
) ⋅ log log B + O(1)

from which, we get the inequality
∏

q ≤B
q ∈P⧵ℒ

(1 − 1
q) ≫

1
(log B)1−


.

Now, note that in case D(ℒ) = 1, repeating the same arguments as before, we
get that

∑

q ≤B
q ∈P⧵ℒ

log (1 − 1
q) = −o(log log B) + O(1),

which leads to
∏

q ≤B
q ∈P⧵ℒ

(1 − 1
q) ≫

1
(log B)o(1)

≫ 1
(log B)1−


,

for any �xed 
 ∈ (0, 1] provided B ≥ B0 for some constant B0. �

4. Discussing the asymptotic density ofAF, k andBF, k

In this section, we give structural characterizations of ℬF, k and AF, k as
scaled sets of non-multiples. For all F with 0 as a wandering point, we can
completely describe the structure ofℬF, k. However, while dealing withAF, k,
we further assume that F has linear coe�cient as zero. This is assumed as the
sequence (an) de�ned for such F has rigid divisibility properties, giving us a
better grasp on the p-adic properties of these sequences. We show that these
sets have positive asymptotic densities if and only if they are not empty (The-
orem 1.3), based on this characterization. Now, we state the lemma analyzing
the structure of these sets.
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Lemma 4.1. Let k be a positive integer such that oF(k) < ∞. We de�ne

Tk = {
lF(kp)
lF(k)

∶ oF(p) < ∞ and p ∤ k} (4.1)

and
ℒk =

{
p ∶ p ∣ k and �p(lF(k)) < �p(alF(k))

}
∪ Tk. (4.2)

IfℬF, k is nonempty, then we have that

ℬF, k = {lF(k)m ∶ m ∈ N(Tk)}. (4.3)

Moreover, if F has linear coe�cient zero andAF, k is nonempty for a positive in-
teger k, we have,

AF, k = {lF(k)m ∶ m ∈ N(ℒk)}. (4.4)

Proof. Firstly, we give a characterization ofℬF, k. If n ∈ ℬF, k, then k ∣ an and
lF(k) ∣ n by Lemma 3.1-(3). Hence, it is easy to see that for a positive integer
m, lF(k)m ∈ ℬF, k if and only if p ∤ gcd(lF(k)m, alF(k)m) for every prime p
such that oF(p) < ∞ and p ∤ k. This further implies that lF(p) ∤ lF(k)m for
such p by Lemma 3.1-(3) which in turn is equivalent to

lcm(lF(k), lF(p))
lF(k)

=
lF(kp)
lF(k)

∤ m,

due to Lemma 3.1-(4).
Therefore, we conclude that

ℬF, k = {lF(k)m ∶ m ∈ N(Tk)}.

For the second part, note that lF(k)m ∈ AF, k for some m if and only if
�p(gcd(lF(k)m, alF(k)m)) = �p(k) for all primes p. For the primes p ∤ k such
that oF(p) < ∞, we must have p ∤ gcd(lF(k)m, alF(k)m), which is equivalent
to

lF(kp)
lF(k)

∤ m, (4.5)

due to above argument.
Lastly, we are left considering the case of primes p ∣ k. Due to Lemma 3.6,

we have that �p(a oF(p)⋅r) = �p(a oF(p)) for all positive integers r and as AF, k is
nonempty, we know that

�p(gcd(lF(k), alF(k))) = �p(k),

by Lemma 3.1-(6). First, we handle primes p such that �p(lF(k)) ≥ �p(alF(k))
for which �p(alF(k)) = �p(k). We have,

�p(gcd(lF(k)m, alF(k)m)) = �p(alF(k)m) = �p(alF(k)) = �p(k),

as desired. Next, we consider the case when �p(lF(k)) < �p(alF(k)) for which
�p(lF(k)) = �p(k). Thus,

�p(gcd(lF(k)m, alF(k)m)) = min(�p(lF(k)m), �p(alF(k)m)),
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which is greater than �p(k) if and only if p ∣ m. Therefore,

�p(gcd(lF(k)m, alF(k)m)) = �p(k) if and only if p ∤ m (4.6)

and hence, by (4.5) and (4.6) it follows that lF(k)m ∈ AF, k if and only if m ∈
N(ℒk). Thus, we deduce that

AF, k = {lF(k)m ∶ m ∈ N(ℒk)},

as desired. �

De�nition 4.2. A prime p is said to be anomalous if oF(p) = p and non-
anomalous if oF(p) ≠ p and oF(p) < ∞.

Note that the de�nition of anomalous primes is similar to the one in [10, Def-
inition 3.2]. However, in the case of elliptic divisibility sequences, contrary to
their dynamical counterparts, many results about distribution and properties of
anomalous primes have been obtained e�ectively. Authors in [5] have studied
and experimented with the distribution of anomalous primes in case of dynam-
ical divisibility sequences.

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. We will be proving Theorem 1.3-(1) as Theorem 1.3-
(2) follows in a similar way. Observe that as ℬF, k is nonempty, we must have
oF(k) < ∞. By Lemma 3.5 and Lemma 4.1, if we prove that

∑

n∈Tk

1
n

converges, then, as 1 ∉ Tk, we get that d(ℬF, k) > 0. Now using (4.1), we
obtain that

∑

n∈Tk

1
n ≪

∑

oF(p)<∞

1
lF(kp)

≤
∑

oF(p)<∞

1
lF(p)

=
∑

p is non-
anomalous

1
p ⋅ oF(p)

+
∑

p is
anomalous

1
p ,

where the convergence of the �rst sum follows by taking � = 0, " = 1 and � <
1 in Lemma 3.4 and the second sum converges as F is dynamically de�cient.
Hence our proof is complete. �

5. Calculating the explicit densities ofAF, k andBF, k

This section constitutes the main portion of the article. We start by demon-
strating convergence of a sum involving IF(n), analogous to the sums in [10,
Lemma A.1] and [16, Lemma 3.2].

In case of Fibonacci numbers, it is well-known that 5 is the only anomalous
prime, while it is known that the sum of reciprocal of anomalous primes con-
verges for elliptic divisibility sequences arising from di�erent elliptic curves.
In our case, we restricted F to be dynamically de�cient so as to bound the sum
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∑
oF(p)=p

1∕p by a constant. We �nd asymptotic densities of AF, k and ℬF, k
using this assumption and the sum in Lemma 5.1. However, as [16, Remark
4.2] points out, there is no known means of establishing a priori the require-
ment for the density to be zero or not, or even just showing non-negativity,
without going through the related characterization as in Lemma 4.1. Now, we
state our lemma.

Lemma 5.1. Let � be the Möbius function. The sum
∞∑

n=1
|�(n)| IF(n)

is �nite.

Proof. The proof is similar to [10, Lemma A.1]. Since F is dynamically de-
�cient, we can choose a constant B ≥ B0 (B0 is the same constant as in the
statement of Lemma 3.8) such that

∑

p>B
p is anomalous

1
p ≤ 1

2. (5.1)

For rest of the argument, denote P(n) to be the greatest prime factor of n. Since
lF(n) ≥ n, we obtain

∞∑

P(n)≤B
|�(n)| IF(n) ≤

∞∑

P(n)≤B

1
n ≤

∏

p≤B
(1 + 1

p) < ∞.

Now, we suppose P(n) > B for the rest of the proof. Hence,

∞∑

P(n)>B
|�(n)| IF(n) =

∞∑

P(n)>B
P(n) is non-
anomalous

|�(n)| IF(n) +
∞∑

P(n)>B
P(n) is

anomalous

|�(n)| IF(n). (5.2)

Firstly, we deal with the �rst sum in (5.2) involving primes which are non-
anomalous. From now on, we assume that the sum

∑′
runs over indices n

such that oF(n) < ∞, P(n) > B and P(n) is non-anomalous. Observe that for a
positive integer n such that oF(n) < ∞,

lcm(n, oF(P(n))) ∣ lcm(n, oF(n)) = lF(n)
by Lemma 3.1-(2). Therefore,

∞∑

P(n)>B
P(n) is non-
anomalous

|�(n)| IF(n) ≤
∞∑′

n = 1

|�(n)|
lF(n)

≤
∞∑′

n = 1

1
lcm(n, oF(P(n))

.

Let p = P(n).We can write

lcm(n, oF(p)) = lF(p) ⋅ m
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where P(m) ≤ p and oF(m) < ∞. Also, if p and lcm(n, oF(p)) are known, then
n can be chosen in at most �(oF(p)) ways. Henceforth,

∞∑′

n = 1

1
lcm(n, oF(P(n))

≪
∑

p>B
p is non-
anomalous

�(oF(p))
lF(p)

⎛
⎜
⎜
⎜
⎝

∑

P(m)≤p
oF(m)<∞

1
m

⎞
⎟
⎟
⎟
⎠

where �(n) denotes the number of divisors of n.Applying Lemma 3.8, we have,

∑

P(m)≤p
oF(m)<∞

1
m ≤

∏

q ≤p
oF(q) <∞

(1 − 1
q)

−1
≪ (log p)1−


for all prime numbers p > B and 
 ∈ (0, 1].We deduce that

∑

p>B
p is non-
anomalous

�(oF(p))
lF(p)

⎛
⎜
⎜
⎜
⎝

∑

P(m)≤p
oF(m)<∞

1
m

⎞
⎟
⎟
⎟
⎠

≤
∑

p>B
p is non-
anomalous

�(oF(p)) ⋅ (log p)1−


lF(p)
.

Moreover, we know that �(n) ≪ n� for any � > 0 from [19, Chapter I.5, Corol-
lary 1.1] and lF(p) = p oF(p) (See Lemma 3.1-(5)) since p is non-anomalous.
As a consequence,

∑

p>B
p is non-
anomalous

�(oF(p)) ⋅ (log p)1−


lF(p)
≪

∑

p

(log p)1−


p ⋅ oF(p)1−�
.

Our main task is to show convergence of the last sum above. We choose � =

∕100 and � < 1 − 
. Then, we apply Lemma 3.2 and Lemma 3.4 with these
constants to get that

∑

p

(log p)1−


p ⋅ oF(p)1−�

converges.

Now, we will be dealing with the second sum in (5.2) where P(n) is anomalous.
Again, let p = P(n).We can assume that n is square-free since �(n) is non-zero
only at square-free values. It follows that n = p ⋅ b where b is square-free and
gcd(b, p) = 1. Therefore,

lcm(p, b, oF(b)) = lcm(n, oF(n)) = lF(n)

and as

oF(b) = lcm(oF(p1), oF(p2), … oF(pr)) where b = p1 ⋅ p2⋯pr,
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we can conclude that gcd(p, oF(b)) = 1 implying lF(n) = p⋅lF(b). So wewrite
x∑

n=1
|�(n)| IF(n) =

x∑

P(n)>B
P(n) is

anomalous

|�(n)| IF(n) + K, (5.3)

where constant K arises due to the convergent sum in case when P(n) is non-
anomalous or P(n) ≤ B. Recall that due to (5.1),

x∑

P(n)>B
P(n) is

anomalous

|�(n)| IF(n) =
x∑

P(n)>B
oF(n) <∞

P(n) is anomalous

|�(n)|
lF(n)

≤
∑

B<p<x
p is anomalous

1
p ⋅

∑

b ≤x
oF(b) <∞

|�(b)|
lF(b)

≤ 1
2 ⋅

∑

b ≤x
|�(b)| IF(b).

Consequently, one can see that applying previous steps repeatedly on the last
sum, the largest prime factor gets reduced in each such step and thus, from
(5.3), we have that

x∑

n=1
|�(n)| IF(n) ≤ 2K.

Thus, if we let x → ∞, we are done. �

Now we proceed to prove Theorem 1.4.

Proof of Theorem 1.4. The proof is similar to [10, Theorem 1.2] and [16, The-
orem 1.4]. For all positive integers n and d, we de�ne

%(n, d) = {
1, if d ∣ an
0, otherwise.

Observe that
%(n, de) = %(n, d) ⋅ %(n, e)

for all relatively prime positive integers d and e and positive integers n.
One can infer that n ∈ ℬF, k if and only if oF(k) < ∞, lF(k) ∣ n and %(n, p) =

0 for all prime numbers p such that p ∣ n but p ∤ k. Henceforth,

#ℬF, k(x) =
∑

n≤x
lF(k) ∣ n

∏

p ∣ n
p ∤ k

(1 − %(n, p)) =
∑

n≤x
lF(k) ∣ n

∏

d ∣ n
gcd(d, k)=1

�(d) ⋅ %(n, d) (5.4)

=
∑

d ≤x
gcd(d, k)=1

�(d)
∑

m≤x∕d
lF(k) ∣ dm

%(dm, d). (5.5)
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Now note that if %(dm, d) = 1 and lF(k) ∣ dm, it follows that oF(d) < ∞ and

lcm(oF(d), lF(k)) ∣ dm.

If gcd(d, k) = 1, then this is equivalent to the fact that

lcm(d, lcm(oF(d), lF(k)))
d

=
lcm(lF(d), lF(k))

d
=
lF(dk)
d

dividesm. Therefore,

∑

m≤x∕d
lF(k) ∣ dm

%(dm, d) =
∑

m≤x∕d
lF(dk)∕d ∣m

1 =
⎢
⎢
⎣

x
lF(dk)

⎥
⎥
⎦
= ⌊x IF(dk)⌋

which combined with (5.4), implies

#ℬF,k(x) =
∑

d ≤x
gcd(d, k)=1

�(d) ⌊x IF(dk)⌋ .

Now expressing the �oor function in terms of fractional parts we get

#ℬF, k(x) = x
∑

d ≤x
gcd(d, k)=1

�(d) IF(dk) −
∑

d ≤x
gcd(d, k)=1

�(d){x IF(dk)}. (5.6)

By Lemma 5.1 and the fact that lF(dk) ≥ lF(d) when oF(d) < ∞, we deduce
that

∑

d ≤x
gcd(d, k)=1

|�(d)| IF(dk) ≤
∞∑

d =1
|�(d)| IF(d) < ∞.

Also, we can see that
∑

d ≤x
gcd(d, k)=1

|�(d)| {x IF(dk)} = O(x1∕2) +
∑

x1∕2<d≤x

|�(d)| {x IF(dk)}

≤ O(x1∕2) + x
∑

d≥x1∕2
|�(d)| IF(d) = o(x)

since by Lemma 5.1, the last series is the tail of a convergent series and hence
tends to zero as x → ∞. Thus, from (5.6) we have that

#ℬF,k(x)
x →

∑

d ≤x
gcd(d, k)=1

�(d) IF(dk). (5.7)

Hence the �rst part of Theorem 1.4 is proven.
For the second part, by the application of principle of inclusion and exclu-

sion, one sees that
#AF, k(x) =

∑

d ∣ k
�(d)#ℬF, dk(x),
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which on applying (5.7) reduces to

d(AF, k) =
∑

d ∣ k
�(d)d(ℬF, dk) =

∑

d ∣ k
�(d)

∑

gcd(c, dk)=1
�(c) IF(cdk)

=
∑

d ∣ k

∑

gcd(c, dk)=1
�(cd) IF(cdk) =

∞∑

t = 1
�(t) IF(tk).

since every square-free integer t can be written in a unique way as t = c ⋅ d,
where c and d are square-free integers such that c ∣ k and gcd(d, k) = 1. Fur-
thermore, note that the rearrangement of sum could be made possible due to
the absolute convergence of sum in the lemma 5.1. �

6. On the density ofAF, ax+b, 1 for general polynomials F
After thoroughly analyzing the sets AF, x, k, we now turn our attention to

their generalizations. One possible generalization is to explore a broader class
of polynomials as G.

As stated in [11], the only conceivable generalization in this regard is for G
with all rational roots and no �xed divisors. However, it appears that moving
beyond the linear case is possible only for a speci�c class ofF, whichwe discuss
at the end of the section (6.2). The bene�t of these speci�cF is that, under these
circumstances, the set of primes p for which oF(p) < ∞ is zero, which aids in
our calculations. In this section, we look at the case where G(x) = ax + b with
gcd(a, b) = 1 and k = 1.

In the case of linear recurrences, the authors of [11] were able to obtain a
density result for all k due to the fact that, appropriately scaling and translat-
ing integral linear recurrences, one can again obtain another integral linear re-
currence, and thus the problem is reduced to obtaining estimates for k = 1.
Unfortunately, due to the lack of results for dynamical sequences, we can only
consider the case of k = 1. Now, we state our �rst lemma which would help us
in proving Theorem 1.5.

Lemma 6.1. Let G(x) ∈ ℤ[x] be a linear polynomial with coprime coe�cients,
z be a �xed positive integer and let

Cz = {n ∶ p ∣ gcd(an, G(n)) for some prime p ≤ z},

then the asymptotic density of Cz exists and

d(Cz) ≤ 1 − �
(log z)1−


for some positive constants � and 
 < 1.

Proof. Note that an and G(n) are periodic modulo primes p for which oF(p) <
∞. Therefore, it is easy to see that Cz is a union of �nitely many arithmetic
progressions and �nite subsets of ℕ; concluding that the density d(Cz) exists.
Clearly,

Cz ⊆ {n ∶ p ∣ G(n) for some prime p ≤ z such that oF(p) < ∞},
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so using Eratosthenes’ sieve and Lemma 3.8, we know that

lim sup
x→+∞

#Cz(x)
x ≤ 1 −

∏

p≤z
oF(p)<∞

(1 − 1
p) ≤ 1 − �

(log z)1−

,

for all z ≥ 2, where � is some positive constant. �

We now prove Theorem 1.5.

Proof of Theorem 1.5. The proof follows along the ideas of [15, Theorem 1.1]
or [11, Theorem 1.4]. For the rest of argument, we assume that all primes p
are such that oF(p) < ∞. Put C = ℕ ⧵ AF, ax+b, 1. We need to prove that the
asymptotic density of C exists and is less than 1. For each z > b, we split C
into two subsets; Cz and C+z = C ⧵ Cz. By Lemma 6.1, we know that Cz has an
asymptotic density. We can see that d(Cz) is a nondecreasing bounded function
of z, therefore the limit

� ∶= lim
z→+∞

d(Cz)

exists and is �nite. Thus, we prove that the asymptotic density of C exists and
is equal to �. If n ∈ C+z (x), then there exists a prime p > z such that p ∣ an + b
and p ∣ an. Clearly, p is non-anomalous as if p ∣ gcd(an+b, an) and oF(p) = p
then p ∣ gcd(n, an+b) ≤ b. Hence, we canwrite n = lF(p)m for some positive
integer m ≪ x∕lF(p) such that alF(p)m ≡ 0 (mod p). From Lemma 3.1-(5),
we get that the number of possible values ofm is at most

O(
x

p ⋅ oF(p)
+ 1) .

Therefore, we conclude that

#C+z (x) ≪
∑

z ≤p≪x
(

x
p ⋅ oF(p)

+ 1) ≪ x ⋅
⎛
⎜
⎝

∑

p>z

1
p ⋅ oF(p)

+ 1
log x

⎞
⎟
⎠
,

where we used Chebyshev’s bound for number of primes less than x. Using
Lemma 3.4, we get that

#C+z (x)
x ≪ 1

log z
+ 1
log x

,

so that

lim sup
x→+∞

|||||||
#C(x)
x − d(Cz)

|||||||
= lim sup

x→+∞

|||||||
#C(x)
x −

#Cz(x)
x

|||||||

= lim sup
x→+∞

#C+z (x)
x ≪ 1

log z
,

hence, by letting z → ∞, we �nd d(C) = �. Now, to compute d(C), we have
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d(C) = lim sup
x→+∞

#C(x)
x ≤ lim sup

x→+∞

#Cz(x)
x + lim sup

x→+∞

#C+z (x)
x

≤ 1 − (
c1

(log z)1−

−

c2
log z

) ,

for all z ≥ 2, where c1 and c2 are positive constants. Finally, picking a su�-
ciently large z, depending on c1 and c2, we get that d(C) < 1. Thus,

d(AF, ax+b, 1) = 1 − d(C) > 0,

as desired. �

Remark 6.2. If we restrict F to be one of the following polynomials:
(1) F(x) = x2 − kx + k for some k ∈ ℤ
(2) F(x) = x2 + kx − 1 for some k ∈ ℤ ⧵ {0, 2}
(3) F(x) = x2 + k for some k ∈ ℤ ⧵ {−1}
(4) F(x) = x2 − 2xk + k for some k ∈ ℤ ⧵ {±1},
as considered in [9, Theorem 1.2] and let G be a polynomial with all integral
roots and no �xed divisors, then one can prove using arguments in Theorem
1.5 and replacing Lemma 3.7 with results in [9, Theorem 1.2] to conclude that
AF, G, 1 has a positive asymptotic density.

Remark 6.3. See thatAF, G, 1 = ℬF, G, 1 and, thus, forG(x) = ax+b,we have a
proven version of Theorem 1.3 for all polynomials F that have 0 as a wandering
point and k = 1.

In light of these results, which regard the setsAF, G, 1 andℬF, G, 1, it is natural
to ask about the distribution of these sets.
Question. Can we obtain explicit expressions for asymptotic density for the
setsAF, k andℬF, k for all polynomials F that have 0 as a wandering point?
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